151
|
Li C, Li L, Yang M, Yang J, Zhao C, Han Y, Zhao H, Jiang N, Wei L, Xiao Y, Liu Y, Xiong X, Xi Y, Luo S, Deng F, Chen W, Yuan S, Zhu X, Xiao L, Sun L. PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum-Mitochondria Contact and Mitophagy in Diabetic Nephropathy. Diabetes 2022; 71:1034-1050. [PMID: 35133431 DOI: 10.2337/db21-0983] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022]
Abstract
Mitochondria-associated endoplasmic reticulum membrane (MAM) may have a role in tubular injury in diabetic nephropathy (DN), but the precise mechanism remains unclear. Here, we demonstrate that the expression of phosphofurin acidic cluster sorting protein 2 (PACS-2), a critical regulator of MAM formation, is significantly decreased in renal tubules of patients with DN, and PACS-2 expression is positively correlated with renal function and negatively correlated with degrees of tubulointerstitial lesions. Conditional deletion of Pacs-2 in proximal tubules (PTs) aggravates albuminuria and tubular injury in a streptozotocin-induced mouse model of diabetes. Mitochondrial fragmentation, MAM disruption, and defective mitophagy accompanied by altered expression of mitochondrial dynamics and mitophagic proteins, including Drp1 and Becn1, are observed in tubules of diabetic mice; these changes are more pronounced in PT-specific Pacs-2 knockout mice. In vitro, overexpression of PACS-2 in HK-2 cells alleviates excessive mitochondrial fission induced by high glucose concentrations through blocking mitochondrial recruitment of DRP1 and subsequently restores MAM integrity and enhances mitophagy. Mechanistically, PACS-2 binds to BECN1 and mediates the relocalization of BECN1 to MAM, where it promotes the formation of mitophagosome. Together, these data highlight an important but previously unrecognized role of PACS-2 in ameliorating tubular injury in DN by facilitating MAM formation and mitophagy.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ling Wei
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xiaofen Xiong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
152
|
YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol 2022:10.1007/s10565-022-09711-7. [PMID: 35445903 DOI: 10.1007/s10565-022-09711-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which had a closely relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) played an important role not only in regulating fibrosis process, but also in maintaining mitochondrial function of pancreatic β cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG upregulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose cultured HK-2 cells and 8-week-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF .
Collapse
|
153
|
Jang SY, Yang DH. Prognostic and Therapeutic Implications of Renal Insufficiency in Heart Failure. INTERNATIONAL JOURNAL OF HEART FAILURE 2022; 4:75-90. [PMID: 36263106 PMCID: PMC9383346 DOI: 10.36628/ijhf.2021.0039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
The heart and kidneys are closely related vital organs that significantly affect each other. Cardiorenal syndrome is the term depicting the various spectra of cardiorenal interaction mediated by the hemodynamic, neurohormonal, and biochemical cross-talk between these two organs. In patients with heart failure (HF), both the baseline and worsening renal function are closely related to prognosis. However, for both investigational and clinical purposes, the unified definition and classification of renal injury are still necessary. Renal insufficiency is caused by multiple factors, and categorizing them into monogenous subgroups of phenotype is difficult. Various clinical scenarios related to the chronicity of HF, progression of renal dysfunction, and issues related to pharmacologic therapies associated with the prognosis of patients with HF have been reviewed in this study.
Collapse
Affiliation(s)
- Se Yong Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Divison of Cardiology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
- Divison of Cardiology, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Dong Heon Yang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
- Divison of Cardiology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
- Divison of Cardiology, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Korea
| |
Collapse
|
154
|
Abstract
Circulating blood is filtered across the glomerular barrier to form an ultrafiltrate of plasma in the Bowman's space. The volume of glomerular filtration adjusted by time is defined as the glomerular filtration rate (GFR), and the total GFR is the sum of all single-nephron GFRs. Thus, when the single-nephron GFR is increased in the context of a normal number of functioning nephrons, single glomerular hyperfiltration results in 'absolute' hyperfiltration in the kidney. 'Absolute' hyperfiltration can occur in healthy people after high protein intake, during pregnancy and in patients with diabetes, obesity or autosomal-dominant polycystic kidney disease. When the number of functioning nephrons is reduced, single-nephron glomerular hyperfiltration can result in a GFR that is within or below the normal range. This 'relative' hyperfiltration can occur in patients with a congenitally reduced nephron number or with an acquired reduction in nephron mass consequent to surgery or kidney disease. Improved understanding of the mechanisms that underlie 'absolute' and 'relative' glomerular hyperfiltration in different clinical settings, and of whether and how the single-nephron haemodynamic and related biomechanical forces that underlie glomerular hyperfiltration promote glomerular injury, will pave the way toward the development of novel therapeutic interventions that attenuate glomerular hyperfiltration and potentially prevent or limit consequent progressive kidney injury and loss of function.
Collapse
|
155
|
Zhang J, Huan Y, Leibensperger M, Seo B, Song Y. Comparative Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Serum Electrolyte Levels in Patients with Type 2 Diabetes: A Pairwise and Network Meta-Analysis of Randomized Controlled Trials. KIDNEY360 2022; 3:477-487. [PMID: 35582188 PMCID: PMC9034808 DOI: 10.34067/kid.0006672021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/14/2022] [Indexed: 04/17/2023]
Abstract
BACKGROUND Previous studies have reported that sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2is) affect levels of serum electrolytes, especially magnesium. This study aimed to integrate direct and indirect trial evidence to maximize statistical power to clarify their overall and comparative effects in patients with type 2 diabetes (T2D). METHODS We systematically searched PubMed, EMBASE, CENTRAL, and ClinicalTrials.gov up to January 2021 to identify eligible randomized controlled trials (RCTs) of SGLT2is that reported mean changes in serum electrolytes, including magnesium, sodium, potassium, phosphate, and calcium. We performed both random-effects pairwise and network meta-analyses to calculate the weighted mean difference (WMD) and 95% confidence intervals (CI). RESULTS In total, we included 25 RCTs involving 28,269 patients with T2D and 6 SGLT2is. Compared with placebo, SGLT2is were significantly associated with elevations in serum magnesium by 0.07 mmol/L (95% CI, 0.06 to 0.08 mmol/L) and serum phosphate by 0.03 mmol/L (95% CI, 0.02 to 0.04 mmol/L). Our network meta-analysis showed no evidence of significantly superior efficacy of any specific SGLT2 inhibitor over the others, although dapagliflozin was associated with a larger increment in serum magnesium (WMD=0.16 mmol/L) compared with other SGLT2is. Similarly, no statistically detectable differences among the effects of SGLT2is on serum levels of other electrolytes were detected. CONCLUSIONS SGLT2is significantly increased serum magnesium and phosphate levels, consistent with a class effect of SGLT2 inhibition. However, further investigations of long-term efficacy and safety in patients with T2D with different clinical phenotypes are needed.
Collapse
Affiliation(s)
- Jingjing Zhang
- Division of Nephrology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yonghong Huan
- Renal Division, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark Leibensperger
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Bojung Seo
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
| | - Yiqing Song
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
| |
Collapse
|
156
|
Sakaue TA, Fujishima Y, Fukushima Y, Tsugawa-Shimizu Y, Fukuda S, Kita S, Nishizawa H, Ranscht B, Nishida K, Maeda N, Shimomura I. Adiponectin accumulation in the retinal vascular endothelium and its possible role in preventing early diabetic microvascular damage. Sci Rep 2022; 12:4159. [PMID: 35264685 PMCID: PMC8907357 DOI: 10.1038/s41598-022-08041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Adiponectin (APN), a protein abundantly secreted from adipocytes, has been reported to possess beneficial effects on cardiovascular diseases in association with its accumulation on target organs and cells by binding to T-cadherin. However, little is known about the role of APN in the development of diabetic microvascular complications, such as diabetic retinopathy (DR). Here we investigated the impact of APN on the progression of early retinal vascular damage using a streptozotocin (STZ)-induced diabetic mouse model. Our immunofluorescence results clearly showed T-cadherin-dependent localization of APN in the vascular endothelium of retinal arterioles, which was progressively decreased during the course of diabetes. Such reduction of retinal APN accompanied the early features of DR, represented by increased vascular permeability, and was prevented by glucose-lowering therapy with dapagliflozin, a selective sodium-glucose co-transporter 2 inhibitor. In addition, APN deficiency resulted in severe vascular permeability under relatively short-term hyperglycemia, together with a significant increase in vascular cellular adhesion molecule-1 (VCAM-1) and a reduction in claudin-5 in the retinal endothelium. The present study demonstrated a possible protective role of APN against the development of DR.
Collapse
Affiliation(s)
- Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Yoko Fukushima
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuri Tsugawa-Shimizu
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Barbara Ranscht
- Sanford Burnham Prebys Medical Discovery Institute, NIH-Designated Cancer Center, Development, Aging and Regeneration Program, La Jolla, CA, USA
| | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
157
|
Zhang J, Cai J, Cui Y, Jiang S, Wei J, Kim YC, Chan J, Thalakola A, Le T, Xu L, Wang L, Jiang K, Wang X, Wang H, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. Role of the macula densa sodium glucose cotransporter type 1-neuronal nitric oxide synthase-tubuloglomerular feedback pathway in diabetic hyperfiltration. Kidney Int 2022; 101:541-550. [PMID: 34843754 PMCID: PMC8863629 DOI: 10.1016/j.kint.2021.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
An increase of glomerular filtration rate (GFR) is a common observation in early diabetes and is considered a key risk factor for subsequent kidney injury. However, the mechanisms underlying diabetic hyperfiltration have not been fully clarified. Here, we tested the hypothesis that macula densa neuronal nitric oxide synthase (NOS1) is upregulated via sodium glucose cotransporter type 1 (SGLT1) in diabetes, which then inhibits tubuloglomerular feedback (TGF) promoting glomerular hyperfiltration. Therefore, we examined changes in cortical NOS1 expression and phosphorylation, nitric oxide production in the macula densa, TGF response, and GFR during the early stage of insulin-deficient (Akita) diabetes in wild-type and macula densa-specific NOS1 knockout mice. A set of sophisticated techniques including microperfusion of juxtaglomerular apparatus in vitro, micropuncture of kidney tubules in vivo, and clearance kinetics of plasma fluorescent-sinistrin were employed. Complementary studies tested the role of SGLT1 in SGLT1 knockout mice and explored NOS1 expression and phosphorylation in kidney biopsies of cadaveric donors. Diabetic mice had upregulated macula densa NOS1, inhibited TGF and elevated GFR. Macula densa-selective NOS1 knockout attenuated the diabetes-induced TGF inhibition and GFR elevation. Additionally, deletion of SGLT1 prevented the upregulation of macula densa NOS1 and attenuated inhibition of TGF in diabetic mice. Furthermore, the expression and phosphorylation levels of NOS1 were increased in cadaveric kidneys of diabetics and positively correlated with blood glucose as well as estimated GFR in the donors. Thus, our findings demonstrate that the macula densa SGLT1-NOS1-TGF pathway plays a crucial role in the control of GFR in diabetes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, Florida, USA.
