151
|
Triacca V, Güç E, Kilarski WW, Pisano M, Swartz MA. Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress. Circ Res 2017; 120:1440-1452. [DOI: 10.1161/circresaha.116.309828] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/12/2023]
Abstract
Rationale:
The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell–cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport.
Objective:
The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway.
Methods and Results:
We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation.
Conclusions:
These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues.
Collapse
Affiliation(s)
- Valentina Triacca
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Esra Güç
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Witold W. Kilarski
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Marco Pisano
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Melody A. Swartz
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| |
Collapse
|
152
|
Tajima S, Tabata Y. Preparation of EpH4 and 3T3L1 cells aggregates incorporating gelatin hydrogel microspheres for a cell condition improvement. Regen Ther 2017; 6:90-99. [PMID: 30271843 PMCID: PMC6134911 DOI: 10.1016/j.reth.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare three dimensional (3D) of mouse mammary epithelial EpH4 and mouse preadipocyte 3T3L1 cells in the presence of gelatin hydrogel microspheres (GM) and evaluate the effect of GM presence on the survival and functions of cells in the 3D cell aggregates. Gelatin was dehydrothermally crosslinked at 140 °C for 48 h in a water-in-oil emulsion state to obtain the GM with average diameters of 50 and 200 μm, followed by treatment with fibronectin (FN). EpH4 and/or 3T3L1 cells were cultured with or without the FN-treated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to allow the cells to form their aggregates. On the other hand, EpH4 cells were precultured with the FN-treated GM, and then continued to culture with 3T3L1 cells in the same condition described above. The EpH4 cells attached onto the GM in the cell number dependent manner, irrespective of their size. When 3T3L1 cells were incubated with the original and GM-preincubated EpH4 cells in the presence of both the FN-treated GM, the number of alive cells in the aggregates was significantly high compared with that for the absence of FN-treated GM. In addition, higher β-casein expression level of EpH4 cells in EpH4/3T3L1 cells aggregates in the presence of FN-treated GM was observed than that of cells in the absence of FN-treated GM. Laminin secretion was also promoted for the cells aggregates cultured with FN-treated GM. It is concluded that the presence of FN-treated GM in the EpH4/3T3L1 cells aggregates gave a better condition to cells, resulting in an enhanced generation of β-casein from EpH4 cells in the aggregates.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
153
|
An YM, Feng H, Zhang XZ, Cong X, Zhao Q, Wu LL, Dou D. Homocysteine ameliorates the endothelium-independent hypoxic vasoconstriction via the suppression of phosphatidylinositol 3-kinase/Akt pathway in porcine coronary arteries. Biochem Biophys Res Commun 2017; 486:178-183. [PMID: 28285136 DOI: 10.1016/j.bbrc.2017.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Endothelium-independent coronary vasoconstriction induced by continuous hypoxia contributes to the development of ischemic heart diseases. Acute elevation of homocysteine (Hcy) has a potent of vasodilation. The present study aims to investigate the role of Hcy in endothelium-independent hypoxic coronary vasoconstriction and its underlying mechanisms. METHODS AND RESULTS Vessel tension of isolated porcine coronary arteries was measured by organ chamber study and the protein expression were detected by western blot. A sustained contraction of porcine coronary artery was induced when exposed to prolonged hypoxia for more than 15 min, which was significantly reduced by Hcy in a dose-dependent manner but not affected by cysteine or N-acetyl-l-cysteine. Phosphorylated myosin light chain (MLC-p) at Ser19 was decreased when exposure to hypoxia for 15 min, and could be reversed by prolonged hypoxia for 30 and 60 min. The recovery of MLC-p at Ser19 by hypoxia for more than 30 min could be abolished by Hcy. The protein levels of phosphorylated Akt at Ser473 and phosphorylated P85 at Tyr508 were decreased by Hcy in normoxia, and were also reduced exposure to hypoxia for 15 min and then augmented by prolonged hypoxia for more than 30 min, which could be prevented by Hcy. The protein level of P110α was not affected by Hcy or prolonged hypoxia. CONCLUSIONS This study demonstrates that Hcy can ameliorate the endothelium-independent hypoxic coronary vasoconstriction, in which the inhibition of PI3K/Akt signaling pathway may be involved.
