151
|
Endocannabinoid system involvement in brain reward processes related to drug abuse. Pharmacol Res 2007; 56:393-405. [PMID: 17936009 DOI: 10.1016/j.phrs.2007.09.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/21/2007] [Accepted: 09/05/2007] [Indexed: 02/07/2023]
Abstract
Cannabis is the most commonly abused illegal drug in the world and its main psychoactive ingredient, delta-9-tetrahydrocannabinol (THC), produces rewarding effects in humans and non-human primates. Over the last several decades, an endogenous system comprised of cannabinoid receptors, endogenous ligands for these receptors and enzymes responsible for the synthesis and degradation of these endogenous cannabinoid ligands has been discovered and partly characterized. Experimental findings strongly suggest a major involvement of the endocannabinoid system in general brain reward functions and drug abuse. First, natural and synthetic cannabinoids and endocannabinoids can produce rewarding effects in humans and laboratory animals. Second, activation or blockade of the endogenous cannabinoid system has been shown to modulate the rewarding effects of non-cannabinoid psychoactive drugs. Third, most abused drugs alter brain levels of endocannabinoids in the brain. In addition to reward functions, the endocannabinoid cannabinoid system appears to be involved in the ability of drugs and drug-related cues to reinstate drug-seeking behavior in animal models of relapse. Altogether, evidence points to the endocannadinoid system as a promising target for the development of medications for the treatment of drug abuse.
Collapse
|
152
|
Abstract
The CB1 and CB2 cannabinoid receptors have been described as two prime sites of action for endocannabinoids. Both the localization and pharmacology of these two G-protein-coupled receptors are well-described, and numerous selective ligands have been characterized. The physiological effects of Cannabis sativa (cannabis) and a throughout study of the endocannabinoid system allowed for the identification of several pathophysiological conditions--including obesity, dyslipidemia, addictions, inflammation, and allergies--in which blocking the cannabinoid receptors might be beneficial. Many CB1 receptor antagonists are now in clinical trials, and the results of several studies involving the CB1 antagonist lead compound rimonabant (SR141716A) are now available. This review describes the pharmacological tools that are currently available and the animal studies supporting the therapeutic use of cannabinoid receptor antagonists and inverse agonists. The data available from the clinical trials are also discussed.
Collapse
Affiliation(s)
- Giulio G Muccioli
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
153
|
Corbillé AG, Valjent E, Marsicano G, Ledent C, Lutz B, Hervé D, Girault JA. Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. J Neurosci 2007; 27:6937-47. [PMID: 17596442 PMCID: PMC6672215 DOI: 10.1523/jneurosci.3936-06.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A single administration of cocaine or D-amphetamine produces acute hyperlocomotion and long-lasting increased sensitivity to subsequent injections. This locomotor sensitization reveals the powerful ability of psychostimulants to induce brain plasticity and may participate in the alterations that underlie addiction. We investigated the role of cannabinoid receptor type 1 (CB1-R) in the effects of a single injection of psychostimulants. The acute locomotor response to cocaine was normal in mice pretreated with the CB1-R inverse agonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), whereas no sensitization was observed in response to a second administration a week later. Locomotor responses to cocaine and D-amphetamine were decreased in CB1-R-deficient mice, and sensitization was impaired. To determine how CB1-R controls long-lasting effects of psychostimulants, we studied cocaine-activated signaling pathways. Cocaine-induced cAMP-dependent phosphorylation of glutamate receptor 1 was altered in the striatum of CB1-R mutant mice but not of AM251-treated mice. In contrast, cocaine-induced phosphorylation of extracellular signal-regulated kinase (ERK) was blocked in both CB1-R mutant and antagonist-pretreated mice. Conditional deletion of CB1-R in forebrain principal neurons or GABAergic neurons prevented cocaine-induced ERK activation in dorsal striatum and nucleus accumbens. Our results provide strong evidence for the role of the endocannabinoid system in regulating neuronal circuits critical for long-lasting effects of cocaine, presumably by acting on CB1-R located on terminals of striatal medium spiny neurons.