| | - Jing Cai
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Cui
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Young Chul Kim
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jenna Chan
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Anish Thalakola
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Thanh Le
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ximing Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| | - Haibo Wang
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL, Department of Otolarynggology-Head and Neck Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
158
|
Wang B, Li ZL, Zhang YL, Wen Y, Gao YM, Liu BC. Hypoxia and chronic kidney disease. EBioMedicine 2022; 77:103942. [PMID: 35290825 PMCID: PMC8921539 DOI: 10.1016/j.ebiom.2022.103942] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an inherent pathophysiological characteristic of chronic kidney disease (CKD), which is closely associated with the development of renal inflammation and fibrosis, as well as CKD-related complications such as anaemia, cardiovascular events, and sarcopenia. This review outlined the characteristics of oxygen supply in the kidney, changes in oxygen metabolism and factors leading to hypoxia in CKD. Mechanistically, we discussed how hypoxia contributes to renal injury as well as complications associated with CKD. Furthermore, we also discussed the potential therapeutic approaches that target chronic hypoxia, as well as the challenges in the study of oxygen homeostasis imbalance in CKD.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yue-Ming Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
159
|
Sridhar VS, Yau K, Benham JL, Campbell DJT, Cherney DZI. Sex and Gender Related Differences in Diabetic Kidney Disease. Semin Nephrol 2022; 42:170-184. [PMID: 35718364 DOI: 10.1016/j.semnephrol.2022.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diversity in sex and gender are important considerations in the pathogenesis, prognostication, research, and management of diabetic kidney disease (DKD). Sex and gender differences in the disease risk, disease-specific mechanisms, and outcomes in DKD may be attributed to biological differences between males and females at the cellular and tissue level, inconsistencies in the diagnostic and assessment tools used in chronic kidney disease and DKD, as well societal differences in the way men, women, and gender-diverse individuals self-manage and interact with health care systems. This review outlines key considerations related to the impact of sex on DKD, specifically elaborating on how they contribute to observed differences in disease epidemiology, pathogenesis, and treatment strategies. We also highlight the effect of gender on DKD progression and care.
Collapse
Affiliation(s)
- Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Kevin Yau
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Jamie L Benham
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - David J T Campbell
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta.
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| |
Collapse
|
160
|
van der Hoek S, Stevens J. Current Use and Complementary Value of Combining in Vivo Imaging Modalities to Understand the Renoprotective Effects of Sodium-Glucose Cotransporter-2 Inhibitors at a Tissue Level. Front Pharmacol 2022; 13:837993. [PMID: 35264970 PMCID: PMC8899288 DOI: 10.3389/fphar.2022.837993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) were initially developed to treat diabetes and have been shown to improve renal and cardiovascular outcomes in patients with- but also without diabetes. The mechanisms underlying these beneficial effects are incompletely understood, as is the response variability between- and within patients. Imaging modalities allow in vivo quantitative assessment of physiological, pathophysiological, and pharmacological processes at kidney tissue level and are therefore increasingly being used in nephrology. They provide unique insights into the renoprotective effects of SGLT2i and the variability in response and may thus contribute to improved treatment of the individual patient. In this mini-review, we highlight current work and opportunities of renal imaging modalities to assess renal oxygenation and hypoxia, fibrosis as well as interaction between SGLT2i and their transporters. Although every modality allows quantitative assessment of particular parameters of interest, we conclude that especially the complementary value of combining imaging modalities in a single clinical trial aids in an integrated understanding of the pharmacology of SGLT2i and their response variability.
Collapse
|
161
|
Effects of SGLT2 inhibitors on cardiovascular outcomes in patients with stage 3/4 CKD: A meta-analysis. PLoS One 2022; 17:e0261986. [PMID: 35020750 PMCID: PMC8754287 DOI: 10.1371/journal.pone.0261986] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION After stage 3 CKD, the risk of adverse cardiovascular events increased significantly. Therefore, we performed a meta-analysis to investigate the cardiovascular protective effect of SGLT2 inhibitors in patients with stage 3/4 CKD with different baseline kidney function or underlying diseases. METHOD To identify eligible trials, we systematically searched the Embase, PubMed, Web of Science, and Cochrane library databases from inception to April 15, 2021. The primary cardiovascular outcome was defined as a combination of cardiovascular mortality and hospitalization due to heart failure. Baseline kidney functions (stage 3a CKD: eGFR45-59mL/min per 1.73m2, stage 3b CKD: eGFR30-44mL/min per 1.73m2, stage 4 CKD: eGFR<30mL/min per 1.73m2) and underlying diseases (Type 2 diabetes, heart failure (Preserved ejection fraction or reduced ejection fraction), atherosclerotic cardiovascular disease) were used to stratify efficacy and safety outcomes. The results were subjected to a sensitivity analysis to ensure that they were reliable. RESULTS In the present study, a total of eleven trials were included that involved a total of 27,823 patients with stage 3/4 CKD. The treatment and control groups contained 14,451 and 13,372 patients, respectively. In individuals with stage 3/4 CKD, SGLT2 inhibitors reduced the risk of primary cardiovascular outcomes by 26% (HR 0.74, [95% CI 0.69-0.80], I2 = 0.00%), by 30% in patients with stage 3a CKD (HR 0.70, [95% CI 0.59-0.84], I2 = 18.70%), by 23% in patients with stage 3b CKD (HR 0.77, [95% CI 0.66-0.90], I2 = 2.12%), and by 29% in patients with stage 4 CKD (HR 0.71, [95% CI 0.53-0.96], I2 = 0.00%). The risk of primary outcomes was reduced by 29% (HR 0.71, [95% CI 0.63-0.80], I2 = 0.00%) in patients with type 2 diabetes, by 28% (HR 0.72, [95% CI 0.56-0.93], I2 = 37.23%) in patients with heart failure with preserved ejection fraction, by 21% (HR 0.79, [95% CI 0.70-0.89], I2 = 0.00%) in patients with heart failure with reduced ejection fraction, and by 25% (HR 0.75, [95% CI 0.64-0.88], I2 = 0.00%) in patients with atherosclerotic cardiovascular disease. CONCLUSIONS For stage 3/4 CKD, SGLT2 inhibitors significantly decreased the risk of primary cardiovascular outcomes, and these benefits were consistent throughout the spectrum of different kidney functions, even in stage 4 CKD. There was no evidence of increased adverse outcomes across different baseline clinical complications, such as type 2 diabetes, heart failure, or atherosclerotic cardiovascular disease.
Collapse
|
162
|
Jung J, Park WY, Kim YJ, Kim M, Choe M, Jin K, Seo JH, Ha E. 3-Hydroxybutyrate Ameliorates the Progression of Diabetic Nephropathy. Antioxidants (Basel) 2022; 11:antiox11020381. [PMID: 35204263 PMCID: PMC8868458 DOI: 10.3390/antiox11020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Studies report beneficial effects of 3-hydroxybutyrate (3-OHB) on the treatment of type 2 diabetes and obesity, but the effects of 3-OHB on diabetic nephropathy have not been elucidated. This study was designed to investigate the efficacy and mechanism of 3-OHB against progression of diabetic nephropathy (DN). Mice (db/db) were fed normal chow, high-fat, or ketogenic diets (KD) containing precursors of 3-OHB. Hyperglycemia was determined based on random glucose level (≥250 mg/dL). Fasting blood glucose and body weights were measured once a week. Twenty four-hour urine albumin to creatinine ratio was determined 5 weeks after the differential diet. Energy expenditure was measured 9 weeks after the differential diet. Body weights were significantly lower in the KD group than those in other groups, but no significant differences in fasting blood glucose levels among three groups were observed. Urine albumin to creatinine ratio and serum blood urea nitrogen (BUN) to creatinine ratio in the KD group were significantly lower than in other groups. Histologic and quantitative analysis of mesangial area suggested that KD delayed the progression of DN phenotype in db/db mice. Metabolic cage analysis also revealed that KD increased energy expenditure in db/db mice. In vitro studies with proximal tubular cells revealed that 3-OHB stimulated autophagic flux. 3-OHB increased LC3 I to LC3 II ratio, phosphorylation of AMPK, beclin, p62 degradation, and NRF2 expression. Moreover, we found that 3-OHB attenuated high glucose-induced reactive oxygen species (ROS) levels in proximal tubular cells. In vivo study also confirmed increased LC3 and decreased ROS levels in the kidney of KD mice. In summary, this study shows in both in vivo and in vitro models that 3-OHB delays the progression of DN by augmenting autophagy and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jeeyoun Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
| | - Woo Yeong Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Yun Jin Kim
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (Y.J.K.); (M.K.)
| | - Mikyung Kim
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (Y.J.K.); (M.K.)
| | - Misun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Kyubok Jin
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Korea;
- Correspondence: (K.J.); (J.H.S.); (E.H.)
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (Y.J.K.); (M.K.)
- Correspondence: (K.J.); (J.H.S.); (E.H.)
| | - Eunyoung Ha
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea; (Y.J.K.); (M.K.)
