151
|
Björnmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release 2014; 190:139-49. [DOI: 10.1016/j.jconrel.2014.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/14/2014] [Accepted: 03/21/2014] [Indexed: 02/03/2023]
|
152
|
Wikswo JP. The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood) 2014; 239:1061-72. [PMID: 25187571 PMCID: PMC4330974 DOI: 10.1177/1535370214542068] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS), consisting of interacting organs-on-chips or tissue-engineered, 3D organ constructs that use human cells, present an opportunity to bring new tools to biology, medicine, pharmacology, physiology, and toxicology. This issue of Experimental Biology and Medicine describes the ongoing development of MPS that can serve as in-vitro models for bone and cartilage, brain, gastrointestinal tract, lung, liver, microvasculature, reproductive tract, skeletal muscle, and skin. Related topics addressed here are the interconnection of organs-on-chips to support physiologically based pharmacokinetics and drug discovery and screening, and the microscale technologies that regulate stem cell differentiation. The initial motivation for creating MPS was to increase the speed, efficiency, and safety of pharmaceutical development and testing, paying particular regard to the fact that neither monolayer monocultures of immortal or primary cell lines nor animal studies can adequately recapitulate the dynamics of drug-organ, drug-drug, and drug-organ-organ interactions in humans. Other applications include studies of the effect of environmental toxins on humans, identification, characterization, and neutralization of chemical and biological weapons, controlled studies of the microbiome and infectious disease that cannot be conducted in humans, controlled differentiation of induced pluripotent stem cells into specific adult cellular phenotypes, and studies of the dynamics of metabolism and signaling within and between human organs. The technical challenges are being addressed by many investigators, and in the process, it seems highly likely that significant progress will be made toward providing more physiologically realistic alternatives to monolayer monocultures or whole animal studies. The effectiveness of this effort will be determined in part by how easy the constructs are to use, how well they function, how accurately they recapitulate and report human pharmacology and toxicology, whether they can be generated in large numbers to enable parallel studies, and if their use can be standardized consistent with the practices of regulatory science.
Collapse
Affiliation(s)
- John P Wikswo
- Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy, Vanderbilt University, The Vanderbilt Institute for Integrative Biosystems Research and Education, VU Station B 351807, Nashville, TN 37235-1807, USA
| |
Collapse
|
153
|
Abstract
Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.
Collapse
Affiliation(s)
- Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
154
|
Mahto SK, Charwat V, Ertl P, Rothen-Rutishauser B, Rhee SW, Sznitman J. Microfluidic platforms for advanced risk assessments of nanomaterials. Nanotoxicology 2014; 9:381-95. [DOI: 10.3109/17435390.2014.940402] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sanjeev Kumar Mahto
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,
| | - Verena Charwat
- BioSensor Technologies, Austrian Institute of Technology (AIT), Vienna, Austria,
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse, Vienna, Austria,
| | - Peter Ertl
- BioSensor Technologies, Austrian Institute of Technology (AIT), Vienna, Austria,
| | | | - Seog Woo Rhee
- Department of Chemistry, College of Natural Sciences, Kongju National University, Kongju, South Korea
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,
| |
Collapse
|
155
|
Sato K, Sasaki N, Svahn HA, Sato K. Microfluidics for nano-pathophysiology. Adv Drug Deliv Rev 2014; 74:115-21. [PMID: 24001983 DOI: 10.1016/j.addr.2013.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/02/2013] [Accepted: 08/22/2013] [Indexed: 01/30/2023]
Abstract
Nanotechnology-based drug delivery systems hold promise for innovative medical treatment of cancers. While drug materials are constantly under development, there are no practical cell-based models to assess whether these materials can reach the target tissue. Recently developed microfluidic systems have revolutionized cell-based experiments. In these systems, vascular endothelial cells and interstitium are set in microchannels that mimic microvessels. Drug permeability can be assayed in these blood vessel models under fluidic conditions that mimic blood flow. In this review, we describe device fabrication, disease model development, nanoparticle permeability assays, and the potential utility of these systems in the future.
Collapse
|
156
|
Sung JH, Srinivasan B, Esch MB, McLamb WT, Bernabini C, Shuler ML, Hickman JJ. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure. Exp Biol Med (Maywood) 2014; 239:1225-39. [PMID: 24951471 DOI: 10.1177/1535370214529397] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The continued development of in vitro systems that accurately emulate human response to drugs or chemical agents will impact drug development, our understanding of chemical toxicity, and enhance our ability to respond to threats from chemical or biological agents. A promising technology is to build microscale replicas of humans that capture essential elements of physiology, pharmacology, and/or toxicology (microphysiological systems). Here, we review progress on systems for microscale models of mammalian systems that include two or more integrated cellular components. These systems are described as a "body-on-a-chip", and utilize the concept of physiologically-based pharmacokinetic (PBPK) modeling in the design. These microscale systems can also be used as model systems to predict whole-body responses to drugs as well as study the mechanism of action of drugs using PBPK analysis. In this review, we provide examples of various approaches to construct such systems with a focus on their physiological usefulness and various approaches to measure responses (e.g. chemical, electrical, or mechanical force and cellular viability and morphology). While the goal is to predict human response, other mammalian cell types can be utilized with the same principle to predict animal response. These systems will be evaluated on their potential to be physiologically accurate, to provide effective and efficient platform for analytics with accessibility to a wide range of users, for ease of incorporation of analytics, functional for weeks to months, and the ability to replicate previously observed human responses.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Chemical Engineering, Hongik University, Seoul 121-791, Republic of Korea
| | - Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Mandy Brigitte Esch
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - William T McLamb
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Catia Bernabini
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Michael L Shuler
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
157
|
Harink B, Le Gac S, Barata D, van Blitterswijk C, Habibovic P. Microtiter plate-sized standalone chip holder for microenvironmental physiological control in gas-impermeable microfluidic devices. LAB ON A CHIP 2014; 14:1816-1820. [PMID: 24752761 DOI: 10.1039/c4lc00190g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a microtiter plate-sized standalone chip holder for precise control of physiological conditions inside closed microfluidic cell culture systems, made from gas-impermeable materials. Specifically, we demonstrate the suitability of the holder to support cell growth in a glass chip, to allow time-lapse imaging of live cells and the creation of a hypoxic environment, all relevant for applications in regenerative medicine research.
