151
|
de Souza SS, Freitas ÍN, Gonçalves SDO, Luz TMD, Araújo APDC, Rajagopal R, Balasubramani G, Rahman MM, Malafaia G. Toxicity induced via ingestion of naturally-aged polystyrene microplastics by a small-sized terrestrial bird and its potential role as vectors for the dispersion of these pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128814. [PMID: 35427965 DOI: 10.1016/j.jhazmat.2022.128814] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In recent years, there has been a growing number of studies on the impact of microplastics (MPs) on biota. However, its effects on birds' health are poorly understood. Thus, we aimed to evaluate the possible effects of ingestion of naturally-aged MPs by Coturnix Coturnix japonica (11 and 22 MP particles/day/bird, once a day, for 9 days), from different toxicity biomarkers. At the end of the experiment, it was found that the ingested MPs in birds showed a significant reduction in body biomass. Also, an increase in malondialdehyde production in the liver, brain, intestine, and gizzard of the birds, as well as a suppressive effect on hepatic nitric oxide production and superoxide dismutase activity in the liver and intestine were observed. Cerebral catalase activity was reduced in birds exposed to MPs and the cholinesterasic effect (marked by increased acetylcholinesterase activity) was observed in the muscle and brain of these animals. Despite these differences, through the main component analysis, hierarchical clustering analysis, and integrated biomarker response assessment, we observed similar toxicological effects in birds exposed to different amounts of MPs. In addition, the size of MPs was reduced, and their shape was altered as they transited through the gastrointestinal system, which probably explains their accumulation in the liver of birds. An expressive number of MPs are released through the feces of the birds throughout the experiment. As far as we know, this is the first report that associates MPs ingestion by small-sized terrestrial birds with biochemical alterations viz., predictive of oxidative stress, redox imbalance, and cholinesterasic effect, in addition to shedding light on the potential role of these birds as vectors for dispersal of MPs in natural environments.
Collapse
Affiliation(s)
- Sindoval Silva de Souza
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Govindasamy Balasubramani
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Sriperambudur, 600124 Tamil Nadu, India
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
152
|
Rahman MM, Ferdouse Z, Nur N, Islam MN, Rouf MA, Arafat ST, Mustafizur Rahman S, Rahman MM. Microplastic ingestion alters the expression of some sexually selected traits in a model fish guppy ( Poecilia reticulata Peters 1859). MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY 2022; 55:87-106. [DOI: 10.1080/10236244.2022.2100772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/08/2022] [Indexed: 09/27/2023]
Affiliation(s)
- Md. Moshiur Rahman
- Fish Conservation and Culture Lab, Biological & Agricultural Engineering, University of California, Davis, CA, USA
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Zannatul Ferdouse
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Nazmir Nur
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Md. Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Muhammad Abdur Rouf
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh
| | | | - Md. Mostafizur Rahman
- Disaster and Human Security Management, Bangladesh University of Professionals, Dhaka, Bangladesh
| |
Collapse
|
153
|
Rong X, Chen X, Li P, Zhao C, Peng S, Ma H, Qu H. Mechanically durable anti-bacteria non-fluorinated superhydrophobic sponge for highly efficient and fast microplastic and oil removal. CHEMOSPHERE 2022; 299:134493. [PMID: 35385765 DOI: 10.1016/j.chemosphere.2022.134493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) pollution evolves into a global environmental problem to be solved urgently. Although many studies are exploring ways to remove MPs from water environment, most of them are lack of selectivity and low efficiency. Herein, considering the fascinating absorption selectivity of superwetting materials, a robust magnetic-responsive superhydrophobic and superoleophilic sponge was firstly used to quickly eliminate MPs from water with very high efficiency. The functional sponge was fabricated by a non-fluorinated coating technique that consisted of polydimethylsiloxane (PDMS) grafted Fe3O4 particle, PDMS grafted halloysite nanotubes, and PDMS binder. The coated sponge achieved excellent mechanically durable and chemically stable superhydrophobicity that resisted a series of severe treatments. It was unquestionable to show very fast oil absorption. What's more, it especially showed very high adsorption capacity (24.3-48.2 mg/g) and could quickly adsorb almost 100% MPs (polypropylene, polyvinyl chloride, and polyethylene) from aqueous suspensions. Moreover, the removal rates remained almost 100% for these MPs after 50 cycles. Besides, the coated sponge had excellent salt tolerance and antibacterial activity to Escherichia coli (E. coli) (99.91%) and Staphylococcus aureus (S. aureus) (90.46%). The adsorption mechanism of the coating was discussed from the perspectives of molecular structure, electronic effect, steric hindrance, and size-scale effect. The absorption driving force mainly derived from the intra-particle diffusion under capillary attraction, whilst slight electrostatic interaction, hydrogen bond interaction, and σ-p (or p-p) conjugation between PDMS and MPs. This functional sponge was destined to be a new strategy in the removal of MPs and other solid pollutants, especially in the high-salinity and rich-microorganism water environment.
Collapse
Affiliation(s)
- Xin Rong
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Xiaoxin Chen
- College of Chemistry and Environmental Science, China; College of Eco-Environment, China.
| | - Pan Li
- College of Chemistry and Environmental Science, China.
| | - Chenyang Zhao
- College of Chemistry and Environmental Science, China.
| | - Shan Peng
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Haiyun Ma
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Hongqiang Qu
- College of Chemistry and Environmental Science, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
154
|
Yu H, Chen Q, Qiu W, Ma C, Gao Z, Chu W, Shi H. Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. WATER RESEARCH 2022; 219:118582. [PMID: 35580390 DOI: 10.1016/j.watres.2022.118582] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/16/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Organisms constantly ingest microplastics directly from the environment or indirectly via trophic transfer due to the pervasiveness of microplastic pollution. However, most previous studies have only focused on waterborne exposure at the individual level, while few studies have investigated the contribution of trophic transfer to the exposure in organisms. We comprehensively evaluated the differences in microplastic ingestion and toxic effects in zebrafish exposed to microplastics via two concurrent routes (waterborne and foodborne). The polyethylene microplastics (40-47 μm, 0.1-10 mg/L) concentration used here was set in a range closed to the environmentally relevant microplastic concentrations, especially considering the extreme high concentration scenarios in wastewater. The concentration of microplastics resulting from foodborne exposure (0.01±0.01 μg/mg; 0.1±0.1 particles/mg) was significantly lower than that through waterborne exposure (0.06±0.02 μg/mg; 0.8±0.3 particles/mg), suggesting the ingestion of microplastics in their tissues occurs mainly through direct environmental uptake rather than food chain transfer (though the initial microplastic concentration was 1000 folds lower). However, more sublethal impacts, including the significant abnormal hyperactive swimming behaviour (107±5% induction; p< 0.05), were observed in the foodborne group than waterborne group. Additionally, ingenuity pathway analysis predicted both exposure routes caused obvious nervous system interference but through opposite modes of action. This was further verified by the alteration of neurotransmitter biomarkers that neurotoxicity mechanisms were completely different for the two exposure routes. The neurotoxic effects of microplastics are non-negligible and can exert together through both water- and foodborne exposure routes, which deserves further attention.
Collapse
Affiliation(s)
- Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
155
|
Shan S, Zhang Y, Zhao H, Zeng T, Zhao X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. CHEMOSPHERE 2022; 298:134261. [PMID: 35302003 DOI: 10.1016/j.chemosphere.2022.134261] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) have been well demonstrated as potential threats to the ecosystem, whereas the neurotoxicity of MPs in mammals remains to be elucidated. The current study was designed to investigate whether 50 nm polystyrene nanoplastics (PS-NPs) could pass through the blood-brain barrier (BBB), and to elucidate the underlying mechanisms and the following neurotoxic manifestation. In vivo study showed that PS-NPs (0.5-50 mg/kg. bw PS-NPs for 7 days) significantly induced the increase of permeability of BBB, and dose-dependently accumulated in the brain of mice. In addition, PS-NPs were found to be present in microglia, and induced microglia activation and neuron damage in the mouse brain. In vitro studies using the immortalized human cerebral microvascular endothelial cell (hCMEC/D3), the most commonly used cell model for BBB-related studies, revealed that PS-NPs could be internalized into cells, and caused reactive oxygen species (ROS) production, nuclear factor kappa-B (NF-κB) activation, tumor necrosis factors α (TNF-α) secretion, and necroptosis of hCMEC/D3 cells. Furthermore, PS-NPs exposure led to disturbance of the tight junction (TJ) formed by hCMEC/D3, as demonstrated by the decline of transendothelial electrical resistance (TEER) and decreased expression of occludin. Lastly, PS-NPs exposure resulted in the activation of murine microglia BV2 cells, and the cell medium of PS-NPs-exposed BV2 induced obvious damage to murine neuron HT-22 cells. Collectively, these results suggest that PS-NPs could pass through BBB and induce neurotoxicity in mammals probably by inducing activation of microglia.
Collapse
Affiliation(s)
- Shan Shan
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiwen Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
156
|
Wang Q, Li Y, Chen Y, Tian L, Gao D, Liao H, Kong C, Chen X, Junaid M, Wang J. Toxic effects of polystyrene nanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2022; 126:21-33. [PMID: 35597397 DOI: 10.1016/j.fsi.2022.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs) are good carriers of persistent organic pollutants (POPs) such as polybrominated diphenyl ethers (PBDEs), and can alter their bioavailability and toxic impacts to aquatic organisms. This study highlights the single and combined toxic effects of polystyrene nanoplastics (PS-NPs) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, one of the dominant congeners of PBDEs) on zebrafish embryos after an exposure duration of up to 120 hpf. Results showed that PS-NPs and BDE-47 co-exposure exacerbated the morphological deformities in terms of pericardial edema, yolk sac edema and curved tail in zebrafish larvae. Compared to BDE-47 single exposure, the combined exposure caused lower survival rates, shorter body lengths, and accelerated spontaneous movements. Further, PS-NPs were quickly aggregated on the surface of the embryonic chorions covered almost the entire membrane at 12 and 48 hpf, and concentration dependent accumulation was also found in the brain, mouth, trunk, gills, heart, liver and gastrointestinal tract at the larval stages. During the recovery period (7 days), PS-NPs were released from all the organs, with the highest elimination from the gastrointestinal tract. Histopathological examination revealed that co-exposure caused greater damage to retinal structures, muscle fibers and cartilage tissues. Responses of hypothalamic-pituitary-thyroid axis (CRH, TSHβ, NIS, TTR, Dio2, TG, TRα and TRβ) and reproduction (Esr2 and Vtg1) related genes were also investigated, and results showed that the co-exposure induced more significant upregulated expressions of TSHβ, TG, Doi 2, and TRβ, compared to BDE-47 single exposure. In conclusion, co-exposure to NPs and BDE-47 exacerbated developmental and thyroid toxicity in zebrafish, generally elucidating the toxicological effects mediated by complex chemical interactions between NPs with POPs in the freshwater environment.
