151
|
Han KY, Kwon TH, Lee TH, Lee SJ, Kim SH, Kim JY. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-κB via mitogen-activated protein kinase pathways in mouse macrophage cells. BMB Rep 2008; 41:328-33. [DOI: 10.5483/bmbrep.2008.41.4.328] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
152
|
Hernandez JM, Floyd DH, Weilbaecher KN, Green PL, Boris-Lawrie K. Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 2008; 27:4757-67. [PMID: 18427548 DOI: 10.1038/onc.2008.120] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
JunD is a versatile AP-1 transcription factor that can activate or repress a diverse collection of target genes. Precise control of junD expression and JunD protein-protein interactions modulate tumor angiogenesis, cellular differentiation, proliferation and apoptosis. Molecular and clinical knowledge of two decades has revealed that precise JunD activity is elaborated by interrelated layers of constitutive transcriptional control, complex post-transcriptional regulation and a collection of post-translational modifications and protein-protein interactions. The stakes are high, as inappropriate JunD activity contributes to neoplastic, metabolic and viral diseases. This article deconvolutes multiple layers of control that safeguard junD gene expression and functional activity. The activity of JunD in transcriptional activation and repression is integrated into a regulatory network by which JunD exerts a pivotal role in cellular growth control. Our discussion of the JunD regulatory network integrates important open issues and posits new therapeutic targets for the neoplastic, metabolic and viral diseases associated with JunD/AP-1 expression.
Collapse
Affiliation(s)
- J M Hernandez
- Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
153
|
JunB breakdown in mid-/late G2 is required for down-regulation of cyclin A2 levels and proper mitosis. Mol Cell Biol 2008; 28:4173-87. [PMID: 18391017 DOI: 10.1128/mcb.01620-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
JunB, a member of the AP-1 family of dimeric transcription factors, is best known as a cell proliferation inhibitor, a senescence inducer, and a tumor suppressor, although it also has been attributed a cell division-promoting activity. Its effects on the cell cycle have been studied mostly in G1 and S phases, whereas its role in G2 and M phases still is elusive. Using cell synchronization experiments, we show that JunB levels, which are high in S phase, drop during mid- to late G2 phase due to accelerated phosphorylation-dependent degradation by the proteasome. The forced expression of an ectopic JunB protein in late G2 phase indicates that JunB decay is necessary for the subsequent reduction of cyclin A2 levels in prometaphase, the latter event being essential for proper mitosis. Consistently, abnormal JunB expression in late G2 phase entails a variety of mitotic defects. As these aberrations may cause genetic instability, our findings contrast with the acknowledged tumor suppressor activity of JunB and reveal a mechanism by which the deregulation of JunB might contribute to tumorigenesis.
Collapse
|
154
|
Chen J, Panchanathan R, Choubey D. Stimulation of T cells up-regulates expression of Ifi202, an interferon-inducible lupus susceptibility gene, through activation of JNK/c-Jun pathway. Immunol Lett 2008; 118:13-20. [PMID: 18374989 DOI: 10.1016/j.imlet.2008.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 02/04/2023]
Abstract
Studies have revealed that increased expression of interferon (IFN)-inducible Ifi202 gene (encoding p202 protein) in splenic B and T cells from B6.Nba2 congenic (congenic for Nb2 locus derived from NZB mice) female mice is associated with lupus susceptibility. However, signaling pathways that regulate Ifi202 expression in immune cells remain to be elucidated. Here we report that stimulation of T cells up-regulates the Ifi202 expression. We found that steady-state levels of Ifi202 mRNA and protein were detectable in splenic T cells from NZB mice and stimulation of T cells with anti-CD3 and anti-CD28 up-regulated expression of the Ifi202 gene. Similarly, stimulation of cells of a mouse T cell hybridoma cell line (2B4.11) also activated transcription of the Ifi202 gene. Significantly, up-regulation of Ifi202 expression in stimulated T cells was inhibited by treatment of cells with SP600125, a specific inhibitor of c-Jun N-terminal kinase (JNK). Conversely, treatment of cells with anisomycin, a potent activator of the JNK and c-Jun, up-regulated Ifi202 expression. Consistent with the activation of JNK/c-Jun pathway by T cell stimulation, forced expression of c-Jun in 2B4 T cells and in mouse embryonic fibroblasts (MEFs) also up-regulated the Ifi202 expression. Furthermore, we found that stimulation of T cells increased association of the activated c-Jun to the 5'-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays (ChIPs). Together, our observations demonstrate that stimulation of T cells up-regulates the Ifi202 expression in part through the JNK/c-Jun pathway.
Collapse
Affiliation(s)
- Jianming Chen
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
155
|
Vaqué JP, Fernández-García B, García-Sanz P, Ferrandiz N, Bretones G, Calvo F, Crespo P, Marín MC, León J. c-Myc Inhibits Ras-Mediated Differentiation of Pheochromocytoma Cells by Blocking c-Jun Up-Regulation. Mol Cancer Res 2008; 6:325-39. [DOI: 10.1158/1541-7786.mcr-07-0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
156
|
Laurent G, Solari F, Mateescu B, Karaca M, Castel J, Bourachot B, Magnan C, Billaud M, Mechta-Grigoriou F. Oxidative stress contributes to aging by enhancing pancreatic angiogenesis and insulin signaling. Cell Metab 2008; 7:113-24. [PMID: 18249171 DOI: 10.1016/j.cmet.2007.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/15/2007] [Accepted: 12/20/2007] [Indexed: 11/18/2022]
Abstract
JunD, a transcription factor of the AP-1 family, protects cells against oxidative stress. Here, we show that junD(-/-) mice exhibit features of premature aging and shortened life span. They also display persistent hypoglycemia due to enhanced insulin secretion. Consequently, the insulin/IGF-1 signaling pathways are constitutively stimulated, leading to inactivation of FoxO1, a positive regulator of longevity. Hyperinsulinemia most likely results from enhanced pancreatic islet vascularization owing to chronic oxidative stress. Indeed, accumulation of free radicals in beta cells enhances VEGF-A transcription, which in turn increases pancreatic angiogenesis and insulin secretion. Accordingly, long-term treatment with an antioxidant rescues the phenotype of junD(-/-) mice. Indeed, dietary antioxidant supplementation was protective against pancreatic angiogenesis, hyperinsulinemia, and subsequent activation of insulin signaling cascades in peripheral tissues. Taken together, these data establish a pivotal role for oxidative stress in systemic regulation of insulin and define a key role for the JunD protein in longevity.
Collapse
Affiliation(s)
- Gaëlle Laurent
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Siddiq A, Aminova LR, Ratan RR. Prolyl 4-hydroxylase activity-responsive transcription factors: from hydroxylation to gene expression and neuroprotection. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:2875-87. [PMID: 17981760 PMCID: PMC2570096 DOI: 10.2741/2892] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most homeostatic processes including gene transcription occur as a result of deviations in physiological tone that threatens the survival of the organism. A prototypical homeostatic stress response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity. Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional regulation of hypoxia/stress-regulated genes and thus are an important component of events leading to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting cellular stress responses. These small molecules are proving effective in preclinical models of stroke and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of the transcription factors that play an effective role in neuroprotection against oxidative stress as a result of changes in PHD activity.
Collapse
Affiliation(s)
- Ambreena Siddiq
- Burke Medical Research Institute, White Plains, New York 10605, USA.
| | | | | |
Collapse
|
158
|
|
159
|
Kutz H, Reisbach G, Schultheiss U, Kieser A. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus. Virology 2007; 371:246-56. [PMID: 17967471 DOI: 10.1016/j.virol.2007.09.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/19/2007] [Accepted: 09/27/2007] [Indexed: 12/30/2022]
Abstract
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-kappaB, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied by a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies.
Collapse
Affiliation(s)
- Helmut Kutz
- GSF-National Research Center for Environment and Health, Department of Gene Vectors, Marchioninistrasse 25, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
160
|
Oommen KS, Newman AP. Co-regulation by Notch and Fos is required for cell fate specification of intermediate precursors during C. elegans uterine development. Development 2007; 134:3999-4009. [PMID: 17942488 DOI: 10.1242/dev.002741] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch pathway is the key signal for many cell fate decisions in the nematode Caenorhabditis elegans including the uterine pi cell fate, crucial for a proper uterine-vulval connection and egg laying. Expression of the egl-13 SOX domain transcription factor is specifically upregulated upon induction of the pi lineage and not in response to other LIN-12/Notch-mediated decisions. We determined that dual regulation by LIN-12 and FOS-1 is required for egl-13 expression at specification and for complete rescue of egl-13 mutants. We found that fos-1 mutants exhibit uterine defects and fail to express pi markers. We show that FOS-1 is expressed at pi cell specification and can bind in vitro to egl-13 upstream regulatory sequence (URS) as a heterodimer with C. elegans Jun.