Collapse
Affiliation(s)
- Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
158
|
The long and winding road of progress in the use of in vitro data for risk assessment purposes: From "carnation test" to integrated testing strategies. Toxicology 2014; 332:4-7. [PMID: 24769060 DOI: 10.1016/j.tox.2014.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 11/23/2022]
Abstract
This paper introduces the special issue on quantitative in vitro-in vivo extrapolations (QIVIVE). It highlights important issues in the development of in vitro toxicology towards its implementation in toxicological risk assessment.
Collapse
|
159
|
Ahmad AA, Wang Y, Gracz AD, Sims CE, Magness ST, Allbritton NL. Optimization of 3-D organotypic primary colonic cultures for organ-on-chip applications. J Biol Eng 2014; 8:9. [PMID: 24690469 PMCID: PMC4022271 DOI: 10.1186/1754-1611-8-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/07/2014] [Indexed: 12/15/2022] Open
Abstract
Background New advances enable long-term organotypic culture of colonic epithelial stem cells that develop into structures known as colonoids. Colonoids represent a primary tissue source acting as a potential starting material for development of an in vitro model of the colon. Key features of colonic crypt isolation and subsequent colonoid culture have not been systematically optimized compromising efficiency and reproducibility. Here murine crypt isolation yield and quality are optimized, and colonoid culture efficiency measured in microfabricated culture devices. Results An optimal incubation time of 60 min in a chelating buffer released 280,000 ± 28,000 crypts from the stroma of a single colon with 79.3% remaining intact. Mechanical agitation using an average acceleration of 1.5 × g liberated the highest quality crypts with 86% possessing well-defined lumens. Culture in 50% Matrigel resulted in the highest colonoid formation efficiency of 33 ± 5%. Immunostaining demonstrated that colonoids isolated under these conditions possessed stem/progenitor cells and differentiated cell lineages. Microfabrication substrates (glass, polystyrene, PDMS, and epoxy photoresists: SU-8 and 1002-F) were tested for compatibility with colonoid culture. PDMS promoted formation of 3-D colonoids containing stem/progenitor cells, while other substrates promoted outgrowth of a 2-D epithelial monolayer composed of differentiated cells. Conclusion Improved crypt isolation and 3-D colonoid culture, along with an understanding of colonic epithelial cell behavior in the presence of microfabrication substrates will support development of ‘organ-on-a-chip’ approaches for studies using primary colonic epithelium.
Collapse
Affiliation(s)
- Asad A Ahmad
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599 and North Carolina State University, Raleigh, NC 27695, USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam D Gracz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher E Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott T Magness
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599 and North Carolina State University, Raleigh, NC 27695, USA ; Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC 27599, USA ; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599 and North Carolina State University, Raleigh, NC 27695, USA ; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
160
|
L. Berg E, Hsu YC, Lee JA. Consideration of the cellular microenvironment: physiologically relevant co-culture systems in drug discovery. Adv Drug Deliv Rev 2014; 69-70:190-204. [PMID: 24524933 DOI: 10.1016/j.addr.2014.01.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/16/2014] [Accepted: 01/28/2014] [Indexed: 01/15/2023]
Abstract
There is renewed interest in phenotypic approaches to drug discovery, using cell-based assays to select new drugs, with the goal of improving pharmaceutical success. Assays that are more predictive of human biology can help researchers achieve this goal. Primary cells are more physiologically relevant to human biology and advances are being made in methods to expand the available cell types and improve the potential clinical translation of these assays through the use of co-cultures or three-dimensional (3D) technologies. Of particular interest are assays that may be suitable for industrial scale drug discovery. Here we review the use of primary human cells and co-cultures in drug discovery and describe the characteristics of co-culture models for inflammation biology (BioMAP systems), neo-vascularization and tumor microenvironments. Finally we briefly describe technical trends that may enable and impact the development of physiologically relevant co-culture assays in the near future.