Collapse
Affiliation(s)
- Anne-Gaëlle Corbillé
- Inserm, U839, F-75005 Paris, France
- Université Pierre et Marie Curie (UPMC-Paris 6), F-75005 Paris, France
- Institut du Fer a Moulin, F-75005 Paris, France
| | - Emmanuel Valjent
- Inserm, U839, F-75005 Paris, France
- Université Pierre et Marie Curie (UPMC-Paris 6), F-75005 Paris, France
- Institut du Fer a Moulin, F-75005 Paris, France
| | - Giovanni Marsicano
- Department of Physiological Chemistry, Johannes Gutenberg University, D-55099 Mainz, Germany, and
| | - Catherine Ledent
- Institut de Recherches en Biologie Humaine et Moléculaire, Université de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Beat Lutz
- Department of Physiological Chemistry, Johannes Gutenberg University, D-55099 Mainz, Germany, and
| | - Denis Hervé
- Inserm, U839, F-75005 Paris, France
- Université Pierre et Marie Curie (UPMC-Paris 6), F-75005 Paris, France
- Institut du Fer a Moulin, F-75005 Paris, France
| | - Jean-Antoine Girault
- Inserm, U839, F-75005 Paris, France
- Université Pierre et Marie Curie (UPMC-Paris 6), F-75005 Paris, France
- Institut du Fer a Moulin, F-75005 Paris, France
| |
Collapse
|
154
|
Ballesteros-Yáñez I, Valverde O, Ledent C, Maldonado R, DeFelipe J. Chronic cocaine treatment alters dendritic arborization in the adult motor cortex through a CB1 cannabinoid receptor–dependent mechanism. Neuroscience 2007; 146:1536-45. [PMID: 17467187 DOI: 10.1016/j.neuroscience.2007.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/18/2007] [Accepted: 03/04/2007] [Indexed: 11/30/2022]
Abstract
The CB1 cannabinoid receptors modulate the addictive processes associated with different drugs of abuse, including psychostimulants. Mice lacking CB1 receptors exhibit an important attenuation of the reinforcing responses produced by cocaine in an operant self-administration paradigm. We have investigated the effect of chronic cocaine treatment on dendrite structure and spine density of the principal cortical neuron, the pyramidal neuron, in CB1 knockout mice and wild type littermates. Layer III pyramidal cells of the motor cortex were injected intracellularly in fixed cortical slices and their morphometric parameters analyzed. Under basal conditions, the field area of the dendritic arbors was more extensive and dendritic spine density was higher in wild type mice than in CB1 knockout mice. Chronic treatment of cocaine diminished the size and length of the basal dendrites and spine density on pyramidal cells from wild type mice. However, the total number of spines in the pyramidal cells of CB1 knockout mice augmented slightly following chronic cocaine treatment, although no changes in the morphology of the dendritic arbor were observed. Our data demonstrate that microanatomy and synaptic connectivity are affected by cocaine, the magnitude and nature of these changes depend on the presence of CB1 receptors.
Collapse
|
155
|
Abstract
Despite huge advances in the neuroscience of substance abuse and dependence in the past 20 years, no approved pharmacological treatment exists for cocaine abuse. The available drugs for the treatment of cocaine abuse are poorly effective, hence the need for new compounds to be screened and tested for efficacy: targeting symptoms might improve the effectiveness of the treatment of cocaine abuse and dependence. On the basis of the known neurochemistry of cocaine, some target compounds have been studied: among others, BP-897, a D3 partial agonist; vanoxerine, a highly selective inhibitor of dopamine uptake; aripiprazole, a partial mixed-action agonist approved for the treatment of schizophrenia. Recently modafinil, approved for the treatment of narcolepsy, proved effective in favouring cocaine abstinence in cocaine-abusing people. Some placebo-controlled studies also reported the effectiveness of topiramate, a licensed antiepileptic drug, and of tiagabine, a gamma-aminobutyric acid (GABA) re-uptake inhibitor also approved as an anticonvulsant; both compounds increased cocaine abstinence with no serious adverse events. Promising results came from two more compounds acting on the GABA circuits, baclofen and valproic acid. Finally disulfiram, prescribed with active psychosocial therapy, was found to favour higher retention rates and longer abstinence periods from both alcohol and cocaine in polydrug-abusing patients. An alternative approach rests on the use of vaccines, to date in the experimental stage still. Psychosocial treatments are a useful companion in the pharmacotherapy of cocaine abuse, with group therapy and contingency management therapies improving motivation and social functioning, particularly in patients abusing alcohol as well.
Collapse
Affiliation(s)
- Antonio Preti
- Department of Psychology, University of Cagliari, Italy and Genneruxi Medical Center, Italy.
