151
|
Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E, Proemsey JB, Lloyd MC, Sloane BF, Gillies RJ. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res 2012; 72:3938-47. [PMID: 22719070 DOI: 10.1158/0008-5472.can-11-3881] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tumor cell survival relies upon adaptation to the acidic conditions of the tumor microenvironment. To investigate potential acidosis survival mechanisms, we examined the effect of low pH (6.7) on human breast carcinoma cells. Acute low pH exposure reduced proliferation rate, induced a G1 cell cycle arrest, and increased cytoplasmic vacuolization. Gene expression analysis revealed elevated levels of ATG5 and BNIP3 in acid-conditioned cells, suggesting cells exposed to low pH may utilize autophagy as a survival mechanism. In support of this hypothesis, we found that acute low pH stimulated autophagy as defined by an increase in LC3-positive punctate vesicles, double-membrane vacuoles, and decreased phosphorylation of AKT and ribosomal protein S6. Notably, cells exposed to low pH for approximately 3 months restored their proliferative capacity while maintaining the cytoplasmic vacuolated phenotype. Although autophagy is typically transient, elevated autophagy markers were maintained chronically in low pH conditioned cells as visualized by increased protein expression of LC3-II and double-membrane vacuoles. Furthermore, these cells exhibited elevated sensitivity to PI3K-class III inhibition by 3-methyladenine. In mouse tumors, LC3 expression was reduced by systemic treatment with sodium bicarbonate, which raises intratumoral pH. Taken together, these results argue that acidic conditions in the tumor microenvironment promote autophagy, and that chronic autophagy occurs as a survival adaptation in this setting.
Collapse
Affiliation(s)
- Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Ryder C, McColl K, Zhong F, Distelhorst CW. Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. J Biol Chem 2012; 287:27863-75. [PMID: 22685289 DOI: 10.1074/jbc.m112.384685] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acidosis arises in solid and lymphoid malignancies secondary to altered nutrient supply and utilization. Tumor acidosis correlates with therapeutic resistance, although the mechanism behind this effect is not fully understood. Here we show that incubation of lymphoma cell lines in acidic conditions (pH 6.5) blocks apoptosis induced by multiple cytotoxic metabolic stresses, including deprivation of glucose or glutamine and treatment with dexamethasone. We sought to examine the role of the Bcl-2 family of apoptosis regulators in this process. Interestingly, we found that acidic culture causes elevation of both Bcl-2 and Bcl-xL, while also attenuating glutamine starvation-induced elevation of p53-up-regulated modulator of apoptosis (PUMA) and Bim. We confirmed with knockdown studies that these shifts direct survival decisions during starvation and acidosis. Importantly, the promotion of a high anti- to pro-apoptotic Bcl-2 family member ratio by acidosis renders cells exquisitely sensitive to the Bcl-2/Bcl-xL antagonist ABT-737, suggesting that acidosis causes Bcl-2 family dependence. This dependence appears to be mediated, in part, by the acid-sensing G protein-coupled receptor, GPR65, via a MEK/ERK pathway.
Collapse
Affiliation(s)
- Christopher Ryder
- Department of Pharmacology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
153
|
Gieling RG, Babur M, Mamnani L, Burrows N, Telfer BA, Carta F, Winum JY, Scozzafava A, Supuran CT, Williams KJ. Antimetastatic Effect of Sulfamate Carbonic Anhydrase IX Inhibitors in Breast Carcinoma Xenografts. J Med Chem 2012; 55:5591-600. [DOI: 10.1021/jm300529u] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roben G. Gieling
- Hypoxia and Therapeutics Group, School of
Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | - Muhammad Babur
- Hypoxia and Therapeutics Group, School of
Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | - Lupti Mamnani
- Hypoxia and Therapeutics Group, School of
Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | - Natalie Burrows
- Hypoxia and Therapeutics Group, School of
Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | - Brian A. Telfer
- Hypoxia and Therapeutics Group, School of
Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | - Fabrizio Carta
- Department of Chemistry, University of Florence, Florence, Italy
| | - Jean-Yves Winum
- Institut
des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2,
Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de
l’Ecole Normale, 34296 Montpellier Cedex, France
| | | | | | - Kaye J. Williams
- Hypoxia and Therapeutics Group, School of
Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
154
|
LASS2 enhances chemosensitivity of breast cancer by counteracting acidic tumor microenvironment through inhibiting activity of V-ATPase proton pump. Oncogene 2012; 32:1682-90. [PMID: 22580606 DOI: 10.1038/onc.2012.183] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A main obstacle to overcome during the treatment of tumors is drug resistance to chemotherapy; emerging studies indicate that a key factor contributing to this problem is the acidic tumor microenvironment. Here, we found that LASS2 expression was significantly lower in drug-resistant Michigan Cancer Foundation-7/adriamycin (MCF-7/ADR) human breast cancer cells than the drug-sensitive MCF-7 cells, and low expression of LASS2 was associated with poor prognosis in patients with breast cancer. Our results showed that the overexpression of LASS2 in MCF-7/ADR cells increased the chemosensitivity to multiple chemotherapeutic agents, including doxorubicin (Dox), whereas LASS2 knockdown in MCF-7 cells decreased the chemosensitivity. Cell-cycle analysis revealed a corresponding increase in apoptosis in the LASS2-overexpressing cells following Dox exposure, showing that the overexpression of LASS2 increased the susceptibility to Dox cytotoxicity. This effect was mediated by a significant increase in pHe (extracellular pH) and lysosomal pH, and more Dox entered the cells and stayed in the nuclei of cells. In nude mice, the combination of LASS2 overexpression and Dox significantly inhibited the growth of xenografts. Our findings suggest that LASS2 is involved in chemotherapeutic outcomes and low LASS2 expression may predict chemoresistance.