Collapse
|
161
|
Leick M, Azcutia V, Newton G, Luscinskas FW. Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 2014; 355:647-56. [PMID: 24562377 PMCID: PMC3994997 DOI: 10.1007/s00441-014-1809-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
Abstract
The immune cell system is a critical component of host defense. Recruitment of immune cells to sites of infection, immune reaction, or injury is complex and involves coordinated adhesive interactions between the leukocyte and the endothelial cell monolayer that lines blood vessels. This article reviews basic mechanisms in the recruitment of leukocytes to tissues and then selectively reviews new concepts that are emerging based on advances in live cell imaging microscopy and mouse strains. These emerging concepts are altering the conventional paradigms of inflammatory leukocyte recruitment established in the early 1990s. Indeed, recent publications have identified previously unrecognized contributions from pericytes and interstitial leukocytes and their secreted products that guide leukocytes to their targets. Investigators have also begun to design organs on a chip. Recent reports indicate that this avenue of research holds much promise.
Collapse
Affiliation(s)
- Marion Leick
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
162
|
Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol 2014; 25:45-50. [DOI: 10.1016/j.copbio.2013.08.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
|
163
|
Sciancalepore AG, Sallustio F, Girardo S, Gioia Passione L, Camposeo A, Mele E, Di Lorenzo M, Costantino V, Schena FP, Pisignano D. A bioartificial renal tubule device embedding human renal stem/progenitor cells. PLoS One 2014; 9:e87496. [PMID: 24498117 PMCID: PMC3907467 DOI: 10.1371/journal.pone.0087496] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 12/20/2022] Open
Abstract
We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs) was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na+K+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5)% and (13±5)%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative “lab-on-a-chip” platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses.
Collapse
Affiliation(s)
- Anna Giovanna Sciancalepore
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
- * E-mail: (AGS); (DP)
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- Centro Addestramento Ricerca Scientifica in Oncologia (C.A.R.S.O.) Consortium, Valenzano, Italy
- Department of Science, Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Salvatore Girardo
- National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Lecce, Italy
| | - Laura Gioia Passione
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
- National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Lecce, Italy
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universitá del Salento, Lecce, Italy
| | - Andrea Camposeo
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
- National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Lecce, Italy
| | - Elisa Mele
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Mirella Di Lorenzo
- National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Lecce, Italy
| | - Vincenzo Costantino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Francesco Paolo Schena
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- Centro Addestramento Ricerca Scientifica in Oncologia (C.A.R.S.O.) Consortium, Valenzano, Italy
| | - Dario Pisignano
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, Italy
- National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Lecce, Italy
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Universitá del Salento, Lecce, Italy
- * E-mail: (AGS); (DP)
| |
Collapse
|
164
|
Chan CY, Huang PH, Guo F, Ding X, Kapur V, Mai JD, Yuen PK, Huang TJ. Accelerating drug discovery via organs-on-chips. LAB ON A CHIP 2013; 13:4697-710. [PMID: 24193241 PMCID: PMC3998760 DOI: 10.1039/c3lc90115g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Considerable advances have been made in the development of micro-physiological systems that seek to faithfully replicate the complexity and functionality of animal and human physiology in research laboratories. Sometimes referred to as "organs-on-chips", these systems provide key insights into physiological or pathological processes associated with health maintenance and disease control, and serve as powerful platforms for new drug development and toxicity screening. In this Focus article, we review the state-of-the-art designs and examples for developing multiple "organs-on-chips", and discuss the potential of this emerging technology to enhance our understanding of human physiology, and to transform and accelerate the drug discovery and preclinical testing process. This Focus article highlights some of the recent technological advances in this field, along with the challenges that must be addressed for these technologies to fully realize their potential.
Collapse
Affiliation(s)
- Chung Yu Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Xiaoyun Ding
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - John D. Mai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Po Ki Yuen
- Science & Technology, Corning Incorporated, Corning, New York, 14831-0001, USA. ; Fax: +1 607-974-5957; Tel: +1 607- 974-9680
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Fax: +1 814-865-9974; Tel: +1 814-863-4209
| |
Collapse
|
165
|
Alcendor DJ, Block FE, Cliffel DE, Daniels JS, Ellacott KLJ, Goodwin CR, Hofmeister LH, Li D, Markov DA, May JC, McCawley LJ, McLaughlin B, McLean JA, Niswender KD, Pensabene V, Seale KT, Sherrod SD, Sung HJ, Tabb DL, Webb DJ, Wikswo JP. Neurovascular unit on a chip: implications for translational applications. Stem Cell Res Ther 2013; 4 Suppl 1:S18. [PMID: 24564885 PMCID: PMC4029462 DOI: 10.1186/scrt379] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) dynamically controls exchange between the brain and the body, but this interaction cannot be studied directly in the intact human brain or sufficiently represented by animal models. Most existing in vitro BBB models do not include neurons and glia with other BBB elements and do not adequately predict drug efficacy and toxicity. Under the National Institutes of Health Microtissue Initiative, we are developing a three-dimensional, multicompartment, organotypic microphysiological system representative of a neurovascular unit of the brain. The neurovascular unit system will serve as a model to study interactions between the central nervous system neurons and the cerebral spinal fluid (CSF) compartment, all coupled to a realistic blood-surrogate supply and venous return system that also incorporates circulating immune cells and the choroid plexus. Hence all three critical brain barriers will be recapitulated: blood-brain, brain-CSF, and blood-CSF. Primary and stem cell-derived human cells will interact with a variety of agents to produce critical chemical communications across the BBB and between brain regions. Cytomegalovirus, a common herpesvirus, will be used as an initial model of infections regulated by the BBB. This novel technological platform, which combines innovative microfluidics, cell culture, analytical instruments, bioinformatics, control theory, neuroscience, and drug discovery, will replicate chemical communication, molecular trafficking, and inflammation in the brain. The platform will enable targeted and clinically relevant nutritional and pharmacologic interventions for or prevention of such chronic diseases as obesity and acute injury such as stroke, and will uncover potential adverse effects of drugs. If successful, this project will produce clinically useful technologies and reveal new insights into how the brain receives, modifies, and is affected by drugs, other neurotropic agents, and diseases.