- Correspondence: (K.J.); (J.H.S.); (E.H.)
| |
Collapse
|
163
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
164
|
Rayego-Mateos S, Morgado-Pascual JL, Lavoz C, Rodrigues-Díez RR, Márquez-Expósito L, Tejera-Muñoz A, Tejedor-Santamaría L, Rubio-Soto I, Marchant V, Ruiz-Ortega M. CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules 2022; 12:biom12020252. [PMID: 35204752 PMCID: PMC8869303 DOI: 10.3390/biom12020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14071 Cordoba, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral Chile, Valdivia 5090000, Chile;
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Laura Márquez-Expósito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Irene Rubio-Soto
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
165
|
Wang S, Zuo A, Jiang W, Xie J, Lin H, Sun W, Zhao M, Xia J, Shao J, Zhao X, Liang D, Yang A, Sun J, Wang M. JMJD1A/NR4A1 Signaling Regulates the Procession of Renal Tubular Epithelial Interstitial Fibrosis Induced by AGEs in HK-2. Front Med (Lausanne) 2022; 8:807694. [PMID: 35186975 PMCID: PMC8850412 DOI: 10.3389/fmed.2021.807694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most serious complications of diabetic patients. Advanced glycation end products (AGEs) induce epithelial-mesenchymal transformation (EMT) of renal tubular epithelial cells (HK-2), resulting in renal tubulointerstitial fibrosis. However, the underlying epigenetic mechanisms remain to be further investigated. In this work, we investigated the functional role of JMJD1A involved in DKD progression. The molecular mechanism study was performed in AGEs-induced HK-2 cells by gene expression analysis, RNA sequencing (RNA-seq), and JMJD1A lentiviral knockdown and overexpression particle transfection. The results showed that AGEs could upregulate JMJD1A, and the expressions of related fibrotic factor were also increased. At the same time, in the DKD animal model induced by unilateral nephrectomy plus streptozotocin (STZ), IHC immunohistochemical staining showed that compared with the control group, the expressions of JMJD1A, FN, and COL1 in the model group were all increased, masson staining results also show that the model group has typical fibrotic changes. This is consistent with the results of our in vitro experiments. In order to determine the downstream pathway, we screened out JMJD1A downstream transcription factors by RNA-seq. Further analysis showed that JMJD1A overexpression could accelerate the progression of AGEs-induced renal fibrosis by reducing the expression of NR4A1 in HK-2 cells. Meanwhile, NR4A1 inhibitor can promote the expression of fibrosis-related factors such as VIM, a-SMA in HK-2 cells, and aggravate the process of fibrosis. Taken together, JMJD1A/NR4A1 signaling can regulate the procession of renal tubular epithelial interstitial fibrosis induced by AGEs in HK-2.
Collapse
Affiliation(s)
- Shaoting Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Anna Zuo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiqiang Jiang
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiarun Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haoyu Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Min Zhao
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinjin Xia
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junqiao Shao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Donghui Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Aicheng Yang
- The Affiliated Jiangmen Traditional Chinese Medicine Hospital, Jinan University, Guangzhou, China
- Aicheng Yang
| | - Jia Sun
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Jia Sun
| | - Ming Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Ming Wang
| |
Collapse
|
166
|
Alsagaff MY, Thaha M, Pikir BS, Susilo H, Wungu CDK, Suryantoro SD, Haryati MR, Ramadhani R, Agustin ED, Putra MRA, Maiguma M, Suzuki Y. The role of oxidative stress markers in Indonesian chronic kidney disease patients: a cross sectional study. F1000Res 2022. [DOI: 10.12688/f1000research.74985.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Several aspects of chronic kidney disease (CKD) such as the incidence rate and mortality rate are concerning. Oxidative stress contributes to progression and mortality in patients with CKD; however, a specific correlation between several markers of oxidative stress and the estimated glomerular filtration rate (eGFR) and albumin-creatinine ratio (ACR) in the Indonesian population has not been sufficiently described yet. Methods: This study was an analytic observational study with a sample of 56 patients with CKD in Universitas Airlangga Hospital, Surabaya, Indonesia, from December 2019 – March 2020. The markers for oxidative stress investigated were urinary 8-hydroxy-2 deoxyguanosine (8-OHdG), serum symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA). The correlations between each variable of oxidative stress and CKD were analyzed using Pearson analysis. Results: There was a positive correlation between 8-OHdG and eGFR (p=0.00, r=0.51); however, there was a negative correlation between 8-OHdG and ACR (p=0.025, r=-0.30). SDMA and eGFR showed a negative correlation (p=0.00, r=-0.648), while SDMA and ACR showed a positive correlation (p=0.03, r=0.349). ADMA showed a negative correlation with eGFR (p=0.00, r=-0.476). There were significantly decreased 8-OHdG but increased ADMA and SDMA as the CKD stage progressed (p=0.001, p=0.00, and p = 0.00, respectively). Higher urine 8-OHdG was detected in patients without history of hemodialysis, whereas ADMA and SDMA showed higher value in patients with hemodialysis (p=0.00, p=0.00, and p=0.004, respectively), patients with history of diabetes mellitus (DM) had higher mean 8-OHdG (p 0.000) yet lower serum ADMA and SDMA (p=0.004 and p=0.003, respectively). Conclusions: In patients with CKD in Indonesia, the markers for oxidative stress 8-OHdG, SDMA, and ADMA are correlated with eGFR and ACR levels. There were also significant difference in 8-OHdG, SDMA, and ADMA levels among CKD stages, between dialysis vs non dialysis, and DM vs non DM patients.
Collapse
|
167
|
Liu L, Bai F, Song H, Xiao R, Wang Y, Yang H, Ren X, Li S, Gao L, Ma C, Yang X, Liang X. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy. Redox Biol 2022; 50:102260. [PMID: 35152003 PMCID: PMC8844679 DOI: 10.1016/j.redox.2022.102260] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Renal tubular epithelial cells (RTECs) are one of the most mitochondria-rich cell types, and are thus vulnerable to mitochondrial dysregulation, which is defined as a pivotal event in tubular damage in diabetic nephropathy (DN). However, the underlying mechanisms remain largely unknown. Here, we investigated the role and mechanisms of tumor necrosis factor alpha-induced protein 8-like 1 (TNFAIP8L1/TIPE1) in high glucose (HG)-induced mitochondrial dysfunction in RTECs and DN progression. TIPE1 expression was predominantly upregulated in RTECs in patients with DN and mice with streptozotocin (STZ)-induced DN. Conditional knockout of Tipe1 in RTECs significantly decreased the urine protein creatinine ratio, renal tubular damage, epithelial-mesenchymal transition, and interstitial fibrosis in STZ-induced mice. RNA sequencing revealed that citrate cycle-related genes were positively enriched in the renal tissues of RTEC-specific Tipe1 knockout mice. Tipe1 deficiency upregulated ATP levels, mitochondrial membrane potential, and respiration rate, but downregulated mitochondrial ROS levels in RTECs. Furthermore, Tipe1 ablation led to enhanced mitophagy in RTECs, indicative of increased LC3II, PINK1, and Parkin expression, but decreased p62 expression in mitochondria. Mechanistically, mass spectrometry screening and co-immunoprecipitation assays revealed the interaction of TIPE1 with prohibitin 2 (PHB2), a crucial mitophagy receptor. Intriguingly, TIPE1 promoted the ubiquitination and proteasomal degradation of PHB2. Subsequently, PHB2 knockdown almost abrogated the improvement of Tipe1 loss on HG-induced tubular cell mitophagy and damage. Thus, TIPE1 disrupts mitochondrial homeostasis in RTECs and promotes tubular damage by destabilizing PHB2 under HG conditions. Hence, TIPE1 may act as a potential therapeutic target to prevent DN progression. TIPE1 is highly expressed in RTECs of DN. TIPE1 aggravates diabetic renal injury and fibrosis. TIPE1 disrupts the mitochondria homeostasis of RTECs by inhibiting mitophagy. TIPE1 interacts with and promotes the proteasomal degradation of PHB2.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China; Department of Nephropathy, Qilu Hospital of Shandong University, Cheeloo Medical College, Shandong University, Jinan, Shandong, Jinan, Shandong, PR China
| | - Fang Bai
- Department of Nephropathy, Qilu Hospital of Shandong University, Cheeloo Medical College, Shandong University, Jinan, Shandong, Jinan, Shandong, PR China
| | - Hui Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Huimin Yang
- Department of Nephropathy, Qilu Hospital of Shandong University, Cheeloo Medical College, Shandong University, Jinan, Shandong, Jinan, Shandong, PR China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Shuangjie Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China; Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China; Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Jinan, Shandong, China
| | - Xiangdong Yang
- Department of Nephropathy, Qilu Hospital of Shandong University, Cheeloo Medical College, Shandong University, Jinan, Shandong, Jinan, Shandong, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China; Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Jinan, Shandong, China.
| |
Collapse
|
168
|
Shimada K, Kanasaki K, Kato M, Ogura Y, Takagaki Y, Monno I, Hirai T, Kitada M, Koya D. Adenosine/A1R signaling pathway did not play dominant roles on the influence of SGLT2 inhibitor in the kidney of BSA‐overloaded STZ‐induced diabetic mice. J Diabetes Investig 2022; 13:955-964. [PMID: 35098679 PMCID: PMC9153834 DOI: 10.1111/jdi.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Aims/Introduction Sodium–glucose cotransporter 2 inhibitors (SGLT2i) have been shown to display excellent renoprotective effects in diabetic kidney disease with macroalbuminuria/proteinuria. Regarding the renoprotective mechanism of SGLT2i, a sophisticated hypothesis was made by explaining the suppression of glomerular hypertension/hyperfiltration through the adenosine/adenosine type 1 receptor (A1R) signaling‐mediated restoration of the tubuloglomerular feedback mechanism; however, how such A1R signaling is relevant for renoprotection by SGLT2i in diabetic kidney disease with proteinuria has not been elucidated. Materials and Methods Streptozotocin‐induced diabetic CD‐1 mice were injected with bovine serum albumin (BSA) and treated with SGLT2i in the presence/absence of A1R inhibitor administration. Results We found that the influences of SGLT2i are essentially independent of the activation of A1R signaling in the kidney of BSA‐overloaded streptozotocin‐induced diabetic mice. BSA‐overloaded diabetic mice showed the trend of kidney damage with higher glomerular filtration rate (GFR) and the significant induction of fibrogenic genes, such as transforming growth factor‐β2 and collagen type III. SGLT2i TA‐1887 suppressed diabetes‐induced GFR in BSA‐overloaded diabetic mice was associated with the significant suppression of transforming growth factor‐β2 and collagen type III; A1R‐specific inhibitor 8‐cyclopentyl‐1,3‐dipropylxanthine did not cancel the effects of TA‐1887 on either GFR or associated gene levels. Both TA‐1887 and 8‐cyclopentyl‐1,3‐dipropylxanthine‐treated BSA‐overloaded diabetic mice showed suppressed glycated hemoglobin levels associated with the increased food intake. When analyzing the association among histological evaluation, GFR and potential fibrogenic gene levels, each group of mice showed distinct correlation patterns. Conclusions A1R signaling activation was not the dominant mechanism on the influence of SGLT2i in the kidney of BSA‐overloaded diabetic mice.