| |
Collapse
|
156
|
Corvol JC, Valjent E, Pascoli V, Robin A, Stipanovich A, Luedtke RR, Belluscio L, Girault JA, Hervé D. Quantitative changes in Galphaolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants. Neuropsychopharmacology 2007; 32:1109-21. [PMID: 17063155 DOI: 10.1038/sj.npp.1301230] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Striatal dopamine D1 receptors (D1R) are coupled to adenylyl cyclase through Galphaolf. Although this pathway is involved in important brain functions, the consequences of quantitative alterations of its components are not known. We explored the biochemical and behavioral responses to cocaine and D-amphetamine (D-amph) in mice with heterozygous mutations of genes encoding D1R and Galphaolf (Drd1a+/- and Gnal+/-), which express decreased levels of the corresponding proteins in the striatum. Dopamine-stimulated cAMP production in vitro and phosphorylation of AMPA receptor GluR1 subunit in response to D-amph in vivo were decreased in Gnal+/-, but not Drd1a+/- mice. Acute locomotor responses to D1 agonist SKF81259, D-amph and cocaine were altered in Gnal+/- mice, and not in Drd1a+/- mice. This haploinsufficiency showed that Galphaolf but not D1R protein levels are limiting for D1R-mediated biochemical and behavioral responses. Gnal+/- mice developed pronounced locomotor sensitization and conditioned locomotor responses after repeated injections of D-amph (2 mg/kg) or cocaine (20 mg/kg). They also developed normal D-amph-conditioned place preference. The D1R/cAMP pathway remained blunted in repeatedly treated Gnal+/- mice. In contrast, D-amph-induced ERK activation was normal in the striatum of these mice, possibly accounting for the normal development of long-lasting behavioral responses to psychostimulants. Our results clearly dissociate biochemical mechanisms involved in acute and delayed behavioral effects of psychostimulants. They identify striatal levels of Galphaolf as a key factor for acute responses to psychostimulants and suggest that quantitative alterations of its expression may alter specific responses to drugs of abuse, or possibly other behavioral responses linked to dopamine function.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Central Nervous System Stimulants/pharmacology
- Cocaine/pharmacology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/physiopathology
- Cyclic AMP/metabolism
- Dextroamphetamine/pharmacology
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Extracellular Signal-Regulated MAP Kinases/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Phosphorylation/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
|
157
|
Centonze D, Rossi S, De Chiara V, Prosperetti C, Battista N, Bernardi G, Mercuri NB, Usiello A, Maccarrone M. Chronic cocaine sensitizes striatal GABAergic synapses to the stimulation of cannabinoid CB1 receptors. Eur J Neurosci 2007; 25:1631-40. [PMID: 17408430 DOI: 10.1111/j.1460-9568.2007.05433.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Behavioural studies indicate that cannabinoid receptors are implicated in cocaine addiction. The synaptic underpinning of cocaine-cannabinoid receptor interaction is however, obscure. We have studied electrophysiologically the sensitivity of cannabinoid receptors modulating synaptic transmission in the striatum of rats exposed to cocaine. One-day treatment with cocaine did not modify the synaptic response to HU210, a cannabinoid CB1 receptor agonist. Seven days cocaine-treatment, conversely, caused conditioned place preference, and sensitized striatal GABAergic synapses to the presynaptic effect of cannabinoid CB1 receptor stimulation. The cannabinoid receptor-induced modulation of glutamate transmission was unaltered by cocaine. Furthermore, the effects of chronic cocaine on cannabinoid-mediated regulation of striatal GABA synapses were attenuated one week after the discontinuation of cocaine, and absent two weeks later, indicating the progressive reversibility of the adaptations of cannabinoid system during abstinence of drug consumption. Our data support the concept that modulation of cannabinoid receptors might be useful against drug abuse.
Collapse
Affiliation(s)
- Diego Centonze
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Via Montpellier 1, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Caillé S, Alvarez-Jaimes L, Polis I, Stouffer DG, Parsons LH. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci 2007; 27:3695-702. [PMID: 17409233 PMCID: PMC6672416 DOI: 10.1523/jneurosci.4403-06.2007] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/06/2007] [Accepted: 03/06/2007] [Indexed: 11/21/2022] Open
Abstract
Ethanol and opiate self-administration are sensitive to manipulations of cannabinoid CB1 receptor function and, from this, a role for the endogenous cannabinoid system in the modulation of drug reward has been hypothesized. However, direct in vivo evidence of drug-induced alterations in brain endocannabinoid (eCB) formation has been lacking. To address this issue, we explored the effect of drug self-administration on interstitial eCB levels in the nucleus accumbens (NAc) shell using in vivo microdialysis. Ethanol, heroin, and cocaine were compared because the rewarding properties of ethanol and heroin are reduced by CB1 receptor inactivation, whereas cocaine reward is less sensitive to these manipulations. Ethanol self-administration significantly increased dialysate 2-arachidonoylglycerol (2-AG) levels with no concomitant change in dialysate anandamide (AEA) concentrations. Conversely, heroin self-administration significantly increased dialysate AEA levels, and induced a subtle but significant decrease in dialysate 2-AG levels. In each case, the relative change in dialysate eCB content was significantly correlated with the amount of drug consumed. In contrast, cocaine self-administration did not alter dialysate levels of either AEA or 2-AG. Local infusion of the CB1 antagonist SR 141716A into the NAc significantly reduced ethanol, but not cocaine, self-administration. Together with our previous observation that intra-NAc SR 141716A reduces heroin self-administration, these data provide novel in vivo support for an eCB involvement in the motivational properties of ethanol and heroin but not cocaine. Furthermore, the selective effects of ethanol and heroin on interstitial 2-AG and AEA provide new insight into the distinct neurochemical profiles produced by these two abused substances.