Collapse
|
155
|
Swietach P, Hulikova A, Patiar S, Vaughan-Jones RD, Harris AL. Importance of intracellular pH in determining the uptake and efficacy of the weakly basic chemotherapeutic drug, doxorubicin. PLoS One 2012; 7:e35949. [PMID: 22563426 PMCID: PMC3338554 DOI: 10.1371/journal.pone.0035949] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/23/2012] [Indexed: 12/03/2022] Open
Abstract
Low extracellular pH (pHe), that is characteristic of many tumours, tends to reduce the uptake of weakly basic drugs, such as doxorubicin, thereby conferring a degree of physiological resistance to chemotherapy. It has been assumed, from pH-partition theory, that the effect of intracellular pH (pHi) is symmetrically opposite, although this has not been tested experimentally. Doxorubicin uptake into colon HCT116 cells was measured using the drug's intrinsic fluorescence under conditions that alter pHi and pHe or pHi alone. Acutely, doxorubicin influx across the cell-membrane correlates with the trans-membrane pH-gradient (facilitated at alkaline pHe and acidic pHi). However, the protonated molecule is not completely membrane-impermeant and, therefore, overall drug uptake is less pHe-sensitive than expected from pH-partitioning. Once inside cells, doxorubicin associates with slowly-releasing nuclear binding sites. The occupancy of these sites increases with pHi, such that steady-state drug uptake can be greater with alkaline cytoplasm, in contradiction to pH-partition theory. Measurements of cell proliferation demonstrate that doxorubicin efficacy is enhanced at alkaline pHi and that pH-partition theory is inadequate to account for this. The limitations in the predictive power of pH-partition theory arise because it only accounts for the pHi/pHe-sensitivity of drug entry into cells but not the drug's subsequent interactions that, independently, show pHi-dependence. In summary, doxorubicin uptake into cells is favoured by high pHe and high pHi. This modified formalism should be taken into account when designing manoeuvres aimed at increasing doxorubicin efficacy.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
156
|
The effect of 17-β oestradiol, resveratrol, and genistein on Na+/H+ exchange in breast cancer cells lines. Proc Nutr Soc 2012. [DOI: 10.1017/s0029665112000389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
157
|
Adams DJ. The Valley of Death in anticancer drug development: a reassessment. Trends Pharmacol Sci 2012; 33:173-80. [PMID: 22410081 DOI: 10.1016/j.tips.2012.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 02/09/2023]
Abstract
The past decade has seen an explosion in our understanding of cancer biology and with it many new potential disease targets. Nonetheless, our ability to translate these advances into therapies is poor, with a failure rate approaching 90%. Much discussion has been devoted to this so-called 'Valley of Death' in anticancer drug development, but the problem persists. Could we have overlooked some straightforward explanations to this highly complex problem? Important aspects of tumor physiology, drug pharmacokinetics, preclinical models, drug delivery, and clinical translation are not often emphasized, but could be crucial. This perspective summarizes current views on the problem and suggests feasible alternatives.
Collapse
Affiliation(s)
- David J Adams
- Department of Medicine, Duke University Health System, Duke Box # 2638, Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
158
|
Wang F, Chen Y, Zhang D, Zhang Q, Zheng D, Hao L, Liu Y, Duan C, Jia L, Liu G. Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles. Int J Nanomedicine 2012; 7:325-37. [PMID: 22287842 PMCID: PMC3266000 DOI: 10.2147/ijn.s27823] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background A critical disadvantage for successful chemotherapy with paclitaxel (PTX) is its nontargeting nature to cancer cells. Folic acid has been employed as a targeting ligand of various anticancer agents to increase their cellular uptake within target cells since the folate receptor is overexpressed on the surface of such tumor cells. In this study, a novel biodegradable deoxycholic acid-O-carboxymethylated chitosan–folic acid conjugate (DOMC-FA) was used to form micelles for encapsulating the anticancer drug PTX. Methods and results The drug-loading efficiency, encapsulation efficiency, in vitro drug release and physicochemical properties of PTX-loaded micelles were investigated in detail. In vitro cell culture studies were carried out in MCF-7 cells, a human breast carcinoma cell line, with folate receptor overexpressed on its surface. An increased level of uptake of folate-conjugated micelles compared to plain micelles in MCF-7 cells was observed, and the enhanced uptake of folate-micelles mainly on account of the effective process of folate receptor-mediated endocytosis. The MTT assay, morphological changes, and apoptosis test implied that the folate-conjugated micelles enhanced the cell death by folate-mediated active internalization, and the cytotoxicity of the FA-micellar PTX (DOMC-FA/PTX) to cancer cells was much higher than micelles without folate (DOMC/PTX) or the commercially available injectable preparation of PTX (Taxol). Conclusion Results indicate that the PTX-loaded DOMC-FA micelle is a successful anticancertargeted drug-delivery system for effective cancer chemotherapy.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Chen L, Tu Z, Voloshchuk N, Liang JF. Lytic peptides with improved stability and selectivity designed for cancer treatment. J Pharm Sci 2012; 101:1508-17. [PMID: 22227945 DOI: 10.1002/jps.23043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/22/2011] [Accepted: 12/14/2011] [Indexed: 11/10/2022]
Abstract
Lytic peptides are a group of membrane-acting peptides, which have excellent activity to drug-resistant cells. In this study, the stability and tumor selectivity of newly designed pH-activated lytic peptides were studied. We found that despite varied secondary structures, pH-induced structure changes could not be directly linked to the activity and pH sensitivity of peptides. On the contrary, formation of aggregates had great impacts on peptide binding and insertion into the lipid bilayer of cell membrane. It was found that the pH controlled peptide aggregation and dissolution was responsible for the pH-dependent membrane lysis activity of peptides. One peptide (PTP-7c) formed stable amyloid fibrils, which did not completely dissolve under acidic conditions. As a result, PTP-7c had the lowest membrane lysis and cell killing activities among tested lytic peptides. As solid tumors have consistently low extracellular pHs, peptides with acid-activation features showed improved selectivity to cancer cells. In addition, self-assembled lytic peptides were found to become more stable and showed dramatically increased half lives (up to 11 h) in human plasma. These new lytic peptides with good stability and acid-activated cell lysis activity will have wide biomedical applications especially for the treatment of cancers in which drug resistance has developed.
Collapse
Affiliation(s)
- Long Chen
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | | | | | | |
Collapse
|
160
|
Sheth VR, Liu G, Li Y, Pagel MD. Improved pH measurements with a single PARACEST MRI contrast agent. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:26-34. [PMID: 22344877 PMCID: PMC4882612 DOI: 10.1002/cmmi.460] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The measurement of extracellular pH has potential utility for assessing the therapeutic effects of pH-dependent and pH-altering therapies. A PARAmagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agent, Yb-DO3A-oAA, has two CEST effects that are dependent on pH. A ratio derived from these CEST effects was linearly correlated with pH throughout the physiological pH range. The pH can be measured with a precision of 0.21 pH units and an accuracy of 0.09 pH units. The pH measurement is independent of concentration and T₁ relaxation times, but is dependent on temperature. Although MR coalescence affects the CEST measurements, especially at high pH, the ratiometric analysis of the CEST effects can account for incomplete saturation of the agent's amide and amine that results from MR coalescence. Provided that an empirical calibration is determined with saturation conditions, magnetic field strength and temperature that can be used for subsequent studies, these results demonstrate that this single PARACEST MRI contrast agent can accurately measure pH.