Collapse
Affiliation(s)
- Kavita S Oommen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
161
|
Eyster KM, Mark CJ, Gayle R, Martin DS. The effects of estrogen and testosterone on gene expression in the rat mesenteric arteries. Vascul Pharmacol 2007; 47:238-47. [PMID: 17652031 PMCID: PMC2080788 DOI: 10.1016/j.vph.2007.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/14/2007] [Accepted: 06/25/2007] [Indexed: 01/15/2023]
Abstract
A dramatic difference exists in the timing of development of cardiovascular disease in men vs. women. The primary candidates underlying the cause of this gender difference are the sex steroids, estrogen and testosterone. The vasculature is considered to be a site of action of these steroids. In spite of these concepts there is little data on the direct effects of estrogen and testosterone on gene expression in the vasculature. In this study, ovariectomized Sprague Dawley rats were treated for 4 days with vehicle (sesame oil), estradiol benzoate (0.15 mg/kg/day), or testosterone (1 mg/kg/day). The mesenteric arteries were obtained, total RNA was extracted, and CodeLink Uniset Rat I DNA microarrays were used to identify differential gene expression. Seven genes were identified as differentially expressed from the DNA microarray data and confirmed by real time RT-PCR. The expression of D site albumin promoter binding protein and fatty acid synthase were increased in response to both estrogen and testosterone. 3 alpha-hydroxysteroid dehydrogenase, interleukin 4 receptor, JunB and c-Fos expression were increased by estrogen but not by testosterone. Aryl hydrocarbon nuclear translocator-like gene was reduced by testosterone. These data identify genes not previously known to be responsive to estrogen and testosterone in the vasculature.
Collapse
Affiliation(s)
- Kathleen M Eyster
- Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
162
|
Yamamoto K, Miyatsuka T, Tanaka A, Toyoda S, Kato K, Shiraiwa T, Fujitani Y, Yamasaki Y, Hori M, Matsuhisa M, Matsuoka TA, Kaneto H. Tissue-specific deletion of c-Jun in the pancreas has limited effects on pancreas formation. Biochem Biophys Res Commun 2007; 363:908-14. [PMID: 17920562 DOI: 10.1016/j.bbrc.2007.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 12/18/2022]
Abstract
It is well known that activating protein-1 (AP-1) is involved in a variety of cellular functions such as proliferation, differentiation, apoptosis, and oncogenesis. AP-1 is a dimer complex consisting of different subunits, and c-Jun is known to be one of its major components. In addition, it has been shown that mice lacking c-Jun are embryonic lethal and that c-Jun is essential for liver and heart development. However, the role of c-Jun in the pancreas is not well known. The aim of this study was to examine the possible role of c-Jun in the pancreas. First, c-Jun was strongly expressed in pancreatic duct-like structures at an embryonic stage, while a lower level of expression was observed in some part of the adult pancreas, implying that c-Jun might play a role during pancreas development. Second, to address this point, we generated pancreas-specific c-Jun knock-out mice (Ptf1a-Cre; c-Jun(flox/flox) mice) by crossing Ptf1a-Cre knock-in mice with c-Jun floxed mice. Ptf1a is a pancreatic transcription factor and its expression is confined to pancreatic stem/progenitor cells, which give rise to all three types of pancreatic tissue: endocrine, exocrine, and duct. Contrary to our expectation, however, there was no morphological difference in the pancreas between Ptf1a-Cre; c-Jun(flox/flox) and control mice. In addition, there was no difference in body weight, pancreas weight, and the expression of various pancreas-related factors (insulin, glucagon, cytokeratin, and amylase) between the two groups. Furthermore, there was no difference in glucose tolerance between Ptf1a-Cre; c-Jun(flox/flox) and control mice. Taken together, although we cannot exclude the possibility that c-Jun ablation is compensated by some unknown factors, c-Jun appears to be dispensable for pancreas development at least after ptf1a gene promoter is activated.
Collapse
Affiliation(s)
- Kaoru Yamamoto
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Mullin M, Lightfoot K, Clarke R, Miller M, Lahesmaa R, Cantrell D. The RhoA transcriptional program in pre-T cells. FEBS Lett 2007; 581:4309-17. [PMID: 17716670 PMCID: PMC1964784 DOI: 10.1016/j.febslet.2007.07.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 02/07/2023]
Abstract
The GTPase RhoA is essential for the development of pre-T cells in the thymus. To investigate the mechanisms used by RhoA to control thymocyte development we have used Affymetrix gene profiling to identify RhoA regulated genes in T cell progenitors. The data show that RhoA plays a specific and essential role in pre-T cells because it is required for the expression of transcription factors of the Egr-1 and AP-1 families that have critical functions in thymocyte development. Loss of RhoA function in T cell progenitors causes a developmental block that pheno-copies the consequence of losing pre-TCR expression in Recombinase gene 2 (Rag2) null mice. Transcriptional profiling reveals both common and unique gene targets for RhoA and the pre-TCR indicating that RhoA participates in the pre-TCR induced transcriptional program but also mediates pre-TCR independent gene transcription.
Collapse
Affiliation(s)
- M. Mullin
- Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ont., Canada M5G 1X5
| | - K. Lightfoot
- University of Dundee/WTB, Division of Cell Biology and Immunology, Dow Street, Dundee DD15EH, United Kingdom
| | - R. Clarke
- University of Dundee/WTB, Division of Cell Biology and Immunology, Dow Street, Dundee DD15EH, United Kingdom
| | - M. Miller
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FIN-20521 Turku, Finland
| | - R. Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FIN-20521 Turku, Finland
| | - D. Cantrell
- University of Dundee/WTB, Division of Cell Biology and Immunology, Dow Street, Dundee DD15EH, United Kingdom
- Corresponding author. Fax: +44 1382 345783.
| |
Collapse
|
164
|
Basbous J, Jariel-Encontre I, Gomard T, Bossis G, Piechaczyk M. Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer? Biochimie 2007; 90:296-305. [PMID: 17825471 DOI: 10.1016/j.biochi.2007.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/20/2007] [Indexed: 02/03/2023]
Abstract
The Fos family of transcription factors comprises c-Fos, Fra-1, Fra-2 and FosB, which are all intrinsically unstable proteins. Fos proteins heterodimerize with a variety of other transcription factors to control genes encoding key cell regulators. Their best known partners are the Jun family proteins (c-Jun, JunB, and JunD). At the cellular level, Fos-involving dimers control proliferation, differentiation, apoptosis and responses to environmental cues. At the organism level, they play paramount parts in organogenesis, immune responses and cognitive functions, among others. fos family genes are subjected to exquisite, complex and intermingled transcriptional and post-transcriptional regulations, which are necessary to avoid pathological effects. In particular, the Fos proteins undergo to numerous post-translational modifications, such as phosphorylations and sumoylation, regulating their transcriptional activity, their subcellular localization and their turnover. The mechanisms whereby c-Fos and Fra-1 are degraded have been studied in detail. Contrasting with the classical scenario, according to which most unstable key cell regulators are hydrolyzed by the proteasome after conjugation of polyubiquitin chains, the bulk of c-Fos and Fra-1 can be hydrolyzed independently of any prior ubiquitylation in different situations. c-Fos and Fra-1 share a common destabilizing domain whose primary sequence is conserved in Fra-2 and FosB, suggesting that similar breakdown mechanisms might be at play in the latter two proteins. However, a database search indicates that this domain is not found in any other protein, suggesting that the mechanisms underlying Fos protein destruction may be specific to this family. Interestingly, under particular conditions, a fraction of cytoplasmic c-Fos is ubiquitylated, leading to faster turnover. This poses the question of the multiplicity of degradation pathways that can target the same substrate depending on its activation state, its protein partnership and/or its intracellular localization. This issue is discussed here together with the, thus far, overlooked roles of the various proteasomal complexes found in all cells.
Collapse
Affiliation(s)
- Jihane Basbous
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier F-34293, France
| | | | | | | | | |
Collapse
|
165
|
Riera-Sans L, Behrens A. Regulation of alphabeta/gammadelta T cell development by the activator protein 1 transcription factor c-Jun. THE JOURNAL OF IMMUNOLOGY 2007; 178:5690-700. [PMID: 17442952 DOI: 10.4049/jimmunol.178.9.5690] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
c-Jun is a member of the AP-1 family of transcription factors, the activity of which is strongly augmented by TCR signaling. To elucidate the functions of c-Jun in mouse thymic lymphopoiesis, we conditionally inactivated c-Jun specifically during early T cell development. The loss of c-Jun resulted in enhanced generation of gammadelta T cells, whereas alphabeta T cell development was partially arrested at the double-negative 3 stage. The increased generation of gammadelta T cells by loss of c-Jun was cell autonomous, because in a competitive reconstitution experiment the knockout-derived cells produced more gammadelta T cells than did the control cells. C-jun-deficient immature T cells failed to efficiently repress transcription of IL-7Ralpha, resulting in augmented IL-7Ralpha mRNA and surface levels. Chromatin immunoprecipitation assays revealed binding of c-Jun to AP-1 binding sites present in the IL-7Ralpha promoter, indicating direct transcriptional regulation. Thus, c-Jun controls the transcription of IL-7Ralpha and is a novel regulator of the alphabeta/gammadelta T cell development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Gene Expression Regulation, Developmental
- Integrases/genetics
- Mice
- Mice, Knockout
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/physiology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interleukin-7/genetics
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Lluís Riera-Sans
- London Research Institute, Cancer Research, Mammalian Genetics Laboratory, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
166
|
Wisniewska MB, Ameyar-Zazoua M, Bakiri L, Kaminska B, Yaniv M, Weitzman JB. Dimer composition and promoter context contribute to functional cooperation between AP-1 and NFAT. J Mol Biol 2007; 371:569-76. [PMID: 17588603 DOI: 10.1016/j.jmb.2007.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 05/18/2007] [Accepted: 05/24/2007] [Indexed: 11/26/2022]
Abstract
The transcription factors activator protein 1 (AP-1) and nuclear factor of activated T-cells (NFAT) cooperate to induce the expression of cytokines during the immune response. While much is known about the signaling pathways and physical interactions between NFAT and AP-1 dimers following lymphocyte activation, few studies have addressed the role of AP-1 composition in modulating NFAT:AP-1-dependent transcription. We examined the function of specific AP-1 complexes using "tethered" AP-1 dimers with defined composition. We found that NFAT can functionally cooperate with all AP-1 dimers tested. Noteworthy, Jun approximately Jun-containing dimers, which are relatively inactive when tested on an AP-1-dependent promoter, are effective co-activators of an NFAT:AP-1-dependent promoter. Interestingly, specific AP-1 dimer combinations behave differently when tested on interleukin 2 (IL2) and interleukin 4 (IL4) gene regulatory regions. Moreover, the requirement for NFAT to activate each of the promoters is different. Our results suggest that higher NFAT levels are necessary to activate the IL4 promoter. Hence changes in AP-1 composition and the level of participating NFAT proteins can differentially influence cytokine gene expression, resulting in biological consequences for the modulation and dynamics of the immune response.