Collapse
Affiliation(s)
- Stéphanie Caillé
- Laboratoire Neuropsychobiologie des Desadaptations, Université Victor Ségalen Bordeaux 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5227, 33076 Bordeaux Cedex, France
| | - Lily Alvarez-Jaimes
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| | - Ilham Polis
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| | - David G. Stouffer
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| | - Loren H. Parsons
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, and
| |
Collapse
|
159
|
Panlilio LV, Solinas M, Matthews SA, Goldberg SR. Previous exposure to THC alters the reinforcing efficacy and anxiety-related effects of cocaine in rats. Neuropsychopharmacology 2007; 32:646-57. [PMID: 16738542 DOI: 10.1038/sj.npp.1301109] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis that prior cannabis exposure increases the likelihood of becoming addicted to other drugs can be evaluated by giving rats a history of tetrahydrocannabinol (THC) exposure, then allowing them to self-administer other drugs. In Experiment 1, THC pre-exposure did not alter the acquisition of cocaine self-administration or the amount of cocaine taken under a fixed-ratio 1 (FR1) schedule, with one response required for each injection. Under a progressive-ratio schedule, with the response requirement increasing exponentially with each injection, cocaine-seeking was significantly reduced in THC-exposed rats, suggesting that the regimen of THC exposure used in the present study caused cocaine to be devalued as a reinforcer. In contrast, in an earlier study that used the same regimen, a history of THC exposure did not alter the value of heroin as a reinforcer under the progressive-ratio schedule, but it increased heroin self-administration under the FR1 schedule. Experiment 2 examined how this regimen of THC pre-exposure alters the locomotor effects of cocaine and heroin. THC pre-exposure produced cross-tolerance to the motor-depressant effects of heroin; this may explain the shortened post-injection pauses exhibited by THC-exposed rats under FR1 heroin self-administration. When given cocaine, THC-exposed rats exhibited normal increases in locomotion, but they avoided the center of the open field, suggesting that this THC pre-exposure regimen enhances the anxiogenic effects of cocaine. This enhanced anxiogenic effect-which was verified in Experiment 3 using another model of anxiety, the light-dark test-may explain the reduced reinforcing value of cocaine observed in THC-exposed rats in Experiment 1.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Department of Health and Human Services, Preclinical Pharmacology Section, Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
160
|
Cheer JF, Wassum KM, Sombers LA, Heien MLAV, Ariansen JL, Aragona BJ, Phillips PEM, Wightman RM. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 2007; 27:791-5. [PMID: 17251418 PMCID: PMC6672925 DOI: 10.1523/jneurosci.4152-06.2007] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient surges of dopamine in the nucleus accumbens are associated with drug seeking. Using a voltammetric sensor with high temporal and spatial resolution, we demonstrate differences in the temporal profile of dopamine concentration transients caused by acute doses of nicotine, ethanol, and cocaine in the nucleus accumbens shell of freely moving rats. Despite differential release dynamics, all drug effects are uniformly inhibited by administration of rimonabant, a cannabinoid receptor (CB1) antagonist, suggesting that an increase in endocannabinoid tone facilitates the effects of commonly abused drugs on subsecond dopamine release. These time-resolved chemical measurements provide unique insight into the neurobiological effectiveness of rimonabant in treating addictive disorders.