Collapse
Affiliation(s)
- Keiji Shimada
- Department of Diabetology and Endocrinology Kanazawa Medical University
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology Kanazawa Medical University
- Division of Anticipatory Molecular Food Science and Technology Medical Research Institute Kanazawa Medical University Uchinada, Ishikawa Japan
- Internal Medical 1 Shimane University Faculty of Medicine Izumo, Shimane Japan
| | - Makoto Kato
- Ikuyaku. Integrated Value Development Division Mitsubishi Tanabe Pharma Corporation Tokyo Japan
- Naka Kinen Clinic Ibaraki Japan
- Department of Cardiology International Medical Center Saitama Medical University Saitama Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology Kanazawa Medical University
| | - Yuta Takagaki
- Department of Diabetology and Endocrinology Kanazawa Medical University
| | - Itaru Monno
- Department of Diabetology and Endocrinology Kanazawa Medical University
| | - Taro Hirai
- Department of Diabetology and Endocrinology Kanazawa Medical University
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology Kanazawa Medical University
- Division of Anticipatory Molecular Food Science and Technology Medical Research Institute Kanazawa Medical University Uchinada, Ishikawa Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology Kanazawa Medical University
- Division of Anticipatory Molecular Food Science and Technology Medical Research Institute Kanazawa Medical University Uchinada, Ishikawa Japan
| |
Collapse
|
169
|
Rong Q, Han B, Li Y, Yin H, Li J, Hou Y. Berberine Reduces Lipid Accumulation by Promoting Fatty Acid Oxidation in Renal Tubular Epithelial Cells of the Diabetic Kidney. Front Pharmacol 2022; 12:729384. [PMID: 35069186 PMCID: PMC8766852 DOI: 10.3389/fphar.2021.729384] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal lipid metabolism in renal tubular epithelial cells contributes to renal lipid accumulation and disturbed mitochondrial bioenergetics which are important in diabetic kidney disease. Berberine, the major active constituent of Rhizoma coptidis and Cortex phellodendri, is involved in regulating glucose and lipid metabolism. The present study aimed to investigate the protective effects of berberine on lipid accumulation in tubular epithelial cells of diabetic kidney disease. We treated type 2 diabetic db/db mice with berberine (300 mg/kg) for 12 weeks. Berberine treatment improved the physical and biochemical parameters of the db/db mice compared with db/m mice. In addition, berberine decreased intracellular lipid accumulation and increased the expression of fatty acid oxidation enzymes CPT1, ACOX1 and PPAR-α in tubular epithelial cells of db/db mice. The mitochondrial morphology, mitochondrial membrane potential, cytochrome c oxidase activity, mitochondrial reactive oxygen species, and mitochondrial ATP production in db/db mice kidneys were significantly improved by berberine. Berberine intervention activated the AMPK pathway and increased the level of PGC-1α. In vitro berberine suppressed high glucose-induced lipid accumulation and reversed high glucose-induced reduction of fatty acid oxidation enzymes in HK-2 cells. Importantly, in HK-2 cells, berberine treatment blocked the change in metabolism from fatty acid oxidation to glycolysis under high glucose condition. Moreover, berberine restored high glucose-induced dysfunctional mitochondria. These data suggested that berberine alleviates diabetic renal tubulointerstitial injury through improving high glucose-induced reduction of fatty acid oxidation, alleviates lipid deposition, and protect mitochondria in tubular epithelial cells.
Collapse
Affiliation(s)
- Qingfeng Rong
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Baosheng Han
- Department of Cardiac Surgery, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Province People's Hospital, Taiyuan, China.,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Haizhen Yin
- Central Laboratory, Shanxi Province People's Hospital, Taiyuan, China
| | - Jing Li
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
170
|
Direct evidence of proximal tubular proliferation in early diabetic nephropathy. Sci Rep 2022; 12:778. [PMID: 35039597 PMCID: PMC8763925 DOI: 10.1038/s41598-022-04880-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Kidney hypertrophy is a common clinical feature in patients with diabetes and is associated with poor renal outcomes. Initial cell proliferation followed by cellular hypertrophy are considered the responsible mechanisms for diabetic kidney hypertrophy. However, whether similar responses against hyperglycemia continue in the chronic phase in diabetes is unclear. We performed lineage tracing analysis of proximal tubular epithelia using novel type 2 diabetic mice with a tamoxifen-inducible proximal tubule-specific fluorescent reporter. Clonal analysis of proximal tubular epithelia demonstrated that the labeled epithelia proliferated in type 2 diabetic mice. Based on the histological analysis and protein/DNA ratio of sorted labeled tubular epithelia, there was no evidence of cellular hypertrophy in type 2 diabetic mice. Lineage tracing and histological analyses of streptozocin-induced type 1 diabetes also revealed that cellular proliferation occurs in the chronic phase of type 1 diabetes induction. According to our study, epithelial proliferation accompanied by SGLT2 upregulation, rather than cellular hypertrophy, predominantly occurs in the hypertrophic kidney in both type 1 and type 2 diabetes. An increased number of SGLT2+ tubular epithelia may be an adaptive response against hyperglycemia, and linked to the hyper-reabsorption of sodium and glucose observed in type 2 diabetes patients.
Collapse
|
171
|
Nayak S, Rathore V, Bharati J, Sahu KK. Extending the ambit of SGLT2 inhibitors beyond diabetes: a review of clinical and preclinical studies on non-diabetic kidney disease. Expert Rev Clin Pharmacol 2022; 14:1513-1526. [PMID: 35020563 DOI: 10.1080/17512433.2021.2028620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are novel antidiabetic agents with overwhelming cardiorenal protection. Recent trials focusing on the nephroprotective role of SGLT2i have underscored its success as a phenomenal agent in halting the progression of kidney disease in patients with and without Type 2 diabetes mellitus. Multitudes of pleiotropic effects on tubules have raised hopes for reasonable nephroprotection beyond the purview of the hyperglycemic milieu. AREA COVERED This review summarizes various animal and human data as evidence for the utility of SGLT2i in non-diabetic chronic kidney disease (CKD). Web-based medical database entries were searched. On the premise of existing evidence, we have discussed mechanisms likely contributing to nephroprotection by SGLT2i in patients with non-diabetic CKD. EXPERT OPINION Further elucidation of mechanisms of nephroprotection offered by SGLT2i is required to extend its use as a nephroprotective agent. The use of non-traditional markers of kidney damage in future studies would improve the evaluation of their role in attenuating CKD progression. Emerging animal data support the early use of SGLT2i in states of modest proteinuria for superior outcomes. Future long-term trials in patients should aim to address the time of intervention with SGLT2i during the natural disease course of CKD for best outcomes.
Collapse
Affiliation(s)
- Saurabh Nayak
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Vinay Rathore
- Department of Nephrology, All India Institute of Medical Science, Raipur, India
| | - Joyita Bharati
- Department of Nephrology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kamal Kant Sahu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Salt Lake City, Zip 84112, Utah, USA
| |
Collapse
|
172
|
Fonseca-Correa JI, Correa-Rotter R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front Med (Lausanne) 2022; 8:777861. [PMID: 34988095 PMCID: PMC8720766 DOI: 10.3389/fmed.2021.777861] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Sodium-Glucose Cotransporter 2 inhibitors (SGLT2i), or gliflozins, are a group of antidiabetic drugs that have shown improvement in renal and cardiovascular outcomes in patients with kidney disease, with and without diabetes. In this review, we will describe the different proposed mechanisms of action of SGLT2i. Gliflozins inhibit renal glucose reabsorption by blocking the SGLT2 cotransporters in the proximal tubules and causing glucosuria. This reduces glycemia and lowers HbA1c by ~1.0%. The accompanying sodium excretion reverts the tubuloglomerular feedback and reduces intraglomerular pressure, which is central to the nephroprotective effects of SGLT2i. The caloric loss reduces weight, increases insulin sensitivity, lipid metabolism, and likely reduces lipotoxicity. Metabolism shifts toward gluconeogenesis and ketogenesis, thought to be protective for the heart and kidneys. Additionally, there is evidence of a reduction in tubular cell glucotoxicity through reduced mitochondrial dysfunction and inflammation. SGLT2i likely reduce kidney hypoxia by reducing tubular energy and oxygen demand. SGLT2i improve blood pressure through a negative sodium and water balance and possibly by inhibiting the sympathetic nervous system. These changes contribute to the improvement of cardiovascular function and are thought to be central in the cardiovascular benefits of SGLT2i. Gliflozins also reduce hepcidin levels, improving erythropoiesis and anemia. Finally, other possible mechanisms include a reduction in inflammatory markers, fibrosis, podocyte injury, and other related mechanisms. SGLT2i have shown significant and highly consistent benefits in renal and cardiovascular protection. The complexity and interconnectedness of the primary and secondary mechanisms of action make them a most interesting and exciting pharmacologic group.
Collapse
Affiliation(s)
- Jorge I Fonseca-Correa
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Correa-Rotter
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
173
|
Wada T, Mori‐Anai K, Kawaguchi Y, Katsumata H, Tsuda H, Iida M, Arakawa K, Jardine MJ. Renal, cardiovascular and safety outcomes of canagliflozin in patients with type 2 diabetes and nephropathy in East and South-East Asian countries: Results from the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation Trial. J Diabetes Investig 2022; 13:54-64. [PMID: 34212533 PMCID: PMC8756319 DOI: 10.1111/jdi.13624] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022] Open
Abstract
AIMS/INTRODUCTION The sodium-glucose cotransporter 2 inhibitor, canagliflozin, reduced kidney failure and cardiovascular events in the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) trial. We carried out a post-hoc analysis to evaluate the efficacy and safety of canagliflozin in a subgroup of participants in East and South-East Asian (EA) countries who are at high risk of renal complications. MATERIALS AND METHODS Participants with an estimated glomerular filtration rate of 30 to <90 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio of >300-5,000 mg/g were randomized to 100 mg of canagliflozin or a placebo. The effects of canagliflozin treatment on pre-specified efficacy and safety outcomes were examined using Cox proportional hazards regression between participants from EA countries (China, Japan, Malaysia, the Philippines, South Korea and Taiwan) and the remaining participants. RESULTS Of 4,401 participants, 604 (13.7%) were from EA countries; 301 and 303 were assigned to the canagliflozin and placebo groups, respectively. Canagliflozin lowered the risk of primary outcome (composite of end-stage kidney disease, doubling of serum creatinine level, or renal or cardiovascular death) in EA participants (hazard ratio 0.54, 95% confidence interval 0.35-0.84). The effects of canagliflozin on renal and cardiovascular outcomes in EA participants were generally similar to those of the remaining participants. Safety outcomes were similar between the EA and non-EA participants. CONCLUSIONS In the CREDENCE trial, the risk of renal and cardiovascular events was safely reduced in participants from EA countries at high risk of renal events.