Collapse
|
167
|
Basbous J, Chalbos D, Hipskind R, Jariel-Encontre I, Piechaczyk M. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol Cell Biol 2007; 27:3936-50. [PMID: 17371847 PMCID: PMC1900028 DOI: 10.1128/mcb.01776-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time. Moreover, Fra-1 overexpression is found in cancer cells displaying high Erk1/2 activity and has been linked to tumorigenesis. One crucial point of regulation of Fra-1 levels is controlled protein degradation, the mechanism of which remains poorly characterized. Here, we have combined genetic, pharmacological, and signaling studies to investigate this process in nontransformed cells and to elucidate how it is altered in cancer cells. We report that the intrinsic instability of Fra-1 depends on a single destabilizer contained within the C-terminal 30 to 40 amino acids. Two serines therein, S252 and S265, are phosphorylated by kinases of the Erk1/2 pathway, which compromises protein destruction upon both normal physiological induction and tumorigenic constitutive activation of this cascade. Our data also indicate that Fra-1, like c-Fos, belongs to a small group of proteins that may, under certain circumstances, undergo ubiquitin-independent degradation by the proteasome. Our work reveals both similitudes and differences between Fra-1 and c-Fos degradation mechanisms. In particular, the presence of a single destabilizer within Fra-1, instead of two that are differentially regulated in c-Fos, explains the much faster turnover of the latter when cells traverse the G(0)/G(1)-to-S-phase transition. Finally, our study offers further insights into the signaling-regulated expression of the other Fos family proteins.
Collapse
Affiliation(s)
- Jihane Basbous
- Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 Route de Mende, Montpellier F-34293, France
| | | | | | | | | |
Collapse
|
168
|
Liu YC, Hsiao HH, Chang JG, Yang MY, Liu TC, Chang CS, Tseng SB, Tsai HJ, Lin SF. Usefulness of quantitative assessment of JunB gene expression as a marker for monitoring chronic myeloid leukemia patients undergoing imatinib therapy. Int J Hematol 2007; 84:425-31. [PMID: 17189224 DOI: 10.1532/ijh97.a10514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
JunB is a component of the activator protein 1 transcription factors and has been identified to be important in hematopoiesis. Transgenic mice lacking JunB expression develop myeloproliferative disease resembling human chronic myeloid leukemia (CML). JunB expression was significantly decreased in CML patients. We used real-time quantitative reverse transcription-polymerase chain reaction analysis to monitor both JunB and BCR-ABL expression during imatinib therapy. Nineteen patients were evaluated every 2 to 4 weeks, and their levels of JunB expression before therapy were significantly decreased compared with those of healthy individuals. After imatinib therapy, an increase in JunB expression was found in 5 patients, all of whom achieved a complete cytogenetic response (CCR) and molecular response (MR), with a decrease in BCR-ABL expression. JunB expression decreased to a very low level in 2 patients, both of whom showed progression to blast crisis. Variable JunB expression was found in the other 12 patients, and their outcomes were mostly driven by BCR-ABL levels. The patients with an increase in JunB expression were statistically more likely to achieve a major cytogenetic response (P = .045), CCR (P = .033), and MR (P = .033) than the group with no increase in JunB expression, and a durable response was observed. This study revealed that an increase in JunB expression is a good prognostic marker for predicting clinical response in CML patients treated with imatinib when such data are combined with an evaluation of BCR-ABL expression.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antineoplastic Agents/administration & dosage
- Benzamides
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Female
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Male
- Middle Aged
- Monitoring, Physiologic
- Piperazines/administration & dosage
- Predictive Value of Tests
- Proto-Oncogene Proteins c-jun/biosynthesis
- Proto-Oncogene Proteins c-jun/genetics
- Pyrimidines/administration & dosage
- Reverse Transcriptase Polymerase Chain Reaction
- Treatment Outcome
Collapse
Affiliation(s)
- Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Ott RG, Simma O, Kollmann K, Weisz E, Zebedin EM, Schorpp-Kistner M, Heller G, Zöchbauer S, Wagner EF, Freissmuth M, Sexl V. JunB is a gatekeeper for B-lymphoid leukemia. Oncogene 2007; 26:4863-71. [PMID: 17297445 DOI: 10.1038/sj.onc.1210285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Loss of JunB has been observed in human leukemia and lymphoma, but it remains unknown, whether this loss is relevant to disease progression. Here, we investigated the consequences of JunB deficiency using Abelson-induced B-lymphoid leukemia as a model system. Mice deficient in JunB expression succumbed to Abelson-induced leukemia with increased incidence and significantly reduced latency. Similarly, bcr/abl p185-transformed JunB-deficient (junB(Delta/Delta)) cells induced leukemia in RAG2(-/-) mice displaying a more malignant phenotype. These observations indicated that cell intrinsic effects within the junB(Delta/Delta) tumor cells accounted for the accelerated leukemia development. Indeed, explantated bcr/abl p185 transformed junB(Delta/Delta) cells proliferated faster than the control cells. The proliferative advantage emerged slowly after the initial transformation process and was associated with increased expression levels of the cell cycle kinase cdk6 and with decreased levels of the cell cycle inhibitor p16(INK4a). These alterations were due to irreversible reprogramming of the cell, because - once established - accelerated disease induced by junB(Delta/Delta) cells was not reverted by re-introducing JunB. Consistent with this observation, we found that the p16 promoter was methylated. Thus, JunB functions as a gatekeeper during tumor evolution. In its absence, transformed leukemic cells acquire an enhanced proliferative capacity, which presages a more malignant disease.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Cyclin-Dependent Kinase 6/genetics
- Cyclin-Dependent Kinase 6/metabolism
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Flow Cytometry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/physiology
- Gene Expression
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Proto-Oncogene Proteins c-jun/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
Collapse
Affiliation(s)
- R G Ott
- Institute of Pharmacology, Medical University of Vienna (MUW), Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
|
171
|
Schlieper A, Anwar M, Heger J, Piper HM, Euler G. Repression of anti-apoptotic genes via AP-1 as a mechanism of apoptosis induction in ventricular cardiomyocytes. Pflugers Arch 2006; 454:53-61. [PMID: 17115225 DOI: 10.1007/s00424-006-0180-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/06/2006] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is increased under several pathophysiological, mainly inflammatory processes in the heart and has been characterized as an inducer of apoptosis in cardiomyocytes. The transcription factor activating protein-1 (AP-1) has been identified as a mediator of NO-induced apoptosis. Genes that are regulated by AP-1 under apoptotic conditions have not been identified yet. Therefore, we performed a microarray analysis with subsequent real-time polymerase chain reaction (PCR) to identify genes regulated by AP-1 in NO-induced ventricular cardiomyocytes of rats and tested the functional role of these genes in apoptosis. Cardiomyocytes were transformed with AP-1 decoy oligonucleotides for inhibition of AP-1 activity. These, as well as non-transformed control cells, were stimulated with the NO donor (+/-)-S-nitroso-N-acetylpenicillamine (SNAP, 100 microM) for 2 h. Some of the genes with differential gene expression on microarrays were further analysed by real-time PCR. Genes that are induced by SNAP were not identified. However, four genes, pyridoxal kinase, heat shock protein 10 (Hsp10), antigen identified by monoclonal antibodies 4F2 (4F2) and myosin light chain 2, were downregulated by SNAP in presence of AP-1. Pyridoxal kinase, Hsp10 and 4F2 have anti-apoptotic effects in unstimulated cells because downregulation of their expression by antisense oligos induced apoptosis in cardiomyocytes. An involvement of these genes in NO-induced apoptosis could only be proven for pyridoxal kinase. In conclusion, using microarray technology, we identified three anti-apoptotic genes (Hsp10, 4F2 and pyridoxal kinase) in ventricular cardiomyocytes, which may help the cells to resist some apoptotic stimuli. The downregulation of these genes results in cardiomyocyte apoptosis. Prevention of their downregulation may protect cardiomyocytes against apoptotic stimuli, and this may be of therapeutic benefit.