Collapse
Affiliation(s)
- Joseph F. Cheer
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Kate M. Wassum
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Leslie A. Sombers
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Michael L. A. V. Heien
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Jennifer L. Ariansen
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Brandon J. Aragona
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - Paul E. M. Phillips
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| | - R. Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
161
|
Fattore L, Spano MS, Deiana S, Melis V, Cossu G, Fadda P, Fratta W. An endocannabinoid mechanism in relapse to drug seeking: A review of animal studies and clinical perspectives. ACTA ACUST UNITED AC 2007; 53:1-16. [DOI: 10.1016/j.brainresrev.2006.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/08/2006] [Accepted: 05/08/2006] [Indexed: 01/28/2023]
|
162
|
Yan Y, Yamada K, Nitta A, Nabeshima T. Transient drug-primed but persistent cue-induced reinstatement of extinguished methamphetamine-seeking behavior in mice. Behav Brain Res 2006; 177:261-8. [PMID: 17182116 DOI: 10.1016/j.bbr.2006.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
It is essential to develop animal models to study the role of genetic factors in the relapse of drug-seeking behavior in genetically engineered mutant mice. This paper reports a typical model of drug-primed and cue-induced reinstatement of extinguished methamphetamine (METH)-seeking behavior in mice. C57BL/6J mice were trained to self-administer METH (0.1mg/kg/infusion) by poking their nose into an active hole under a fixed ratio schedule in daily 3-h sessions. After acquiring stable METH self-administration behavior, the mice were subjected to extinction training in the absence of both METH and METH-associated cues. Once the active nose-poking responses were extinguished, drug-primed and cue-induced reinstatement were investigated according to a within-subjects design. A priming injection of METH reliably reinstated the extinguished drug-seeking behavior in the absence of both METH and METH-associated cues. Interestingly, the drug-primed METH-seeking behavior disappeared within 2 months after withdrawal from METH, while cue-induced reinstatement of extinguished METH-seeking behavior lasted for at least 5 months after the withdrawal. A correlation study revealed that drug-primed, but not cue-induced, reinstatement behavior was positively correlated with the total amount of METH taken by individuals during METH self-administration. In conclusion, our findings suggest that the present reinstatement procedure for mouse model of relapse is useful and reliable, and different neural mechanisms may be involved in drug-primed and cue-induced METH-seeking behavior.
Collapse
Affiliation(s)
- Yijin Yan
- Department of Neuropsychopharmacology & Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | |
Collapse
|
163
|
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58:389-462. [PMID: 16968947 PMCID: PMC2241751 DOI: 10.1124/pr.58.3.2] [Citation(s) in RCA: 1473] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|
164
|
Castañé A, Soria G, Ledent C, Maldonado R, Valverde O. Attenuation of nicotine-induced rewarding effects in A2A knockout mice. Neuropharmacology 2006; 51:631-40. [PMID: 16793068 DOI: 10.1016/j.neuropharm.2006.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/25/2022]
Abstract
The non-selective A2A antagonist caffeine has been reported to modify nicotine-induced locomotor and reinforcing effects. In the present study, we have investigated the specific role of A2A adenosine receptors in the behavioural responses induced by nicotine by using genetically modified mice lacking A2A adenosine receptors. Acute nicotine administration induced a similar decrease of locomotor activity in A2A knockout mice and wild-type littermates. Acute antinociceptive responses elicited by nicotine in the tail-immersion and hot-plate tests were unaffected in these mutant mice. The rewarding properties of nicotine were then investigated using the place-conditioning paradigm. Nicotine-induced conditioned place preference was suppressed in A2A knockout mice. Accordingly, in vivo microdialysis studies revealed that the extracellular levels of dopamine in the nucleus accumbens were not increased after nicotine administration in mutant mice. Wild-type and A2A knockout mice were trained in conditioned taste aversion procedure in which drinking a saccharin or saline solution was paired with nicotine or saline injections. A similar reduction in the intake of nicotine-paired solution in this paradigm was obtained in both genotypes. Finally, the administration of the nicotinic antagonist mecamylamine in nicotine-dependent mice precipitated a similar withdrawal syndrome in both genotypes. Together, the present results identify A2A adenosine receptors as an important factor that contributes to the rewarding properties of nicotine.
Collapse
Affiliation(s)
- Anna Castañé
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Doctor Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
165
|
Mendizábal V, Zimmer A, Maldonado R. Involvement of kappa/dynorphin system in WIN 55,212-2 self-administration in mice. Neuropsychopharmacology 2006; 31:1957-66. [PMID: 16292318 DOI: 10.1038/sj.npp.1300957] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Self-administration procedures have not yet provided evidence that freely moving mice can reliably acquire and maintain an operant behavior to self-administer cannabinoid agonists. The aim of the present work was to establish a model of cannabinoid operant intravenous self-administration in freely moving mice given the relevance of this species for the use of genetically modified animals. In addition, the possible involvement of the kappa/dynorphin system in cannabinoid self-administration was evaluated by using pro-dynorphin knockout mice. Outbred CD1 wild-type mice as well as pro-dynorphin knockout and wild-type mice were trained to self-administer the cannabinoid receptor agonist WIN 55,212-2 under an FR1 schedule of reinforcement. Two cannabinoid training doses (6.25 and 12.5 microg/kg/infusion) were used in the acquisition studies in outbred mice. Animals acquired a reliable operant responding to self-administer WIN 55,212-2 (12.5 microg/kg/infusion), but required as many as 15 sessions to attain this behavior. Interestingly, when a previous injection of WIN 55,212-2 (0.1 mg/kg, i.p.) was administered in the home-cage 24 h before the first session, mice acquired operant responding for cannabinoid self-administration by the fourth session. When the kappa-opioid agonist antagonist nor-binaltorphimine (5 mg/kg s.c.) was administered 4 h before the first session, the time required to acquire a reliable cannabinoid self-administration was also significantly reduced. Finally, a shift to the left in the dose-intake curve to self-administer WIN 55,212-2 was observed in pro-dynorphin knockout mice when compared to wild-type mice. These results indicate that the activation of the kappa/dynorphin opioid system after WIN 55,212-2 administration could counteract cannabinoid rewarding effects.