Collapse
Affiliation(s)
- Takashi Wada
- Department of Nephrology and Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Kazumi Mori‐Anai
- Ikuyaku. Integrated Value Development DivisionMitsubishi Tanabe Pharma CorporationTokyoJapan
| | - Yutaka Kawaguchi
- Ikuyaku. Integrated Value Development DivisionMitsubishi Tanabe Pharma CorporationTokyoJapan
| | - Hideyuki Katsumata
- Ikuyaku. Integrated Value Development DivisionMitsubishi Tanabe Pharma CorporationOsakaJapan
| | - Hidetaka Tsuda
- Ikuyaku. Integrated Value Development DivisionMitsubishi Tanabe Pharma CorporationTokyoJapan
| | - Mitsutaka Iida
- Ikuyaku. Integrated Value Development DivisionMitsubishi Tanabe Pharma CorporationTokyoJapan
| | - Kenji Arakawa
- Ikuyaku. Integrated Value Development DivisionMitsubishi Tanabe Pharma CorporationTokyoJapan
| | - Meg J Jardine
- The George Institute for Global Health, UNSWSydneyAustralia
- NHMRC Clinical Trials CenterUniversity of SydneySydneyAustralia
- Concord Repatriation General HospitalSydneyAustralia
| |
Collapse
|
174
|
Abstract
PURPOSE OF REVIEW This review offers a critical narrative evaluation of emerging evidence that sodium-glucose co-transporter-2 (SGLT2) inhibitors exert nephroprotective effects in people with type 2 diabetes. RECENT FINDINGS The SGLT2 inhibitor class of glucose-lowering agents has recently shown beneficial effects to reduce the onset and progression of renal complications in people with and without diabetes. Randomised clinical trials and 'real world' observational studies, mostly involving type 2 diabetes patients, have noted that use of an SGLT2 inhibitor can slow the decline in glomerular filtration rate (GFR), reduce the onset of microalbuminuria and slow or reverse the progression of proteinuria. The nephroprotective effects of SGLT2 inhibitors are class effects observed with each of the approved agents in people with a normal or impaired GFR. These effects are also observed in non-diabetic, lean and normotensive individuals suggesting that the mechanisms extend beyond the glucose-lowering, weight-lowering and blood pressure-lowering effects that accompany their glucosuric action in diabetes patients. A key mechanism is tubuloglomerular feedback in which SGLT2 inhibitors cause more sodium to pass along the nephron: the sodium is sensed by macula cells which act via adenosine to constrict afferent glomerular arterioles, thereby protecting glomeruli by reducing intraglomerular pressure. Other effects of SGLT2 inhibitors improve tubular oxygenation and metabolism and reduce renal inflammation and fibrosis. SGLT2 inhibitors have not increased the risk of urinary tract infections or the risk of acute kidney injury. However, introduction of an SGLT2 inhibitor in patients with a very low GFR is not encouraged due to an initial dip in GFR, and it is prudent to discontinue therapy if there is an acute renal event, hypovolaemia or hypotension.
Collapse
Affiliation(s)
| | - Caroline Day
- Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Srikanth Bellary
- Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
175
|
Scheen AJ, Delanaye P. Understanding the protective effects of SGLT2 inhibitors in type 2 diabetes patients with chronic kidney disease. Expert Rev Endocrinol Metab 2022; 17:35-46. [PMID: 34908510 DOI: 10.1080/17446651.2022.2014322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Sodium-glucose co-transporter type 2 inhibitors (SGLT2is) were developed as glucose-lowering agents for the management of type 2 diabetes (T2D). Unexpectedly, they showed a significant reduction in hospitalization for heart failure and hard renal outcomes in patients with and without T2D. Underlying mechanisms remain a matter of debate. AREAS COVERED We summarize the protective renal effects of SGLT2is in patients with cardiovascular disease, chronic kidney disease (CKD, especially with albuminuria) or heart failure; a description of the safety of SGLT2is, with a special focus on the risk/benefit balance in people with stage 3 CKD; a comprehensive discussion of mechanisms that could explain nephro-protection; a reappraisal of the positioning of SGLT2is in recent international guidelines. EXPERT OPINION Several mechanisms could contribute to improved renal prognosis with SGLT2is, among which a reduction in intraglomerular pressure by restoring the tubuloglomerular feedback, a diuretic effect that contributes to lower albuminuria and renal decongestion, especially if fluid overload is present, a reduction in renal oxygen consumption, an improvement of heart failure status with less cardiorenal syndrome and a lower risk of acute renal injury. All these effects may be mutually not exclusive, and their respective contribution may differ according to patient characteristics.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
- Division of Clinical Pharmacology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège (ULiege), Liège, Belgium
| | - Pierre Delanaye
- Department of Nephrology-Dialysis-Transplantation, University of Liège (ULiege), CHU Sart Tilman, Liège, Belgium
- Department of Nephrology-Dialysis-Apheresis, Hôpital Universitaire Carémeau, Nîmes, France
| |
Collapse
|
176
|
Mende CW. Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape. Adv Ther 2022; 39:148-164. [PMID: 34846711 PMCID: PMC8799531 DOI: 10.1007/s12325-021-01994-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/10/2021] [Indexed: 12/31/2022]
Abstract
There is currently an unmet need for effective treatment of chronic kidney disease (CKD) that slows disease progression, prevents development of end-stage kidney disease and cardiovascular disease, and prolongs survival of patients with CKD. In the last 20 years, the only agents to show a reduction in the risk of CKD progression in patients with and without type 2 diabetes (T2D) were angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, but neither drug class has provided a decreased risk of all-cause mortality in patients with CKD and evidence for their use in patients with CKD without T2D is relatively limited. This review discusses the mechanisms underlying the progression of CKD, its associated risk factors, and summarizes the potential therapeutic approaches for managing CKD. There is increasing evidence to support the role of sodium-glucose cotransporter 2 (SGLT2) inhibitor therapy in patients with CKD, including data from the designated kidney outcome trials in patients with T2D (CREDENCE) and in patients with or without T2D (DAPA-CKD). These studies showed a significant reduction in the risk of CKD progression with canagliflozin (in patients with T2D) or dapagliflozin (in patients with or without T2D), respectively, with DAPA-CKD being the first trial to show a reduced risk of all-cause mortality. On the basis of these data, individualized treatment with SGLT2 inhibitors represents a promising therapeutic option for patients with diabetic and nondiabetic CKD to slow disease progression.
Collapse
Affiliation(s)
- Christian W Mende
- Department of Medicine, University of California-San Diego, 6950 Fairway Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
177
|
Yang Y, Xu G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:872918. [PMID: 35663316 PMCID: PMC9161673 DOI: 10.3389/fendo.2022.872918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the existing stages of diabetic kidney disease (DKD), the first stage of DKD is called the preclinical stage, characterized by glomerular hyperfiltration, an abnormally elevated glomerular filtration rate. Glomerular hyperfiltration is an independent risk factor for accelerated deterioration of renal function and progression of nephropathy, which is associated with a high risk for metabolic and cardiovascular disease. It is imperative to understand hyperfiltration and identify potential treatments to delay DKD progress. This paper summarizes the current mechanisms of hyperfiltration in early DKD. We pay close attention to the effect of glucose reabsorption mediated by sodium-glucose cotransporters and renal growth on hyperfiltration in DKD patients, as well as the mechanisms of nitric oxide and adenosine actions on renal afferent arterioles via tubuloglomerular feedback. Furthermore, we also focus on the contribution of the atrial natriuretic peptide, cyclooxygenase, renin-angiotensin-aldosterone system, and endothelin on hyperfiltration. Proposing potential treatments based on these mechanisms may offer new therapeutic opportunities to reduce the renal burden in this population.
Collapse
|
178
|
Mu L, Chen N, Chen Y, Yang Z, Zhou H, Song S, Shi Y. Blocking REDD1/TXNIP Complex Ameliorates HG-Induced Renal Tubular Epithelial Cell Apoptosis and EMT through Repressing Oxidative Stress. Int J Endocrinol 2022; 2022:6073911. [PMID: 36186658 PMCID: PMC9519289 DOI: 10.1155/2022/6073911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy (DN) has become the most common secondary kidney disease causing end-stage renal disease (ESRD). Nevertheless, the underlying mechanisms responsible for DN remain largely unknown. Regulated in development and DNA damage response 1 (REDD1) is a prooxidative molecule known to contribute to diabetes mellitus and its complications. However, it has not been previously examined whether and how REDD1 can further drive renal tubular epithelial cell (RTEC) apoptosis and epithelial-to-mesenchymal transition in DN. The expression of REDD1 was elevated in the kidneys of DN patients and diabetic mice in this study. By generating the DN model in REDD1 knockout mice, we demonstrated that REDD1 deficiency significantly improved apoptosis and EMT in diabetic mice. In vitro experiments showed that REDD1 generation was induced by high glucose (HG) in HK-2 cells. Similarly, the transfection of REDD1 siRNA plasmid also suppressed HG-induced apoptosis and EMT. Furthermore, we discovered that the inhibition of REDD1 suppressed the expression of Nox4-induced HG and reactive oxygen species (ROS) synthesis in HK-2 cells. In addition, HG could induce endogenous REDD1 and TXNIP to form a powerful complex. In summary, our findings demonstrate that blocking the REDD1/TXNIP complex can prevent HG-induced apoptosis and EMT by inhibiting ROS production, highlighting REDD1 as a valuable therapeutic priority site for DN.