Collapse
Affiliation(s)
- Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yizheng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yurou Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liyan Tian
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510006, China.
| |
Collapse
|
157
|
Yang X, Man YB, Wong MH, Owen RB, Chow KL. Environmental health impacts of microplastics exposure on structural organization levels in the human body. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154025. [PMID: 35202683 DOI: 10.1016/j.scitotenv.2022.154025] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitous prevalence of microplastics pollution has raised concerns about microplastics' potential risks and impacts on the global environment. However, the potential human health risks and impacts of microplastics remain largely unexplored. By providing an overview regarding the interaction of microplastics and human health, this review extends current knowledge on the potential impacts of microplastics pollution on humans from an environmental health perspective. The paper firstly presents the characteristics of microplastics as well as the status of global microplastics pollution. As for human health, the potential hazards of microplastics are reflected by toxic chemical components, vectors of contaminants, and physical damage. Extensive microplastic pollution on ecosystems due to human activities leads to inevitable human exposure, which may occur by dietary, inhalation and/or skin contact. Accordingly, microplastics exposure is closely associated with human health. This study explores the potential interactions of microplastics with the biological organization at various levels, including chemical, cellular, tissue, organ, and system levels. The review concludes by highlighting five urgent perspectives and implications for future research on microplastics: 1) Developing a standard terminology and research methods; 2) Reinforcing microplastics pollution governance; 3) Exploring innovative strategies and technologies; 4) Engaging the public and change behaviour; and 5) Adopting a transdisciplinary approach.
Collapse
Affiliation(s)
- Xi Yang
- David C. Lam Institute for East-West Studies (LEWI), Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| | - Richard Bernhart Owen
- David C. Lam Institute for East-West Studies (LEWI), Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China; Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | - Ka Lai Chow
- Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China.
| |
Collapse
|
158
|
Peng C, He N, Wu Y, Lu Y, Sun H, Wang L. Excretion characteristics of nylon microplastics and absorption risk of nanoplastics in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113586. [PMID: 35512478 DOI: 10.1016/j.ecoenv.2022.113586] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Ingestion of environmental microplastics (MPs) by animals is receiving a great health concern, because of its potential adverse effects on organisms. Most ingested MPs will be excreted, while the health threats depend largely on the excretory dynamics. Although the excretion characteristics of MPs in invertebrates and fishes have been studied, information on the excretion of MPs in mammals remains lacking, especially for the fibrous MPs. Here, fibrous and granular MP and nanoplastic (NP) of nylon polymer (polyamide 66, PA66) were exposed in rats by oral in the first day, then the excretion behavior of ingested PA66 in rats was quantified using mass quantification of liquid chromatography with tandem mass spectrometry (LC-MS-MS) together with the microscope observation. Although most of the ingested PA66-MP or PA66-NP was excreted within 48 h, the three forms of PA66 were not completely cleared by the rats even after seven days excretion. The excretion of PA66 in rats was well-described by a first-order kinetics model, and the calculated half-lives of elimination of PA66 polymer in rats are 19.9 h (fibrous PA66-MP), 23.7 h (granular PA66-MP), and 36.9 h (PA66-NP), indicating rats excrete smaller MPs more slowly than the bigger ones. This was further confirmed by the particle size distribution of granular PA66-MP observed in feces. Besides, approximately 30% of the ingested PA66-NP were failed to be detected in feces, while the occurrence of PA66-NP in rat serum induced by PA66-NP ingestion was found. This indicates that PA66-NP can pass through the gut barrier and entered the blood circulation. Therefore, the health risks of ingested MPs, especially for the NPs, deserve further attention.
Collapse
Affiliation(s)
- Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ning He
- Tianjin Centers for Disease Control and Prevention, Tianjin 300171, China
| | - Yinghong Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin 300171, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
159
|
Trevisan R, Ranasinghe P, Jayasundara N, Di Giulio RT. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. TOXICS 2022; 10:toxics10060326. [PMID: 35736934 PMCID: PMC9230143 DOI: 10.3390/toxics10060326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022]
Abstract
Plastic production began in the early 1900s and it has transformed our way of life. Despite the many advantages of plastics, a massive amount of plastic waste is generated each year, threatening the environment and human health. Because of their pervasiveness and potential for health consequences, small plastic residues produced by the breakdown of larger particles have recently received considerable attention. Plastic particles at the nanometer scale (nanoplastics) are more easily absorbed, ingested, or inhaled and translocated to other tissues and organs than larger particles. Nanoplastics can also be transferred through the food web and between generations, have an influence on cellular function and physiology, and increase infections and disease susceptibility. This review will focus on current research on the toxicity of nanoplastics to aquatic species, taking into account their interactive effects with complex environmental mixtures and multiple stressors. It intends to summarize the cellular and molecular effects of nanoplastics on aquatic species; discuss the carrier effect of nanoplastics in the presence of single or complex environmental pollutants, pathogens, and weathering/aging processes; and include environmental stressors, such as temperature, salinity, pH, organic matter, and food availability, as factors influencing nanoplastic toxicity. Microplastics studies were also included in the discussion when the data with NPs were limited. Finally, this review will address knowledge gaps and critical questions in plastics’ ecotoxicity to contribute to future research in the field.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88037-000, Brazil
- Correspondence:
| | - Prabha Ranasinghe
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| |
Collapse
|
160
|
Cássio F, Batista D, Pradhan A. Plastic Interactions with Pollutants and Consequences to Aquatic Ecosystems: What We Know and What We Do Not Know. Biomolecules 2022; 12:798. [PMID: 35740921 PMCID: PMC9221377 DOI: 10.3390/biom12060798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Plastics are a group of synthetic materials made of organic polymers and some additives with special characteristics. Plastics have become part of our daily life due to their many applications and uses. However, inappropriately managed plastic waste has raised concern regarding their ecotoxicological and human health risks in the long term. Due to the non-biodegradable nature of plastics, their waste may take several thousands of years to partially degrade in natural environments. Plastic fragments/particles can be very minute in size and are mistaken easily for prey or food by aquatic organisms (e.g., invertebrates, fishes). The surface properties of plastic particles, including large surface area, functional groups, surface topography, point zero charge, influence the sorption of various contaminants, including heavy metals, oil spills, PAHs, PCBs and DDT. Despite the fact that the number of studies on the biological effects of plastic particles on biota and humans has been increasing in recent years, studies on mixtures of plastics and other chemical contaminants in the aquatic environment are still limited. This review aims to gather information about the main characteristics of plastic particles that allow different types of contaminants to adsorb on their surfaces, the consequences of this adsorption, and the interactions of plastic particles with aquatic biota. Additionally, some missing links and potential solutions are presented to boost more research on this topic and achieve a holistic view on the effects of micro- and nanoplastics to biological systems in aquatic environments. It is urgent to implement measures to deal with plastic pollution that include improving waste management, monitoring key plastic particles, their hotspots, and developing their assessment techniques, using alternative products, determining concentrations of micro- and nanoplastics and the contaminants in freshwater and marine food-species consumed by humans, applying clean-up and remediation strategies, and biodegradation strategies.
Collapse
Affiliation(s)
- Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.B.); (A.P.)
- Institute for Science and Innovation for Bio-Sustainability (IB-S), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Daniela Batista
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.B.); (A.P.)
- Institute for Science and Innovation for Bio-Sustainability (IB-S), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.B.); (A.P.)
- Institute for Science and Innovation for Bio-Sustainability (IB-S), Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
161
|
Tolardo V, Magrì D, Fumagalli F, Cassano D, Athanassiou A, Fragouli D, Gioria S. In Vitro High-Throughput Toxicological Assessment of Nanoplastics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1947. [PMID: 35745286 PMCID: PMC9230863 DOI: 10.3390/nano12121947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022]
Abstract
Sub-micrometer particles derived from the fragmentation of plastics in the environment can enter the food chain and reach humans, posing significant health risks. To date, there is a lack of adequate toxicological assessment of the effects of nanoplastics (NPs) in mammalian systems, particularly in humans. In this work, we evaluated the potential toxic effects of three different NPs in vitro: two NPs obtained by laser ablation (polycarbonate (PC) and polyethylene terephthalate (PET1)) and one (PET2) produced by nanoprecipitation. The physicochemical characterization of the NPs showed a smaller size, a larger size distribution, and a higher degree of surface oxidation for the particles produced by laser ablation. Toxicological evaluation performed on human cell line models (HePG2 and Caco-2) showed a higher toxic effect for the particles synthesized by laser ablation, with PC more toxic than PET. Interestingly, on differentiated Caco-2 cells, a conventional intestinal barrier model, none of the NPs produced toxic effects. This work wants to contribute to increase knowledge on the potential risks posed by NPs.
Collapse
Affiliation(s)
- Valentina Tolardo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy; (V.T.); (A.A.); (D.F.)
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via All’ Opera Pia, 13, 16145 Genova, Italy
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| | - Domenico Cassano
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| | - Athanassia Athanassiou
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy; (V.T.); (A.A.); (D.F.)
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy; (V.T.); (A.A.); (D.F.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (F.F.); (D.C.)
| |
Collapse
|
162
|
Jiang Q, Chen X, Jiang H, Wang M, Zhang T, Zhang W. Effects of Acute Exposure to Polystyrene Nanoplastics on the Channel Catfish Larvae: Insights From Energy Metabolism and Transcriptomic Analysis. Front Physiol 2022; 13:923278. [PMID: 35721556 PMCID: PMC9198484 DOI: 10.3389/fphys.2022.923278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Microplastics (nanoplastics) pollution has been a major ecological issue threatening global aquatic ecosystems. However, knowledge of the adverse effects of nanoplastics and the effects on freshwater ecosystems is still limited. To understand the impacts of nanoplastics on freshwater ecosystems, it is essential to reveal the physiological changes caused by nanoplastics in freshwater organisms, especially at their early life-history stages. In the present study, the larval channel catfish Ietalurus punetaus were exposed to gradient concentrations (0, 5, 10, 25, and 50 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 24 h or 48 h, and changes in contents of energy metabolites, metabolic enzyme activities and transcriptome were assessed. The results showed that glucose and triglyceride contents increased after 24 h of exposure to 10 or 25 mg/L of PS-NPs but decreased with increased concentrations or prolonged exposure duration. Activities of most metabolic enzymes analyzed decreased in the larvae after 48 h of exposure, especially in 25 or 50 mg/L of PS-NPs. These suggested that PS-NPs caused huge energy consumption and disturbed the energy metabolism in larval fish. Transcriptomic analysis showed that 48 h of exposure to 50 mg/L PS-NPs affected the expression of genes involved in protein digestion and induced response of proteasomes or heat shock proteins in the larval I. punetaus. The genes involved in peroxisome proliferator-activated receptors (PPAR) pathway and biosynthesis of amino acids were activated after the exposure. PS-NPs also depressed the expression of the genes involved in gonad development or muscle contraction in the larval I. punetaus. Overall, acute exposure to 75-nm PS-NPs disrupted the energy metabolism by consuming the energy reserves, and affected a series of molecular pathways which may further affect the development and survival of fish. This study provided the information about adverse effects of nanoplastics on the fish larvae and revealed the molecular pathways for the potential adverse outcomes.