Collapse
Affiliation(s)
- Yuan-Ming An
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Han Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xing-Zhong Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
154
|
Shi F, Guo H, Zhang R, Liu H, Wu L, Wu Q, Liu J, Liu T, Zhang Q. The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines. Neuroscience 2017; 346:298-308. [PMID: 28147244 DOI: 10.1016/j.neuroscience.2017.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is among the most lethal of all human tumors. It is the most frequently occurring malignant primary brain tumor in adults. The current standard of care (SOC) for GBM is initial surgical resection followed by treatment with a combination of temozolomide (TMZ) and ionizing radiation (IR). However, GBM has a dismal prognosis, and survivors have compromised quality of life owing to the adverse effects of radiation. GBM is characterized by overt activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. GDC-0941 is a highly specific PI3K inhibitor with promising anti-tumor activity in human solid tumors. It is being evaluated in Phase II clinical trials for the treatment of breast and non-squamous cell lung cancer. We hypothesized that GDC-0941 may act as an antitumor agent and potentiate the effects of TMZ and IR. In this study, GDC-0941 alone induced cytotoxicity and pro-apoptotic effects. Moreover, combined with the standard GBM therapy (TMZ and IR), it suppressed cell viability, showed enhanced pro-apoptotic effects, augmented autophagy response, and attenuated migratory/invasive capacity in three glioma cell lines. Protein microarray analyses showed that treatment with TMZ+GDC-0941+IR induced higher levels of p53 and glycogen synthase kinase 3-beta (GSK3-β) expression in SHG44GBM cells than those induced by other treatments. This was verified in all cell lines by western blot analysis. Furthermore, the combination of TMZ and GDC-0941 with or without IR reduced the levels of p-AKT and O6-methylguanine DNA methyltransferase (MGMT) in T98G cells. The results of this study suggest that the combination of TMZ, IR, and GDC-0941 is a promising choice for future treatments of GBM.
Collapse
Affiliation(s)
- Fei Shi
- Department of Skull Base Surgery Center, Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| | - Hongchuan Guo
- Department of Skull Base Surgery Center, Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center (NCC), 6-5-1Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| | - Hongyu Liu
- Department of Neurosurgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| | - Liangliang Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| | - Qiyan Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| | - Jialin Liu
- Department of Neurosurgery, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| | - Tianyi Liu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| | - Qiuhang Zhang
- Department of Skull Base Surgery Center, Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China.
| |
Collapse
|
155
|
Goltsov A, Tashkandi G, Langdon SP, Harrison DJ, Bown JL. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002. Eur J Pharm Sci 2017; 97:170-181. [PMID: 27832967 DOI: 10.1016/j.ejps.2016.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/28/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC50 on ATP concentration that allows prediction of the IC50 at different ATP concentrations in enzyme and cellular assays. Comparison of drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K/PTEN/AKT/mTOR1 network in order to understand mechanisms of drug sensitivity and resistance in different cancer cell lines. We suggest that using these models in a systems biology investigation of the PI3K/AKT/mTOR1 signalling in cancer cells can bridge the gap between direct drug target action and the therapeutic response to these drugs and their combinations.
Collapse
Affiliation(s)
- Alexey Goltsov
- School of Science, Engineering and Technology, University of Abertay, Dundee, UK.
| | - Ghassan Tashkandi
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | | | - James L Bown
- School of Science, Engineering and Technology, University of Abertay, Dundee, UK; School of Arts, Media and Computer Games, University of Abertay, Dundee, UK.