Collapse
|
166
|
Yum K, Hong SG, Healy KE, Lee LP. Physiologically relevant organs on chips. Biotechnol J 2013; 9:16-27. [PMID: 24357624 DOI: 10.1002/biot.201300187] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/16/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology.
Collapse
Affiliation(s)
- Kyungsuk Yum
- Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Materials Science and Engineering, University of Texas, Arlington, TX, USA
| | | | | | | |
Collapse
|
167
|
Hattori K, Sugiura S, Kanamori T. Pressure-Driven Microfluidic Perfusion Culture Device for Integrated Dose-Response Assays. ACTA ACUST UNITED AC 2013; 18:437-45. [DOI: 10.1177/2211068213503155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
168
|
Microfluidics and its applications in quantitative biology. QUANTITATIVE BIOLOGY 2013. [DOI: 10.1007/s40484-014-0024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
169
|
Hamon M, Hong JW. New tools and new biology: recent miniaturized systems for molecular and cellular biology. Mol Cells 2013; 36:485-506. [PMID: 24305843 PMCID: PMC3887968 DOI: 10.1007/s10059-013-0333-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023] Open
Abstract
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology.
Collapse
Affiliation(s)
- Morgan Hamon
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849,
USA
| | - Jong Wook Hong
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849,
USA
- College of Pharmacy, Seoul National University, Seoul 151-741,
Korea
- Department of Bionano Engineering, Hanyang University, Ansan 426-791,
Korea
| |
Collapse
|
170
|
Yan Y, Björnmalm M, Caruso F. Particle carriers for combating multidrug-resistant cancer. ACS NANO 2013; 7:9512-9517. [PMID: 24215340 DOI: 10.1021/nn405632s] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multidrug resistance (MDR) in tumors accounts for significant treatment failure. Particle carriers offer potential benefits for treating cancer, including the ability to target tumors and to deliver multiple cargo, providing opportunities to overcome drug resistance. In this Perspective, we provide a brief introduction to the MDR mechanisms and implications of tumor heterogeneity that contribute to drug resistance. We also highlight recent advances in the design of particles aimed at treating resistant tumors through particle-based codelivery of therapeutics. Finally, we discuss future directions, where an increased understanding of the tumor biology can be leveraged to develop new and improved particle-based cancer therapies.
Collapse
Affiliation(s)
- Yan Yan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Victoria 3010, Australia
| | | | | |
Collapse
|
171
|
Abstract
'Organs-on-chips' are microengineered biomimetic systems containing microfluidic channels lined by living human cells, which replicate key functional units of living organs to reconstitute integrated human organ-level pathophysiology in vitro. These microdevices can be used to test efficacy and toxicity of drugs and chemicals, and to create in vitro models of human disease. Thus, they potentially represent low-cost alternatives to conventional animal models for pharmaceutical, chemical and environmental applications. Here we describe a protocol for the fabrication, microengineering and operation of these microfluidic organ-on-chip systems. First, microengineering is used to fabricate a multilayered microfluidic device that contains two parallel elastomeric microchannels separated by a thin porous flexible membrane, along with two full-height, hollow vacuum chambers on either side; this requires ∼3.5 d to complete. To create a 'breathing' lung-on-a-chip that mimics the mechanically active alveolar-capillary interface of the living human lung, human alveolar epithelial cells and microvascular endothelial cells are cultured in the microdevice with physiological flow and cyclic suction applied to the side chambers to reproduce rhythmic breathing movements. We describe how this protocol can be easily adapted to develop other human organ chips, such as a gut-on-a-chip lined by human intestinal epithelial cells that experiences peristalsis-like motions and trickling fluid flow. Also, we discuss experimental techniques that can be used to analyze the cells in these organ-on-chip devices.
Collapse
|
172
|
Domansky K, Leslie DC, McKinney J, Fraser JP, Sliz JD, Hamkins-Indik T, Hamilton GA, Bahinski A, Ingber DE. Clear castable polyurethane elastomer for fabrication of microfluidic devices. LAB ON A CHIP 2013; 13:3956-64. [PMID: 23954953 PMCID: PMC3877836 DOI: 10.1039/c3lc50558h] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules.