Collapse
Affiliation(s)
- Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Xiaohui Chen
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Minghua Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Wenyi Zhang
- Institute of Animal Genetic Resource, Nanjing Normal University, Nanjing, China
- *Correspondence: Wenyi Zhang,
| |
Collapse
|
163
|
Lee CW, Hsu LF, Wu IL, Wang YL, Chen WC, Liu YJ, Yang LT, Tan CL, Luo YH, Wang CC, Chiu HW, Yang TCK, Lin YY, Chang HA, Chiang YC, Chen CH, Lee MH, Peng KT, Huang CCY. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128431. [PMID: 35150991 DOI: 10.1016/j.jhazmat.2022.128431] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) pollution has become a serious environmental issue worldwide, but its potential effects on health remain unknown. The administration of polystyrene MPs (PS-MPs) to mice for eight weeks impaired learning and memory behavior. PS-MPs were detected in the brain especially in the hippocampus of these mice. Concurrently, the hippocampus had decreased levels of immediate-early genes, aberrantly enhanced synaptic glutamate AMPA receptors, and elevated neuroinflammation, all of which are critical for synaptic plasticity and memory. Interestingly, ablation of the vagus nerve, a modulator of the gut-brain axis, improved the memory function of PS-MPs mice. These results indicate that exposure to PS-MPs in mice alters the expression of neuronal activity-dependent genes and synaptic proteins, and increases neuroinflammation in the hippocampus, subsequently causing behavioral changes through the vagus nerve-dependent pathway. Our findings shed light on the adverse impacts of PS-MPs on the brain and hippocampal learning and memory.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan; Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - I-Lin Wu
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Chen Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yan-Jun Liu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Lu-Tang Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chong-Lun Tan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Thomas Chung-Kuang Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | | | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City 33303, Taiwan
| | | |
Collapse
|
164
|
Im J, Eom HJ, Choi J. Effect of Early-Life Exposure of Polystyrene Microplastics on Behavior and DNA Methylation in Later Life Stage of Zebrafish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:558-568. [PMID: 35469368 DOI: 10.1007/s00244-022-00924-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Microplastic contamination has received increasing attention in recent years, and concern regarding the toxicity of microplastics to the environment and humans has increased. In this study, we investigated the neurodevelopmental toxicity of polystyrene microplastics (PSMPs) in the zebrafish Danio rerio under different exposure scenarios. Zebrafish were exposed to PSMPs during embryonic stage and then allowed the fish to recover. The neurodevelopmental toxic responses were investigated using fish behavior and behavior-related gene expression. Early-life exposure to PSMPs did not alter fish behavior at the early stage; however, it led to hyperactivity later life stage. Generally, oxidative stress (i.e., sod2 and nrf2a)- and nervous system (i.e., slc6a4b, npy, and nrbf2)-related gene expression increased in all PSMPs-exposed fish. DNA hypomethylation was observed in fish challenged for a second time using the same PSMPs. Taken together, the current results imply that PSMPs have neurodevelopmental toxic potential when introduced early in life.
Collapse
Affiliation(s)
- Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
165
|
Li W, Zu B, Yang Q, An J, Li J. Nanoplastic adsorption characteristics of bisphenol A: The roles of pH, metal ions, and suspended sediments. MARINE POLLUTION BULLETIN 2022; 178:113602. [PMID: 35381461 DOI: 10.1016/j.marpolbul.2022.113602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs) are widely found in the environment and can act as a vector for various toxic substances and promote their diffusion and bioenrichment, but the underlying mechanisms are largely unknown. Here, the adsorption characteristics of bisphenol A (BPA) onto NPs were explored. The results show that the adsorption of BPA on NPs was dominated by saturated single-layer adsorption and affected by both intra-particle diffusion and liquid film diffusion. Electrostatic interaction, π-π interaction, and hydrophobic effects played key roles in adsorption. In addition, the introduction of electrolytes inhibited the adsorption of BPA onto NPs. Interestingly, the introduction of suspended sediment promoted the formation of heterogeneous aggregates of NPs-SS, thereby reducing the adsorption capacity, indicating that aggregation may play an important role in the adsorption behavior of NPs. Overall, our results provide new insights into the adsorption behavior of BPA on NPs and the underlying mechanisms under different environmental conditions.
Collapse
Affiliation(s)
- Wang Li
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Bo Zu
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Qingwei Yang
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Junwen An
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jiawen Li
- Chongqing Research Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| |
Collapse
|
166
|
Verdú I, Amariei G, Plaza-Bolaños P, Agüera A, Leganés F, Rosal R, Fernández-Piñas F. Polystyrene nanoplastics and wastewater displayed antagonistic toxic effects due to the sorption of wastewater micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153063. [PMID: 35031361 DOI: 10.1016/j.scitotenv.2022.153063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The knowledge about the interaction of nanoplastics with other aquatic pollutants and their combined effects on biota is very scarce. In this work, we studied the interaction between polystyrene nanoplastics (PS NPs) (30 nm) and the micropollutants in a biologically treated wastewater effluent (WW). The capacity of PS NPs to sorb micropollutants was studied as well as their single and combined toxicity towards three freshwater organisms: the recombinant bioluminescent cyanobacterium, Anabaena sp. PCC 7120 CPB4337; the duckweed, Spirodela polyrhiza and the cladoceran, Daphnia magna. The endpoints were the inhibition of bioluminescence, the growth inhibition of the aquatic plant and the immobilization of D. magna after 24, 72 and 48 h of exposure, respectively. Combination Index (CI)-isobologram method was used to quantify mixture toxicity and the nature of interactions. PS NPs sorbed a variety of chemicals present in WW as micropollutants in a range of tens of ng/L to μg/L. It was found that those pollutants with positive charge were the main ones retained onto PS NPs, which was attributed to the electrostatic interaction with the negatively charged PS NPs. Regarding the toxicological effects, single exposure to PS NPs affected the three tested organisms. However, single exposure to WW only had a negative impact on the cyanobacterium and S. polyrhiza with no observed toxicity to D. magna. Regarding PS NPs-WW combined exposure, a reduction of toxicity in comparison with single exposure was observed probably due to the sorption of micropollutants onto PS NPs, which resulted in lower bioavailability of the micropollutants. In addition, the formation of PS NPs-WW heteroaggregates was observed which could result in lower bioavailability of PS NPs and sorbed micropollutants, thus lowering toxicity. This study represents a near-realistic scenario approach to the potential sorption of wastewater pollutants onto nanoplastics that could alter the toxicological effect on the biota.
Collapse
Affiliation(s)
- Irene Verdú
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
| | - Ana Agüera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
167
|
Teng M, Zhao X, Wu F, Wang C, Wang C, White JC, Zhao W, Zhou L, Yan S, Tian S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. ENVIRONMENT INTERNATIONAL 2022; 163:107154. [PMID: 35334375 DOI: 10.1016/j.envint.2022.107154] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics are being detected with increasing frequency in aquatic environments. Although evidence suggests that nanoplastics can cause overt toxicity to biota across different trophic levels, but there is little understanding of how materials such as differently charged polystyrene nanoplastics (PS-NP) impact fish development and behavior. Following exposure to amino-modified (positive charge) PS-NP, fluorescence accumulation was observed in the zebrafish brain and gastrointestinal tract. Positively charged PS-NP induced stronger developmental toxicity (decreased spontaneous movement, heartbeat, hatching rate, and length) and cell apoptosis in the brain and induced greater neurobehavioral impairment as compared to carboxyl-modified (negative charge) PS-NP. These findings correlated well with fluorescence differences indicating PS-NP presence. Targeted neuro-metabolite analysis by UHPLC-MS/MS reveals that positively charged PS-NP decreased levels of glycine, cysteine, glutathione, and glutamic acid, while the increased levels of spermine, spermidine, and tyramine were induced by negatively charged PS-NP. Positively charged PS-NP interacted with the neurotransmitter receptor N-methyl-D-aspartate receptor 2B (NMDA2B), whereas negatively charged PS-NP impacted the G-protein-coupled receptor 1 (GPR1), each with different binding energies that led to behavioral differences. These findings reveal the charge-specific toxicity of nanoplastics to fish and provide new perspective for understanding PS-NP neurotoxicity that is needed to accurately assess potential environmental and health risks of these emerging contaminants.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
168
|
Foo YH, Ratnam S, Lim EV, Abdullah M, Molenaar VJ, Shau Hwai AT, Zhang S, Li H, Mohd Zanuri NB. Microplastic ingestion by commercial marine fish from the seawater of Northwest Peninsular Malaysia. PeerJ 2022; 10:e13181. [PMID: 35462757 PMCID: PMC9029367 DOI: 10.7717/peerj.13181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Over the past decade, concerns over microplastic pollution in the marine ecosystem has increasingly gained more attention, but research investigating the ingestion of microplastics by marine fish in Malaysia is still regrettably lacking. This study investigated the microplastic presence, abundance, and morphological types within the guts of four species of commercial marine fish (Atule mate, Crenimugil seheli, Sardinella fimbriata and Rastrelliger brachysoma) caught in seawater off the coast of Malaysia's Northwest Peninsular. A total of 72 individual commercial marine fish guts from four species (fish per species n = 18) were examined. Remarkably, this study found that 100% of the samples contained microplastics. A total number of 432 microplastics (size < 5 mm) from the four species were found in the excised marine fish guts. The most common type of microplastic discovered was fragment, which accounted for 49.5% of all microplastics present. The gut microplastic content differed between species. Sardinella fimbriata recorded the greatest amount of microplastic ingestion, with an average microplastic count of 6.5 (±4.3) items per individual fish. However, there were no statistically significant differences found when comparing study species and different locations. SEM-EDX analysis confirmed the presence of microplastic particles by identifying the chemical elements found in the samples. Since the four studied species of commercial marine fish are popular protein sources in Malaysians' daily diet, this study suggests potential microplastic exposure to humans via contaminated fish consumption in Malaysia, which was previously unknown. Based on previous scientific evidence, this study also demonstrates the high probability of microplastic ingestion in marine fish in the Malaysian seawater, which could have an adverse effect on fish health as well as marine biota.