Collapse
Affiliation(s)
- Vipul R. Sheth
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Yuguo Li
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Mark D. Pagel
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ USA
- Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
161
|
Molavian HR, Kohandel M, Milosevic M, Sivaloganathan S. Deriving mechanisms responsible for the lack of correlation between hypoxia and acidity in solid tumors. PLoS One 2011; 6:e28101. [PMID: 22174768 PMCID: PMC3235095 DOI: 10.1371/journal.pone.0028101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022] Open
Abstract
Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997) provide evidence of a lack of correlation between these factors on the micrometer scale in vivo and further show that the distribution of pH and pO(2) are heterogeneous. Here, using computational simulations, grounded in these experimental results, we show that the lack of correlation between pH and pO(2) and the heterogeneity in their shapes are related to the heterogeneous concentration of buffers and oxygen in the blood vessels, further amplified by the network of blood vessels and the cell metabolism. We also demonstrate that, although the judicious administration of anti-angiogenesis agents (normalization process) in tumors may lead to recovery of the correlation between hypoxia and acidity, it may not normalize the pH throughout the whole tumor. However, an increase in the buffering capacity inside the blood vessels does appear to increase the extracellular pH throughout the whole tumor. Based on these results, we propose that the application of anti-angiogenic agents and at the same time increasing the buffering capacity of the tumor extracellular environment may be the most efficient way of normalizing the tumor microenvironment. As a by-product of our simulation we show that the recently observed lack of correlation between glucose consumption and hypoxia in cells which rely on respiration is related to the inhomogeneous consumption of glucose to oxygen concentration. We also demonstrate that this lack of correlation in cells which rely on glycolysis could be related to the heterogeneous concentration of oxygen inside the blood vessels.
Collapse
Affiliation(s)
- Hamid R. Molavian
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario, Canada
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Hospital, and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Sivabal Sivaloganathan
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, Ontario, Canada
| |
Collapse
|
162
|
Synergistic effect of folate-mediated targeting and verapamil-mediated P-gp inhibition with paclitaxel -polymer micelles to overcome multi-drug resistance. Biomaterials 2011; 32:9444-56. [DOI: 10.1016/j.biomaterials.2011.08.041] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022]
|
163
|
Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm 2011; 8:2032-8. [PMID: 21981633 DOI: 10.1021/mp200292c] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite advances in developing novel therapeutic strategies, a major factor underlying cancer related death remains resistance to therapy. In addition to biochemical resistance, mediated by xenobiotic transporters or binding site mutations, resistance can be physiological, emerging as a consequence of the tumor's physical microenvironment. This review focuses on extracellular acidosis, an end result of high glycolytic flux and poor vascular perfusion. Low extracellular pH, pHe, forms a physiological drug barrier described by an "ion trapping" phenomenon. We describe how the acid-outside plasmalemmal pH gradient negatively impacts drug efficacy of weak base chemotherapies but is better suited for weakly acidic therapeutics. We will also explore the physiologic changes tumor cells undergo in response to extracellular acidosis which contribute to drug resistance including reduced apoptotic potential, genetic alterations, and elevated activity of a multidrug transporter, p-glycoprotein, pGP. Since low pHe is a hallmark of solid tumors, therapeutic strategies designed to overcome or exploit this condition can be developed.
Collapse
Affiliation(s)
- Jonathan W Wojtkowiak
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | | | | | | |
Collapse
|
164
|
Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD. Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson Med 2011; 67:760-8. [PMID: 22028287 DOI: 10.1002/mrm.23038] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/17/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022]
Abstract
Paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents have been developed that can measure pH in solution studies, but these agents have not previously been detected in vivo. To use the PARACEST agent Yb-DO3A-oAA to measure the extracellular pH (pHe) in tumor tissue, a chemical exchange saturation transfer fast imaging with steady state precession MRI protocol was developed, the saturation period was optimized for sensitive chemical exchange saturation transfer (CEST) detection, and median filtering was used to remove artifacts in CEST spectra. These improvements were used to correlate pH with a ratio of two CEST effects of Yb-DO3A-oAA at a 7 T magnetic field strength (R(2) = 0.99, standard deviation of precision = 0.011 pH units). The PARACEST agent could not be detected in tumor tissue following i.v. injection due to the low sensitivity of in vivo CEST MRI. Yb-DO3A-oAA was detected in tumor tissue and leg muscle after directly injecting the PARACEST agent into these tissues. The measured CEST effects were used to measure a tumor pH of 6.82 ± 0.21 and a leg muscle pH of 7.26 ± 0.14, and parametric pH maps were also generated from these tissue regions. These results demonstrated that tumor pHe can be measured with a PARACEST agent and a rapid CEST-MRI protocol.
Collapse
Affiliation(s)
- Vipul R Sheth
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
165
|
The alkaline diet: is there evidence that an alkaline pH diet benefits health? JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2011; 2012:727630. [PMID: 22013455 PMCID: PMC3195546 DOI: 10.1155/2012/727630] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/08/2011] [Indexed: 12/04/2022]
Abstract
This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.
Collapse
|
166
|
Gallagher FA, Kettunen MI, Brindle KM. Imaging pH with hyperpolarized 13C. NMR IN BIOMEDICINE 2011; 24:1006-1015. [PMID: 21812047 DOI: 10.1002/nbm.1742] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 05/31/2023]
Abstract
pH is a fundamental physiological parameter that is tightly controlled by endogenous buffers. The acid-base balance is altered in many disease states, such as inflammation, ischemia and cancer. Despite the importance of pH, there are currently no routine methods for imaging the spatial distribution of pH in humans. The enormous gain in sensitivity afforded by dynamic nuclear polarization (DNP) has provided a novel way in which to image tissue pH using MR, which has the potential to be translated into the clinic. This review explores the advantages and disadvantages of current pH imaging techniques and how they compare with DNP-based approaches for the measurement and imaging of pH with hyperpolarized (13)C. Intravenous injection of hyperpolarized (13)C-labeled bicarbonate results in the rapid production of hyperpolarized (13)CO(2) in the reaction catalyzed by carbonic anhydrase. As this reaction is close to equilibrium in the body and is pH dependent, the ratio of the (13)C signal intensities from H(13)CO(3)(-) and (13)CO(2), measured using MRS, can be used to calculate pH in vivo. The application of this technique to a murine tumor model demonstrated that it measured predominantly extracellular pH and could be mapped in the animal using spectroscopic imaging techniques. A second approach has been to use the production of hyperpolarized (13)CO(2) from hyperpolarized [1-(13)C]pyruvate to measure predominantly intracellular pH. In tissues with a high aerobic capacity, such as the heart, the hyperpolarized [1-(13)C]pyruvate undergoes rapid oxidative decarboxylation, catalyzed by intramitochondrial pyruvate dehydrogenase. Provided that there is sufficient carbonic anhydrase present to catalyze the rapid equilibration of the hyperpolarized (13)C label between CO(2) and bicarbonate, the ratio of their resonance intensities may again be used to estimate pH, which, in this case, is predominantly intracellular. As both pyruvate and bicarbonate are endogenous molecules they have the potential to image tissue pH in the clinic.