Collapse
Affiliation(s)
- Karel Domansky
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. LAB ON A CHIP 2013; 13:3562-8. [PMID: 23702711 DOI: 10.1039/c3lc50435b] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Organs-on-chips are microengineered in vitro tissue structures that can be used as platforms for physiological and pathological research. They provide tissue-like microenvironments in which different cell types can be co-cultured in a controlled manner to create synthetic organ mimics. Blood vessels are an integral part of all tissues in the human body. Development of vascular structures is therefore an important research topic for advancing the field of organs-on-chips since generated tissues will require a blood or nutrient supply. Here, we have engineered three-dimensional constructs of vascular tissue inside microchannels by injecting a mixture of human umbilical vein endothelial cells, human embryonic stem cell-derived pericytes (the precursors of vascular smooth muscle cells) and rat tail collagen I into a polydimethylsiloxane microfluidic channel with dimensions 500 μm × 120 μm × 1 cm (w × h × l). Over the course of 12 h, the cells organized themselves into a single long tube resembling a blood vessel that followed the contours of the channel. Detailed examination of tube morphology by confocal microscopy revealed a mature endothelial monolayer with complete PECAM-1 staining at cell-cell contacts and pericytes incorporated inside the tubular structures. We also demonstrated that tube formation was disrupted in the presence of a neutralizing antibody against transforming growth factor-beta (TGF-β). The TGF-β signaling pathway is essential for normal vascular development; deletion of any of its components in mouse development results in defective vasculogenesis and angiogenesis and mutations in humans have been linked to multiple vascular genetic diseases. In the engineered microvessels, inhibition of TGF-β signaling resulted in tubes with smaller diameters and higher tortuosity, highly reminiscent of the abnormal vessels observed in patients with one particular vascular disease known as hereditary hemorrhagic telangiectasia (HHT). In summary, we have developed microengineered three-dimensional vascular structures that can be used as a model to test the effects of drugs and study the interaction between different human vascular cell types. In the future, the model may be integrated into larger tissue constructs to advance the development of organs-on-chips.
Collapse
Affiliation(s)
- Andries D van der Meer
- BIOS/Lab on a Chip, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.
| | | | | | | | | |
Collapse
|
174
|
van de Stolpe A, den Toonder J. Workshop meeting report Organs-on-Chips: human disease models. LAB ON A CHIP 2013; 13:3449-70. [PMID: 23645172 DOI: 10.1039/c3lc50248a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The concept of "Organs-on-Chips" has recently evolved and has been described as 3D (mini-) organs or tissues consisting of multiple and different cell types interacting with each other under closely controlled conditions, grown in a microfluidic chip, and mimicking the complex structures and cellular interactions in and between different cell types and organs in vivo, enabling the real time monitoring of cellular processes. In combination with the emerging iPSC (induced pluripotent stem cell) field this development offers unprecedented opportunities to develop human in vitro models for healthy and diseased organ tissues, enabling the investigation of fundamental mechanisms in disease development, drug toxicity screening, drug target discovery and drug development, and the replacement of animal testing. Capturing the genetic background of the iPSC donor in the organ or disease model carries the promise to move towards "in vitro clinical trials", reducing costs for drug development and furthering the concept of personalized medicine and companion diagnostics. During the Lorentz workshop (Leiden, September 2012) an international multidisciplinary group of experts discussed the current state of the art, available and emerging technologies, applications and how to proceed in the field. Organ-on-a-chip platform technologies are expected to revolutionize cell biology in general and drug development in particular.
Collapse
|
175
|
Harink B, Le Gac S, Truckenmüller R, van Blitterswijk C, Habibovic P. Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine. LAB ON A CHIP 2013; 13:3512-28. [PMID: 23877890 DOI: 10.1039/c3lc50293g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of regenerative medicine is to restore or establish normal function of damaged tissues or organs. Tremendous efforts are placed into development of novel regenerative strategies, involving (stem) cells, soluble factors, biomaterials or combinations thereof, as a result of the growing need caused by continuous population aging. To satisfy this need, fast and reliable assessment of (biological) performance is sought, not only to select the potentially interesting candidates, but also to rule out poor ones at an early stage of development. Microfluidics may provide a new avenue to accelerate research and development in the field of regenerative medicine as it has proven its maturity for the realization of high-throughput screening platforms. In addition, microfluidic systems offer other advantages such as the possibility to create in vivo-like microenvironments. Besides the complexity of organs or tissues that need to be regenerated, regenerative medicine brings additional challenges of complex regeneration processes and strategies. The question therefore arises whether so much complexity can be integrated into microfluidic systems without compromising reliability and throughput of assays. With this review, we aim to investigate whether microfluidics can become widely applied in regenerative medicine research and/or strategies.
Collapse
Affiliation(s)
- Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Engineering and Technical Medicine, PO Box 217, 7500AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
176
|
Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A, Hofmeister LH, Matloff WJ. Scaling and systems biology for integrating multiple organs-on-a-chip. LAB ON A CHIP 2013; 13:3496-511. [PMID: 23828456 PMCID: PMC3818688 DOI: 10.1039/c3lc50243k] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coupled systems of in vitro microfabricated organs-on-a-chip containing small populations of human cells are being developed to address the formidable pharmacological and physiological gaps between monolayer cell cultures, animal models, and humans that severely limit the speed and efficiency of drug development. These gaps present challenges not only in tissue and microfluidic engineering, but also in systems biology: how does one model, test, and learn about the communication and control of biological systems with individual organs-on-chips that are one-thousandth or one-millionth of the size of adult organs, or even smaller, i.e., organs for a milliHuman (mHu) or microHuman (μHu)? Allometric scaling that describes inter-species variation of organ size and properties provides some guidance, but given the desire to utilize these systems to extend and validate human pharmacokinetic and pharmacodynamic (PK/PD) models in support of drug discovery and development, it is more appropriate to scale each organ functionally to ensure that it makes the suitable physiological contribution to the coupled system. The desire to recapitulate the complex organ-organ interactions that result from factors in the blood and lymph places a severe constraint on the total circulating fluid (~5 mL for a mHu and ~5 μL for a μHu) and hence on the pumps, valves, and analytical instruments required to maintain and study these systems. Scaling arguments also provide guidance on the design of a universal cell-culture medium, typically without red blood cells. This review presents several examples of scaling arguments and discusses steps that should ensure the success of this endeavour.