Collapse
Affiliation(s)
- Yuen Hwei Foo
- School of Biological Sciences, Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia
| | - Sharnietha Ratnam
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia
| | - Er Vin Lim
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia
| | - Masthurah Abdullah
- School of Biological Sciences, Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia,Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia
| | - Vincent J. Molenaar
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, VU University Amsterdam, De Boelelaan, Amsterdam, Netherlands
| | - Aileen Tan Shau Hwai
- School of Biological Sciences, Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia,Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia
| | - Shoufeng Zhang
- National Marine Environmental Monitoring Center, Dalian, China
| | - Hongjun Li
- National Marine Environmental Monitoring Center, Dalian, China
| | - Norlaila Binti Mohd Zanuri
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
169
|
Nanoplastics and Human Health: Hazard Identification and Biointerface. NANOMATERIALS 2022; 12:nano12081298. [PMID: 35458006 PMCID: PMC9026096 DOI: 10.3390/nano12081298] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
Nanoplastics are associated with several risks to the ecology and toxicity to humans. Nanoplastics are synthetic polymers with dimensions ranging from 1 nm to 1 μm. They are directly released to the environment or secondarily derived from plastic disintegration in the environment. Nanoplastics are widely detected in environmental samples and the food chain; therefore, their potentially toxic effects have been widely explored. In the present review, an overview of another two potential sources of nanoplastics, exposure routes to illustrate hazard identification of nanoplastics, cell internalization, and effects on intracellular target organelles are presented. In addition, challenges on the study of nanoplastics and future research areas are summarized. This paper also summarizes some approaches to eliminate or minimize the levels of nanoplastics to ensure environmental safety and improve human health.
Collapse
|
170
|
Aslam I, Qadir A, Ahmad SR. A preliminary assessment of microplastics in indoor dust of a developing country in South Asia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:340. [PMID: 35389091 DOI: 10.1007/s10661-022-09928-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/05/2022] [Indexed: 02/08/2023]
Abstract
Microplastics (MPs) pollution is an emerging global environmental concern. Considering the high fraction of time people spend indoors, the human population can be directly exposed to this contamination through indoor dust. This preliminary study evaluates MPs' abundance and human health risk assessment in the deposited indoor dust. A total of forty dust samples (n = 20) were collected from homes in two different cities (Pakistan) in steel mesh pouches using the vacuum cleaner. The identification and quantification of MPs were conducted with a stereo microscope, whereas the qualitative assessment was performed with Fourier transform infrared spectroscopy (FTIR). The US EPA parameters to calculate the human health risk assessment were used to determine MPs' risk per-day/month/year. Overall, microfibers were the dominant category, followed by microfilms, micro-fragments, and nurdles. The chemical categorization of MPs was revealed as polyester, polyethylene, copolymers of polypropylene, and polyurethane. In Lahore, an average abundance of 241.45 (items/m2) MPs were observed compared to Sahiwal, with 162.1 (items/m2). More than 90% of the identified MPs were microfibers, with higher detection frequency and abundance in Lahore than Sahiwal. The human health risk assessment revealed high exposure risk because of indoor MPs. Moreover, toddlers were more vulnerable as compared to adults at both low and high exposure risk scenarios. There is an imminent need to conduct in-depth risk assessment focusing on the respirable fraction of MPs.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore (54590), Pakistan.
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore (54590), Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore (54590), Pakistan
| |
Collapse
|
171
|
Malafaia G, Nóbrega RH, Luz TMD, Araújo APDC. Shedding light on the impacts of gestational exposure to polystyrene nanoplastics on the reproductive performance of Poecilia reticulata female and on the biochemical response of embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127873. [PMID: 34863562 DOI: 10.1016/j.jhazmat.2021.127873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of nanoplastics (NPs) has already been reported in experimental aquatic models, their possible effects on the reproductive performance of viviparous freshwater fish and their consequences for embryos, so far, are unknown. Thus, we aimed to evaluate whether the gestational exposure of Poecilia reticulata to polystyrene NPs (PS NPs) impacts the reproductive performance of females, induces teratogenic effects and/or predictive alterations of redox unbalance and cholinesterasic effect. Our results demonstrate that gestational exposure of P. reticulata females (for 30 days) to PS NPs (50 µg/L) affected reproductive aspects of the animals, inferred by the lower percentage of pregnancy and reduced offspring quantity. Although we did not observe teratogenic effect, we observed that the accumulation of PS NPs in embryos was significantly correlated with a redox unbalance, without, however, having a cholinesterasic effect (via evaluation of AChE and BChE activity) in embryos. Thus, by evidencing the accumulation of PS NPs in embryos of P. reticulata females exposed to the pollutant during the gestational period, we confirm not only the plausibility of the maternal transfer of these nanomaterials, but also their consequent physiological impacts on the offspring, which has not yet been demonstrated in live-bearing freshwater fish.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia (MG/Brasil), Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás and Instituto Federal Goiano (GO/Brasil), Brazil; Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil.
| | - Rafael Henrique Nóbrega
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil
| | - Amanda Pereira da Costa Araújo
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goias - Campus Samambaia (GO/Brasil), Brazil
| |
Collapse
|
172
|
Caldwell J, Taladriz-Blanco P, Lehner R, Lubskyy A, Ortuso RD, Rothen-Rutishauser B, Petri-Fink A. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles. CHEMOSPHERE 2022; 293:133514. [PMID: 35016963 DOI: 10.1016/j.chemosphere.2022.133514] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Plastic particle pollution has been shown to be almost completely ubiquitous within our surrounding environment. This ubiquity in combination with a variety of unique properties (e.g. density, hydrophobicity, surface functionalization, particle shape and size, transition temperatures, and mechanical properties) and the ever-increasing levels of plastic production and use has begun to garner heightened levels of interest within the scientific community. However, as a result of these properties, plastic particles are often reported to be challenging to study in complex (i.e. real) environments. Therefore, this review aims to summarize research generated on multiple facets of the micro- and nanoplastics field; ranging from size and shape definitions to detection and characterization techniques to generating reference particles; in order to provide a more complete understanding of the current strategies for the analysis of plastic particles. This information is then used to provide generalized recommendations for researchers to consider as they attempt to study plastics in analytically complex environments; including method validation using reference particles obtained via the presented creation methods, encouraging efforts towards method standardization through the reporting of all technical details utilized in a study, and providing analytical pathway recommendations depending upon the exact knowledge desired and samples being studied.
Collapse
Affiliation(s)
- Jessica Caldwell
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland; Water Quality Group, International Iberian Nanotechnology Laboratory (INL), A v. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Roman Lehner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland; Sail & Explore Association, Kramgasse 18, 3011, Bern, Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Roberto Diego Ortuso
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
173
|
Chackal R, Eng T, Rodrigues EM, Matthews S, Pagé-Lariviére F, Avery-Gomm S, Xu EG, Tufenkji N, Hemmer E, Mennigen JA. Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish. Front Pharmacol 2022; 13:822111. [PMID: 35250570 PMCID: PMC8888882 DOI: 10.3389/fphar.2022.822111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Single-use plastic production is higher now than ever before. Much of this plastic is released into aquatic environments, where it is eventually weathered into smaller nanoscale plastics. In addition to potential direct biological effects, nanoplastics may also modulate the biological effects of hydrophobic persistent organic legacy contaminants (POPs) that absorb to their surfaces. In this study, we test the hypothesis that developmental exposure (0–7 dpf) of zebrafish to the emerging contaminant polystyrene (PS) nanoplastics (⌀100 nm; 2.5 or 25 ppb), or to environmental levels of the legacy contaminant and flame retardant 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47; 10 ppt), disrupt organismal energy metabolism. We also test the hypothesis that co-exposure leads to increased metabolic disruption. The uptake of nanoplastics in developing zebrafish was validated using fluorescence microscopy. To address metabolic consequences at the organismal and molecular level, metabolic phenotyping assays and metabolic gene expression analysis were used. Both PS and BDE-47 affected organismal metabolism alone and in combination. Individually, PS and BDE-47 exposure increased feeding and oxygen consumption rates. PS exposure also elicited complex effects on locomotor behaviour with increased long-distance and decreased short-distance movements. Co-exposure of PS and BDE-47 significantly increased feeding and oxygen consumption rates compared to control and individual compounds alone, suggesting additive or synergistic effects on energy balance, which was further supported by reduced neutral lipid reserves. Conversely, molecular gene expression data pointed to a negative interaction, as co-exposure of high PS generally abolished the induction of gene expression in response to BDE-47. Our results demonstrate that co-exposure to emerging nanoplastic contaminants and legacy contaminants results in cumulative metabolic disruption in early development in a fish model relevant to eco- and human toxicology.
Collapse
Affiliation(s)
- Raphaël Chackal
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tyler Eng
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Emille M Rodrigues
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sara Matthews
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Florence Pagé-Lariviére
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Stephanie Avery-Gomm
- National Wildlife Research Center, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
174
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|
175
|
Shi Y, Li D, Xiao L, Sheerin ED, Mullarkey D, Yang L, Bai X, Shvets IV, Boland JJ, Wang JJ. The influence of drinking water constituents on the level of microplastic release from plastic kettles. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127997. [PMID: 34986566 DOI: 10.1016/j.jhazmat.2021.127997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) release from household plastic products has become a global concern due to the high recorded levels of microplastic and the direct risk of human exposure. However, the most widely used MP measurement protocol, which involves the use of deionized (DI) water, fails to account for the ions and particles present in real drinking water. In this paper, the influence of typical ions (Ca2+/HCO3-, Fe3+, Cu2+) and particles (Fe2O3 particles) on MP release was systematically investigated by conducting a 100-day study using plastic kettles. Surprisingly, after 40 days, all ions resulted in a greater than 89.0% reduction in MP release while Fe2O3 particles showed no significant effect compared to the DI water control. The MP reduction efficiency ranking is Fe3+ ≈ Cu2+ > Ca2+/HCO3- > > Fe2O3 particles ≈ DI water. Physical and chemical characterization using SEM-EDX, AFM, XPS and Raman spectroscopy confirmed Ca2+/HCO3-, Cu2+ and Fe3+ ions are transformed into passivating films of CaCO3, CuO, and Fe2O3, respectively, which are barriers to MP release. In contrast, there was no film formed when the plastic was exposed to Fe2O3 particles. Studies also confirmed that films with different chemical compositions form naturally in kettles during real life due to the different ions present in local regional water supplies. All films identified in this study can substantially reduce the levels of MP release while withstanding the repeated adverse conditions associated with daily use. This study underscores the potential for regional variations in human MP exposure due to the substantial impact water constituents have on the formation of passivating film formation and the subsequent release of MPs.