Collapse
Affiliation(s)
- Ferdia A Gallagher
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
167
|
Li R, Xie L, Zhu Z, Liu Q, Hu Y, Jiang X, Yu L, Qian X, Guo W, Ding Y, Liu B. Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. PLoS One 2011; 6:e24172. [PMID: 21966359 PMCID: PMC3180282 DOI: 10.1371/journal.pone.0024172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
Abstract
AIMS The extracellular pH of cancer cells is lower than the intracellular pH. Weakly basic anticancer drugs will be protonated extracellularly and display a decreased intracellular concentration. In this study, we show that copolymeric nanoparticles (NPs) are able to overcome this "pH-induced physiological drug resistance" (PIPDR) by delivering drugs to the cancer cells via endocytosis rather than passive diffussion. MATERIALS AND METHODS As a model nanoparticle, Tetradrine (Tet, Pka 7.80) was incorporated into mPEG-PCL. The effectiveness of free Tet and Tet-NPs were compared at different extracellular pHs (pH values 6.8 and 7.4, respectively) by MTT assay, morphological observation and apoptotic analysis in vitro and on a murine model by tumor volume measurement, PET-CT scanning and side effect evaluation in vivo. RESULTS The cytotoxicity of free Tet decreased prominently (P<0.05) when the extracellular pH decreased from 7.4 to 6.8. Meanwhile, the cytotoxicity of Tet-NPs was not significantly influenced by reduced pH. In vivo experiment also revealed that Tet-NPs reversed PIPDR more effectively than other existing methods and with much less side effects. CONCLUSION The reversion of PIPDR is a new discovered mechanism of copolymeric NPs. This study emphasized the importance of cancer microenvironmental factors in anticancer drug resistance and revealed the superiority of nanoscale drug carrier from a different aspect.
Collapse
Affiliation(s)
- Rutian Li
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Li Xie
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Zhenshu Zhu
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Qin Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Yong Hu
- National Laboratory of Solid State Microstructure, Department of Material Science and Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Xiqun Jiang
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Wanhua Guo
- Department of Nuclear Medicine, Drum-Tower Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yitao Ding
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
- * E-mail: (YTD); (BRL)
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
- * E-mail: (YTD); (BRL)
| |
Collapse
|
168
|
Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 2011; 33:190-234. [PMID: 21922503 DOI: 10.1002/med.20252] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane-based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide-based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane-based factors.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | | |
Collapse
|
169
|
Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. Imaging pH and metastasis. NMR IN BIOMEDICINE 2011; 24:582-91. [PMID: 21387439 PMCID: PMC3740268 DOI: 10.1002/nbm.1644] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/30/2010] [Accepted: 10/19/2010] [Indexed: 05/05/2023]
Abstract
Metastasis is a multistep process that culminates in the spread of cells from a primary tumor to a distant site or organs. For tumor cells to be able to metastasize, they have to locally invade through basement membrane into the lymphatic and the blood vasculatures. Eventually they extravasate from the blood and colonize in the secondary organ. This process involves multiple interactions between the tumor cells and their microenvironments. The microenvironment surrounding tumors has a significant impact on tumor development and progression. A key factor in the microenvironment is an acidic pH. The extracellular pH of solid tumors is more acidic in comparison to normal tissue as a consequence of high glycolysis and poor perfusion. It plays an important role in almost all steps of metastasis. The past decades have seen development of technologies to non-invasively measure intra- and/or extracellular pH. Most successful measurements are MR-based, and sensitivity and accuracy have dramatically improved. Quantitatively imaging the distribution of acidity helps us understand the role of the tumor microenvironment in cancer progression. The present review discusses different MR methods in measuring tumor pH along with emphasizing the importance of extracelluar tumor low pH on different steps of metastasis; more specifically focusing on epithelial-to-mesenchymal transition (EMT), and anti cancer immunity.
Collapse
Affiliation(s)
- Arig Ibrahim Hashim
- Department of Imaging research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
170
|
Podo F, Canevari S, Canese R, Pisanu ME, Ricci A, Iorio E. MR evaluation of response to targeted treatment in cancer cells. NMR IN BIOMEDICINE 2011; 24:648-672. [PMID: 21387442 DOI: 10.1002/nbm.1658] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
The development of molecular technologies, together with progressive sophistication of molecular imaging methods, has allowed the further elucidation of the multiple mutations and dysregulatory effects of pathways leading to oncogenesis. Acting against these pathways by specifically targeted agents represents a major challenge for current research efforts in oncology. As conventional anatomically based pharmacological endpoints may be inadequate to monitor the tumor response to these targeted treatments, the identification and use of more appropriate, noninvasive pharmacodynamic biomarkers appear to be crucial to optimize the design, dosage and schedule of these novel therapeutic approaches. An aberrant choline phospholipid metabolism and enhanced flux of glucose derivatives through glycolysis, which sustain the redirection of mitochondrial ATP to glucose phosphorylation, are two major hallmarks of cancer cells. This review focuses on the changes detected in these pathways by MRS in response to targeted treatments. The progress and limitations of our present understanding of the mechanisms underlying MRS-detected phosphocholine accumulation in cancer cells are discussed in the light of gene and protein expression and the activation of different enzymes involved in phosphatidylcholine biosynthesis and catabolism. Examples of alterations induced in the MRS choline profile of cells exposed to different agents or to tumor environmental factors are presented. Current studies aimed at the identification in cancer cells of MRS-detected pharmacodynamic markers of therapies targeted against specific conditional or constitutive cell receptor stimulation are then reviewed. Finally, the perspectives of present efforts addressed to identify enzymes of the phosphatidylcholine cycle as possible novel targets for anticancer therapy are summarized.
Collapse
Affiliation(s)
- Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
171
|
Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13:81-97. [PMID: 21403835 DOI: 10.1593/neo.101102] [Citation(s) in RCA: 563] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/18/2010] [Accepted: 10/22/2010] [Indexed: 12/13/2022] Open
Abstract
A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as (13)C or (15)N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism-poor sensitivity-while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care.
Collapse
|
172
|
Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:735-45. [DOI: 10.1016/j.bbabio.2011.03.010] [Citation(s) in RCA: 397] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
|
173
|
Jafari R, Holm P, Sandegren J, Stigbrand T, Sundström BE. Localization of complexed anticytokeratin 8 scFv TS1-218 to HeLa HEp-2 multicellular tumor spheroids and experimental tumors. Cancer Biother Radiopharm 2011; 25:455-63. [PMID: 20707717 DOI: 10.1089/cbr.2010.0785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recombinant single-chain fragment variable (scFv) antibodies with specificity to tumor antigens can be used to target tumors in vivo. The approach to use administration of complexes of idiotypic-anti-idiotypic scFvs when targeting tumors has not been tested earlier, and from a theoretical point it could contribute to longer in vivo circulation and improved targeting efficiency by dissociation, when in contact with the target antigen. In this study two models to evaluate the targeting efficiency of such complexes were used. HeLa HEp-2 tumor cells were grown as multicellular tumor spheroids (MCTS) and exposed to the antibody constructs in vitro. The behavior in vivo was tested in an in vivo tumor xenograft model. To increase the size of the anticytokeratin 8 scFv, TS1-218, complexes were formed between TS1-218 and its anti-idiotype, alphaTS1 scFv. The functionality of (125)I-labeled TS1-218 alone and in complex was studied in both models. The uptake patterns were similar in both models. The idiotypic TS1-218 was able to localize to the MCTS and xenografted tumors, both alone and in complex with alphaTS1 scFv. TS1-218 in complex, however, demonstrated a significantly higher uptake than the monomeric TS1-218 in both models (p < 0.0005 and p < 0.0089, respectively). When complexes were administered in vivo, a slower clearance and an increased tumor half-life could be observed. The present investigation indicates that administration of targeting antibodies, with initially blocked antigen-binding sites by complex formation with their anti-idiotypes, may improve targeting efficiency.