| |
Collapse
|
156
|
Cheng Y, Loh YP, Birch NP. Neuroserpin Attenuates H 2O 2-Induced Oxidative Stress in Hippocampal Neurons via AKT and BCL-2 Signaling Pathways. J Mol Neurosci 2017; 61:123-131. [PMID: 27510267 DOI: 10.1007/s12031-016-0807-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022]
Abstract
Oxidative stress plays a critical role in neuronal injury and is associated with various neurological diseases. Here, we explored the potential protective effect of neuroserpin against oxidative stress in primary cultured hippocampal neurons. Our results show that neuroserpin inhibits H2O2-induced neurotoxicity in hippocampal cultures as measured by WST, LDH release, and TUNEL assays. We found that neuroserpin enhanced the activation of AKT in cultures subjected to oxidative stress and that the AKT inhibitor Ly294002 blocked this neuroprotective effect. Neuroserpin increased the expression of the anti-apoptotic protein BCL-2 and blocked the activation of caspase-3. Neuroserpin did not increase the level of neuroprotection over levels seen in neurons transduced with a BCL-2 expression vector, and an inhibitor of Trk receptors, K252a, did not block neuroserpin's effect. Taken together, our study demonstrates that neuroserpin protects against oxidative stress-induced dysfunction and death of primary cultured hippocampal neurons through the AKT-BCL-2 signaling pathway through a mechanism that does not involve the Trk receptors and leads to inhibition of caspase-3 activation.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nigel P Birch
- School of Biological Sciences, Centre for Brain Research and Brain Research New Zealand, Rangahau Roro Aotearoa, University of Auckland, 3a Symonds Street 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
157
|
Mukaida S, Evans BA, Bengtsson T, Hutchinson DS, Sato M. Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacol Res 2016; 116:87-92. [PMID: 28025104 DOI: 10.1016/j.phrs.2016.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/12/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Uptake of glucose into skeletal muscle and adipose tissue plays a vital role in metabolism and energy balance. Insulin released from β-islet cells of the pancreas promotes glucose uptake in these target tissues by stimulating translocation of GLUT4 transporters to the cell surface. This process is complex, involving signaling proteins including the mechanistic (or mammalian) target of rapamycin (mTOR) and Akt that intersect with multiple pathways controlling cell survival, growth and proliferation. mTOR exists in two forms, mTOR complex 1 (mTORC1), and mTOR complex 2 (mTORC2). mTORC1 has been intensively studied, acting as a key regulator of protein and lipid synthesis that integrates cellular nutrient availability and energy balance. Studies on mTORC2 have focused largely on its capacity to activate Akt by phosphorylation at Ser473, however recent findings demonstrate a novel role for mTORC2 in cellular glucose uptake. For example, agonists acting at β2-adrenoceptors (ARs) in skeletal muscle or β3-ARs in brown adipose tissue increase glucose uptake in vitro and in vivo via mechanisms dependent on mTORC2 but not Akt. In this review, we will focus on the signaling pathways downstream of β-ARs that promote glucose uptake in skeletal muscle and brown adipocytes, and will highlight how the insulin and adrenergic pathways converge and interact in these cells. The identification of insulin-independent mechanisms that promote glucose uptake should facilitate novel treatment strategies for metabolic disease.
Collapse
Affiliation(s)
- Saori Mukaida
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
158
|
Mamalis A, Koo E, Garcha M, Murphy WJ, Isseroff RR, Jagdeo J. High fluence light emitting diode-generated red light modulates characteristics associated with skin fibrosis. JOURNAL OF BIOPHOTONICS 2016; 9:1167-1179. [PMID: 27174640 PMCID: PMC5107354 DOI: 10.1002/jbio.201600059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 05/20/2023]
Abstract
Skin fibrosis, often referred to as skin scarring, is a significant international health problem with limited treatment options. The hallmarks of skin fibrosis are increased fibroblast proliferation, collagen production, and migration speed. Recently published clinical observations indicate that visible red light may improve skin fibrosis. In this study we hypothesize that high-fluence light-emitting diode-generated red light (HF-LED-RL) modulates the key cellular features of skin fibrosis by decreasing cellular proliferation, collagen production, and migration speed of human skin fibroblasts. Herein, we demonstrate that HF-LED-RL increases reactive oxygen species (ROS) generation for up to 4 hours, inhibits fibroblast proliferation without increasing apoptosis, inhibits collagen production, and inhibits migration speed through modulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. We demonstrate that HF-LED-RL is capable of inhibiting the unifying cellular processes involved in skin fibrosis including fibroblast proliferation, collagen production, and migration speed. These findings suggest that HF-LED-RL may represent a new approach to treat skin fibrosis. LED advantages include low cost, portability, and ease of use. Further characterizing the photobiomodulatory effects of HF-LED-RL on fibroblasts and investigating the anti-fibrotic effects of HF-LED-RL in human subjects may provide new insight into the utility of this therapeutic approach for skin fibrosis.