Collapse
Affiliation(s)
- Yunhong Shi
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Dunzhu Li
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland; TrinityHaus, Trinity College Dublin, Dublin 2, Ireland.
| | - Emmet D Sheerin
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Daragh Mullarkey
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Luming Yang
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Xue Bai
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Igor V Shvets
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - John J Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Jing Jing Wang
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
176
|
Dang F, Wang Q, Huang Y, Wang Y, Xing B. Key knowledge gaps for One Health approach to mitigate nanoplastic risks. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:11-22. [PMID: 38078201 PMCID: PMC10702905 DOI: 10.1016/j.eehl.2022.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2023]
Abstract
There are increasing concerns over the threat of nanoplastics to environmental and human health. However, multidisciplinary barriers persist between the communities assessing the risks to environmental and human health. As a result, the hazards and risks of nanoplastics remain uncertain. Here, we identify key knowledge gaps by evaluating the exposure of nanoplastics in the environment, assessing their bio-nano interactions, and examining their potential risks to humans and the environment. We suggest considering nanoplastics a complex and dynamic mixture of polymers, additives, and contaminants, with interconnected risks to environmental and human health. We call for comprehensive integration of One Health approach to produce robust multidisciplinary evidence to nanoplastics threats at the planetary level. Although there are many challenges, this holistic approach incorporates the relevance of environmental exposure and multi-sectoral responses, which provide the opportunity to identify the risk mitigation strategies of nanoplastics to build resilient health systems.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingyu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
177
|
Akram R, Iqbal R, Hussain R, Ali M. Effects of bisphenol a on hematological, serum biochemical, and histopathological biomarkers in bighead carp (Aristichthys nobilis) under long-term exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21380-21395. [PMID: 34757555 DOI: 10.1007/s11356-021-17329-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is one of the highest volume chemicals produced in the world and is frequently used in dental sealants, water bottles, food, and beverage packaging. Due to persistent applications, BPA has become a potential threat to a variety of organisms including public health. In this study, a total of 80 bighead carps were randomly placed in different four groups (A-D). Fish in groups B, C, and D were exposed to BPA @500, 1000, and 1500 μg/L, respectively for 60 days. Fish in group A served as an untreated control group. The body weight was significantly decreased while the absolute and relative weight of different visceral organs increased significantly (p < 0.05) in fish exposed to higher concentration (1500 μg/L) of BPA. Results on proximate analysis showed significantly lower values of crude proteins, lipids, and moisture contents while increased contents of ash in muscles of treated fish. The erythrocyte counts, hemoglobin concentration, lymphocytes, and monocytes significantly decreased while total leukocyte and neutrophil counts significantly increased in treated fish. Results exhibited that different serum biochemistry parameters like serum albumin and total proteins decreased significantly (p < 0.05) while alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), urea, creatinine, glucose, cholesterol, and lactate dehydrogenase (LDH) increased significantly (p < 0.05) in treated fish. Histopathological ailments like pyknosis, degeneration of glomeruli, increased Bowman's space, ceroid formation in kidneys while ceroid formation, hemorrhages, pyknosis, karyorrhexis, karyolysis, nuclear hypertrophy, and eccentric nuclei were observed in the liver of treated fish. Histological observation of different sections of the brain of treated fish exhibited degeneration of neurons in the cerebellum, lipofuscin deposition, microgliosis, necrotic neurons, inflammatory cells, and hemorrhage. Results on light microscopic observation of different sections of the heart of bighead carp revealed necrosis, inflammatory reaction, neutrophilic myocarditis, and hemorrhages. In conclusion, it is suggested that BPA induces adverse effects on physical, blood-biochemical parameters, and histopathological changes in multiple visceral tissues of exposed fish.
Collapse
Affiliation(s)
- Rabia Akram
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Zoology Division, Bhauddin Zakariya University, Multan, Pakistan.
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Ali
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
178
|
Zaheer J, Kim H, Ko IO, Jo EK, Choi EJ, Lee HJ, Shim I, Woo HJ, Choi J, Kim GH, Kim JS. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2022; 161:107121. [PMID: 35134716 DOI: 10.1016/j.envint.2022.107121] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
In common with the increase in environmental pollution in the past 10 years, there has also been a recent increase in the prevalence of autism spectrum disorder (ASD). In this regard, we hypothesized that exposure to microplastics is a potential risk factor for ASD. To evaluate the validity of this hypothesis, we initially examined the accumulation of polyethylene (PE) in the brains of mice and then assessed the behavioral effects using mouse models at different life stages, namely, prenatal, post-weaning, puberty, and adult models. Based on typical behavioral assessments of autistic traits in the model mice, we established that ASD-like traits were induced in mice after PE feeding. In addition, we examined the induction of ASD-like traits in response to microplastic exposure using positron emission tomography, magnetic resonance spectroscopy, quantitative real-time polymerase chain reaction, microarray, and microbiome analysis. We believe these findings provide evidence in microplastics as a potential risk factor for ASD.
Collapse
Affiliation(s)
- Javeria Zaheer
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Republic of Korea
| | - Hyeongi Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In Ok Ko
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eun-Kyeong Jo
- School of Health & Environmental Science, College of Health Science, Korea University Seoul 02841, Republic of Korea
| | - Eui-Ju Choi
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Hyun-Jeong Woo
- Department of Biomedical Engineering, School of Integrative Engineering, College of ICT Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- Department of Biomedical Engineering, School of Integrative Engineering, College of ICT Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gun-Ha Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin Su Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Republic of Korea.
| |
Collapse
|
179
|
Hayati A, Pramudya M, Soepriandono H, Astri AR, Kusuma MR, Maulidah S, Adriansyah W, Dewi FRP. Assessing the recovery of steroid levels and gonadal histopathology of tilapia exposed to polystyrene particle pollution by supplementary feed. Vet World 2022; 15:517-523. [PMID: 35400943 PMCID: PMC8980369 DOI: 10.14202/vetworld.2022.517-523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Water pollution caused by industrial waste and human activities has disrupted the reproductive health of aquatic organisms. This study aimed to analyze the effects of water pollution caused by polystyrene particles (PP) on the steroid (estradiol and testosterone) levels and histopathology of male tilapia gonads. In addition, we also analyzed the potential of supplementary feeding to remove and neutralize oxidants. Materials and Methods: Thirty-six tilapia fishes were taken for the study and were divided into 12 groups (n=3), including a control group (fed with commercial pellets only) and groups fed with a mixture of commercial-probiotic pellets (200 mL/kg, 1×108 colony-forming unit [CFU]/mL) and commercial vitamin C pellets (100 mg/kg), respectively. The PP concentrations used for this study were 0, 0.1, 1, and 10 mg/L, and the treatment time was 2 weeks. The testosterone and estradiol concentrations were analyzed by enzyme-linked immunosorbent assay and histopathological analysis of the gonads. Results: Laboratory analysis performed using tilapia fishes showed that exposure to a PP concentration of <74 μm, mixed with feed for 14 days, could decrease estradiol and testosterone levels. Exposure to plastic particles could change the structure, shape, and size of male gonads. It can also affect the spermatogenic cell number and alter the diameter inside the cysts. Originally, plastic particles were believed to reduce the permeability of the cyst membrane, and this damages the membrane or ruptures the cyst. Supplementary feed containing probiotics (200 mL/kg, 1×108 CFU/mL) and vitamin C (100 mg/kg) can ameliorate the impact of PP exposure on steroid levels. The steroid levels increase with a concurrent improvement in cysts and seminiferous tubule structures. Conclusion: Overall, this study indicates that PP concentrations in the aquatic environment negatively affect tilapia reproduction, and this may pose a potential threat to the fish population in freshwater. Provision of supplementary feed containing probiotics and vitamin C may serve as an alternative way to counter the negative impact caused by plastic particles.
Collapse
Affiliation(s)
- Alfiah Hayati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Manikya Pramudya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Hari Soepriandono
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Aisyah Rizkyning Astri
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Michael Ronaldi Kusuma
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Sasanaqia Maulidah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Wahyu Adriansyah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya, Indonesia
| |
Collapse
|
180
|
Sulukan E, Baran A, Şenol O, Yildirim S, Mavi A, Ceyhun HA, Toraman E, Ceyhun SB. The synergic toxicity of temperature increases and nanopolystrene on zebrafish brain implies that global warming may worsen the current risk based on plastic debris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152092. [PMID: 34863762 DOI: 10.1016/j.scitotenv.2021.152092] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Global warming and plastic pollution are among the most important environmental problems today. Unfortunately, our world is warming more than expected and biological life, especially in the oceans, has come to the limit of the struggle for survival with the nano-scale plastic pollution that is constantly released from the main material. In this study, the synergic effect of one-degree temperature increase (28, 29, 30 °C) and 100 nm size polystyrene plastic nanoparticles on circadian rhythm, brain damage and metabolomics in zebrafish were investigated in an environment where temperature control with 0.05-degree precision is provided. A temperature increase of 1°, together with nanoplastic exposure, affected the circadian rhythm in zebrafish, caused damage to the brain and caused significant changes in the intensity of a total of 18 metabolites in different pathways. It was also detected Raman signals of polystyrene in the brain homogenate. As a consequence, it is suggested that one degree of temperature increase pave the way for degeneration in the brain by disrupting some metabolic pathways, thereby significantly increasing the negative effects of nano-plastic on behavior.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum, Turkey; Department of Mathematics and Science Education, Education Faculty of Kazım Karabekir, Atatürk University, Erzurum, Turkey
| | - Hacer Akgül Ceyhun
- Department of Psychiatry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Emine Toraman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
181
|
Ma C, Chen Q, Li J, Li B, Liang W, Su L, Shi H. Distribution and translocation of micro- and nanoplastics in fish. Crit Rev Toxicol 2022; 51:740-753. [PMID: 35166176 DOI: 10.1080/10408444.2021.2024495] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are regarded as emerging particulate contaminants. Here, we first summarize the distribution of plastic particles in fish. Field investigations verify the presence of various kinds of fibrous, spherical, and fragmentary MPs in fish gastrointestinal tract and gills, and specifically in muscle and liver. Laboratory works demonstrate that NPs even penetrate into blood vessels of fish and pass onto next generations. Second, we systematically discuss the translocation ability of MPs and NPs in fish. MPs can enter early-developing fish through adherence, and enter adult fish internal organs by intestine absorption or epidermis infiltration. NPs can not only penetrate into fish embryo blastopores, but also reach adult fish internal organs through blood circulation. Third, the cellular basis for translocation of plastic particles, NPs in particular, into cells are critically reviewed. Endocytosis and paracellular penetration are two main pathways for them to enter cells and intercellular space, respectively. Finally, we compare the chemical and physical properties among various particular pollutants (MPs, NPs, settleable particulate matters, and manufactured nanomaterials) and their translocation processes at different biological levels. In future studies, it is urgent to break through the bottleneck techniques for NPs quantification in field environmental matrix and organisms, re-confirm the existence of MPs and NPs in field organisms, and develop more detailed translocating mechanisms of MPs and NPs by applying cutting-edge tracking techniques.