Collapse
Affiliation(s)
- Rozbeh Jafari
- Department of Chemistry and Biomedical Sciences, Karlstad University, Sweden
| | | | | | | | | |
Collapse
|
174
|
Ardenkjaer-Larsen JH, Jóhannesson H, Petersson JS, Wolber J. Applications of hyperpolarized agents in solutions. Methods Mol Biol 2011; 771:655-689. [PMID: 21874502 DOI: 10.1007/978-1-61779-219-9_33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This chapter provides an overview of pulse sequences adapted to hyperpolarized MR imaging. Applications of hyperpolarized agents in aqueous solution are reviewed. Vascular (e.g., angiography, perfusion, and catheter tracking) as well as metabolic (e.g., oncology, cardiology, neurology, and pH mapping) applications are covered. Due to the rapid development of new applications for hyperpolarized agents, a review format has been used for this chapter instead of a strict protocol/procedure structure.
Collapse
|
175
|
Abstract
One way to overcome the intrinsically low sensitivity of Nuclear Magnetic Resonance spectroscopy is to enhance the signal by dynamic nuclear polarization (DNP), where the polarization of high-gyromagnetic ratio (γ) electrons is transferred to the surrounding nuclei using microwave (MW) irradiation. Recent developments in DNP instrumentations and applications have shown that DNP is one of the most effective methods to increase the nuclear spin polarization in inorganic, organic, and biological materials. It is possible to obtain a solution of molecules containing hyperpolarized nuclei in combination with methods to dissolve rapidly the polarized solid sample. In this chapter, a brief introduction on a theoretical basis and some of new DNP applications in NMR spectroscopy as well as medical applications in Magnetic Resonance Imaging (MRI) are described.
Collapse
|
176
|
Na YS, Jung KA, Kim SM, Hong YS, Ryu MH, Jang SJ, Moon DH, Cho DH, Kim JC, Lee JS, Kim TW. The histone deacetylase inhibitor PXD101 increases the efficacy of irinotecan in in vitro and in vivo colon cancer models. Cancer Chemother Pharmacol 2010; 68:389-98. [PMID: 21046105 DOI: 10.1007/s00280-010-1495-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/08/2010] [Indexed: 11/24/2022]
Abstract
PURPOSE Histone deacetylase inhibitors (HDACIs), such as PXD101 and suberoylanilide hydroxamic acid, inhibit proliferation and stimulate apoptosis of tumor cells. The enhanced effectiveness of chemotherapy or radiotherapy when combined with HDACIs has been observed in several cancers. In this study, we investigated the antitumor effect of PXD101 combined with irinotecan in colon cancer. METHODS HCT116 and HT29 colon cancer cells for cell viability assay were treated with PXD101 and/or SN-38, the active form of irinotecan. Antitumor effects of HCT116 and HT29 xenografts treated with these combinations were evaluated. [(18)F]FLT-PET was used to detect early responses to PXD101 and irinotecan in colon cancer. RESULTS PXD101 and SN38 possessed dose-dependent antiproliferative activity against HCT116 and HT29 cells and exerted a synergistic effect when used in combination. In xenografted mice, PXD101 in combination with irinotecan dramatically inhibited tumor growth without causing additive toxicity. Apoptotic effects on xenograft tumors were greater with combined treatment than with irinotecan alone. [(18)F]FLT-PET imaging revealed a 64% decrease in [(18)F]FLT uptake in tumors of HCT116 xenograft-bearing mice treated with a combination of PXD101 and irinotecan, indicating a decrease in thymidine kinase 1 (TK1) activity. These results were supported by Western blot analyses showing a decrease in tumor thymidine kinase 1 protein levels, suggesting that [(18)F]FLT-PET can be used to non-invasively detect early responses to these agents. CONCLUSIONS These data show that PXD101 increases the cytotoxic activity of irinotecan in in vitro and in vivo colon cancer models and suggest these agent combinations should be explored in the treatment of colon cancer.
Collapse
Affiliation(s)
- Young-Soon Na
- Institute for Innovate Cancer Research, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
The anti-cancer agent nemorosone is a new potent protonophoric mitochondrial uncoupler. Mitochondrion 2010; 11:255-63. [PMID: 21044702 DOI: 10.1016/j.mito.2010.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/01/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023]
Abstract
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells.
Collapse
|
178
|
Andreev OA, Engelman DM, Reshetnyak YK. pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol Membr Biol 2010; 27:341-52. [PMID: 20939768 DOI: 10.3109/09687688.2010.509285] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abstract Here we review a novel class of delivery vehicles based on pH-sensitive, moderately polar membrane peptides, which we call pH (Low) Insertion Peptides (pHLIPs), that target cells located in the acidic environment found in many diseased tissues, including tumours. Acidity targeting by pHLIPs is achieved as a result of helix formation and transmembrane insertion. In contrast to the earlier technologies based on cell-penetrating peptides, pHLIPs act as monomeric membrane-inserting peptides that translocate one terminus across a membrane into the cytoplasm, while the other terminus remains in the extracellular space, locating the peptide in the membrane lipid bilayer. Therefore pHLIP has a dual delivery capability: it can tether cargo molecules or nanoparticles to the surfaces of cells in diseased tissues and/or it can move a cell-impermeable cargo molecule across the membrane into the cytoplasm. The source of energy for moving polar molecules attached to pHLIP through the hydrophobic layer of a membrane bilayer is the membrane-associated folding of the polypeptide. A drop in pH leads to the protonation of negatively charged residues (Asp or Glu), which enhances peptide hydrophobicity, increasing the affinity of the peptide for the lipid bilayer and triggering peptide folding and subsequent membrane insertion. The process is accompanied by the release of energy that can be utilized to move cell-impermeable cargo across a membrane. That the mechanism is now understood, and that targeting of tumours in mice has been shown, suggest a number of future applications of the pHLIP technology in the diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Oleg A Andreev
- Physics Department, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
179
|
Li Y, Luan Y, Qi X, Li M, Gong L, Xue X, Wu X, Wu Y, Chen M, Xing G, Yao J, Ren J. Emodin triggers DNA double-strand breaks by stabilizing topoisomerase II-DNA cleavage complexes and by inhibiting ATP hydrolysis of topoisomerase II. Toxicol Sci 2010; 118:435-43. [PMID: 20855424 DOI: 10.1093/toxsci/kfq282] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Emodin, an anthraquinone derived from a plant and fungi, has been reported to possess potential genotoxicity, but the mechanism is not entirely clear. Here, we report that emodin causes DNA double-strand breaks (DSBs) through stabilization of topoisomerase (Topo) II-DNA cleavage complexes and inhibition of ATP hydrolysis. In our study, emodin did not induce mutagenecity in the salmonella mutation assay but caused genotoxicity in the thymidine kinase gene mutation assay and in the micronucleus test. Moreover, emodin induced DNA DSBs demonstrated by induction of comet tails, the expression of phosphorylated histone H2AX, and phosphorylation of ataxia telangiectasia mutated. Our studies also revealed that emodin exerted strong inhibitory activity against Topo II in the supercoiled pBR322 relaxation assay and in Topo II-mediated kinetoplast DNA decatenation, similar to the previous report. We also showed that the inhibitory effect of emodin on Topo II was because of its ability to stabilize Topo II-DNA complexes and to inhibit the ATP hydrolysis of Topo II. Furthermore, emodin was found to trigger DNA DSBs in a Topo II-dependent manner using the Topo II catalytic inhibitor aclarubicin and in Topo II-deficient mitoxantrone-resistant variant HL-60/MX2 cells. Together, these results suggest that in emodin-induced DNA DSBs and genotoxicity, stabilization of Topo II-DNA cleavage complexes and inhibition of ATP hydrolysis play an important role.