Collapse
Affiliation(s)
- John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | |
Collapse
|
177
|
Agarwal A, Goss JA, Cho A, McCain ML, Parker KK. Microfluidic heart on a chip for higher throughput pharmacological studies. LAB ON A CHIP 2013; 13:3599-608. [PMID: 23807141 PMCID: PMC3786400 DOI: 10.1039/c3lc50350j] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the design of a higher throughput "heart on a chip" which utilizes a semi-automated fabrication technique to process sub millimeter sized thin film cantilevers of soft elastomers. Anisotropic cardiac microtissues which recapitulate the laminar architecture of the heart ventricle are engineered on these cantilevers. Deflection of these cantilevers, termed Muscular Thin Films (MTFs), during muscle contraction allows calculation of diastolic and systolic stresses generated by the engineered tissues. We also present the design of a reusable one channel fluidic microdevice completely built out of autoclavable materials which incorporates various features required for an optical cardiac contractility assay: metallic base which fits on a heating element for temperature control, transparent top for recording cantilever deformation and embedded electrodes for electrical field stimulation of the tissue. We employ the microdevice to test the positive inotropic effect of isoproterenol on cardiac contractility at dosages ranging from 1 nM to 100 μM. The higher throughput fluidic heart on a chip has applications in testing of cardiac tissues built from rare or expensive cell sources and for integration with other organ mimics. These advances will help alleviate translational barriers for commercial adoption of these technologies by improving the throughput and reproducibility of readout, standardization of the platform and scalability of manufacture.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Disease Biophysics Group, Wyss Institute of Biologically Inspired Engineering, Harvard Stem Cell Institute, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Pierce Hall Rm 321, Cambridge, MA, 02138, USA
| | - Josue Adrian Goss
- Disease Biophysics Group, Wyss Institute of Biologically Inspired Engineering, Harvard Stem Cell Institute, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Pierce Hall Rm 321, Cambridge, MA, 02138, USA
| | - Alexander Cho
- Disease Biophysics Group, Wyss Institute of Biologically Inspired Engineering, Harvard Stem Cell Institute, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Pierce Hall Rm 321, Cambridge, MA, 02138, USA
| | - Megan Laura McCain
- Disease Biophysics Group, Wyss Institute of Biologically Inspired Engineering, Harvard Stem Cell Institute, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Pierce Hall Rm 321, Cambridge, MA, 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute of Biologically Inspired Engineering, Harvard Stem Cell Institute, School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Pierce Hall Rm 321, Cambridge, MA, 02138, USA
- ; Fax: +(617) 495-9837; Tel: +(617) 495-2850
| |
Collapse
|
178
|
Balowski JJ, Wang Y, Allbritton NL. Fabrication of 3D microstructures from interactions of immiscible liquids with a structured surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4107-12. [PMID: 23798498 PMCID: PMC3783858 DOI: 10.1002/adma.201301658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Indexed: 05/04/2023]
Abstract
A new lithography technique is presented that exploits the interactions of immiscible liquids with a structured surface. This highly parallel, "low-tech" method requires no dedicated equipment and easily produces curved and/or multi-level structures out of a variety of photoactive and non-photoactive materials.