Collapse
Affiliation(s)
- Victoria Mendizábal
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
166
|
Ma YY, Guo CY, Yu P, Lee DYW, Han JS, Cui CL. The role of NR2B containing NMDA receptor in place preference conditioned with morphine and natural reinforcers in rats. Exp Neurol 2006; 200:343-55. [PMID: 16631172 DOI: 10.1016/j.expneurol.2006.02.117] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/23/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
It has been reported that N-methyl-D-aspartate (NMDA) receptor is implicated in drug addiction and antagonists of the NMDA receptor complex can inhibit the development and expression of conditioned place preference (CPP) induced by several addictive drugs, implying that this class of compounds might be considered as candidate for the treatment of substance abuse. To explore this possibility, it is important to evaluate whether the inhibitory effect of NMDA receptor antagonists would be confined to behaviors produced by drugs of abuse only, but not by natural reinforcers. According to the quantitative changes of NMDA receptor subunits, including NR1, NR2A, and NR2B, induced by diverse types of reinforcers, we chose NR2B subunit as the target of research. Experimental results showed that (1) an augmented expression of NR2B subunit was revealed by Western blotting in the nucleus accumbens (NAc) and the hippocampus in rats with CPP induced by morphine, but not by natural rewards such as food, novel environment and social interaction. (2) Ifenprodil, an antagonist highly selective for NR2B subunit of the NMDA receptor, produced a dose-dependent reduction in CPP induced by morphine and novel environment, but not that by food consumption and social interaction. Taking together, these findings suggested that NR2B containing NMDA receptor may be more involved with morphine reward rather than natural rewards, and that antagonism of NR2B may have a potential for the treatment of morphine abuse.
Collapse
Affiliation(s)
- Yao-Ying Ma
- Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, 38 Xueyuan Road, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
167
|
Olsen CM, Winder DG. A method for single-session cocaine self-administration in the mouse. Psychopharmacology (Berl) 2006; 187:13-21. [PMID: 16767412 DOI: 10.1007/s00213-006-0388-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Drug self-administration is a powerful method to measure the reinforcing effects of a drug, as well as to investigate behavioral, biochemical, and physiological effects of a drug specific to contingent delivery. With the spectrum of genetically modified mice available, there is a need for well-designed drug self-administration studies tailored for rapid completion of studies in mice. OBJECTIVES We set out to develop a methodology in mice for obtaining high levels of cocaine self-administration during the first exposure to the drug. MATERIALS AND METHODS C57Bl/6J mice were trained to lever press for liquid reinforcer on a fixed ratio 1, then a progressive ratio (PR) schedule of reinforcement before intravenous self-administration of cocaine on a PR schedule. RESULTS Within a single 16-h session, each mouse self-administered either saline or 0.1, 0.3, 0.6, or 1.2 mg kg(-1) infusion(-1) of cocaine during four distinct 4-h subsessions. Mice showed a strong preference for cocaine vs saline, as demonstrated by higher breakpoints and greater preference for the active lever. Likewise, there was a dose-dependent increase in breakpoints obtained and in drug intake. Finally, animals receiving noncontingent cocaine pressed significantly less than mice self-administering the same dose of cocaine, indicating that a significant amount of active lever pressing is driven by drug-seeking and not the psychomotor-activating effects of cocaine alone. CONCLUSIONS Mice will reach high breakpoints and cocaine intake during an initial exposure to cocaine. This method is well-suited to rapidly obtain progressive ratio cocaine self-administration in mice.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232-0615, USA.
| | | |
Collapse
|
168
|
Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 2006; 29:225-32. [PMID: 16483675 DOI: 10.1016/j.tins.2006.01.008] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/24/2005] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
Recent studies have shown that the endocannabinoid system is involved in the common neurobiological mechanism underlying drug addiction. This system participates in the primary rewarding effects of cannabinoids, nicotine, alcohol and opioids, through the release of endocannabinoids in the ventral tegmental area. Endocannabinoids are also involved in the motivation to seek drugs by a dopamine-independent mechanism, demonstrated for psychostimulants and opioids. The endocannabinoid system also participates in the common mechanisms underlying relapse to drug-seeking behaviour by mediating the motivational effects of drug-related environmental stimuli and drug re-exposure. In agreement, clinical trials have suggested that the CB(1) cannabinoid antagonist rimonabant can cause smoking cessation. Thus, CB(1) cannabinoid antagonists could represent a new generation of compounds to treat drug addiction.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Carrer Dr. Aiguader 80, 08003 Barcelona, Spain.