Collapse
Affiliation(s)
- Yan Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of New Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Groth-Pedersen L, Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett 2010; 332:265-74. [PMID: 20598437 DOI: 10.1016/j.canlet.2010.05.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
Abstract
Acquired therapy resistance is one of the prime obstacles for successful cancer treatment. Partial resistance is often acquired already during an early face of tumor development when genetic changes causing defects in classical caspase-dependent apoptosis pathway provide transformed cells with a growth advantage by protecting them against various apoptosis inducing stimuli including transforming oncogenes themselves and host immune system. Apoptosis defective cells are further selected during tumor progression and finally by apoptosis inducing treatments. Another form of resistance, multidrug resistance, arises during cancer treatment when cancer cells with effective efflux of cytotoxic agents escape the therapy. Remarkably, induction of lysosomal membrane permeabilization has recently emerged as an effective way to kill apoptosis resistant cancer cells and some lysosome targeting drugs can also re-sensitize multidrug resistant cells to classical chemotherapy. In this review, we highlight recent data on lysosomal cell death pathways and their implications for the future treatment of apoptosis defective and multidrug resistant aggressive tumors.
Collapse
Affiliation(s)
- Line Groth-Pedersen
- Pediatrics and Adolescent Medicine, The Juliane Marie Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
181
|
Abstract
PURPOSE OF REVIEW Cancer cells alter their metabolism in order to support their rapid proliferation and expansion across the body. In particular, tumor cells, rather than fueling glucose in the oxidative phosphorylation pathway, generally use glucose for aerobic glycolysis. In this review, we discuss some of the mechanisms thought to be responsible for the acquisition of a glycolytic phenotype in cancer cells and how the switch towards glycolysis represents a selective growth advantage. RECENT FINDINGS Glucose deprivation can activate oncogenes and these can upregulate proteins involved in aerobic glycolysis. In turn, proteins implicated in increased glycolysis can render tumor cells more resistant to apoptosis. Aerobic glycolysis induces acidification of the tumor environment, favoring the development of a more aggressive and invasive phenotype. Altering the pH around tumors might represent a way to hamper tumor development as suggested by a recent work demonstrating that bicarbonate, which increases the pH of tumors, prevented spontaneous metastatization. SUMMARY The acquisition of a glycolytic phenotype by transformed cells confers a selective growth advantage to these cells. Interfering with aerobic glycolysis, therefore, represents a potentially effective strategy to selectively target cancer cells.
Collapse
|
182
|
De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A, Venturi G, Lozupone F, Iessi E, Logozzi M, Della Mina P, Santinami M, Rodolfo M, Podo F, Rivoltini L, Fais S. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 2010; 127:207-19. [PMID: 19876915 DOI: 10.1002/ijc.25009] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg(-1)) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.
Collapse
Affiliation(s)
- Angelo De Milito
- Department of Therapeutic Research and Medicines Evaluation, Unit of Antitumor Drugs, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Spugnini EP, Citro G, Fais S. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:44. [PMID: 20459683 PMCID: PMC2876100 DOI: 10.1186/1756-9966-29-44] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/08/2010] [Indexed: 12/25/2022]
Abstract
The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.
Collapse
|
184
|
Abstract
This review presents a possible new approach against cancer, as represented by inhibition of proton pumps, a mechanism used by tumour cells to avoid intracellular accumulation of toxic substances. Proton pump inhibitors (PPIs) belong to a family of pro-drugs that are currently used in the treatment of peptic diseases needing acidity to be activated. PPIs target the acidic tumour mass, where they are metabolized, thus blocking proton traffic. Proton pump inhibition triggers a rapid cell death as a result of intracellular acidification, caspase activation and early accumulation of reactive oxygen species into tumour cells. As a whole, the devastating effect of PPIs on tumour cells suggest the triggering of a fatal cell toxification. Many human tumours, including melanoma, osteosarcoma, lymphomas and various adenocarcinomas are responsive to PPIs. This appears highly conceivable, in as much as almost all human tumours are acidic and express high levels of proton pumps. Paradoxically, metastatic tumours appear to be more responsive to PPIs being more acidic than the majority of primary tumours. However, two clinical trials test the effectiveness of PPIs in chemosensitizing melanoma and osteosarcoma patients. Indeed, tumour acidity represents a very potent mechanism of chemoresistance. A majority of cytotoxic agents, being weak bases, are quickly protonated outside and do not enter the cells, thus preventing drugs to reach specific cellular targets. Clinical data will provide the proof of concept on the use of PPIs as a new class of antitumour agent with a very low level of systemic toxicity as compared with standard chemotherapeutic agents.
Collapse
Affiliation(s)
- S Fais
- Anti-Tumour Drugs Section, Department of Therapeutic Research and Medicines Evaluation, Istituo Superiore di Sanità (National Institute of Health), Rome, Italy.
| |
Collapse
|
185
|
The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem Pharmacol 2010; 80:762-70. [PMID: 20417189 DOI: 10.1016/j.bcp.2010.04.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/20/2022]
Abstract
The use of drug delivery systems as nanocarriers for chemotherapeutic agents can improve the pharmacological properties of drugs by altering drug pharmacokinetics and biodistribution. Among the many drug delivery systems available, both micelles and liposomes have gained the most attention in recent years due to their clinical success. There are several formulations of these nanocarrier systems in various stages of clinical trials, as well as currently clinically approved liposomal-based drugs. In this review, we discuss these drug carrier systems, as well as current efforts that are being made in order to further improve their delivery efficacy through the incorporation of targeting ligands. In addition, this review discusses aspects of drug resistance attributed to the remodeling of the extracellular matrix that occurs during tumor development and progression, as well as to the acidic, hypoxic, and glucose-deprived tumor microenvironment. Finally, we address future prospective approaches to overcoming drug resistance by further modifications made to these drug delivery systems, as well as the possibility of coencapsulation/coadministration of various drugs aimed to surmount some of these microenvironmental-influenced obstacles for efficacious drug delivery in chemotherapy.