Collapse
Affiliation(s)
- Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jiawei Li
- Department of Geography, The University of Manchester, Manchester, United Kingdom
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| |
Collapse
|
182
|
Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X. Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain. NANO LETTERS 2022; 22:1091-1099. [PMID: 35089039 DOI: 10.1021/acs.nanolett.1c04184] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The potential toxicity of nanoplastics on plants has previously been illustrated, but whether nanoplastics could cause neurotoxicity, especially to higher animals, remains unclear. We now demonstrate that nanoplastics can be deposited in the brain via nasal inhalation, triggering neuron toxicity and altering the animal behavior. Polystyrene nanoparticles (PS-NPs) of PS-COOH and PS-NH2 are used as models for nanoplastics. We designed a microfluidic chip to evaluate the PS-NPs with different concentrations, surface ligands, and sizes to interact with neurons. Smaller PS-NPs can induce more cellular uptake than larger PS-NPs. PS-NPs with a size of 80 nm can reach and deposit in the brain of mice via aerosol inhalation. Mice inhaling PS-NPs exhibit fewer activities in comparison to those inhaling water droplets. An obvious neurotoxicity of the nanoplastics could be observed from the results of the inhibition of AChE activities. Our results show the potential significance of the physiochemical properties of organic nanoplastics on depositing in mammalian brains by nasal inhalation.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, University of Chinese Academy of Sciences, No. 11 Zhongguancun Beiyitiao, Beijing 100190, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Yingcan Zhao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jiabin Dou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, University of Chinese Academy of Sciences, No. 11 Zhongguancun Beiyitiao, Beijing 100190, People's Republic of China
| | - Qinghong Hou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jinxiong Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, University of Chinese Academy of Sciences, No. 11 Zhongguancun Beiyitiao, Beijing 100190, People's Republic of China
| |
Collapse
|
183
|
Venâncio C, Melnic I, Tamayo-Belda M, Oliveira M, Martins MA, Lopes I. Polymethylmethacrylate nanoplastics can cause developmental malformations in early life stages of Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150491. [PMID: 34844312 DOI: 10.1016/j.scitotenv.2021.150491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Polymethylmethacrylate (PMMA) production has increased almost 20% over the last years. With its release into the aquatic environment, its breakdown or degradation to nano dimensions (nanoplastics-NPLs) due to biological and physical/mechanical action is, theoretically, anticipated. The occurrence of PMMA-NPLs in aquatic ecosystems may thus cause adverse effects particularly to early life stages of amphibians, which may be in contact with PMMA-NPLs suspended in the water column or deposited in upper layers of the sediments. Accordingly, this work aimed at assessing the effects of PMMA-NPLs to aquatic early life stages of the model anuran species Xenopus laevis. To attain this objective, two types of toxicity assays were carried out by exposing embryos [Nieuwkoop and Faber (NF) stage 8-11] or tadpoles (NF 45) to three concentrations of PMMA-NPLs (1, 100 and 1000 μg/L): i) 96-h embryo teratogenicity assay, where survival, malformation, and total body length (BL) of embryos were assessed; and ii) 48-h feeding rate assay, where survival, feeding (FR), malformations and growth rates (body weight-BW and BL) of tadpoles were evaluated. PMMA-NPLs exposure had no significant effects on mortality, malformations of X. laevis embryos but BL was lower at 1000 μg PMMA-NPLs/L. In tadpoles, no effects on survival or FR were observed after exposure to PMMA-NPLs, but significant changes occured in BW and BL. Moreover, anatomical changes in the abdominal region (externalization of the gut) were observed in 62.5% of the tadpoles exposed to 1000 μg PMMA-NPLs/L. Despite the lack of knowledge regarding the environmental levels of NPLs, it is expected that sediments constitute a sink for these contaminants, where they can become available for organisms that, like tadpoles, feed on the organic matter at the surface of sediments. Considering the continuous release and subsequent accumulation of PMMA, the malformations obtained in the feeding assays suggest that, in the future, these nano-polymers may constitute a risk for aquatic life stages of amphibians.
Collapse
Affiliation(s)
- C Venâncio
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - I Melnic
- Faculty of Biology Alexandru Ioan Cuza, University of Iași, Romania
| | - M Tamayo-Belda
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M A Martins
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - I Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
184
|
Yu J, Chen L, Gu W, Liu S, Wu B. Heterogeneity effects of nanoplastics and lead on zebrafish intestinal cells identified by single-cell sequencing. CHEMOSPHERE 2022; 289:133133. [PMID: 34861263 DOI: 10.1016/j.chemosphere.2021.133133] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Plastic particles in water environment can adsorb heavy metals, leading to combined toxicity on aquatic organisms. However, current conclusions are mostly obtained based on cell population-average responses. Heterogeneity effects among cell populations in aquatic organisms remain unclear. This study firstly analyzed the basic toxic effects of 20 μg L-1, 200 μg L-1 100 nm polystyrene nanoplastics (PS-NPs), 50 μg L-1 lead (Pb), and their combined exposures on zebrafish intestine. Results found that combined exposure of 200 μg L-1 PS-NPs and 50 μg L-1 Pb induced highest MDA, 8-OHdG, and TNF-α levels. Thus 200 μg L-1 PS-NPs, 50 μg L-1 Pb and their combined exposures were chosen to analyze the heterogeneity effects on zebrafish intestine cells by single-cell RNA sequencing. A total of 38,640 zebrafish intestinal cells were obtained and identified as seven cell populations, including enterocytes, macrophages, neutrophils, B cells, T cells, enteroendocrine cells, and goblet cells. 200 μg L-1 PS-NPs exposure had the greatest influence on macrophages, while Pb exposure mostly influenced enterocytes. Results of MDA, 8-OHdG, and TNF-α analyses indicated that 20 μg L-1 and 200 μg L-1 PS-NPs increased the Pb toxicity. However, the scRNA-seq showed that the synergistic effects did not exist in most cell populations, except for goblet cells. Co-exposure of 200 μg L-1 PS-NPs and Pb caused similar transcriptome profiles with 200 μg L-1 PS-NPs exposure in macrophages, which changed immunological recognition and apoptosis processes. The Pb exposure influenced the macrophages by direct cytotoxicity. However, the Pb alone and combined exposures induced similar toxicities in the enterocytes, including the generation of oxidative stress and abnormality of lipid metabolism. This study shows the scRNA-seq is a powerful method to identify the target cell populations and corresponding toxic effects during combined exposure of pollutants.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Weiqing Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
185
|
Yip YJ, Lee SSC, Neo ML, Teo SLM, Valiyaveettil S. A comparative investigation of toxicity of three polymer nanoparticles on acorn barnacle (Amphibalanus amphitrite). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150965. [PMID: 34662627 DOI: 10.1016/j.scitotenv.2021.150965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Pollution from plastic waste is increasingly prevalent in the environment and beginning to generate significant adverse impact on the health of living organisms. In this study, we investigate the toxicity of polymer nanoparticles exposed to Acorn Barnacle (Amphibalanus amphitrite) nauplii, as an animal model. Highly stable aqueous dispersion of luminescent nanoparticles from three common polymers: polymethylmethacrylate (PMMA), polystyrene (PS), and polyvinylchloride (PVC), were prepared via nanoprecipitation and fully characterised. Exposure studies of these polymer particles to freshly spawned barnacle nauplii were performed within a concentration range from 1 to 25 mg/L under laboratory-controlled conditions. The exposure to PMMA and PS nanoparticles did not show detrimental toxicity and did not cause sufficient mortality to compute a LC50 value. However, PVC nanoparticles were significantly toxic with a mortality rate of up to 99% at 25 mg/L, and the calculated LC50 value for PVC nanoparticles was 7.66 ± 0.03 mg/L, 95% CI. Interestingly, PVC nanoparticle aggregates were observed to adhere to the naupliar carapace and appendages at higher concentrations and could not be easily removed by washings. To explore the possibility of chemical toxicity of polymer nanoparticles, analysis of the polymer powders which was used to prepare the nanoparticles was conducted. The presence of low molecular weight oligomers such as dimers, trimers and tetramers were observed in all polymer samples. The chemical nature and concentration of such compounds are likely responsible for the observed toxicity to the barnacle nauplii. Overall, our study shows that care should be exercised in generalising the findings of exposure studies performed using one type of plastic particles, as the use of different plastic particles may elicit different responses inside a living organism.
Collapse
Affiliation(s)
- Yong Jie Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Serina Siew Chen Lee
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Mei Lin Neo
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Serena Lay-Ming Teo
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
186
|
Kelpsiene E, Ekvall MT, Lundqvist M, Torstensson O, Hua J, Cedervall T. Review of ecotoxicological studies of widely used polystyrene nanoparticles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:8-16. [PMID: 34825687 DOI: 10.1039/d1em00375e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With polystyrene nanoparticles being widely used in various applications, there is a great need for deeper knowledge on the safety, fate and biological effects of these particles on both individual living organisms and the whole ecosystems. Due to this, there is a growing interest in performing ecotoxicological studies using model plastic nanoparticles, and consequently it generates an increasing number of published papers describing the negative impact on wildlife caused by such nanoparticles. Polystyrene is the most studied nanosized plastic, therefore this review focuses on research conducted with manufactured polystyrene nanoparticles. The aim of the present article is to provide a critical methodological outline of the existing ecotoxicological studies on the effects of polystyrene nanoparticles on aquatic organisms. Going through the published articles, we noted that particle characterization especially in the test medium, can be improved. The analysis also highlights the importance of purifying the polystyrene nanoparticles before studying its toxicity. Furthermore, the size characterization of such nanoparticles is underemphasized, and in future studies, authors should consider including more techniques to achieve this goal. Finally, short-term or direct exposure scenarios do not add the most environmentally relevant knowledge in terms of the toxicity caused by polystyrene nanoparticles.