| | | | | |
Collapse
|
169
|
Thanos PK, Dimitrakakis ES, Rice O, Gifford A, Volkow ND. Ethanol self-administration and ethanol conditioned place preference are reduced in mice lacking cannabinoid CB1 receptors. Behav Brain Res 2006; 164:206-13. [PMID: 16140402 DOI: 10.1016/j.bbr.2005.06.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 06/06/2005] [Accepted: 06/12/2005] [Indexed: 10/25/2022]
Abstract
Cannabinoids are postulated to play a role in modulating the reinforcing effects of abused drugs, including alcohol. Experiment 1 examined alcohol self-administration in cannabinoid CB1 receptor knockout (KO), heterozygous (HT) and wild type (WT) mice in a two-bottle choice paradigm. Mice were trained in a limited 8 h access/day to 10% (v/v) EtOH (EtOH) versus water. After baseline drinking levels (% EtOH preference and total EtOH intake (g/kg)), results indicated that the CB1 knockout mice displayed significantly lower baseline EtOH consumption compared to wild type mice. Subsequently, treatment with SR141716A (5mg/kg) significantly attenuated EtOH intake in the WT and HT mice but had little effect on the knockout mice. Experiment 2 examined the CB1 WT and CB1 KO strains in a conditioned place preference (CPP) procedure between saline and 2g/kg EtOH. The CB1 WT mice spent significantly more time in the EtOH-paired versus saline-paired chambers, whereas no significant preference was observed in the CB1 KO mice. Finally, we observed that CB1 KO mice were significantly lighter than WT and HT and that SR141716A did not significantly alter body weight. These results demonstrate that the cannabinoid CB1 receptor is an essential component of the molecular pathways underlying the reinforcing effects of alcohol. Thus, medications targeting the CB1 receptors may be beneficial for the treatment of alcoholism.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Analysis of Variance
- Animals
- Central Nervous System Depressants/pharmacology
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Environment
- Ethanol/pharmacology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Reward
- Self Administration
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Pharmacology Lab, Department of Medicine, Brookhaven National Laboratory, Building 490, 30 Bell Avenue, Upton, NY 11973-5000, USA.
| | | | | | | | | |
Collapse
|
170
|
Yan Y, Nitta A, Mizoguchi H, Yamada K, Nabeshima T. Relapse of methamphetamine-seeking behavior in C57BL/6J mice demonstrated by a reinstatement procedure involving intravenous self-administration. Behav Brain Res 2006; 168:137-43. [PMID: 16413064 DOI: 10.1016/j.bbr.2005.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/23/2022]
Abstract
There is an urgent need to develop a reliable mouse model of relapse to address the genetic factors involved in susceptibility to relapse of drug-seeking behavior by using mutant mice. This paper presents a feasible way to reinstate extinguished methamphetamine (METH)-seeking behavior. Male C57BL/6J mice acquired stable nose-poking responses for taking METH after approximately 10 daily 3-h sessions of METH (0.1mg/kg/infusion) self-administration under a fixed ratio 1 or 2 (FR1/2) schedule. During the self-administration, cue- and hole-lamps indicated the availability of METH and were inactivated simultaneously with each infusion for 5s. The mice were exposed to extinction training in the absence of METH-paired stimuli (cue- and hole-lamps) and METH infusion, until they met the extinction criterion (less than 25 active responses or 30% of active responses in the stable self-administration phase on 2 consecutive days). METH-paired stimuli (cue- and hole-lamps) during METH self-administration reliably triggered a relapse of METH-seeking behavior in the absence of METH infusion. A combination of non-contingent intravenous (i.v.) priming and self-injected METH also increased the reinstatement of METH-seeking behavior in the absence of METH-paired stimuli (cue- and hole-lamps) and without METH infusion posterior to the self-injection. These results suggest that the mouse model of relapse in our study might provide a new stage for the exploration of genetic factors involved in relapse of drug dependence and of the underlying mechanisms of drugs of abuse.