Collapse
Affiliation(s)
- A Schlieper
- Institute of Physiology, Justus-Liebig-University, Aulweg 129, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
172
|
Adiseshaiah P, Kalvakolanu DV, Reddy SP. A JNK-Independent Signaling Pathway Regulates TNFα-Stimulated, c-Jun-Driven FRA-1 Protooncogene Transcription in Pulmonary Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:7193-202. [PMID: 17082637 DOI: 10.4049/jimmunol.177.10.7193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Among the several effectors that mediate TNF-alpha action is AP-1, which consists of transcription factors belonging to the JUN and FOS families. Although the effects of TNF-alpha in immune cells, such as the induction of NF-kappaBeta, are well known, the mechanisms by which it induces transcriptional activation of AP-1 in pulmonary epithelial cells are not well defined. In this study, we report that TNF-alpha stimulates the expression of the FRA-1 protooncogene in human pulmonary epithelial cells using c-Jun, acting via a 12-O-tetradecanoylphorbol-13 acetate response element located at -318. Although TNF-alpha stimulates phosphorylation of c-Jun, the inhibition of JNK activity had no significant effect on FRA-1 induction. Consistent with this result, ectopic expression of a c-Jun mutant lacking JNK phosphorylation sites had no effect on the TNF-alpha-induced expression of the promoter. In contrast, inhibition of the ERK pathway or ectopic expression of an ERK1 mutant strikingly reduced FRA-1 transcription. ERK inhibition not only blocked phosphorylation of Elk1, CREB, and ATF1, which constitutively bind to the FRA-1 promoter, but also suppressed the recruitment of c-Jun to the promoter. We found that short interfering RNA-mediated silencing of FRA-1 enhances TNF-alpha-induced IL-8 expression, whereas overexpression causes an opposite effect. Our findings collectively indicate that ERK signaling plays key roles in both Elk1, CREB, and ATF-1 activation and the subsequent recruitment of c-Jun to the FRA-1 promoter in response to TNF-alpha in pulmonary epithelial cells.
Collapse
Affiliation(s)
- Pavan Adiseshaiah
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
173
|
Sinitskaya N, Salingre A, Klosen P, Revel FG, Pévet P, Simonneaux V. Differential expression of activator protein-1 proteins in the pineal gland of Syrian hamster and rat may explain species diversity in arylalkylamine N-acetyltransferase gene expression. Endocrinology 2006; 147:5052-60. [PMID: 16887909 DOI: 10.1210/en.2006-0526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Species differences have been reported for the nighttime regulation of arylalkylamine N-acetyltransferase (AA-NAT), the melatonin rhythm-generating enzyme. In particular, de novo synthesis of stimulatory transcription factors is required for Aa-nat transcription in the Syrian hamster but not in the rat pineal gland. The present work investigated the contribution of phosphorylated cAMP-responsive element-binding protein, c-FOS, c-JUN, and JUN-B in the regulation of Aa-nat transcription in Syrian hamsters compared with rats. The nighttime pattern of cAMP-responsive element-binding protein phosphorylation and regulation by norepinephrine observed in the Syrian hamster was similar to those reported in the rat. On the contrary, strong divergences in c-FOS, c-JUN, and JUN-B expression were observed between both species. In Syrian hamster, predominant expression of c-FOS and c-JUN was observed at the beginning of night, whereas a predominant expression of c-JUN and JUN-B was observed in the late night in rat. The early peak of c-FOS and c-JUN, known to form a stimulatory transcription dimer, suggests that they are involved in the nighttime stimulation of Aa-nat transcription. Indeed, early-night administration of a protein synthesis inhibitor (cycloheximide) markedly decreased AA-NAT mRNA levels in Syrian hamster. In the rat, high levels of JUN-B and c-JUN, constituting an inhibitory transcription dimer, are probably involved in the late-night inhibition of Aa-nat transcription. Early-night administration of cycloheximide actually increased AA-NAT mRNA levels toward the late night. Therefore, composition and timing of the pineal activator protein-1 complexes differ between rat and Syrian hamster and may be an activator (Syrian hamster) or an inhibitor (rat) of Aa-nat transcription.
Collapse
Affiliation(s)
- Natalia Sinitskaya
- Institut des Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes, UMR-7168/LC2 CNRS-Université Louis Pasteur, 5 rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
174
|
Lee HJ, Palkovits M, Young WS. miR-7b, a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation, inhibits Fos translation. Proc Natl Acad Sci U S A 2006; 103:15669-74. [PMID: 17028171 PMCID: PMC1622879 DOI: 10.1073/pnas.0605781103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor activator protein 1 (AP-1) is formed through the dimerization of immediate-early genes Fos and Jun family members. Activator protein 1 is known as a pivotal regulator of major biological events such as cell proliferation, differentiation, organogenesis, memory formation, and apoptosis. During a search for microRNAs (miRNAs; small, endogenous, noncoding RNAs that repress gene expression of target mRNAs in animals posttranscriptionally) that are differentially expressed in the mouse paraventricular and supraoptic nuclei after 10 days of drinking 2% saline, one candidate microRNA that is relatively highly expressed, mmu-miR-7b (miR-7b), was studied further because sequence analysis suggested a likely interaction with the 3' untranslated region of Fos mRNA. We show that miR-7b expression inhibits Fos translation in vitro and that it and its host gene are prominently expressed in the PVN and other brain areas, including the suprachiasmatic nucleus. No effect on Fos mRNA levels was observed. Normally, Fos is expressed at low to undetectable levels in cells, but it shows rapid induction and decay after acute stimuli. Various pathways have been identified through which Fos family proteins are degraded; our results indicate a significant additional mechanism by which Fos protein and activity may be regulated.
Collapse
Affiliation(s)
- Heon-Jin Lee
- *Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Miklós Palkovits
- *Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
- Laboratory of Neuromorphology, Hungarian Academy of Sciences, Budapest 1245, Hungary; and
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest 1094, Hungary
| | - W. Scott Young
- *Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
- To whom correspondence should be addressed at:
9000 Rockville Pike, Building 49, Room 5A56, Bethesda, MD 20892-4483. E-mail:
| |
Collapse
|
175
|
Kroczynska B, Cutrone R, Bocchetta M, Yang H, Elmishad AG, Vacek P, Ramos-Nino M, Mossman BT, Pass HI, Carbone M. Crocidolite asbestos and SV40 are cocarcinogens in human mesothelial cells and in causing mesothelioma in hamsters. Proc Natl Acad Sci U S A 2006; 103:14128-33. [PMID: 16966607 PMCID: PMC1599923 DOI: 10.1073/pnas.0604544103] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Indexed: 11/18/2022] Open
Abstract
Only a fraction of subjects exposed to asbestos develop malignant mesothelioma (MM), suggesting that additional factors may render some individuals more susceptible. We tested the hypothesis that asbestos and Simian virus (SV40) are cocarcinogens. Asbestos and SV40 in combination had a costimulatory effect in inducing ERK1/2 phosphorylation and activator protein-1 (AP-1) activity in both primary Syrian hamster mesothelial cells (SHM) and primary human mesothelial cells (HM). Ap-1 activity caused the expression and activation of matrix metalloprotease (MMP)-1 and MMP-9, which in turn led to cell invasion. Experiments using siRNA and chemical inhibitors confirmed the specificity of these results. The same effects were observed in HM and SHM. Experiments in hamsters showed strong cocarcinogenesis between asbestos and SV40: SV40 did not cause MM, asbestos caused MM in 20% of hamsters, and asbestos and SV40 together caused MM in 90% of hamsters. Significantly lower amounts of asbestos were sufficient to cause MM in animals infected with SV40. Our results indicate that mineral fibers and viruses can be cocarcinogens and suggest that lower amounts of asbestos may be sufficient to cause MM in individuals infected with SV40.
Collapse
Affiliation(s)
- Barbara Kroczynska
- *Thoracic Oncology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153
| | - Rochelle Cutrone
- *Thoracic Oncology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153
| | - Maurizio Bocchetta
- *Thoracic Oncology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153
| | - Haining Yang
- *Thoracic Oncology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153
| | - Amira G. Elmishad
- *Thoracic Oncology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153
| | | | - Maria Ramos-Nino
- Pathology, College of Medicine, University of Vermont, Burlington, VT 05404; and
| | - Brooke T. Mossman
- Pathology, College of Medicine, University of Vermont, Burlington, VT 05404; and
| | - Harvey I. Pass
- Department of Thoracic Surgery, New York University, New York, NY 10016
| | - Michele Carbone
- *Thoracic Oncology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
176
|
Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH. Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal 2006; 8:1447-59. [PMID: 16987002 DOI: 10.1089/ars.2006.8.1447] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
NADPH oxidases produce reactive oxygen species (ROS) that serve as co-stimulatory signals for cell proliferation. In mouse lung epithelial cells that express Nox1, Nox2, Nox4, p22(phox), p47(phox), p67(phox), and Noxo1, overexpression of Nox1 delayed cell cycle withdrawal by maintaining AP-1-dependent expression of cyclin D1 in low serum conditions. In cycling cells, the effects of Nox1 were dose dependent: levels of Nox1 that induced 3- to 10-fold increases in ROS promoted phosphorylation of ERK1/2 and expression of cyclin D1, whereas expression of Nox1 with Noxo1 and Noxa1 (or expression of Nox4 alone) that induced substantial increases in intracellular ROS inhibited cyclin D1 and proliferation. Catalase reversed the effects of Nox1 on cyclin D1 and cell proliferation. Diphenylene iodonium, an inhibitor of NADPH oxidase activity, did not affect dosedependent responses of ERK1/2 or Akt to serum, but markedly inhibited the sequential expression of c-Fos and Fra-1 required for induction of cyclin D1 during cell cycle re-entry. These results indicate that Nox1 stimulates cell proliferation in actively cycling cells by reducing the requirement for growth factors to maintain expression of cyclin D1, whereas during cell cycle re-entry, NADPH oxidase activity is required for transcriptional activation of Fos family genes during the immediate early gene response.
Collapse
Affiliation(s)
- Priya Ranjan
- Department of Pathology and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
There is growing experimental evidence that the production of intracellular reactive oxygen species (ROS) represents a tightly regulated process. In particular, numerous observations have suggested a role for the Ras superfamily of small GTPases in redox regulation. This article reviews the evidence that ROS can serve as important downstream effectors for both Ras and Rac proteins. Given the prominent role these proteins play in regulating growth, senescence, and transformation, understanding the role of the small GTPase family in redox regulation may significantly alter our current concepts as to how free radicals contribute to diverse processes from aging to cancer.