Collapse
|
186
|
Abstract
Many bioactive peptides are featured by their unique amino acid compositions such as argine/lysine-rich peptides. However, histidine-rich bioactive peptides are hardly found. In this study, histidine-containing peptides were constructed by selectively replacing the corresponded lysine residues in a lytic peptide LL-1 with histidines. Interestingly, all resulting peptides demonstrated pH-dependent activities. The cell lysis activities of these peptides could be increased up to four times as the solution pHs dropped from pH = 7.4 to pH = 5.5. The pH sensitivity of a histidine-containing peptide was determined by histidine substitution numbers. Peptide derivatives with more histidines were associated with increased pH sensitivity. Results showed that not the secondary structures but pH-affected cell affinity changes were responsible for the pH-dependent activities of histidine-containing peptides. The histidine substitution approach demonstrated here may present a general strategy to construct bioactive peptides with desired pH sensitivity for various applications.
Collapse
Affiliation(s)
- Zhigang Tu
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | | | | | | |
Collapse
|
187
|
Tu Z, Volk M, Shah K, Clerkin K, Liang JF. Constructing bioactive peptides with pH-dependent activities. Peptides 2009; 30:1523-8. [PMID: 19464332 PMCID: PMC2735074 DOI: 10.1016/j.peptides.2009.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulting histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2-8 times as the solution pH changed from 7.4 to 5.5. More importantly, these histidine-containing peptides maintain the same cell killing mechanism as their parent peptides by causing cell lysis. Both the activity and pH-sensitivity of histidine-containing peptides are tunable by adjusting histidine substitution numbers and positions. This study has presented a general strategy to create bioactive peptides with desired pH-sensitivity to meet the needs of various applications such as cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | - Jun F. Liang
- Corresponding Author Dr. Jun F. Liang, Department of Chemistry, Chemical Biology, and Biomedical Engineering Stevens Institute of Technology Hoboken, NJ 07030 USA Tel.: 201-216-5640; Fax: 201-216-8240 Email.:
| |
Collapse
|
188
|
Stewart DJ, Issa JP, Kurzrock R, Nunez MI, Jelinek J, Hong D, Oki Y, Guo Z, Gupta S, Wistuba II. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 2009; 15:3881-8. [PMID: 19470736 DOI: 10.1158/1078-0432.ccr-08-2196] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE By hypomethylating genes, decitabine may up-regulate factors required for chemotherapeutic cytotoxicity. Platinum-resistant cells may have reduced expression of the copper/platinum transporter CTR1. EXPERIMENTAL DESIGN Thirty-one patients with refractory malignancies received decitabine 2.5 to 10 mg/m(2) on days 1 to 5, and 8 to 12 or 15 to 20 mg/m(2) on days 1 to 5. Tumor was assessed for DNA methylation (by LINE assays), apoptosis, necrosis, mitoses, Ki67, DNA methyltransferase (DNMT1), CTR1, and p16. RESULTS Febrile neutropenia was dose limiting. One thymoma patient responded. Decitabine decreased tumor DNA methylation (from median 51.2% predecitabine to 43.7% postdecitabine; P = 0.01, with effects at all doses) and in peripheral blood mononuclear cells (from 65.3-56.0%). There was no correlation between tumor and peripheral blood mononuclear cells. Patients starting decitabine < or =3 versus >3 months after last prior cytotoxic or targeted therapy had lower predecitabine tumor CTR1 scores (P = 0.02), higher p16 (P = 0.04), and trends (P = 0.07) toward higher tumor methylation and apoptosis. Decitabine decreased tumor DNMT1 for scores initially >0 (P = 0.04). Decitabine increased tumor apoptosis (P < 0.05), mitoses (if initially low, P = 0.02), and CTR1 (if initially low, P = 0.025, or if < or =3 months from last prior therapy, P = 0.04). Tumor CTR1 scores correlated inversely with methylation (r = -0.41, P = 0.005), but CTR1 promoter was not hypermethylated. Only three patients had tumor p16 promoter hypermethylation. P16 scores did not increase. Higher blood pressure correlated with lower tumor necrosis (P = 0.03) and a trend toward greater DNA demethylation (P = 0.10). CONCLUSIONS Exposure to various cytotoxic and targeted agents might generate broad pleiotropic resistance by reducing CTR1 and other transporters. Decitabine decreases DNA methylation and augments CTR1 expression through methylation-independent mechanisms.
Collapse
|
189
|
Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009; 37:300-5. [DOI: 10.1016/j.ejps.2009.02.018] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/01/2009] [Accepted: 02/24/2009] [Indexed: 11/18/2022]
|
190
|
Vāvere AL, Biddlecombe GB, Spees WM, Garbow JR, Wijesinghe D, Andreev OA, Engelman DM, Reshetnyak YK, Lewis JS. A novel technology for the imaging of acidic prostate tumors by positron emission tomography. Cancer Res 2009; 69:4510-6. [PMID: 19417132 DOI: 10.1158/0008-5472.can-08-3781] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solid tumors often develop an acidic environment due to the Warburg effect. The effectiveness of diagnosis and therapy may therefore be enhanced by the design and use of pH-sensitive agents that target acidic tumors. Recently, a novel technology was introduced to target acidic tumors using pH low insertion peptide (pHLIP), a peptide that inserts across cell membranes as an alpha-helix when the extracellular pH (pH(e)) is acidic. In this study, we expanded the application of the pHLIP technology to include positron emission tomography imaging of the acidic environment in prostate tumors using (64)Cu conjugated to the pHLIP ((64)Cu-DOTA-pHLIP). Studies showed that this construct avidly accumulated in LNCaP and PC-3 tumors, with higher uptake and retention in the LNCaP tumors. Uptake correlated with differences in the bulk pH(e) of PC-3 and LNCaP tumors measured in magnetic resonance spectroscopy experiments by the (31)P chemical shift of the pH(e) marker 3-aminopropylphosphonate. This article introduces a novel class of noninvasive pH-selective positron emission tomography imaging agents and opens new research directions in the diagnosis of acidic solid tumors.
Collapse
Affiliation(s)
- Amy L Vāvere
- Division of Radiological Sciences, Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat 2009; 120:83-93. [DOI: 10.1007/s10549-009-0378-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
|
192
|
Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett 2009; 280:110-9. [PMID: 19299075 DOI: 10.1016/j.canlet.2009.02.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 11/21/2022]
Abstract
One of the mechanisms of multiple drug resistance (MDR) is inappropriate sequestration of basic chemotherapeutic agents in acidic endo-lysosomes of cells. The protonation, sequestration, and secretion (PSS) model indicates that drug distribution can be affected by intracellular pH such as lysosomal pH. The vacuolar-H(+)-ATPase (V-ATPase) plays an important role in regulation of intracellular pH by pumping protons into acidic endosomes via an ATP-driven process. In this study, ATP6L, the 16kDa subunit of V-ATPase, was knocked-down by anti-ATP6L small interfering RNA (siRNA) to study the effect on chemosensitivity in the human drug-resistant breast cancer cells MCF-7/ADR. Introduction of anti-ATP6L small interfering RNA duplex into drug-resistant cancer cells significantly inhibited the expression of ATP6L mRNA and protein, as detected by qRT-PCR and Western blot. Inhibition of ATP6L expression by siRNA in MCF-7/ADR sensitized the cells to the cytotoxicity of basic chemotherapeutic agents like doxorobicin, 5-fluorourocil and vincristine. This effect was mediated by a significant increase in lysosomal pH and retention of anticancer drugs into nuclei of cells. These results support the role of tumor acidity in resistance to chemotherapy and provide a rationale for the use of tumor pH modifier agents as coadjuvants in novel anticancer therapies.