Collapse
Affiliation(s)
- Egle Kelpsiene
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Mikael T Ekvall
- Aquatic Ecology Unit, Department of Biology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Oscar Torstensson
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
| | - Jing Hua
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
| | - Tommy Cedervall
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
187
|
Uddin S, Fowler SW, Habibi N, Behbehani M. Micro-Nano Plastic in the Aquatic Environment: Methodological Problems and Challenges. Animals (Basel) 2022; 12:ani12030297. [PMID: 35158621 PMCID: PMC8833669 DOI: 10.3390/ani12030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Microplastic research has become a buzz word. It is seen as one of the most pressing issues of Anthropocene contamination. There is certainly no doubt about the ubiquitous presence of microplastic (MP) in almost all environmental matrices. However, the validity of considering them as a vector for contaminants needs some reconsideration, there are other more potent pathways. Their effect on marine biota also calls for some realistic experiments with environmental concentrations of MP and nanoplastic (NP). It has been observed that in most published literature, polymer characterization is performed. Is it necessary to do, or will merely finding and confirming the particle as plastic suffice for environmental research? Harmonization of protocols is necessary, and there is likely a need for some inter-laboratory comparison exercises in order to produce comparable data and reliable assessments across regions. Samples collected from the same area using different techniques show an order of magnitude difference in MP concentration. The issue of nanoplastic is more contentious; are we technologically ready to identify NP in environmental samples?
Collapse
Affiliation(s)
- Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (N.H.); (M.B.)
- Correspondence: ; Tel.: +965-24989224
| | - Scott W. Fowler
- School of Maine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA;
- Institute Bobby, 8 Allée des Orangers, 06320 Cap d’Ail, France
| | - Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (N.H.); (M.B.)
| | - Montaha Behbehani
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (N.H.); (M.B.)
| |
Collapse
|
188
|
Clark NJ, Khan FR, Mitrano DM, Boyle D, Thompson RC. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. ENVIRONMENT INTERNATIONAL 2022; 159:106994. [PMID: 34922180 DOI: 10.1016/j.envint.2021.106994] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Fish are widely reported to ingest microplastics with low levels accumulating in the tissues, but owing to analytical constraints, much less is known about the potential accumulation of nanoplastics via the gut. Recently, the labelling of plastics with inorganic metals (e.g., palladium) has allowed measurements of nanoplastic uptake. The aim of the current study was to quantitatively assess the uptake of nanoplastics by the fish gut using palladium-doped nanoplastics (with a mean hydrodynamic radius of 202 ± 7 nm). By using an ex vivo gut sac exposure system, we show that in 4 h between 200 and 700 million nanoplastics (representing 2.5-9.4% of the administered nanoplastics dose) can enter the mucosa and muscularis layers of the intestine of salmon. Of the particles taken up, up to 700,000 (representing 0.6% of that taken into the tissue) of the nanoplastics passed across the gut epithelium of the anterior intestine and exit into the serosal saline. These data, generated in highly controlled conditions provide a proof-of-concept study, suggesting the potential for nanoplastics to distribute throughout the body, indicating the potential for systemic exposure in fish.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway; Department of Science and Environment, Roskilde University, Universitetsvej 1, PO Box 260, 4000 Roskilde, Denmark
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, 8092, Switzerland
| | - David Boyle
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Cobalt Institute, 18 Jeffries Passage, Guildford GU1 4AP, UK
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
189
|
Martin LMA, Gan N, Wang E, Merrill M, Xu W. Materials, surfaces, and interfacial phenomena in nanoplastics toxicology research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118442. [PMID: 34748888 PMCID: PMC8823333 DOI: 10.1016/j.envpol.2021.118442] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
In response to the growing worldwide plastic pollution problem, the field of nanoplastics research is attempting to determine the risk of exposure to nanoparticles amidst their ever-increasing presence in the environment. Since little is known about the attributes of environmental nanoplastics (concentration, composition, morphology, and size) due to fundamental limitations in detection and quantification of smaller plastic particles, researchers often improvise by engineering nanoplastic particles with various surface modifications as models for laboratory toxicological testing. Polystyrene and other commercially available or easily synthesized polymer materials functionalized with surfactants or fluorophores are typically used for these studies. How surfactants, additives, fluorophores, the addition of surface functional groups for conjugation, or other changes to surface attributes alter toxicological profiles remains unclear. Additionally, the limited polymers used in laboratory models do not mimic the vast range of polymer types comprising environmental pollutants. Nanomaterials are tricky materials to investigate due to their high surface area, high surface energies, and their propensity to interact with molecules, proteins, and biological probes. These unique properties can often invalidate common laboratory assays. Extreme care must be taken to ensure that results are not artefactual. We have gathered zeta potential values for various polystyrene nanoparticles with different functionalization, in different solvents, from the reported literature. We also discuss the effects of surface engineering and solvent properties on interparticle interactions, agglomeration, particle-protein interactions, corona formation, nano-bio interfaces, and contemplate how these parameters might confound results. Various toxicological exemplars are critically reviewed, and the relevance and shortfalls of the most popular models used in nanoplastics toxicity studies published in the current literature are considered.
Collapse
Affiliation(s)
- Leisha M A Martin
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Nin Gan
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Erica Wang
- Department of Mechanical Engineering, Texas A&M University, Corpus Christi, TX, United States
| | - Mackenzie Merrill
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States.
| |
Collapse
|
190
|
Yusuf A, Sodiq A, Giwa A, Eke J, Pikuda O, Eniola JO, Ajiwokewu B, Sambudi NS, Bilad MR. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118421. [PMID: 34756874 DOI: 10.1016/j.envpol.2021.118421] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The gravity of the impending threats posed by microplastics (MPs) pollution in the environment cannot be over-emphasized. Several research studies continue to stress how important it is to curb the proliferation of these small plastic particles with different physical and chemical properties, especially in aquatic environments. While several works on how to monitor, detect and remove MPs from the aquatic environment have been published, there is still a lack of explicit regulatory framework for mitigation of MPs globally. A critical review that summarizes recent advances in MPs research and emphasizes the need for regulatory frameworks devoted to MPs is presented in this paper. These frameworks suggested in this paper may be useful for reducing the proliferation of MPs in the environment. Based on all reviewed studies related to MPs research, we discussed the occurrence of MPs by identifying the major types and sources of MPs in water bodies; examined the recent ways of detecting, monitoring, and measuring MPs routinely to minimize projected risks; and proposed recommendations for consensus regulatory actions that will be effective for MPs mitigation.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed Sodiq
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Adewale Giwa
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Joyner Eke
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower Lexington, KY, 40506, USA
| | - Oluwadamilola Pikuda
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Jamiu O Eniola
- Civil and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Bilkis Ajiwokewu
- Chemical and Petroleum Engineering Department, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nonni Soraya Sambudi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, 32610, Malaysia
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| |
Collapse
|
191
|
Willis KA, Serra-Gonçalves C, Richardson K, Schuyler QA, Pedersen H, Anderson K, Stark JS, Vince J, Hardesty BD, Wilcox C, Nowak BF, Lavers JL, Semmens JM, Greeno D, MacLeod C, Frederiksen NPO, Puskic PS. Cleaner seas: reducing marine pollution. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022. [PMID: 34366578 DOI: 10.22541/au.160382467.73347721/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
UNLABELLED In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09674-8.
Collapse
Affiliation(s)
- Kathryn A Willis
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catarina Serra-Gonçalves
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Kelsey Richardson
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | | | | | - Kelli Anderson
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jonathan S Stark
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Australian Antarctic Division, Hobart, TAS Australia
| | - Joanna Vince
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Britta D Hardesty
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
| | - Chris Wilcox
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Barbara F Nowak
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Dean Greeno
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Creative Arts and Media, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catriona MacLeod
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Nunnoq P O Frederiksen
- The PISUNA Project, Qeqertalik Municipality, Attu, Greenland
- Snowchange Cooperative, Selkie, Finland
| | - Peter S Puskic
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| |
Collapse
|
192
|
Willis KA, Serra-Gonçalves C, Richardson K, Schuyler QA, Pedersen H, Anderson K, Stark JS, Vince J, Hardesty BD, Wilcox C, Nowak BF, Lavers JL, Semmens JM, Greeno D, MacLeod C, Frederiksen NPO, Puskic PS. Cleaner seas: reducing marine pollution. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022; 32:145-160. [PMID: 34366578 PMCID: PMC8326648 DOI: 10.1007/s11160-021-09674-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2021] [Indexed: 05/06/2023]
Abstract
UNLABELLED In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09674-8.
Collapse
Affiliation(s)
- Kathryn A. Willis
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catarina Serra-Gonçalves
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Kelsey Richardson
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | | | | | - Kelli Anderson
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jonathan S. Stark
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Australian Antarctic Division, Hobart, TAS Australia
| | - Joanna Vince
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Britta D. Hardesty
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
| | - Chris Wilcox
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Barbara F. Nowak
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jennifer L. Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Jayson M. Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Dean Greeno
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Creative Arts and Media, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catriona MacLeod
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | -
Nunnoq P. O. Frederiksen
- The PISUNA Project, Qeqertalik Municipality, Attu, Greenland
- Snowchange Cooperative, Selkie, Finland
| | - Peter S. Puskic
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| |
Collapse
|
193
|
Onoja S, Nel HA, Abdallah MAE, Harrad S. Microplastics in freshwater sediments: Analytical methods, temporal trends, and risk of associated organophosphate esters as exemplar plastics additives. ENVIRONMENTAL RESEARCH 2022; 203:111830. [PMID: 34358506 DOI: 10.1016/j.envres.2021.111830] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
It has been estimated that over 28 million tonnes of plastics end up in water bodies annually. These plastics degrade into microplastics (MPs), which along with microbeads and MPs from other sources such as wastewater treatment plants continue to threaten the aquatic system. At such small sizes, and corresponding larger surface areas per unit mass/volume, MPs exhibit enhanced capacity for absorbing and desorbing toxic chemicals/additives. Therefore, MPs can serve as vectors through which additives as well as other persistent, bio-accumulative, and toxic chemicals can enter the food chain. Additives are a significant component of most plastic products with some identified as hazardous to health and the environment. One group of additives that has continued to attract interest is organophosphate esters (OPEs), which are used both as flame retardants and plasticizers. Some of these OPEs are suspected carcinogens and endocrine disruptors and have been reported to exert serious toxic effects on freshwater biota. Separate studies on the presence and fate in the freshwater environment of these additives and MPs have emerged recently. However, no studies exist that examine the extent to which plastics additives such as OPEs in sediments are sorbed to MPs as opposed to the sediment itself. This has potentially important implications for the bioavailability of such additives and studies to examine this are recommended. This paper reviews critically the current state-of-knowledge on MPs in freshwater sediments, methods for their analysis, as well as their occurrence, temporal trends, and risks to the freshwater aquatic environment. Moreover, to facilitate the study of additives associated with MPs that have been extracted from sediments, we consider the possible effect of MP isolation methods on the determination of concentrations of associated additives like OPEs.