Collapse
Affiliation(s)
- Toren Finkel
- Cardiology Branch, National Heart Lungs and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1454, USA.
| |
Collapse
|
178
|
Cerrato A, Parisi M, Santa Anna S, Missirlis F, Guru S, Agarwal S, Sturgill D, Talbot T, Spiegel A, Collins F, Chandrasekharappa S, Marx S, Oliver B. Genetic interactions between Drosophila melanogaster menin and Jun/Fos. Dev Biol 2006; 298:59-70. [PMID: 16930585 PMCID: PMC2291284 DOI: 10.1016/j.ydbio.2006.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 01/16/2023]
Abstract
Menin is a tumor suppressor required to prevent multiple endocrine neoplasia in humans. Mammalian menin protein is associated with chromatin modifying complexes and has been shown to bind a number of nuclear proteins, including the transcription factor JunD. Menin shows bidirectional effects acting positively on c-Jun and negatively on JunD. We have produced protein null alleles of Drosophila menin (mnn1) and have over expressed the Mnn1 protein. Flies homozygous for protein-null mnn1 alleles are viable and fertile. Localized over-expression of Mnn1 causes defects in thoracic closure, a phenotype that sometimes results from insufficient Jun activity. We observed complex genetic interactions between mnn1 and jun in different developmental settings. Our data support the idea that one function of menin is to modulate Jun activity in a manner dependent on the cellular context.
Collapse
Affiliation(s)
- Aniello Cerrato
- National Institute of Diabetes and Digestive and Kidney Diseases, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Florin L, Knebel J, Zigrino P, Vonderstrass B, Mauch C, Schorpp-Kistner M, Szabowski A, Angel P. Delayed wound healing and epidermal hyperproliferation in mice lacking JunB in the skin. J Invest Dermatol 2006; 126:902-11. [PMID: 16439969 DOI: 10.1038/sj.jid.5700123] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cutaneous response to injury and stress comprises a temporary change in the balance between epidermal proliferation and differentiation as well as an activation of the immune system. Soluble factors play an important role in the regulation of these complex processes by coordinating the intercellular communication between keratinocytes, fibroblasts, and inflammatory cells. In this study, we demonstrate that JunB, a member of the activator protein-1 transcription factor family, is an important regulator of cytokine expression and thus critically involved in the cutaneous response to injury and stress. Mice lacking JunB in the skin develop normally, indicating that JunB is neither required for cutaneous organogenesis, nor homeostasis. However, upon wounding and treatment with the phorbol ester 12-O-decanoyl-phorbol-13-acetate, JunB-deficiency in the skin likewise resulted in pronounced epidermal hyperproliferation, disturbed differentiation, and prolonged inflammation. Furthermore, delayed tissue remodelling was observed during wound healing. These phenotypic skin abnormalities were associated with JunB-dependent alterations in expression levels and kinetics of important mediators of wound repair, such as granulocyte macrophage colony-stimulating factor, growth-regulated protein-1, macrophage inflammatory protein-2, and lipocalin-2 in both the dermal and epidermal compartment of the skin, and a reduced ability of wound contraction of mutant dermal fibroblasts in vitro.
Collapse
Affiliation(s)
- Lore Florin
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Beales ILP, Ogunwobi O. Glycine-extended gastrin inhibits apoptosis in colon cancer cells via separate activation of Akt and JNK pathways. Mol Cell Endocrinol 2006; 247:140-9. [PMID: 16442704 DOI: 10.1016/j.mce.2005.12.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/07/2005] [Accepted: 12/20/2005] [Indexed: 01/12/2023]
Abstract
Glycine-extended gastrin (G-Gly) is produced by colon cancers and has growth promoting and anti-apoptotic effects in the colonic epithelium. We have examined the anti-apoptotic effects of G-Gly and the signal transduction pathways involved. G-Gly stimulated HT-29 cell proliferation in a concentration dependent manner and inhibited serum-starvation and celecoxib-induced apoptosis. Inhibition of signalling via c-Jun NH2-terminal kinase (JNK) with SP600125 or PI3-kinase/Akt with LY294002 abolished the effects of G-Gly. G-Gly significantly increased phosphorylation of both JNK and Akt. The JAK2 inhibitor AG490 abolished the anti-apoptotic effect of G-Gly and inhibited phosphorylation of Akt but not of JNK. G-Gly stimulated tyrosine phosphorylation of JAK2. G-Gly-increased activation of AP-1 was JNK-dependant and activation of STAT3 was JAK2-dependant. We conclude that G-Gly promotes growth and inhibits apoptosis in colon cancer cells. These effects are mediated via the JAK2, PI3-kinase/Akt and JNK pathways. Activation of JAK2 is upstream of Akt but not of JNK.
Collapse
Affiliation(s)
- Ian L P Beales
- Gastroenterology Unit, Norfolk and Norwich University Hospital, Norwich NR4 7UZ, United Kingdom.
| | | |
Collapse
|
181
|
Chen HC, Byrd JC, Muthusamy N. Differential Role for Cyclic AMP Response Element Binding Protein-1 in Multiple Stages of B Cell Development, Differentiation, and Survival. THE JOURNAL OF IMMUNOLOGY 2006; 176:2208-18. [PMID: 16455977 DOI: 10.4049/jimmunol.176.4.2208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CREB-1 is expressed in the bone marrow and in developing B cells. To determine the role of CREB-1 in developing B cells in the bone marrow, several lines of transgenic (Tg) mice overexpressing a dominant-negative Ser(119-ala) phosphomutant CREB-1 in the bone marrow were generated. Analysis of RNA and protein revealed expression of the transgene in the bone marrow. Flow cytometric analysis of bone marrow cells from Tg mice revealed approximately 70% increase in pre-B1 (CD43(+)B220(+)CD24(+(int))) and approximately 60% decreased pre-BII (CD43(+)B220(+)CD24(++(high))) cells, indicating a developmental block in pre-BI to pre-BII transition. Consistent with this, the Tg mice showed approximately 4-fold decrease in immature and mature B cells in the bone marrow. RT-PCR analysis of RNA from Tg mice revealed increased JunB and c-Jun in pre-BII cells associated with decreased S-phase entry. Adoptive transfer of bone marrow cells into RAG-2(-/-) mice resulted in reconstitution of non-Tg but not Tg bone marrow-derived CD43(+)B220(+)CD24(high) population that is normally absent in RAG-2(-/-) mice. In the periphery, the Tg mice exhibited decreased CD21(dim)CD23(high)IgM(+) follicular B cells in the spleen and increased B1a and B1b B cells in the peritoneum. While exhibiting normal Ab responses to T-independent Ags and primary response to the T-dependent Ag DNP-keyhole limpet hemocyanin, the Tg mice exhibited severely impaired secondary Ab responses. These studies provide the first evidence for a differential role for CRE-binding proteins in multiple stages of B cell development, functional maturation, and B1 and B2 B cells.
Collapse
Affiliation(s)
- Hui-Chen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
182
|
Berry JE, Ealba EL, Pettway GJ, Datta NS, Swanson EC, Somerman MJ, McCauley LK. JunB as a downstream mediator of PTHrP actions in cementoblasts. J Bone Miner Res 2006; 21:246-57. [PMID: 16418780 DOI: 10.1359/jbmr.051024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 09/28/2005] [Accepted: 10/31/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED The role of AP-1 family members in the action of PTHrP was examined in cementoblasts. PTHrP increased mRNA and protein levels of all Fos members, but only one Jun member (JunB) was increased. Overexpression of JunB in cementoblasts mimicked actions of PTHrP to support osteoclastogenesis and inhibit cementoblast differentiation, suggesting that the actions of PTHrP on mesenchymal cells operate through JunB. INTRODUCTION Cementoblasts are mesenchymal cells that share phenotypic features with osteoblasts in vitro; however, unlike osteoblasts, cementoblasts rarely support osteoclastogenesis in vivo. The osteoblast-mediated support of osteoclastogenesis involves PTH-induced reduction in osteoprotegerin (OPG) expression. PTH acts on osteoblastic cells through specific signaling pathways and transcription factors such as activator protein 1 (AP-1). The purpose of this study was to determine the impact of PTH-related protein (PTHrP) on AP-1 transcription factors in cementoblasts and the role of JunB in the actions of PTHrP. MATERIALS AND METHODS Cementoblastic cells were treated with PTHrP and evaluated for mRNA and protein levels of AP-1 family members. Stable transfectants of OCCM cells overexpressing JunB were evaluated for OPG production, ability to support osteoclastogenesis, and measures of proliferation and differentiation. RESULTS PTHrP treatment in vitro resulted in a time-dependent upregulation of mRNA and proteins for the Fos family members, but only JunB of the Jun family. OPG mRNA and protein levels were reduced by PTHrP in OCCM and were lower in JunB overexpressing cells than controls. In co-culture experiments, TRACP+ cells were increased with RANKL treatment in JunB overexpressing cells compared with controls. Cementoblast differentiation was reduced with overexpression of JunB as measured by a decrease in mineralized nodule formation and gene expression for bone sialoprotein and osterix. Measures of proliferation including cell number and cyclin D1 levels were increased in JunB overexpressing clones. In vivo, cementoblast implants exhibited a cementoblastoid nature with copious mineral-like matrix, whereas JunB-overexpressing implants were densely cellular with little mineralized matrix. CONCLUSIONS JunB was the only Jun family member increased by PTHrP, and its overexpression showed similar patterns of gene expression and OPG production as PTHrP treatment of controls. These data suggest that JunB may be a key mediator of PTHrP actions in cementoblasts.