Collapse
Affiliation(s)
- Joseph J. Balowski
- Department of Chemistry University of North Carolina Chapel Hill, NC 27599, USA
| | - Yuli Wang
- Department of Chemistry University of North Carolina Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry University of North Carolina Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
179
|
Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, van der Meer AD, van den Berg A. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 2013; 15:145-50. [PMID: 22955726 DOI: 10.1007/s10544-012-9699-7] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely understood and therefore a realistic model of the BBB is essential. We present here the smallest model of the BBB yet, using a microfluidic chip, and the immortalized human brain endothelial cell line hCMEC/D3. Barrier function is modulated both mechanically, by exposure to fluid shear stress, and biochemically, by stimulation with tumor necrosis factor alpha (TNF-α), in one single device. The device has integrated electrodes to analyze barrier tightness by measuring the transendothelial electrical resistance (TEER). We demonstrate that hCMEC/D3 cells could be cultured in the microfluidic device up to 7 days, and that these cultures showed comparable TEER values with the well-established Transwell assay, with an average (± SEM) of 36.9 Ω.cm(2) (± 0.9 Ω.cm(2)) and 28.2 Ω.cm(2) (± 1.3 Ω.cm(2)) respectively. Moreover, hCMEC/D3 cells on chip expressed the tight junction protein Zonula Occludens-1 (ZO-1) at day 4. Furthermore, shear stress positively influenced barrier tightness and increased TEER values with a factor 3, up to 120 Ω.cm(2). Subsequent addition of TNF-α decreased the TEER with a factor of 10, down to 12 Ω.cm(2). This realistic microfluidic platform of the BBB is very well suited to study barrier function in detail and evaluate drug passage to finally gain more insight into the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- L M Griep
- BIOS, Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Liu MC, Shih HC, Wu JG, Weng TW, Wu CY, Lu JC, Tung YC. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. LAB ON A CHIP 2013; 13:1743-53. [PMID: 23475014 DOI: 10.1039/c3lc41414k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Various microfluidic cell culture devices have been developed for in vitro cell studies because of their capabilities to reconstitute in vivo microenvironments. However, controlling flows in microfluidic devices is not straightforward due to the wide varieties of fluidic properties of biological samples. Currently, flow observations mainly depend on optical imaging and macro scale transducers, which usually require sophisticated instrumentation and are difficult to scale up. Without real time monitoring, the control of flows can only rely on theoretical calculations and numerical simulations. Consequently, these devices have difficulty in being broadly exploited in biological research. This paper reports a microfluidic device with embedded pressure sensors constructed using electrofluidic circuits, which are electrical circuits built by fluidic channels filled with ionic liquid. A microfluidic device culturing endothelial cells under various shear stress and hydrostatic pressure combinations is developed to demonstrate this concept. The device combines the concepts of electrofluidic circuits for pressure sensing, and an equivalent circuit model to design the cell culture channels. In the experiments, human umbilical vein endothelial cells (HUVECs) are cultured in the device with a continuous medium perfusion, which provides the combinatory mechanical stimulations, while the hydrostatic pressures are monitored in real time to ensure the desired culture conditions. The experimental results demonstrate the importance of real time pressure monitoring, and how both mechanical stimulations affect the HUVEC culture. This developed microfluidic device is simple, robust, and can be easily scaled up for high-throughput experiments. Furthermore, the device provides a practical platform for an in vitro cell culture under well-controlled and dynamic microenvironments.
Collapse
Affiliation(s)
- Man-Chi Liu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
181
|
Oliveira MB, Salgado CL, Song W, Mano JF. Combinatorial on-chip study of miniaturized 3D porous scaffolds using a patterned superhydrophobic platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:768-778. [PMID: 23169604 DOI: 10.1002/smll.201201436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Indexed: 06/01/2023]
Abstract
One of the main challenges in tissue engineering (TE) is to obtain optimized products, combining biomaterials, cells and soluble factors able to stimulate tissue regeneration. Multiple combinations may be considered by changing the conditions among these three factors. The unpredictable response of each combination requires time-consuming tests. High-throughput methodologies have been proposed to master such complex analyses in TE. Usually, these tests are performed using cells cultured into 2D biomaterials or by dispensing arrays of cell-loaded hydrogels. For the first time an on-chip combinatorial study of 3D miniaturized porous scaffolds is proposed, using a patterned bioinspired superhydrophobic platform. Arrays of biomaterials are dispensed and processed in situ as porous scaffolds with distinct composition, surface characteristics, porosity/pore size, and mechanical properties. On-chip porosity, pore size, and mechanical properties of scaffolds based on chitosan and alginate are assessed by adapting microcomputed tomography equipment and a dynamic mechanical analyzer, as well as cell response after 24 hours. The interactions between cell types of two distinct origins-osteoblast-like and fibroblasts-and the scaffolds modified with fibronectin are studied and validated by comparison with conventional destructive methods (dsDNA quantification and MTS tests). Physical and biological on-chip analyses are coherent with the conventional measures, and conclusions about the most favorable conditions for each cell type are taken.
Collapse
Affiliation(s)
- Mariana B Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue, Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | | | |
Collapse
|
182
|
Wikswo JP, Block FE, Cliffel DE, Goodwin CR, Marasco CC, Markov DA, McLean DL, McLean JA, McKenzie JR, Reiserer RS, Samson PC, Schaffer DK, Seale KT, Sherrod SD. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans Biomed Eng 2013; 60:682-90. [PMID: 23380852 PMCID: PMC3696887 DOI: 10.1109/tbme.2013.2244891] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman (mHu) systems operating for weeks to months present exciting and important engineering challenges such as determining the appropriate size for each organ to ensure appropriate relative organ functional activity, achieving appropriate cell density, providing the requisite universal perfusion media, sensing the breadth of physiological responses, and maintaining stable control of the entire system, while maintaining fluid scaling that consists of ~5 mL for the mHu and ~5 μL for the μHu. We believe that successful mHu and μHu systems for drug development and systems biology will require low-volume microdevices that support chemical signaling, microfabricated pumps, valves and microformulators, automated optical microscopy, electrochemical sensors for rapid metabolic assessment, ion mobility-mass spectrometry for real-time molecular analysis, advanced bioinformatics, and machine learning algorithms for automated model inference and integrated electronic control. Toward this goal, we are building functional prototype components and are working toward top-down system integration.