Collapse
Affiliation(s)
- Simeon Onoja
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly A Nel
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
194
|
Urbanek AK, Kosiorowska KE, Mirończuk AM. Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms. Front Bioeng Biotechnol 2021; 9:771133. [PMID: 34917598 PMCID: PMC8669999 DOI: 10.3389/fbioe.2021.771133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
The global production of polyethylene terephthalate (PET) is estimated to reach 87.16 million metric tons by 2022. After a single use, a remarkable part of PET is accumulated in the natural environment as plastic waste. Due to high hydrophobicity and high molecular weight, PET is hardly biodegraded by wild-type microorganisms. To solve the global problem of uncontrolled pollution by PET, the degradation of plastic by genetically modified microorganisms has become a promising alternative for the plastic circular economy. In recent years many studies have been conducted to improve the microbial capacity for PET degradation. In this review, we summarize the current knowledge about metabolic engineering of microorganisms and protein engineering for increased biodegradation of PET. The focus is on mutations introduced to the enzymes of the hydrolase class-PETase, MHETase and cutinase-which in the last few years have attracted growing interest for the PET degradation processes. The modifications described in this work summarize the results obtained so far on the hydrolysis of polyethylene terephthalate based on the released degradation products of this polymer.
Collapse
Affiliation(s)
- Aneta K Urbanek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna E Kosiorowska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
195
|
Yaripour S, Huuskonen H, Rahman T, Kekäläinen J, Akkanen J, Magris M, Kipriianov PV, Kortet R. Pre-fertilization exposure of sperm to nano-sized plastic particles decreases offspring size and swimming performance in the European whitefish (Coregonus lavaretus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118196. [PMID: 34555795 DOI: 10.1016/j.envpol.2021.118196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Exposure of aquatic organisms to micro- and nano-sized plastic debris in their environment has become an alarming concern. Besides having a number of potentially harmful impacts for individual organisms, plastic particles can also influence the phenotype and performance of their offspring. We tested whether the sperm pre-fertilization exposure to nanoplastic particles could affect offspring survival, size, and swimming performance in the European whitefish Coregonus lavaretus. We exposed sperm of ten whitefish males to three concentrations (0, 100 and 10 000 pcs spermatozoa-1) of 50 nm carboxyl-coated polystyrene spheres, recorded sperm motility parameters using computer assisted sperm analysis (CASA) and then fertilized the eggs of five females in all possible male-female combinations. Finally, we studied embryonic mortality, hatching time, size, and post-hatching swimming performance of the offspring. We found that highest concentration of plastic particles decreased sperm motility and offspring hatching time. Furthermore, sperm exposure to highest concentration of plastics reduced offspring body mass and impaired their swimming ability. This suggests that sperm pre-fertilization exposure to plastic pollution may decrease male fertilization potential and have important transgenerational impacts for offspring phenotype and performance. Our findings indicate that nanoplastics pollution may have significant ecological and evolutionary consequences in aquatic ecosystems.
Collapse
Affiliation(s)
- Sareh Yaripour
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Tawfiqur Rahman
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Martina Magris
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Pavel Vladimirovich Kipriianov
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| |
Collapse
|
196
|
Hughes MF, Clapper HM, Burgess RM, Ho KT. Human and ecological health effects of nanoplastics: may not be a tiny problem. CURRENT OPINION IN TOXICOLOGY 2021; 28:43-48. [PMID: 34957354 PMCID: PMC8693367 DOI: 10.1016/j.cotox.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nanoplastics (NPs) are present in food, soil, water, air and personal care products, resulting in concern regarding exposure and potential adverse effects. NPs principally arise from the degradation of larger-sized plastic particles. The uptake and effects of NPs in humans is not yet known. However, recent laboratory studies have documented the uptake and adverse effects of NPs from the cellular to the community level. As NPs are in the size range of particles that can be absorbed by cells, research on these materials should be accelerated to properly assess their potential risks.
Collapse
Affiliation(s)
- Michael F Hughes
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Research Triangle Park, NC, USA
| | - Haley M Clapper
- Oak Ridge Institute for Sciences and Education, Research Triangle Park, NC, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Modeling and Measurement, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Modeling and Measurement, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| |
Collapse
|
197
|
Monitoring anthropogenic particles in the environment: Recent developments and remaining challenges at the forefront of analytical methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
198
|
Grodzicki W, Dziendzikowska K, Gromadzka-Ostrowska J, Kruszewski M. Nanoplastic Impact on the Gut-Brain Axis: Current Knowledge and Future Directions. Int J Mol Sci 2021; 22:ijms222312795. [PMID: 34884598 PMCID: PMC8657997 DOI: 10.3390/ijms222312795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
The widespread usage of plastic places a significant burden on the environment and impacts numerous aquatic and terrestrial species. Humans in particular can be affected by plastic pollution, predominantly via inhalation and ingestion, as well as trophic transfer along the food chain. Under natural conditions synthetic materials undergo degradation into micro- and nanoparticles, especially prone to interact with biological systems. Organisms exposed to nanoplastic accumulate it in multiple tissues, including the gut and the brain. This phenomenon raises a question about the impact of nanoparticulate plastics on the communication pathways between these organs. The aim of this review is to explore an unsettling possibility of the influence of nanoplastic on the gut-brain axis and provide a comprehensive summary of available data regarding this subject. The scarce but consistent evidence shows that exposure to plastic nanoparticles can indeed affect both the digestive and the nervous system. Reported outcomes include microbiota alterations, intestinal barrier permeability, oxidative stress, inflammation, neurotoxicity and behavioral disturbances. Taking into consideration these alarming observations and the ubiquitous presence of plastics in human environment, more research is urgently needed in order to identify any potential threats that nanoplastic exposure can pose to the functioning of the gut-brain axis.
Collapse
Affiliation(s)
- Wojciech Grodzicki
- Chair of Nutrition Physiology, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (W.G.); (J.G.-O.)
| | - Katarzyna Dziendzikowska
- Chair of Nutrition Physiology, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (W.G.); (J.G.-O.)
- Correspondence:
| | - Joanna Gromadzka-Ostrowska
- Chair of Nutrition Physiology, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (W.G.); (J.G.-O.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
| |
Collapse
|
199
|
Torres-Ruiz M, De la Vieja A, de Alba Gonzalez M, Esteban Lopez M, Castaño Calvo A, Cañas Portilla AI. Toxicity of nanoplastics for zebrafish embryos, what we know and where to go next. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149125. [PMID: 34346375 DOI: 10.1016/j.scitotenv.2021.149125] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/21/2023]
Abstract
Nanoplastics (NP) are an emerging threat to human health and there is a need to understand their toxicity. Zebrafish (ZF) is extensively used as a toxicology model due to its power to com-bine genetic, cellular, and whole organism endpoints. The present review integrates results regarding polystyrene NP effects on ZF embryo development. Study design was evaluated against NP effects. NP size, concentration, and exposure time did not affect organism responses (mortality, development, heart rate, locomotion) or cellular responses (gene expression, enzymes, metabolites). However, NP accumulation depended on size. Smaller NP can reach internal organs (brain, eyes, liver, pancreas, heart) but larger (>200 nm) accumulate mainly in gut, gills and skin. Locomotion and heart rate were commonly affected with hypoactivity and bradycardia being more prevalent. Effects on genetic/enzymatic/metabolic pathways were thoroughly analyzed. Immunity genes were generally upregulated whereas oxidative stress response genes varied. Central nervous system genes and visual related genes were generally downregulated. Results of genetic and enzymatic analyses coincided only for some genes/enzyme pairs. Reviewed studies provide a basis for understanding NP toxicity but results are hard to integrate. We propose key recommendations and future directions with regard to experimental design that may allow greater comparability across future studies.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain.
| | - Antonio De la Vieja
- Endocrine Tumors Unit, Unidad Funcional de Investigación en Enfermedades Endocrinas (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid 28220, Spain
| | - Mercedes de Alba Gonzalez
- Environmental Toxicology, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Marta Esteban Lopez
- Environmental Toxicology, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Argelia Castaño Calvo
- Environmental Toxicology, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Ana Isabel Cañas Portilla
- Environmental Toxicology, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| |
Collapse
|
200
|
Hodkovicova N, Hollerova A, Caloudova H, Blahova J, Franc A, Garajova M, Lenz J, Tichy F, Faldyna M, Kulich P, Mares J, Machat R, Enevova V, Svobodova Z. Do foodborne polyethylene microparticles affect the health of rainbow trout (Oncorhynchus mykiss)? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148490. [PMID: 34174619 DOI: 10.1016/j.scitotenv.2021.148490] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 05/20/2023]
Abstract
Due to the fact that plastic pollution is a global environmental problem of modern age, studies on the impact of these synthetic materials on aquatic, and especially fish organisms, are an important part of the ecosystem and human nutrition. In our study, the toxicity of pristine polyethylene (PE) microparticles (approx. 50 μm) on rainbow trout (Oncorhynchus mykiss) was tested in three different dietary concentrations - 0.5%, 2% and 5%. After six weeks of exposure, various health indices were evaluated. Electron microscopy of the intestine revealed the disintegration of PE particles to <5 μm in size, and thus we concluded that microplastics are able to reach tissues. The haematological profile revealed changes in total red blood cells count and haematocrit (5% PE) which could be associated with spleen congestion observed histologically. The marker of lipid peroxidation was increased in gills suggesting the disruption of balance in antioxidant enzymes capacity and histopathological imaging revealed inflammation in higher PE concentrations. In addition, ammonia was decreased and calcium elevated in biochemical profile, confirming the gill damage. Electron microscopy of the gills showed lesions of lamellae and visible rings around the mucinous cell opening indicating their higher activity. Another injured was the liver tissue, as confirmed by hepatodystrophies and increased expression of pro-inflammatory genes in 2% PE. Impaired innate immunity was confirmed by an increased presence of mucinous cells and a decrease in leukocytes. Kidney damage manifested itself by higher expression of pro-inflammatory cytokines and histopathology. The damage in gills, liver and kidney together correlated with the increased antioxidant capacity of plasma. In conclusion, PE microparticles are able to affect health indices of O. mykiss. The potential problem for aquatic ecosystems and even human consumption should be considered.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic.
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - H Caloudova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - J Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - A Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - M Garajova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - J Lenz
- Department of Pathology, Znojmo Hospital, Czech Republic; Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - F Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - P Kulich
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - J Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - R Machat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - V Enevova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|