Collapse
Affiliation(s)
- Andrew Mamalis
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
| | - Eugene Koo
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
| | - Manveer Garcha
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - William J. Murphy
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - R. Rivkah Isseroff
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
| | - Jared Jagdeo
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
- Department of Dermatology, SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
159
|
Lepannetier S, Zanou N, Yerna X, Emeriau N, Dufour I, Masquelier J, Muccioli G, Tajeddine N, Gailly P. Sphingosine-1-phosphate-activated TRPC1 channel controls chemotaxis of glioblastoma cells. Cell Calcium 2016; 60:373-383. [PMID: 27638096 DOI: 10.1016/j.ceca.2016.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 01/21/2023]
Abstract
TRP channels are involved in the control of a broad range of cellular functions such as cell proliferation and motility. We investigated the gating mechanism of TRPC1 channel and its role in U251 glioblastoma cells migration in response to chemotaxis by platelet-derived growth factor (PDGF). PDGF induced an influx of Ca2+ that was partially inhibited after pretreatment of the cells with SKI-II, a specific inhibitor of sphingosine kinase producing sphingosine-1-P (S1P). S1P by itself also induced an entry of Ca2+. Interestingly, PDGF- and S1P-induced entries of Ca2+ were lost in siRNA-TRPC1 treated cells. PDGF-induced chemotaxis of U251 cells was dramatically inhibited in cells treated with SKI-II. This effect was almost completely rescued by addition of synthetic S1P. Chemotaxis was also completely lost in siRNA-TRPC1 treated cells and interestingly, the rescue of migration of cells treated with SKI-II by S1P was dependent on the expression of TRPC1. Immunocytochemistry revealed that, in response to PDGF, TRPC1 translocated from inside of the cell to the front of migration (lamellipodes). This effect seemed PI3K dependent as it was inhibited by cell pre-treatment with LY294002, a PI3-kinase inhibitor. Our results thus identify S1P as a potential activator of TRPC1, a channel involved in cell orientation during chemotaxis by PDGF.
Collapse
Affiliation(s)
- Sophie Lepannetier
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Nadège Zanou
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Xavier Yerna
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Noémie Emeriau
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Inès Dufour
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Julien Masquelier
- Université catholique de Louvain, Louvain Drug Research Institute, av. Mounier 72, box B1.72.01, 1200 Brussels, Belgium
| | - Giulio Muccioli
- Université catholique de Louvain, Louvain Drug Research Institute, av. Mounier 72, box B1.72.01, 1200 Brussels, Belgium
| | - Nicolas Tajeddine
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium.
| |
Collapse
|
160
|
Huang P, Li Y, Lv Z, Wang J, Zhang Q, Yao X, Corrigan CJ, Huang K, Wang W, Ying S. Comprehensive attenuation of IL-25-induced airway hyperresponsiveness, inflammation and remodelling by the PI3K inhibitor LY294002. Respirology 2016; 22:78-85. [PMID: 27556731 DOI: 10.1111/resp.12880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Existing in vitro and in vivo studies suggest that both IL-25 and phosphoinositide 3-kinases (PI3Ks) exhibit broad effects on the functions of immune cells implicated in the pathogenesis of asthma. Whether the blockade of PI3K signalling directly inhibits the asthma relevant pathogenetic changes induced by IL-25 in an in vivo condition is still unclear. Using an established IL-25-induced murine model of asthma, we undertook a comprehensive evaluation of the effects of co-administered LY294002, a pharmacological pan-inhibitor of PI3K on IL-25-induced changes on this model, with particular regard to airway remodelling. METHODS BALB/c mice were serially intranasally challenged with IL-25 according to an established protocol to induce airway inflammation, hyperresponsiveness (AHR) and remodelling. In an additional subgroup LY294002 was administered intranasally. Lung function and airway cytokine and chemokine concentrations and cellular infiltration and remodelling changes assessed by histology and immunohistochemistry were measured at specific time points. RESULTS Intranasal administration of LY294002 significantly inhibited IL-25-induced AHR and recruitment of inflammatory cells into bronchoalveolar lavage fluid. LY294002 also attenuated IL-25-induced increased concentrations of cytokines and chemokines in lung tissue. Histological and immunohistochemical analysis showed that LY294002 also significantly inhibited IL-25-induced lung tissue eosinophilia, mucus production, collagen deposition, smooth muscle hypertrophy and angiogenesis. CONCLUSION The PI3K pan-inhibitor LY294002 attenuated not only IL-25-induced asthma-like AHR and airway inflammation but also remodelling in this model, suggesting that PI3K is a major downstream messenger for IL-25 and that targeting this pathway might reduce asthma symptoms in the short term and airway remodelling in the longer term.