Collapse
Affiliation(s)
- Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050000, China
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
| | - Yakun Chen
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
| | - Huandi Zhou
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050000, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050000, China
| |
Collapse
|
179
|
Wang Z, Hao D, Fang D, Yu J, Wang X, Qin G. Transcriptome Analysis Reveal Candidate Genes and Pathways Responses to Lactate Dehydrogenase Inhibition (Oxamate) in Hyperglycemic Human Renal Proximal Epithelial Tubular Cells. Front Endocrinol (Lausanne) 2022; 13:785605. [PMID: 35370938 PMCID: PMC8970056 DOI: 10.3389/fendo.2022.785605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of both chronic kidney disease (CKD) and end-stage renal disease (ESRD). Previous studies showed that oxamate could regulate glycemic homeostasis and impacted mitochondria respiration in a hyperglycemia-dependent manner in the rat proximal tubular cells. To explore the transcriptome gene expression profiling of kidney tissues in human renal proximal epithelial tubular cell line (HK-2), we treated HK-2 cells with high D-glucose (HG) for 7 days before the addition of 40 mM oxamate for a further 24 hours in the presence of HG in this study. Afterwards, we identified 3,884 differentially expressed (DE) genes based on adjusted P-value ≤ 0.05 and investigated gene relationships based on weighted gene co-expression network analysis (WGCNA). After qRT-PCR validations, MAP1LC3A, MAP1LC3B (P-value < 0.01) and BECN1 were found to show relatively higher expression levels in the treated groups than the control groups, while PGC1α (P-value < 0.05) showed the lower expressions. Accordingly, enrichment analyses of GO terms and KEGG pathways showed that several pathways [e.g., lysosome pathway (hsa04142) and p53 signaling pathway (hsa04115)] may be involved in the response of HK-2 cells to oxamate. Moreover, via WGCNA, we identified two modules: both the turquoise and blue modules were enriched in pathways associated with lysosome. However, the p53 signaling pathway was only found using all 3,884 DE genes. Furthermore, the key hub genes IGFBP3 (adjusted P-value = 1.34×10-75 and log2(FC) = 2.64) interacted with 6 up-regulated and 12 down-regulated DE genes in the network that were enriched in the p53 signaling pathway. This is the first study reporting co-expression patterns of a gene network after lactate dehydrogenase inhibition in HK-2 cells. Our results may contribute to our understanding of the underlying molecular mechanism of in vitro reprogramming under hyperglycemic stress that orchestrates the survival and functions of HK-2 cells.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, Beijing, China
| | - Jiating Yu
- Division of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Konge Larsen ApS, Kongens Lyngby, Denmark
- *Correspondence: Xiao Wang, ; Guijun Qin,
| | - Guijun Qin
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiao Wang, ; Guijun Qin,
| |
Collapse
|
180
|
Wang Z, Yu J, Hao D, Liu X, Wang X. Transcriptomic signatures responding to PKM2 activator TEPP-46 in the hyperglycemic human renal proximal epithelial tubular cells. Front Endocrinol (Lausanne) 2022; 13:965379. [PMID: 36120453 PMCID: PMC9471676 DOI: 10.3389/fendo.2022.965379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Pyruvate kinase M2 (PKM2), as the terminal and last rate-limiting enzyme of the glycolytic pathway, is an ideal enzyme for regulating metabolic phenotype. PKM2 tetramer activation has shown a protective role against diabetic kidney disease (DKD). However, the molecular mechanisms involved in diabetic tubular have not been investigated so far. In this study, we performed transcriptome gene expression profiling in human renal proximal tubular epithelial cell line (HK-2 cells) treated with 25 mM high D-glucose (HG) for 7 days before the addition of 10 μM TEPP-46, an activator of PKM2 tetramerization, for a further 1 day in the presence of HG. Afterwards, we analyzed the differentially expressed (DE) genes and investigated gene relationships based on weighted gene co-expression network analysis. The results showed that 2,902 DE genes were identified (adjusted P-value ≤ 0.05), where 2,509 DE genes (86.46%) were co-expressed in the key module. Four extremely downregulated DE genes (HSPA8, HSPA2, HSPA1B, and ARRB1) and three extremely upregulated DE genes (GADD45A, IGFBP3, and SIAH1) enriched in the downregulated endocytosis (hsa04144) and upregulated p53 signaling pathway (hsa04115), respectively, were validated by qRT-PCR experiments. The qRT-PCR results showed that the relative expression levels of HSPA8 [adjusted P-value = 4.45 × 10-34 and log2(FC) = -1.12], HSPA2 [adjusted P-value = 6.09 × 10-14 and log2(FC) = -1.27], HSPA1B [adjusted P-value = 1.14 × 10-11 and log2(FC) = -1.02], and ARRB1 [adjusted P-value = 2.60 × 10-5 and log2(FC) = -1.13] were significantly different (P-value < 0.05) from the case group to the control group. Furthermore, the interactions and predicted microRNAs of the key genes (HSPA8, HSPA2, HSPA1B, and ARRB1) were visualized in networks. This study identified the key candidate transcriptomic biomarkers and biological pathways in hyperglycemic HK-2 cells responding to the PKM2 activator TEPP-46 that can highlight a possibility of PKM2 tetramerization reshaping the interplay among endocytic trafficking through the versatile networks of Hsp70s and rewiring the crosstalk between EGFR signal transduction circuits and metabolic stress to promote resilience, which will be valuable for further research on PKM2 in DKD.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiating Yu
- Division of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co., Ltd., Shijiazhuang, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Liu
- Division of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Liu, ; Xiao Wang,
| | - Xiao Wang
- Konge Larsen ApS, Kongens Lyngby, Denmark
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Xin Liu, ; Xiao Wang,
| |
Collapse
|
181
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
182
|
Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Haydock L, Garneau AP, Isenring P. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021; 12:3119-3139. [PMID: 34964111 DOI: 10.1002/cphy.c210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+ , Mg2+ , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Samira Slimani
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Jeanne Fiola
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Fabrice Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
183
|
Tauber P, Sinha F, Berger RS, Gronwald W, Dettmer K, Kuhn M, Trum M, Maier LS, Wagner S, Schweda F. Empagliflozin Reduces Renal Hyperfiltration in Response to Uninephrectomy, but Is Not Nephroprotective in UNx/DOCA/Salt Mouse Models. Front Pharmacol 2021; 12:761855. [PMID: 34992532 PMCID: PMC8724563 DOI: 10.3389/fphar.2021.761855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Large-scale clinical outcome studies demonstrated the efficacy of SGLT2 inhibitors in patients with type II diabetes. Besides their therapeutic efficacy in diabetes, significant renoprotection was observed in non-diabetic patients with chronic kidney disease (CKD), suggesting the existence of glucose-independent beneficial effects of SGLT2 inhibitors. However, the relevant mechanisms by which SGLT2 inhibition delays the progression of renal injury are still largely unknown and speculative. Previous studies showed that SGLT2 inhibitors reduce diabetic hyperfiltration, which is likely a key element in renoprotection. In line with this hypothesis, this study aimed to investigate the nephroprotective effects of the SGLT2 inhibitor empagliflozin (EMPA) in different mouse models with non-diabetic hyperfiltration and progressing CKD to identify the underlying diabetes-independent cellular mechanisms. Non-diabetic hyperfiltration was induced by unilateral nephrectomy (UNx). Since UNx alone does not result in renal damage, renal disease models with varying degrees of glomerular damage and albuminuria were generated by combining UNx with high NaCl diets ± deoxycorticosterone acetate (DOCA) in different mouse strains with and without genetic predisposition for glomerular injury. Renal parameters (GFR, albuminuria, urine volume) were monitored for 4–6 weeks. Application of EMPA via the drinking water resulted in sufficient EMPA plasma concentration and caused glucosuria, diuresis and in some models renal hypertrophy. EMPA had no effect on GFR in untreated wildtype animals, but significantly reduced hyperfiltration after UNx by 36%. In contrast, EMPA did not reduce UNx induced hyperfiltration in any of our kidney disease models, regardless of their degree of glomerular damage caused by DOCA/salt treatment. Consistent with the lack of reduction in glomerular hyperfiltration, EMPA-treated animals developed albuminuria and renal fibrosis to a similar extent as H2O control animals. Taken together, the data clearly indicate that blockade of SGLT2 has the potential to reduce non-diabetic hyperfiltration in otherwise untreated mice. However, no effects on hyperfiltration or progression of renal injury were observed in hypervolemic kidney disease models, suggesting that high salt intake and extracellular volume might attenuate the protective effects of SGLT2 blockers.
Collapse
Affiliation(s)
- Philipp Tauber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
- *Correspondence: Philipp Tauber,
| | - Frederick Sinha
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Raffaela S. Berger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
184
|
PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation. Cell Death Dis 2021; 12:1107. [PMID: 34836936 PMCID: PMC8626491 DOI: 10.1038/s41419-021-04408-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
The altered homeostasis of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) was closely associated with the pathological process of nervous system diseases and insulin resistance. Here, the exact implication of phosphofurin acidic cluster sorting protein 2 (PCAS-2), an anchor protein in the MAM interface, in diabetic kidney disease was investigated. In the kidneys of type 1 and type 2 diabetes mice and HG-induced HK-2 cells, a notable disruption of ER-mitochondria interactions, accompanied by a decreased PACS-2 expression in all subcellular fractions. Furthermore, PACS-2 knockout mice with diabetes displayed accelerated development of proteinuria, deterioration of kidney function, and aggravated disruption of MAM area, ER stress, mitochondrial dysfunction, renal apoptosis, and fibrosis. However, overexpression of PACS-2 effectively protected diabetic kidneys and HG-treated HK-2 cells from renal tubular impairments. Importantly, experimental uncoupling of ER-mitochondria contacts reversed the protective effects of PACS-2 restoration on HK-2 cells under HG conditions. In summary, our data indicate a pivotal role of PACS-2 in the development of diabetic renal tubular injury via the stabilization of MAM.
Collapse
|
185
|
Li N, Lv D, Zhu X, Wei P, Gui Y, Liu S, Zhou E, Zheng M, Zhou D, Zhang L. Effects of SGLT2 Inhibitors on Renal Outcomes in Patients With Chronic Kidney Disease: A Meta-Analysis. Front Med (Lausanne) 2021; 8:728089. [PMID: 34790672 PMCID: PMC8591237 DOI: 10.3389/fmed.2021.728089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: The effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors on renal outcomes in patients with chronic kidney disease (CKD) were initially demonstrated in recent trials. However, the magnitude of renal benefits for CKD patients with different baseline features and underlying diseases remains unclear. Method: We systematically searched the Embase, PubMed, Web of Science, and Cochrane library databases from inception to April 15, 2021 to identify eligible trials. The primary outcome was a composite of worsening kidney function, end-stage kidney disease (ESKD), or renal death. Efficacy and safety outcomes were stratified by baseline features, such as type 2 diabetes, heart failure, atherosclerotic cardiovascular disease, proteinuria, and renal function. Results: A total of nine studies were included. These studies included 25,749 patients with estimated glomerular filtration rate (eGFR)<60 mL/min/1.73 m2 and 12,863 patients with urine albumin-to-creatinine ratio (UACR) >300 mg/g. SGLT2 inhibitors reduced the risk of the primary renal outcome by 30% in patients with eGFR<60 mL/min/1.73 m2 (HR 0.70, [95% CI 0.58–0.83], I2 = 0.00%) and by 43% in patients with UACR > 300 mg/g (HR 0.57, [95% CI 0.48–0.67], I2 = 16.59%). A similar benefit was observed in CKD patients with type 2 diabetes. SGLT2 inhibitors had no clear effects on renal outcomes in patients with eGFR<60 mL/min/1.73 m2 combined with atherosclerotic cardiovascular disease (HR 0.74, [95% CI 0.51–1.06], I2 = 0.00%). However, they reduced the risk of major renal outcomes by 46% (HR 0.54, [95% CI 0.38–0.76], I2 = 0.00%) in patients with atherosclerotic cardiovascular disease and macroalbuminuria (defined as UACR > 300 mg/g). SGLT2 inhibitors did not significantly reduce the risk of major renal outcomes in CKD patients with heart failure (eGFR<60 mL/min/1.73 m2: HR 0.81, [95% CI 0.47–1.38], I2 = 0.00%; UACR > 300 mg/g: HR 0.66, [95% CI 0.41–1.07], I2 = 0.00%). SGLT2 inhibitors showed consistent renal benefits across different levels of eGFR (P interaction = 0.48). Conclusion: SGLT2 inhibitors significantly reduced the risk of the primary outcome in CKD patients. However, for patients with different features and underlying diseases, there exists differences in the renal protective effect.