Collapse
Affiliation(s)
- Yijin Yan
- Department of Neuropsychopharmacology & Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8560, Japan
| | | | | | | | | |
Collapse
|
171
|
Trigo JM, Panayi F, Soria G, Maldonado R, Robledo P. A reliable model of intravenous MDMA self-administration in naïve mice. Psychopharmacology (Berl) 2006; 184:212-20. [PMID: 16362403 DOI: 10.1007/s00213-005-0229-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/22/2005] [Indexed: 11/28/2022]
Abstract
RATIONALE MDMA is one of the most widely consumed recreational drugs in Europe. However, the mechanisms involved in the reinforcing properties of MDMA are still unclear. In this sense, the establishment of a reliable model of MDMA self-administration in mice could represent an important approach to study the neuronal substrates associated with MDMA reward by using genetically modified mice. OBJECTIVES To develop a reliable model of operant intravenous MDMA self-administration in drug-naïve mice. MATERIALS AND METHODS Mice were trained to acquire intravenous self-administration of MDMA at different doses (0, 0.06, 0.125, 0.25, 0.5 and 1.0 mg/kg/infusion) on a FR1 schedule of reinforcement for 15 consecutive days. The motivational value of different doses of MDMA (0.125, 0.25 and 0.5 mg/kg/infusion) was then tested using a progressive ratio paradigm. Finally, [3H]-mazindol autoradiographic studies were carried out in order to quantitatively assess presynaptic dopamine transporter (DAT) binding sites in the striatum of mice trained to self-administer MDMA (0 and 1.0 mg/kg/infusion) during 15 days. RESULTS The latency for discrimination between the active and inactive holes, as well as the number of animals acquiring stability criteria, varied as a function of the dose of MDMA. The mice responding for intermediate doses (0.125, 0.25 and 0.5 mg/kg/infusion) discriminated earlier than those responding for low (0.06 mg/kg/infusion) or high (1.0 mg/kg/infusion) doses. The percentage of animals achieving stability criteria increased with days of testing and was inversely proportional to the dose of MDMA. The breaking points achieved for doses of 0.125 and 0.25 mg/kg/infusion were significantly higher than for a dose of 0.5 mg/kg/infusion. No significant DAT neurotoxicity was observed in the striatum of animals self-administering MDMA at a dose of 1 mg/kg/infusion. CONCLUSIONS The present results show that MDMA can be reliably self-administered by drug-naïve mice.
Collapse
Affiliation(s)
- José Manuel Trigo
- Universitat Pompeu Fabra, Calle Dr. Aiguader, 80, 08003, Barcelona, Spain
| | | | | | | | | |
Collapse
|
172
|
|
173
|
Bilkei-Gorzo A, Racz I, Valverde O, Otto M, Michel K, Sastre M, Sarstre M, Zimmer A. Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc Natl Acad Sci U S A 2005; 102:15670-5. [PMID: 16221768 PMCID: PMC1266095 DOI: 10.1073/pnas.0504640102] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms contributing to the normal age-related decline of cognitive functions or to pathological learning and memory impairment are largely unknown. We demonstrate here that young mice (6-7 weeks) with a genetic deletion of the cannabinoid CB1 receptor performed as well as WT mice, or often better, in a number of learning and memory paradigms, including animal models of skill-learning, partner recognition, and operant conditioning. In contrast, the performance of mature mice (3-5 months) lacking CB1 receptors was much worse than that of age-matched WT animals. In most tests, these mice performed at the same level as old animals (14-17 months), suggesting that the decline in cognitive functions is accelerated in the absence of CB1 receptors. This rapid decline in CB1-deficient animals is accompanied by a loss of neurons in the CA1 and CA3 regions of the hippocampus.
Collapse
Affiliation(s)
- A Bilkei-Gorzo
- Laboratory of Molecular Neurobiology, Department of Psychiatry, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Carai MAM, Colombo G, Gessa GL. Rimonabant: The first therapeutically relevant cannabinoid antagonist. Life Sci 2005; 77:2339-50. [PMID: 15935395 DOI: 10.1016/j.lfs.2005.04.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The present paper synthetically reviews the multiple experimental lines of evidence indicating the ability of the prototypic cannabinoid CB(1) receptor antagonist, rimonabant (also known as SR 141716), to suppress the reinforcing/rewarding properties of different drugs of abuse, including cocaine, heroin, nicotine and alcohol, in laboratory rodents. This paper also reviews the data demonstrating that rimonabant reduces food intake and body weight in laboratory animals and humans. Taken together, the data reviewed here suggest that rimonabant may constitute a new and potentially effective medication for the treatment of drug addiction and obesity-related disorders.
Collapse
Affiliation(s)
- Mauro A M Carai
- Bernard B. Brodie Department of Neuroscience, University of Cagliari, Viale Diaz 182, I-09126 Cagliari (CA), Italy.
| | | | | |
Collapse
|