Collapse
Affiliation(s)
- Janice E Berry
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Song S, Lippman SM, Zou Y, Ye X, Ajani JA, Xu XC. Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-beta 2 expression. Oncogene 2006; 24:8268-76. [PMID: 16170369 DOI: 10.1038/sj.onc.1208992] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Benzo[a]pyrene diol epoxide (BPDE, a carcinogen present in tobacco smoke and environmental pollution) has been shown to suppress retinoic acid receptor-beta2 (RAR-beta(2)) and induce cyclooxygenase-2 (COX-2) expression. Restoration of RAR-beta(2) inhibited growth and colony formation of esophageal cancer cells, which was correlated with COX-2 suppression. In this study, we investigated the molecular mechanisms for RAR-beta(2)-mediated suppression of COX-2 expression using BPDE as a tool. We found that BPDE-induced COX-2 expression was through inhibition of RAR-beta(2) and consequently, induction of epidermal growth factor receptor (EGFR), extracellular signal-regulated protein kinases 1/2 (Erk1/2) phosphorylation, and c-Jun expression. Esophageal cancer cells that do not express RAR-beta(2) did not respond to BPDE for induction of COX-2. BPDE was also unable to induce COX-2 expression after RAR-beta(2) expression was manipulated in these esophageal cancer cells. Furthermore, BPDE induced time-dependent methylation of RAR-beta(2) gene promoter in esophageal cancer cells. Transfection of RAR-beta(2) expression vector into esophageal cancer cells suppressed expression of EGFR, Erk1/2 phosphorylation, c-Jun, and COX-2. In addition, co-treatment of RAR-beta(2)-positive cells with BPDE and the MEK1/2 inhibitor U0126 caused little change in c-Jun and COX-2 expression. This study demonstrated that BPDE-suppressed expression of RAR-beta(2) results in COX-2 induction and restoration of RAR-beta(2) expression reduces COX-2 protein in esophageal cancer cells, thereby further supporting our previous finding that RAR-beta(2) plays an important role in suppressing esophageal carcinogenesis.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- Animals
- Butadienes/pharmacology
- Cell Line, Transformed
- Cell Line, Tumor
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- DNA Methylation/drug effects
- Enzyme Induction/drug effects
- Enzyme Induction/genetics
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/biosynthesis
- Extracellular Signal-Regulated MAP Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/biosynthesis
- JNK Mitogen-Activated Protein Kinases/genetics
- Mice
- Mice, Nude
- Multigene Family/physiology
- Nitriles/pharmacology
- Phosphorylation
- Promoter Regions, Genetic/drug effects
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/physiology
- Transcription Factor AP-1/physiology
Collapse
Affiliation(s)
- Shumei Song
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1360, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
184
|
Zenz R, Wagner EF. Jun signalling in the epidermis: From developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 2006; 38:1043-9. [PMID: 16423552 DOI: 10.1016/j.biocel.2005.11.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 12/17/2022]
Abstract
The Jun proteins Jun, JunB and JunD are core members of activator protein-1 (AP-1), a dimeric transcription factor complex consisting of homo- and heterodimers of the Jun, Fos, activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma (Maf) families. Growth factors, hormones and a variety of environmental stresses activate mitogen activated protein kinase (MAPK) cascades that enhance Jun/AP-1 activity, e.g. through phosphorylation thereby regulating cell proliferation, differentiation, transformation and/or apoptosis. Embryonic lethality of various AP-1 knock-outs, e.g. for Jun, JunB, Fra-1 and Fra-2 largely prevented functional studies in vivo. Therefore, conditional knock-out strategies, in particular for the epidermis, have become an important model to study the regulation and function of AP-1 subunits in physiological and pathological processes in vivo. Jun is regarded as a positive regulator of keratinocyte proliferation/differentiation during development and in skin cancer through its direct transcriptional effect on epidermal growth factor receptor (EGFR) expression. In contrast, JunB can antagonize proliferation of keratinocytes and hematopoietic stem cells. Furthermore, it has been demonstrated in patient's samples and an inducible mouse model that down-regulation of JunB/AP-1 in keratinocytes is one initiating event in the aetiology of psoriasis which is characterized by increased cell proliferation and deregulated cytokine expression.
Collapse
Affiliation(s)
- Rainer Zenz
- Research Institute of Molecular Pathology (I.M.P.), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| | | |
Collapse
|
185
|
Song S, Byrd JC, Mazurek N, Liu K, Koo JS, Bresalier RS. Galectin-3 modulates MUC2 mucin expression in human colon cancer cells at the level of transcription via AP-1 activation. Gastroenterology 2005; 129:1581-91. [PMID: 16285957 DOI: 10.1053/j.gastro.2005.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 08/03/2005] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Galectin-3 and MUC2 intestinal mucin each have been correlated with the malignant behavior of colon cancer cells. Galectin-3 modulates expression of MUC2 protein, but the specific regulatory mechanisms are unknown. This study sought to determine how galectin-3 increases MUC2 expression. METHODS Galectin-3 levels in human colon cancer cells of high and low metastatic ability were manipulated via expression of galectin-3 complementary DNA in sense or antisense orientation. Galectin-3 and MUC2 protein expression were determined by Western analysis and immunocytochemistry. Transient transfections of promoter reporter constructs were used to monitor MUC2 transcription and AP-1 activity. Electrophoretic mobility shift assays, site-directed mutagenesis, and chromatin immunoprecipitation were used to monitor the participation of AP-1 in MUC2 transcription. RESULTS Alterations in galectin-3 levels correlated with both MUC2 protein expression and transcription. By using MUC2 promoter constructs of different lengths, galectin-3 responsiveness was found between 1500 and 2186 bp upstream of the translation start site, a region that contains 1 consensus AP-1 binding site. AP-1 activity paralleled MUC2 transcription in the different cell lines. Mutation in the AP-1 site markedly decreased MUC2 promoter activity, and MUC2 transcription was inhibited by cotransfection with a dominant-negative AP-1 vector. Electrophoretic mobility shift assays, co-immunoprecipitation, and chromatin immunoprecipitation analyses suggested an association between galectin-3, c-Jun, and Fra-1 in forming a complex at the AP-1 site on the MUC2 promoter. CONCLUSIONS Galectin-3 up-regulation of MUC2 transcription occurs at the level of transcription through AP-1 activation. This may have important implications for understanding the role of galectin-3 and MUC2 in colon cancer metastasis.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medicine and Nutrition, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | |
Collapse
|
186
|
Milde-Langosch K, Bamberger AM, Rieck G, Grund D, Hemminger G, Müller V, Löning T. Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer. Br J Cancer 2005; 92:2206-15. [PMID: 15928662 PMCID: PMC2361826 DOI: 10.1038/sj.bjc.6602655] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Extracellular-regulated kinases (ERK1, ERK2) play important roles in the malignant behaviour of breast cancer cells in vitro. In our present study, 148 clinical breast cancer samples (120 cases with follow-up data) were studied for the expression of ERK1, ERK2 and their phosphorylated forms p-ERK1 and p-ERK2 by immunoblotting, and p-ERK1/2 expression in corresponding paraffin sections was analysed by immunohistochemistry. The results were correlated with established clinical and histological prognostic parameters, follow-up data and expression of seven cell-cycle regulatory proteins as well as MMP1, MMP9, PAI-1 and AP-1 transcription factors, which had been analysed before. High p-ERK1 expression as determined by immunoblots correlated significantly with a low frequency of recurrences and infrequent fatal outcome (P=0.007 and 0.008) and was an independent indicator of long relapse-free and overall survival in multivariate analysis. By immunohistochemistry, strong p-ERK staining in tumour cells was associated with early stages (P=0.020), negative nodal status (P=0.003) and long recurrence-free survival (P=0.017). In contrast, expression of the unphosphorylated kinases ERK1 and ERK2 was not associated with clinical and histological prognostic parameters, except a positive correlation with oestrogen receptor status. Comparison with the expression of formerly analysed cell-cycle- and invasion-associated proteins corroborates our conclusion that activation of ERK1 and ERK2 is not associated with enhanced proliferation and invasion of mammary carcinomas.
Collapse
Affiliation(s)
- K Milde-Langosch
- Institute of Gynecopathology, University Clinics Hamburg-Eppendorf (UKE), Martinistr. 52, Hamburg D-20246, Germany.
| | | | | | | | | | | | | |
Collapse
|
187
|
Rui T, Kvietys PR. NFkappaB and AP-1 differentially contribute to the induction of Mn-SOD and eNOS during the development of oxidant tolerance. FASEB J 2005; 19:1908-10. [PMID: 16157693 DOI: 10.1096/fj.05-4028fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of cardiac myocytes to anoxia/reoxygenation (A/R) increases myocyte oxidant stress and converts the myocytes to a proinflammatory phenotype. These oxidant-induced effects are prevented by pretreatment of the myocytes with an oxidant stress (A/R or H2O2) 24 h earlier (oxidant tolerance). Although NF-kappaB and AP-1 (nuclear signaling) and Mn-SOD and eNOS (effector enzymes) have been implicated in the development oxidant tolerance, the precise relationship between the nuclear transcription factors and the effector enzymes in the development of oxidant tolerance has not been defined. Herein, we show that an initial A/R challenge results in nuclear accumulation of both NF-kappaB and AP-1 (EMSA). In addition, blockade of nuclear translocation of NF-kappaB (SN50) or AP-1 (decoy oligonucleotide) prevents the development of oxidant tolerance, i.e., the second A/R challenge produces the same quantitative effects as the initial A/R challenge. In this model, nuclear translocation of both NF-kappaB and AP-1 is required for induction of Mn-SOD, while nuclear translocation of AP-1, but not NF-kappaB, is a prerequisite for induction of eNOS. Collectively, our findings indicate that NF-kappaB and AP-1 work in concert to ensure the induction eNOS and Mn-SOD, which in turn are important for the development of oxidant tolerance.