Collapse
Affiliation(s)
- John P. Wikswo
- Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics, and Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - Frank E. Block
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631 USA
| | - David E. Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235-1822 USA
| | - Cody R. Goodwin
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235-1822 USA
| | - Christina C. Marasco
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631 USA
| | - Dmitry A. Markov
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232-6840 USA
| | - David L. McLean
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235-1822 USA
| | | | - Ronald S. Reiserer
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - Philip C. Samson
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - David K. Schaffer
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| | - Kevin T. Seale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235-1631 USA
| | - Stacy D. Sherrod
- Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235-1807 USA
| |
Collapse
|
183
|
Sivagnanam V, Gijs MAM. Exploring Living Multicellular Organisms, Organs, and Tissues Using Microfluidic Systems. Chem Rev 2013; 113:3214-47. [DOI: 10.1021/cr200432q] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Martin A. M. Gijs
- Laboratory
of Microsystems, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland
| |
Collapse
|
184
|
Businaro L, De Ninno A, Schiavoni G, Lucarini V, Ciasca G, Gerardino A, Belardelli F, Gabriele L, Mattei F. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. LAB ON A CHIP 2013; 13:229-39. [PMID: 23108434 DOI: 10.1039/c2lc40887b] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The reconstitution of a complex microenvironment on microfluidic chips is one of the cornerstones to demonstrate the improved flexibility of these devices with respect to macroscale in vitro approaches. In this work, we realised an on-chip model to investigate the interactions between cancer and immune system. To this end, we exploited mice deficient (Knock Out, KO) for interferon regulatory factor 8 (IRF-8), a transcription factor essential for the induction of competent immune responses, to investigate how IRF-8 gene expression contributes to regulate immune and melanoma cells crosstalk. In vivo, IRF-8 KO mice are highly permissive to B16 melanoma growth due to failure of immune cells to properly exert immunosurveillance. B16 cells and immune cells isolated from the spleen of wild type (WT) and IRF-8 KO mice were co-cultured for one week in a PDMS platform and monitored by fluorescence microscopy and time-lapse recordings. We observed that WT spleen cells migrated through microchannels connecting the culturing chambers towards B16 cells and tightly interacted with tumor cells, forming clusters of activation. In contrast, IRF-8 KO immune cells poorly interacted with melanoma cells. In parallel, B16 cells were more attracted towards microchannels, acquiring a more invasive behaviour in the presence of IRF-8 KO spleen cells, with respect to WT cells. Our results strongly confirm the in vivo observations and highlight the value of on-chip co-culture systems as a useful in vitro tool to elucidate the reciprocal interactions between cancer cells and host immune system, with relevant impact in the development of more effective anti-tumor therapeutic strategies.
Collapse
Affiliation(s)
- Luca Businaro
- Italian National Research Council-Institute for Photonics and Nanotechnologies (CNR-IFN), Via Cineto Romano 42, Rome, 00156, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Huang G, Wang L, Wang S, Han Y, Wu J, Zhang Q, Xu F, Lu TJ. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 2012; 4:042001. [PMID: 23164720 DOI: 10.1088/1758-5082/4/4/042001] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.
Collapse
Affiliation(s)
- Guoyou Huang
- Biomedical Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Wei Z, Amponsah PK, Al-Shatti M, Nie Z, Bandyopadhyay BC. Engineering of polarized tubular structures in a microfluidic device to study calcium phosphate stone formation. LAB ON A CHIP 2012; 12:4037-40. [PMID: 22960772 PMCID: PMC3503450 DOI: 10.1039/c2lc40801e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This communication describes the formation of tubular structures with a circular cross-section by growing epithelial cells in a microfluidic (MF) device. Here we show for the first time that it is possible to form a monolayer of polarized cells, embedded within the MF device which can function as an in vivo epithelia. We showed: i) the overexpression of specific protein(s) of interest (i.e., ion channel and transport proteins) is feasible inside tubular structures in MFs; ii) the functional kinetic information of Ca(2+) in cells can be measured by microflurometry using cell permeable Ca(2+) probe under confocal microscope; and iii) calcium phosphate stones can be produced in real time in MFs with Ca(2+) transporting epithelia. These data suggest that tubular structures inside this MF platform can be used as a suitable model to understand the molecular and pharmacological basis of calcium phosphate stone formation in the epithelial or other similar cellular micro environments.
Collapse
Affiliation(s)
- Zengjiang Wei
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
- Department of Chemistry and Biochemistry, University of Maryland College Park, MD, 20742, USA
| | - Prince K. Amponsah
- Calcium Signaling Laboratory, DVA Medical Center, 50 Irving Street NW, Washington, DC, 20422, USA
| | - Mariyam Al-Shatti
- Calcium Signaling Laboratory, DVA Medical Center, 50 Irving Street NW, Washington, DC, 20422, USA
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland College Park, MD, 20742, USA
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, DVA Medical Center, 50 Irving Street NW, Washington, DC, 20422, USA
| |
Collapse
|
187
|
Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. LAB ON A CHIP 2012; 12:2156-64. [PMID: 22555377 DOI: 10.1039/c2lc40089h] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this field made over the past two years that are focused on the development of 'Organs-on-Chips' in which living cells are cultured within microfluidic devices that have been microengineered to reconstitute tissue arrangements observed in living organs in order to study physiology in an organ-specific context and to develop specialized in vitro disease models. We discuss the potential of organs-on-chips as alternatives to conventional cell culture models and animal testing for pharmaceutical and toxicology applications. We also explore challenges that lie ahead if this field is to fulfil its promise to transform the future of drug development and chemical safety testing.
Collapse
Affiliation(s)
- Dongeun Huh
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|