Collapse
Affiliation(s)
- Ning Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Dan Lv
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiangjun Zhu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ping Wei
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT, United States
| | - Shijia Liu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Min Zheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT, United States
| | - Lu Zhang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
186
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
187
|
Liu Y, Zhang L, Wang Y, Bai L, Chen S, Yang J, Wang X. Exploring the Role of CircRNA in Diabetic Kidney Disease from a Novel Perspective: Focusing on Both Glomeruli and Tubuli. DNA Cell Biol 2021; 40:1369-1380. [PMID: 34767731 DOI: 10.1089/dna.2021.0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease, but the molecular mechanisms of disease remain not very clear and there is no curative therapeutic strategy so far. This study was carried out to identify the expression profile of circular RNA (circRNA) in human DKD and explore circRNA regulatory function in glomeruli and tubuli simultaneously. As a result, a total of 40 upregulated and 23 downregulated differentially expressed circRNAs (DEcircRNAs) were detected. Six candidate DEcircRNAs were verified by quantitative real-time polymerase chain reaction in high glucose-treated human mesangial cells and human proximal renal tubular epithelial cells, respectively. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that both in glomeruli and in tubuli the DEcircRNAs-targeted genes participated in many pathophysiological processes of DKD. Correlation analysis with renal function showed that expression level of DEcircRNA-targeted hub gene was related to renal function. In conclusion, this is the first study to report expression profiles of circRNAs in kidney of DKD patients, and further analysis demonstrated that circRNA probably played a significant regulatory role, providing help for understanding the pathogenesis of DKD and investigating novel diagnostic and therapeutic strategy.
Collapse
Affiliation(s)
- Yuyuan Liu
- Department of Nephrology and Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Nephrology and Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanzhe Wang
- Department of Nephrology and Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linnan Bai
- Department of Nephrology and Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia Chen
- Department of Nephrology and Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Wang
- Department of Nephrology and Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
188
|
Wang H, Zhang S, Guo J. Lipotoxic Proximal Tubular Injury: A Primary Event in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:751529. [PMID: 34760900 PMCID: PMC8573085 DOI: 10.3389/fmed.2021.751529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
The pathogenesis of diabetic nephropathy is a complex process that has a great relationship with lipotoxicity. Since the concept of “nephrotoxicity” was proposed, many studies have confirmed that lipotoxicity plays a significant role in the progression of diabetic nephropathy and causes various renal dysfunction. This review will make a brief summary of renal injury caused by lipotoxicity that occurs primarily and predominantly in renal tubules during diabetic progression, further leading to glomerular dysfunction. The latest research suggests that lipotoxicity-mediated tubular injury may be a major event in diabetic nephropathy.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Nephrology, Nephropathy Research Institutes of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
189
|
Ricciardi CA, Gnudi L. Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 2021; 124:154890. [PMID: 34560098 DOI: 10.1016/j.metabol.2021.154890] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Metabolic and haemodynamic perturbations and their interaction drive the development of diabetic kidney disease (DKD) and its progression towards end stage renal disease (ESRD). Increased mitochondrial oxidative stress has been proposed as the central mechanism in the pathophysiology of DKD, but other mechanisms have been implicated. In parallel to increased oxidative stress, inflammation, cell apoptosis and tissue fibrosis drive the relentless progressive loss of kidney function affecting both the glomerular filtration barrier and the renal tubulointerstitium. Alteration of glomerular capillary autoregulation is at the basis of glomerular hypertension, an important pathogenetic mechanism for DKD. Clinical presentation of DKD can vary. Its classical presentation, often seen in patients with type 1 diabetes (T1DM), features hyperfiltration and albuminuria followed by progressive fall in renal function. Patients can often also present with atypical features characterised by progressive reduction in renal function without albuminuria, others in conjunction with non-diabetes related pathologies making the diagnosis, at times, challenging. Metabolic, lipid and blood pressure control with lifestyle interventions are crucial in reducing the progressive renal function decline seen in DKD. The prevention and management of DKD (and parallel cardiovascular disease) is a huge global challenge and therapies that target haemodynamic perturbations, such as inhibitors of the renin-angiotensin-aldosterone system (RAAS) and SGLT2 inhibitors, have been most successful.
Collapse
Affiliation(s)
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Science, King's College London, London, UK.
| |
Collapse
|
190
|
Kim MN, Moon JH, Cho YM. Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes Obes Metab 2021; 23:2561-2571. [PMID: 34318973 DOI: 10.1111/dom.14503] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 01/10/2023]
Abstract
AIMS To evaluate whether sodium-glucose cotransporter-2 (SGLT2) inhibition reduces cellular senescence in the kidney and to investigate the molecular pathways involved in the renoprotective effect. MATERIALS AND METHODS Dapagliflozin (1 mg/kg), glimepiride (2.5 mg/kg) or vehicle was administered daily via oral gavage for 8 weeks in db/db mice. Expression levels of ageing marker genes (p21, p16, and p53) and oxidative stress were measured in the kidney using real-time RT-PCR, immunohistochemistry, and Western blot analysis. For in vitro analysis, HK-2 cells, a human renal tubular epithelial cell line, were pretreated with H2 O2 to induce cellular senescence, and the levels of ageing markers were measured after treatment with β-hydroxybutyrate (β-HB) or NRF2-specific siRNA. RESULTS Expression levels of ageing marker genes (p21, p16 and p53) and senescence-associated secretory phenotypes of the kidney were increased in the vehicle-treated db/db (db/db + vehicle) group compared with the db/+ group, and this increase was markedly reversed in the dapagliflozin-treated db/db (db/db + SGLT2 inhibitor) group, but not in the glimepiride-treated db/db (db/db + sulphonylurea [SU]) group. In the kidneys of mice in the db/db + SGLT2 inhibitor group, oxidative stress and DNA damage were also reduced compared with those of mice in the db/db + vehicle and db/db + SU groups. Dapagliflozin increased plasma β-HB, which reduced H2 O2 -induced DNA damage and senescence in HK-2 cells. β-HB-induced NRF2 nuclear translocation mediated anti-senescent effects by inducing antioxidant pathways. CONCLUSIONS Dapagliflozin prevented the progression of diabetic kidney disease by inhibiting cellular senescence and oxidative stress via ketone-induced NRF2 activation.
Collapse
Affiliation(s)
- Mi Na Kim
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Joon Ho Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Young Min Cho
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute on Aging, Seoul National University, Seoul, South Korea
| |
Collapse
|
191
|
Abstract
The kidney is one of the target organs that may show health disorders as a result of obesity. Obesity-related glomerulopathy (ORG) is a kidney disease category based on a biopsy diagnosis that may occur secondary to obesity. Detailed clinicopathologic observations of ORG have provided significant knowledge regarding obesity-associated renal complications. Glomerulomegaly with focal segmental glomerulosclerosis of perihilar locations is a typical renal histopathologic finding in ORG, which has long been considered to represent a state of single-nephron glomerular hyperfiltration. This hypothesis was recently confirmed in ORG patients by estimating single-nephron glomerular filtration rate using a combined image analysis and biopsy-based stereology. Overshooting in glomerulotubular and tubuloglomerular interactions may lead to glomerular hyperfiltration/hypertension, podocyte failure, tubular protein-traffic overload, and tubulointerstitial scarring, constituting a vicious cycle of a common pathway to the further loss of functioning nephrons and the progression of kidney functional impairment.
Collapse
Affiliation(s)
- Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
192
|
Ahmad AA, Draves SO, Rosca M. Mitochondria in Diabetic Kidney Disease. Cells 2021; 10:cells10112945. [PMID: 34831168 PMCID: PMC8616075 DOI: 10.3390/cells10112945] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in the USA. The pathogenesis of DKD is multifactorial and involves activation of multiple signaling pathways with merging outcomes including thickening of the basement membrane, podocyte loss, mesangial expansion, tubular atrophy, and interstitial inflammation and fibrosis. The glomerulo-tubular balance and tubule-glomerular feedback support an increased glomerular filtration and tubular reabsorption, with the latter relying heavily on ATP and increasing the energy demand. There is evidence that alterations in mitochondrial bioenergetics in kidney cells lead to these pathologic changes and contribute to the progression of DKD towards ESRD. This review will focus on the dialogue between alterations in bioenergetics in glomerular and tubular cells and its role in the development of DKD. Alterations in energy substrate selection, electron transport chain, ATP generation, oxidative stress, redox status, protein posttranslational modifications, mitochondrial dynamics, and quality control will be discussed. Understanding the role of bioenergetics in the progression of diabetic DKD may provide novel therapeutic approaches to delay its progression to ESRD.