Collapse
Affiliation(s)
- Tao Rui
- Vascular Cell Biology Laboratory, Centre for Critical Illness Research, Lawson Health Research Institute and Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
188
|
Watanabe M, Sasaki M, Itoh K, Higashihara M, Umezawa K, Kadin ME, Abraham LJ, Watanabe T, Horie R. JunB Induced by Constitutive CD30–Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase Signaling Activates the CD30 Promoter in Anaplastic Large Cell Lymphoma and Reed-Sternberg Cells of Hodgkin Lymphoma. Cancer Res 2005; 65:7628-34. [PMID: 16140928 DOI: 10.1158/0008-5472.can-05-0925] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High expression of CD30 and JunB is characteristic of tumor cells in anaplastic large cell lymphoma (ALCL) and Hodgkin lymphoma (HL). Possible interactions of CD30 and JunB were examined in this study. We found that the CD30 promoter in tumor cells of both nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK)-positive and NPM-ALK-negative ALCL and HL is regulated by a constitutively active CD30-extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinase (MAPK). Phosphorylation of ERK1/2 MAPK was confirmed in nuclei of tumor cells in both ALCL and HL. CD30-ERK1/2 MAPK signals induce JunB expression, which maintains high activity of the CD30 promoter. JunB induction seems to be largely independent of nuclear factor kappaB in ALCL and HL. These results show a common mechanism of CD30 overexpression in ALCL and HL, although the outcome of CD30 signaling differs between NPM-ALK-positive ALCL and NPM-ALK-negative ALCL, cutaneous ALCL, and HL as we recently reported.
Collapse
Affiliation(s)
- Mariko Watanabe
- Fourth Department of Internal Medicine, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Li J, Werner E, Hergenhahn M, Poirey R, Luo Z, Rommelaere J, Jauniaux JC. Expression profiling of human hepatoma cells reveals global repression of genes involved in cell proliferation, growth, and apoptosis upon infection with parvovirus H-1. J Virol 2005; 79:2274-86. [PMID: 15681429 PMCID: PMC546555 DOI: 10.1128/jvi.79.4.2274-2286.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Autonomous parvoviruses are characterized by their stringent dependency on host cell S phase and their cytopathic effects on neoplastic cells. To better understand the interactions between the virus and its host cell, we used oligonucleotide arrays that carry more than 19,000 unique human gene sequences to profile the gene expression of the human hepatocellular carcinoma cell line QGY-7703 at two time points after parvovirus H-1 infection. At the 6-h time point, a single gene was differentially expressed with a >2.5-fold change. At 12 h, 105 distinct genes were differentially expressed in virus-infected cells compared to mock-treated cells, with 93% of these genes being down-regulated. These repressed genes clustered mainly into classes involved in transcriptional regulation, signal transduction, immune and stress response, and apoptosis, as exemplified by genes encoding the transcription factors Myc, Jun, Fos, Ids, and CEBPs. Quantitative real-time reverse transcription-PCR analysis on selected genes validated the array data and allowed the changes in cellular gene expression to be correlated with the accumulation of viral transcripts and NS1 protein. Western blot analysis of several cellular proteins supported the array results and substantiated the evidence given by these and other data to suggest that the H-1 virus kills QGY-7703 cells by a nonapoptotic process. The promoter regions of most of the differentially expressed genes analyzed fail to harbor any motif for sequence-specific binding of NS1, suggesting that direct binding of NS1 to cellular promoters may not participate in the modulation of cellular gene expression in H-1 virus-infected cells.
Collapse
Affiliation(s)
- Jianhong Li
- Department of Physiology and Biophysics, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
190
|
Wisdom R, Huynh L, Hsia D, Kim S. RAS and TGF-β exert antagonistic effects on extracellular matrix gene expression and fibroblast transformation. Oncogene 2005; 24:7043-54. [PMID: 16007133 DOI: 10.1038/sj.onc.1208870] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ras, Raf, and Fos function as components in a signal transduction pathway that is constitutively active in many cancers. Many of the changes that underlie cell transformation arise through changes in gene expression. We have used gene expression profiling of 3T3 cells transformed by Ras, Raf, and Fos to define the common and distinct targets of transcriptional control by each of these oncogenes. In this analysis, the most strongly conserved feature of cell transformation at the transcriptional level is the transcriptional repression of genes that encode components of the extracellular matrix (ECM). TGF-beta treatment of fibroblasts is known to increase production of ECM, suggesting that TGF-beta might selectively reverse some of the gene expression changes that occur during cell transformation. Using gene expression profiling of the TGF-beta response, we show that the ability of TGF-beta to reverse the changes in gene expression brought about by cellular transformation is essentially confined to genes that encode components of the ECM and the cytoskeleton. This selective reversal of transformation-induced changes in gene expression is associated with partial reversal of many parameters of cell transformation. The results demonstrate a correlation between gene repression by the Ras/Raf/ERK signaling pathway, gene activation by the TGF-beta signaling pathway, and the transformed phenotype in fibroblasts.
Collapse
Affiliation(s)
- Ron Wisdom
- UC Davis Cancer Center and Division of Hematology and Oncology, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
191
|
Cummins EP, Taylor CT. Hypoxia-responsive transcription factors. Pflugers Arch 2005; 450:363-71. [PMID: 16007431 DOI: 10.1007/s00424-005-1413-7] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/11/2005] [Indexed: 01/25/2023]
Abstract
Hypoxia is a common pathophysiological occurrence with a profound impact on the cellular transcriptome. The consequences of hypoxia-induced or hypoxia-repressed gene expression have important implications in disease processes as diverse as tumour development and chronic inflammation. While the hypoxia-inducible factor (HIF-1) plays a major role in controlling the ubiquitous transcriptional response to hypoxia, it is clear that a number of other transcription factors are also activated either directly or indirectly. In this review, we comprehensively discuss the transcription factors that have been reported to be hypoxia-responsive and the signalling mechanisms leading to their activation. Understanding such events will enhance our understanding of cellular oxygen sensing.
Collapse
Affiliation(s)
- Eoin P Cummins
- Department of Medicine and Therapeutics, The Conway Institute for Biomolecular and Biomedical Research and the Dublin Molecular Medicine Centre, University College Dublin, Belfield, Dublin, 4, Ireland
| | | |
Collapse
|
192
|
Rannou F, François M, Corvol MT, Berenbaum F. Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine 2005; 73:29-36. [PMID: 16087381 DOI: 10.1016/j.jbspin.2004.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 12/27/2004] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a connective tissue disease characterized by destruction of the joint cartilage and subsequently of the underlying bone. Cartilage destruction is due to proteolysis by enzymes called metalloproteinases (MMPs), whose production and expression are regulated by numerous local mediators such as cytokines, growth factors, prostaglandins, oxygen species, and neuropeptides. MMP activation is largely due to a stimulatory effect of cytokines including IL-1beta and TNFalpha. When these cytokines bind to their membrane receptor, they set off signaling cascades, with activation of TGFbeta-activating kinase (TAK-1), of NF-kappaB by Ikappa-B kinase, of mitogen-activated protein kinases (MAP kinases), and finally of activator protein-1 (AP-1). Tissue inhibitors of MMPs (TIMPs) specifically inhibit MMPs. The interrelations between joint inflammation and joint destruction remain poorly understood. Experimental data suggest that IL-1 may be involved chiefly in joint destruction and TNF in joint inflammation. However, TNF antagonists are potent inhibitors of joint destruction in clinical practice. These results suggest that the mediators function as a network and that inhibition of a single mediator can affect the entire web. Insights gained into the innermost mechanisms of cartilage breakdown in patients with RA have led to major therapeutic breakthroughs. Thus, TNF antagonists have proved highly effective in RA. Future progress will no doubt stem from new knowledge about the extracellular mediators and intracellular signaling pathways that lead to the production and activation of enzymes responsible for cartilage degradation.
Collapse
|
193
|
Mishra JP, Mishra S, Gee K, Kumar A. Differential involvement of calmodulin-dependent protein kinase II-activated AP-1 and c-Jun N-terminal kinase-activated EGR-1 signaling pathways in tumor necrosis factor-alpha and lipopolysaccharide-induced CD44 expression in human monocytic cells. J Biol Chem 2005; 280:26825-37. [PMID: 15923644 DOI: 10.1074/jbc.m500244200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD44 plays a crucial role in cell migration, inflammation, and immune responses. Alteration in the levels of CD44 expression on monocytic cells by endotoxins and immunoregulatory cytokines may modulate the migration of immune cells to inflammatory sites and the development of immune responses. Lipopolysaccharide (LPS) and the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), act as important regulators of CD44 expression in human monocytic cells. We previously demonstrated that the c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase (MAPK), differentially regulated LPS- but not TNF-alpha-induced CD44 expression in monocytic cells. In this study, our results suggest that the calcium signaling pathway, in particular calmodulin (CaM) and CaM-dependent protein kinase II (CaMK-II), is involved in TNF-alpha- but not LPS-induced CD44 expression. CD44 promoter analysis suggested the participation of distinct transcription factors AP-1 and Egr-1 in TNF-alpha- and LPS-induced CD44 expression, respectively. Furthermore, TNF-alpha-induced CD44 expression was regulated by AP-1 through the activation of the CaMK-II pathway, whereas LPS-induced CD44 transcription was regulated specifically by Egr-1 through JNK activation. Overall, the results suggest the involvement of two distinct and independent signaling pathways involved in the regulation of CD44 transcription that may represent potential targets for anti-inflammatory agents capable of inhibiting CD44-mediated cell migration.