Collapse
|
193
|
Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Hashim AI, Morse DL, Raghunand N, Gatenby RA, Gillies RJ. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 2009; 69:2260-8. [PMID: 19276390 DOI: 10.1158/0008-5472.can-07-5575] [Citation(s) in RCA: 465] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO(3) selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by (31)P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO(3) therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO(3) therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease.
Collapse
Affiliation(s)
- Ian F Robey
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Gosset G, Satre M, Blaive B, Clément JL, Martin JB, Culcasi M, Pietri S. Investigation of subcellular acidic compartments using α-aminophosphonate 31P nuclear magnetic resonance probes. Anal Biochem 2008; 380:184-94. [DOI: 10.1016/j.ab.2008.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/19/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
|
195
|
Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt RI', Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008; 453:940-3. [PMID: 18509335 DOI: 10.1038/nature07017] [Citation(s) in RCA: 639] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/18/2008] [Indexed: 11/09/2022]
Abstract
As alterations in tissue pH underlie many pathological processes, the capability to image tissue pH in the clinic could offer new ways of detecting disease and response to treatment. Dynamic nuclear polarization is an emerging technique for substantially increasing the sensitivity of magnetic resonance imaging experiments. Here we show that tissue pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H(13)CO(3)(-)) and (13)CO(2) following intravenous injection of hyperpolarized H(13)CO(3)(-). The technique was demonstrated in a mouse tumour model, which showed that the average tumour interstitial pH was significantly lower than the surrounding tissue. Given that bicarbonate is an endogenous molecule that can be infused in relatively high concentrations into patients, we propose that this technique could be used clinically to image pathological processes that are associated with alterations in tissue pH, such as cancer, ischaemia and inflammation.
Collapse
Affiliation(s)
- Ferdia A Gallagher
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Gosset G, Martel S, Clément JL, Blaive B, Olive G, Culcasi M, Rosas R, Thévand A, Pietri S. Nouveaux marqueurs de pH utilisables en RMN du 31P. Détermination de la relaxation longitudinale en fonction de la structure chimique, de la température, du pH et du milieu biologique. CR CHIM 2008. [DOI: 10.1016/j.crci.2007.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
197
|
Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 2008; 81:275-300. [PMID: 18259091 DOI: 10.1159/000115967] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 09/10/2007] [Indexed: 12/30/2022]
Abstract
Inherent and acquired resistance pathways account for the high rate of failure in cancer chemotherapy. The mechanisms or pathways mediating resistance may be classified as pharmacokinetic (i.e. alter intratumour drug exposue) or pharmacodynamic (i.e. failure to elicit cytotoxicity). More often than not, the resistant phenotype is characterised by alterations in multiple pathways. Consequently, the pathways may act synergistically or generate a broad spectrum of resistance to anticancer drugs. There has been a great deal of systematic characterisation of drug resistance in vitro. However, translating this greater understanding into clinical efficacy has rarely been achieved. This review explores the phenomenon of drug resistance in cancer and highlights the gap between in vitro and in vivo observations. This gap presents a major obstacle in overcoming drug resistance and restoring sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Howard R Mellor
- Growth Factor Group, Weatherall Institute of Molecular Medicine, Oxford, UK
| | | |
Collapse
|
198
|
Abstract
The physiological differences between solid tumours and the healthy tissues and organs of the body are both an impediment to effective treatment and a potential basis for targeting strategies. In the present review, we outline the physiological features that distinguish tumours including hypoxia, acidity, and inhibited transport and describe the strategies being employed to exploit these differences in order to generate more selective and less toxic anticancer agents.
Collapse
|
199
|
Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M. Impact of hypoxic and acidic extracellular conditions on cytotoxicity of chemotherapeutic drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 599:155-61. [PMID: 17727260 DOI: 10.1007/978-0-387-71764-7_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the microenvironment of solid growing tumors, pronounced hypoxia or extracellular acidosis is commonly found. The aim of this study was the analysis of the cytotoxic effect of different chemotherapeutic agents (cisplatin, daunorubicin, docetaxel) under these conditions in vitro. Prostate carcinoma cells (R3327-AT1) were exposed to hypoxia (pO2 < 0.5 mmHg) or extracellular acidosis (pH = 6.6) for 6h. After 3h, cytotoxic drugs were added. The cytotoxic effect was assessed by measuring caspase 3-activity (apoptosis), LDH release (necrosis) and repopulation of the cells after chemotherapy (cell death). Compared to aerobic control conditions, severe hypoxia over 6 h per se led to a slight increase in apoptosis, necrosis and cell death. With all three chemotherapeutic agents, hypoxia led to a reduced (by approx. 25%) caspase 3-activity and a marked increase in necrosis. However, the overall cytotoxicity of the drug was not affected by O2-deficiency. By contrast, during extracellular acidosis, the cytotoxic effect of daunorubicin was reduced by 40%, preferentially due to a marked reduction in apoptosis. With cisplatin and docetaxel no change in overall cell death was detected. However, for daunorubicin the tumor-pH seems to have a strong impact on cytotoxicity. With this chemotherapeutic drug the therapeutic efficacy is markedly reduced in an acidotic environment.
Collapse
Affiliation(s)
- Oliver Thews
- Institute of Physiology and Pathophysiology, University of Mainz, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
200
|
Fais S, De Milito A, You H, Qin W. Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res 2007; 67:10627-30. [PMID: 18006801 DOI: 10.1158/0008-5472.can-07-1805] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests a key role of tumor acidic microenvironment in cancer development, progression, and metastasis. As a consequence, the need for compounds that specifically target the mechanism(s) responsible for the low pH of tumors is increasing. Among the key regulators of the tumor acidic microenvironment, vacuolar H(+)-ATPases (V-ATPases) play an important role. These proteins cover a number of functions in a variety of normal as well as tumor cells, in which they pump ions across the membranes. We discuss here some recent results showing that a molecular inhibition of V-ATPases by small interfering RNA in vivo as well as a pharmacologic inhibition through proton pump inhibitors led to tumor cytotoxicity and marked inhibition of human tumor growth in xenograft models. These results propose V-ATPases as a key target for new strategies in cancer treatment.
Collapse
Affiliation(s)
- Stefano Fais
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|