Collapse
Affiliation(s)
- Ping Huang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Ze Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiujuan Yao
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Division of Asthma, Allergy & Lung Biology, King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Division of Asthma, Allergy & Lung Biology, King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
161
|
Mainz ER, Serafin DS, Nguyen TT, Tarrant TK, Sims CE, Allbritton NL. Single Cell Chemical Cytometry of Akt Activity in Rheumatoid Arthritis and Normal Fibroblast-like Synoviocytes in Response to Tumor Necrosis Factor α. Anal Chem 2016; 88:7786-92. [PMID: 27391352 PMCID: PMC6040665 DOI: 10.1021/acs.analchem.6b01801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The etiology of rheumatoid arthritis (RA) is poorly understood, and 30% of patients are unresponsive to established treatments targeting tumor necrosis factor α (TNFα). Akt kinase is implicated in TNFα signaling and may act as a barometer of patient responses to biologic therapies. Fluorescent peptide sensors and chemical cytometry were employed to directly measure Akt activity as well as proteolytic activity in individual fibroblast-like synoviocytes (FLS) from RA and normal subjects. The specificity of the peptide reporter was evaluated and shown to be a valid measure of Akt activity in single cells. The effect of TNFα treatment on Akt activity was highly heterogeneous between normal and RA subjects, which was not observable in bulk analyses. In 2 RA subjects, a bimodal distribution of Akt activity was observed, primarily due to a subpopulation (21.7%: RA Subject 5; 23.8%: RA Subject 6) of cells in which >60% of the reporter was phosphorylated. These subjects also possessed statistically elevated proteolytic cleavage of the reporter relative to normal subjects, suggesting heterogeneity in Akt and protease activity that may play a role in the RA-affected joint. We expect that chemical cytometry studies pairing peptide reporters with capillary electrophoresis will provide valuable data regarding aberrant kinase activity from small samples of clinical interest.
Collapse
Affiliation(s)
- Emilie R. Mainz
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - D. Stephen Serafin
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Tuong T. Nguyen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Teresa K. Tarrant
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
- Department of Medicine, Division of Rheumatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, 27599, USA
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Medicine, Division of Rheumatology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, US
| |
Collapse
|
162
|
Gong W, Yu J, Wang Q, Li S, Song J, Jia Z, Huang S, Zhang A. Estrogen-related receptor (ERR) γ protects against puromycin aminonucleoside-induced podocyte apoptosis by targeting PI3K/Akt signaling. Int J Biochem Cell Biol 2016; 78:75-86. [PMID: 27417234 DOI: 10.1016/j.biocel.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence has shown that podocyte apoptosis is of vital importance for the development of glomerulosclerosis and progressive loss of renal function. However, the molecular mechanisms leading to podocyte apoptosis are still elusive. In this study, we investigated the role of estrogen-related receptor (ERR) γ in podocyte apoptosis, as well as the underlying mechanisms. Treatment of PAN caused a dose- and time-dependent podocyte apoptosis in line with a significant downregulation of ERRγ. Interestingly, the occurrence of ERRγ downregulation appeared earlier than the onset of cell apoptosis, suggesting a potential that ERRγ reduction triggered apoptotic response in podocyte. To test this hypothesis, ERRγ siRNA was administered to the podocytes. Strikingly, ERRγ silencing resulted in a significant cell apoptosis accompanied with increased injury markers of B7-1 and cathepsin L and decreased podocyte protein nephrin. In contrast, overexpression of ERRγ remarkably attenuated PAN-induced cell apoptosis. Moreover, ERRγ overexpression stimulated PI3K/Akt signaling pathway evidenced by increased expression of PI3K subunits p85α and p110α and phosphorylated Akt. Importantly, a specific PI3K inhibitor LY294002 entirely reversed the anti-apoptotic effect of ERRγ following PAN treatment. Finally, we observed a striking downregulation of ERRγ in PAN-treated rat kidneys, suggesting that our cell model replicated the in vivo condition. Taken together, these data highly suggested that ERRγ played a novel role in modulating podocyte apoptosis by targeting PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei Gong
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Jing Yu
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Qilei Wang
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Shuzhen Li
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Jiayu Song
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Zhanjun Jia
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China; Nanjing Key Laboratory of Pediatrics, Nanjing 210008, China.