Collapse
Affiliation(s)
- Jyoti P Mishra
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
194
|
Song S, Byrd JC, Koo JS, Bresalier RS. Bile acids induce MUC2 overexpression in human colon carcinoma cells. Cancer 2005; 103:1606-14. [PMID: 15754327 DOI: 10.1002/cncr.21015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mucin alterations are a common feature of colonic neoplasia, and alterations in MUC2 mucin have been associated with tumor progression in the colon. Bile acids have been linked to colorectal carcinogenesis and mucin secretion, but their effects on mucin gene expression in human colon carcinoma cells is unknown METHODS Human colon carcinoma cells were treated </= 6 hours with 10-200 microM deoxycholate, chenodeoxycholate, or ursodeoxycholate. MUC2 protein was assayed by Western blot analysis and MUC2 transcription was assayed using a MUC2 promoter reporter luciferase construct. Transcription activator protein 1 (AP-1) activity was measured using an AP-1 reporter construct and confirmed by Western blot analysis for c-Jun/AP-1. RESULTS MUC2 transcription and MUC2 protein expression were increased three to fourfold by bile acids in a time and dose-dependent manner with no effect on cell viability. AP-1 activity was also increased (deoxycholate > chenodeoxycholate > ursodeoxycholate). Treatment with the putative chemopreventive agent curcumin, which decreased AP-1 activity, also decreased MUC2 transcription. Cotransfection with a dominant negative AP-1 vector decreased MUC2 transcription, confirming the significance of AP-1 in MUC2 induction by deoxycholate. Calphostin C, a specific inhibitor of protein kinase C (PKC), greatly decreased bile acid-induced MUC2 transcription and AP-1 activity, whereas inhibitors of MAP kinase had no effect. CONCLUSIONS Bile acids induced mucin expression in human colon carcinoma cells by increasing MUC2 transcription through a process involving MAP kinase-independent, PKC-dependent activation of AP-1.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medicine and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | |
Collapse
|
195
|
Burch PM, Heintz NH. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 2005; 7:741-51. [PMID: 15890020 DOI: 10.1089/ars.2005.7.741] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reactive oxygen and nitrogen species inhibit or promote cell proliferation by modulating the cell signaling pathways that dictate decisions between cell survival, proliferation, and death. In the growth factor-dependent pathways that regulate mitogenesis, numerous positive and negative effectors of signaling are influenced by physiological fluctuations of oxidants, including receptor tyrosine kinases, small GTPases, mitogen-activated protein kinases, protein phosphatases, and transcription factors. The same mitogenic pathways that are sensitive to oxidant levels also directly regulate the expression of cyclin D1, a labile factor required for progression through the G1 phase on the cell cycle. Because the transition from G0 to G1 is the only phase of the cell cycle that is not regulated by cyclin-dependent kinases, but rather by redox-dependent signaling pathways, expression of cyclin D1 represents a primary regulatory node for the dose-dependent effects of oxidants on the induction of cell growth. We suggest that expression of cyclin D1 represents a useful marker for assessing the integration of proliferative and growth inhibitory effects of oxidants on the redox-dependent signaling events that control reentry into the cell cycle.
Collapse
Affiliation(s)
- Peter M Burch
- Environmental Pathology Program and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
196
|
Ghosh S, Wu Y, Li R, Hu Y. Jun proteins modulate the ovary-specific promoter of aromatase gene in ovarian granulosa cells via a cAMP-responsive element. Oncogene 2005; 24:2236-46. [PMID: 15688015 DOI: 10.1038/sj.onc.1208415] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estrogen is critical to both normal mammary gland and breast cancer development. Circulating levels of estrogen in premenopausal women are primarily determined by the action of aromatase in ovarian granulosa cells that converts testosterone to estradiol. In the current study, we unraveled an important role of Jun proteins in modulating ovary-specific aromatase expression. Ectopic expression of the Jun proteins in a human granulosa cell line significantly inhibited an ovary-specific promoter (PII) of the aromatase gene, whereas expression of dominant-negative mutants of Jun led to increased promoter activity. The Jun-mediated repression was specific to the aromatase promoter, as Jun proteins stimulated known AP1-responsive promoters in the same cellular context. Both the activation and basic leucine zipper domains of Jun were required for the transcriptional repression. Electrophoretic gel mobility assay showed that endogenous Jun proteins bound to a functionally important cAMP-responsive element (CRE) in the PII promoter-proximal region. Alteration of the CRE-like site impaired both the cAMP-responsive transcriptional activation and Jun-mediated repression. Furthermore, chromatin immunoprecipitation indicated the presence of cJun at the proximal region of the native PII promoter. Taken together, our work suggests that Jun proteins may attenuate estrogen biosynthesis by directly downregulating transcription of the aromatase gene in ovarian granulosa cells.
Collapse
Affiliation(s)
- Sagar Ghosh
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
197
|
Ameyar-Zazoua M, Wisniewska MB, Bakiri L, Wagner EF, Yaniv M, Weitzman JB. AP-1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene. Oncogene 2005; 24:2298-306. [PMID: 15688012 DOI: 10.1038/sj.onc.1208424] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence is accumulating about the role of individual AP-1 components in cell proliferation and transformation. Notably, Ras-mediated transformation is characterized by the upregulation of particular AP-1 members, such as c-Jun and Fra-1. The p14/p19ARF tumor suppressor gene is a key link between oncogenic Ras signaling and the p53 pathway. We explored the involvement of AP-1 dimers in the transcriptional regulation of the p14/p19ARF gene. We demonstrate that both the human and mouse ARF promoters are transcriptional targets of selective AP-1 dimers. The ARF promoter is regulated specifically by AP-1 heterodimers containing Fra-1. Overexpression of c-Jun approximately Fra-1 dimers in primary murine fibroblast cells led to the upregulation of the endogenous ARF protein and growth arrest. Conversely, inhibition of c-Jun or Fra-1 protein levels resulted in decreased ARF expression. In addition, we show that AP-1 dimers cooperate with oncogenic Ras in the transcriptional activation of the p14/p19ARF promoter. Thus, AP-1 heterodimers may contribute to the regulation of ARF expression upon oncogenic signaling.
Collapse
Affiliation(s)
- Maya Ameyar-Zazoua
- Unit of Gene Expression and Disease, Department of Developmental Biology, Pasteur Institute, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
198
|
Laderoute KR. The interaction between HIF-1 and AP-1 transcription factors in response to low oxygen. Semin Cell Dev Biol 2005; 16:502-13. [PMID: 16144688 DOI: 10.1016/j.semcdb.2005.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a critical regulator of the transcriptional response to low oxygen conditions (hypoxia/anoxia) experienced by mammalian cells in both physiological and pathophysiological circumstances. As our understanding of the biology and biochemistry of HIF-1 has grown, it has become apparent that cells adapt to signals generated by low oxygen through a network of stress responsive transcription factors or complexes, which are influenced by HIF-1 activity. This review summarizes our current understanding of the interaction of HIF-1 with AP-1, a classic example of a family of pleiotropic transcription factors that impact on diverse cellular processes and phenotypes, including the adaptation to low oxygen stress. The review focuses on experimental studies involving cultured cells exposed to hypoxia/anoxia, and describes both established and possible interactions between HIF-1 and AP-1 at different levels of cellular organization.
Collapse
Affiliation(s)
- Keith R Laderoute
- Biosciences Division, SRI International, Bldg. L, Rm. A258, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
199
|
Rannou F, François M, Corvol MT, Berenbaum F. Dégradation du cartilage et polyarthrite rhumatoïde. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.rhum.2004.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
200
|
Coyle AT, Kinsella BT. Characterization of promoter 3 of the human thromboxane A receptor gene. A functional AP-1 and octamer motif are required for basal promoter activity. FEBS J 2005; 272:1036-53. [PMID: 15691336 DOI: 10.1111/j.1742-4658.2004.04538.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The TPalpha and TPbeta isoforms of the human thromboxane A(2) receptor (TP) arise by differential splicing but are under the transcriptional control of two distinct promoters, termed Prm1 and Prm3, respectively (Coyle et al. 2002 Eur J Biochem269, 4058-4073). The aim of the current study was to determine the key factors regulating TPbeta expression by functionally characterizing Prm3, identifying the core promoter and the cis-acting elements regulating basal Prm3 activity. Hence, the ability of Prm3 and a series of Prm3 deleted/mutated subfragments to direct reporter gene expression in human erythroleukemia 92.1.7 and human embryonic kidney 293 cells was investigated. It was established that nucleotides -118 to +1 are critical for core Prm3 activity in both cell types. Furthermore, three distinct regulatory regions comprising of an upstream repressor sequence, located between -404 to -320, and two positive regulatory regions required for efficient basal gene expression, located between -154 to -106 and -50 to +1, were identified within the core Prm3. Deletion and site-directed mutagenesis of consensus Oct-1/2 and AP-1 elements within the latter -154 to -106 and -50 to +1 regions, respectively, substantially reduced Prm3 activity while mutation of both elements abolished Prm3 activity. Electromobility shift and supershift assays confirmed the specificity of nuclear factor binding to the latter Oct-1/2 and AP-1 elements. Moreover, herein it was established that the core AP-1 element mediates phorbol myristic acid-induction of Prm3 activity hence providing a mechanistic explanation of phorbol ester up-regulation of TPbeta mRNA expression.
Collapse
Affiliation(s)
- Adrian T Coyle
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | |
Collapse
|