Collapse
|
193
|
Tao W, Li Z, Nabi F, Hu Y, Hu Z, Liu J. Penthorum chinense Pursh Compound Ameliorates AFB1-Induced Oxidative Stress and Apoptosis via Modulation of Mitochondrial Pathways in Broiler Chicken Kidneys. Front Vet Sci 2021; 8:750937. [PMID: 34692815 PMCID: PMC8531719 DOI: 10.3389/fvets.2021.750937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin widely present in foods and animal feeds; it represents a great risk to human and animal health. The aim of this study was to investigate the protective effects of Penthorum chinense Pursh compound (PCPC) against AFB1-induced damage, oxidative stress, and apoptosis via mitochondrial pathways in kidney tissues of broilers. One-day-old chickens (n = 180) were randomly allocated to six groups: control, AFB1 (2.8 mg AFB1/kg feed), positive drug (10 mLYCHT/kg feed), and PCPC high, medium, and low-dose groups (15, 10, and 5 ml PCPC/kg feed, respectively). AFB1 treatment reduced weight gain and induced oxidative stress and kidney damage in broiler tissues; however, PCPC supplementation effectively enhanced broiler performance, ameliorated AFB1-induced oxidative stress, and inhibited apoptosis in the kidneys of broilers. The mRNA expression levels of mitochondria-related apoptosis genes (Bax, Bak, cytochrome c, caspase-9, and caspase-3) were significantly increased, whereas BCL2 expression level decreased in the AFB1 group. Supplementation of PCPC to the AFB1 group significantly reversed the changes in mRNA expression levels of these apoptosis-associated genes compared to those in the AFB1 group. The mRNA levels of NRF2 and HMOX1 in the kidneys of the AFB1 group were significantly reduced compared to those in the control group, whereas PCPC significantly increased the NRF2 and HMOX1 mRNA levels. AFB1 decreased the levels of Beclin1, LC3-I, and LC3-II and increased P53 levels in the kidney compared to those in the control, whereas PCPC significantly reversed these changes to normal levels of autophagy-related genes compared to those in the AFB1 group. In conclusion, our findings demonstrated that PCPC ameliorated AFB1-induced oxidative stress by regulating the expression of apoptosis-related genes and mitochondrial pathways. Our results suggest that PCPC represents a natural and safe agent for preventing AFB1-induced injury and damage in broiler tissues.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zeyu Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
194
|
Chen Y, Wang X, Jia Y, Zou M, Zhen Z, Xue Y. Effect of a sodium restriction diet on albuminuria and blood pressure in diabetic kidney disease patients: a meta-analysis. Int Urol Nephrol 2021; 54:1249-1260. [PMID: 34671892 DOI: 10.1007/s11255-021-03035-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND A sodium restriction diet is a key component of chronic kidney disease (CKD) management. However, the efficacy of its use in patients with diabetic kidney disease (DKD) is uncertain. The present meta-analysis explored the effects of restricting sodium intake on albuminuria and blood pressure in DKD patients with albuminuria. METHODS We searched the Cochrane Central Register of Controlled Trials, Web of Science, MEDLINE, and EMBASE for randomized controlled trials, and we reviewed the references of all searched articles to avoid omitting other relevant articles. Our primary endpoints were blood pressure, albumin excretion rate, and plasma renin activity. We assessed pooled data using a random-effects model. RESULTS Of the 661 articles identified, a total of 12 articles were included in the meta-analysis. The random-effects model indicated that salt-restriction diet interventions led to a poled - 4.72 mmHg (95% CI - 6.71, - 2.73) difference in systolic blood pressure and that the intervention resulted in a 2.33 mmHg lower diastolic blood pressure (95% CI - 3.61, - 1.05). In patients with microalbuminuria, restricted sodium intake decreased the albumin excretion rate (AER) by 12.62 mg/min (95% CI - 19.64, - 5.60). Furthermore, the AER was 127.69 mg/min lower in patients with macroalbuminuria (95% CI - 189.07, - 66.32). CONCLUSION Moderate sodium restriction diets reduce urinary albumin excretion and decrease the level of blood pressure, especially for patients with macro-albuminuria. Thus, it is necessary to strengthen the intervention and health education as well as to provide individualized dietary advice.
Collapse
Affiliation(s)
- Yanrong Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Meina Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Zongji Zhen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou, Guangdong, China.
| |
Collapse
|
195
|
Zhang J, Wang X, Cui Y, Jiang S, Wei J, Chan J, Thalakola A, Le T, Xu L, Zhao L, Wang L, Jiang K, Cheng F, Patel T, Buggs J, Vallon V, Liu R. Knockout of Macula Densa Neuronal Nitric Oxide Synthase Increases Blood Pressure in db/db Mice. Hypertension 2021; 78:1760-1770. [PMID: 34657443 DOI: 10.1161/hypertensionaha.121.17643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China (X.W.)
| | - Yu Cui
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Jenna Chan
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Anish Thalakola
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Thanh Le
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Lan Xu
- College of Medicine, College of Public Health (L.X.), University of South Florida, Tampa
| | - Liang Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China (Y.C., L.Z.)
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL (K.J.)
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy (F.C.), University of South Florida, Tampa
| | - Trushar Patel
- Department of Urology (T.P.), University of South Florida, Tampa
| | - Jacentha Buggs
- Advanced Organ Disease and Transplantation Institute, Tampa General Hospital, FL (J.B.)
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA (V.V.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology (J.Z., X.W., S.J., J.W., J.C., A.T., T.L., L.W., R.L.), University of South Florida, Tampa
| |
Collapse
|
196
|
Wang Y, Li Y, Xu Y. Pyroptosis in Kidney Disease. J Mol Biol 2021; 434:167290. [PMID: 34626644 DOI: 10.1016/j.jmb.2021.167290] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023]
Abstract
In the last several decades, apoptosis interference has been considered clinically irrelevant in the context of renal injury. Recent discovery of programmed necrotic cell death, including necroptosis, ferroptosis, and pyroptosis refreshed our understanding of the role of cell death in kidney disease. Pyroptosis is characterized by a lytic pro- inflammatory type of cell death resulting from gasdermin-induced membrane permeabilization via activation of inflammatory caspases and inflammasomes. The danger-associated molecular patterns (DAMPs), alarmins and pro-inflammatory cytokines are released from pyroptotic cells in an uncontrolled manner, which provoke inflammation, resulting in secondary organ or tissue injuries. The caspases and inflammasome activation-related proteins and pore-forming effector proteins known as GSDMD and GSDME have been implicated in a variety of acute and chronic microbial and non-microbial kidney diseases. Here, we review the recent advances in pathological mechanisms of pyroptosis in kidney disease and highlight the potential therapeutic strategies in future.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
197
|
Yim HE, Yoo KH. Obesity and chronic kidney disease: prevalence, mechanism, and management. Clin Exp Pediatr 2021; 64:511-518. [PMID: 33831296 PMCID: PMC8498012 DOI: 10.3345/cep.2021.00108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/27/2022] Open
Abstract
The prevalence of childhood obesity is increasing worldwide at an alarming rate. While obesity is known to increase a variety of cardiovascular and metabolic diseases, it also acts as a risk factor for the development and progression of chronic kidney disease (CKD). During childhood and adolescence, severe obesity is associated with an increased prevalence and incidence of the early stages of kidney disease. Importantly, children born to obese mothers are also at increased risk of developing obesity and CKD later in life. The potential mechanisms underlying the association between obesity and CKD include hemodynamic factors, metabolic effects, and lipid nephrotoxicity. Weight reduction via increased physical activity, caloric restriction, treatment with angiotensin-converting enzyme inhibitors, and judicious bariatric surgery can be used to control obesity and obesity-related kidney disease. Preventive strategies to halt the obesity epidemic in the healthcare community are needed to reduce the widespread deleterious consequences of obesity including CKD development and progression.
Collapse
Affiliation(s)
- Hyung Eun Yim
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
198
|
Muayad Shukur Al Obaidi R. The Physiological Effects of Visfatin on Immune Response and Inflammatory Impacts on Nephropathy. ARCHIVES OF RAZI INSTITUTE 2021; 76:639-647. [PMID: 34824756 PMCID: PMC8605846 DOI: 10.22092/ari.2021.355463.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Obesity triggers the development of adipokines such as leptin, resistin, and visfatin, which have been associated with the development of diabetic nephropathy and other vascular disorders. The main purpose of the current investigation was to identify the physiological impact of visfatin on immunological response and its inflammatory effects on nephropathy. Fifty Iraqi patients with chronic kidney disease (CKD) at various stages, as described by the National Kidney Foundation (NKF) and ranging in age from 48.367.56 to 53.68 8.46 years on average were considered. Prior to the start of the investigation, informed consent was obtained from all participants, and the ethics committee approved the study. Patients were classified into two groups: Group (A) comprised patients with a GFR higher than 60 mL/minute, and Group (B) comprised patients with a GFR of less than 60 mL/min. There was no considerable variance between the groups as regards visfatin, but a highly significant correlation between serum visfatin and CRP was observed. The results of the current investigation indicated that serum visfatin levels are significantly correlated with CRP in CKD patients; it is also correlated with deterioration of kidney function. Moreover, higher visfatin levels were accompanied by increased serum triglyceride and cholesterol levels. These findings would suggest that visfatin may perform an essential function in uremia-related inflammation and may serve as a potential target for treatment and prevention of renal associated complications. Future studies may delineate whether visfatin is a marker of disease activity and severity as well as a predictor of outcome in CKD.
Collapse
|
199
|
Li G, Kidd J, Gehr TWB, Li PL. Podocyte Sphingolipid Signaling in Nephrotic Syndrome. Cell Physiol Biochem 2021; 55:13-34. [PMID: 33861526 PMCID: PMC8193717 DOI: 10.33594/000000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Podocytes play a vital role in the pathogenesis of nephrotic syndrome (NS), which is clinically characterized by heavy proteinuria, hypoalbuminemia, hyperlipidemia, and peripheral edema. The pathogenesis of NS has evolved through several hypotheses ranging from immune dysregulation theory and increased glomerular permeability theory to the current concept of podocytopathy. Podocytopathy is characterized by dysfunction or depletion of podocytes, which may be caused by unknown permeability factor, genetic disorders, drugs, infections, systemic disorders, and hyperfiltration. Over the last two decades, numerous studies have been done to explore the molecular mechanisms of podocyte injuries or NS and to develop the novel therapeutic strategies targeting podocytopathy for treatment of NS. Recent studies have shown that normal sphingolipid metabolism is essential for structural and functional integrity of podocytes. As a basic component of the plasma membrane, sphingolipids not only support the assembly of signaling molecules and interaction of receptors and effectors, but also mediate various cellular activities, such as apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. This review briefly summarizes current evidence demonstrating the regulation of sphingolipid metabolism in podocytes and the canonical or noncanonical roles of podocyte sphingolipid signaling in the pathogenesis of NS and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
200
|
Yu SMW, Leventhal JS, Cravedi P. Totally tubular, dude: rethinking DKD pathogenesis in the wake of SGLT2i data. J Nephrol 2021; 34:629-631. [PMID: 32965657 DOI: 10.1007/s40620-020-00868-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|