| |
Collapse
|
163
|
Durisova K, Salovska B, Pejchal J, Tichy A. Chemical inhibition of DNA repair kinases as a promising tool in oncology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:11-9. [DOI: 10.5507/bp.2015.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/10/2015] [Indexed: 11/23/2022] Open
|
164
|
Eagleson KL, Lane CJ, McFadyen-Ketchum L, Solak S, Wu HH, Levitt P. Distinct intracellular signaling mediates C-MET regulation of dendritic growth and synaptogenesis. Dev Neurobiol 2016; 76:1160-81. [PMID: 26818605 DOI: 10.1002/dneu.22382] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/11/2015] [Accepted: 01/13/2016] [Indexed: 12/14/2022]
Abstract
Hepatocyte growth factor (HGF) activation of the MET receptor tyrosine kinase influences multiple neurodevelopmental processes. Evidence from human imaging and mouse models shows that, in the forebrain, disruptions in MET signaling alter circuit formation and function. One likely means of modulation is by controlling neuron maturation. Here, we examined the signaling mechanisms through which MET exerts developmental effects in the neocortex. In situ hybridization revealed that hgf is located near MET-expressing neurons, including deep neocortical layers and periventricular zones. Western blot analyses of neocortical crude membranes demonstrated that HGF-induced MET autophosphorylation peaks during synaptogenesis, with a striking reduction in activation between P14 and P17 just before pruning. In vitro analysis of postnatal neocortical neurons assessed the roles of intracellular signaling following MET activation. There is rapid, HGF-induced phosphorylation of MET, ERK1/2, and Akt that is accompanied by two major morphological changes: increases in total dendritic growth and synapse density. Selective inhibition of each signaling pathway altered only one of the two distinct events. MAPK/ERK pathway inhibition significantly reduced the HGF-induced increase in dendritic length, but had no effect on synapse density. In contrast, inhibition of the PI3K/Akt pathway reduced HGF-induced increases in synapse density, with no effect on dendritic length. The data reveal a key role for MET activation during the period of neocortical neuron growth and synaptogenesis, with distinct biological outcomes mediated via discrete MET-linked intracellular signaling pathways in the same neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1160-1181, 2016.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christianne J Lane
- Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lisa McFadyen-Ketchum
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sara Solak
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hsiao-Huei Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
165
|
Grego-Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson KV. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. eLife 2016; 5:e12034. [PMID: 26809587 PMCID: PMC4739759 DOI: 10.7554/elife.12034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/02/2015] [Indexed: 01/16/2023] Open
Abstract
Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis.
Collapse
Affiliation(s)
- Joaquim Grego-Bessa
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Joshua Bloomekatz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Pau Castel
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tatiana Omelchenko
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - José Baselga
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
166
|
Rogers SW, Gahring LC. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways. PLoS One 2015; 10:e0143319. [PMID: 26619345 PMCID: PMC4664291 DOI: 10.1371/journal.pone.0143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| | - Lorise C Gahring
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| |
Collapse
|
167
|
Singh SS, Yap WN, Arfuso F, Kar S, Wang C, Cai W, Dharmarajan AM, Sethi G, Kumar AP. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J Gastroenterol 2015; 21:12261-12273. [PMID: 26604635 PMCID: PMC4649111 DOI: 10.3748/wjg.v21.i43.12261] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/11/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Frequent activation of phosphatidylinositol-3 kinases (PI3K)/Akt/mTOR signaling pathway in gastric cancer (GC) is gaining immense popularity with identification of mutations and/or amplifications of PIK3CA gene or loss of function of PTEN, a tumor suppressor protein, to name a few; both playing a crucial role in regulating this pathway. These aberrations result in dysregulation of this pathway eventually leading to gastric oncogenesis, hence, there is a need for targeted therapy for more effective anticancer treatment. Several inhibitors are currently in either preclinical or clinical stages for treatment of solid tumors like GC. With so many inhibitors under development, further studies on predictive biomarkers are needed to measure the specificity of any therapeutic intervention. Herein, we review the common dysregulation of PI3K/Akt/mTOR pathway in GC and the various types of single or dual pathway inhibitors under development that might have a superior role in GC treatment. We also summarize the recent developments in identification of predictive biomarkers and propose use of predictive biomarkers to facilitate more personalized cancer therapy with effective PI3K/Akt/mTOR pathway inhibition.
Collapse
|
168
|
DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer. Biomolecules 2015; 5:3204-59. [PMID: 26610585 PMCID: PMC4693276 DOI: 10.3390/biom5043204] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.
Collapse
|
169
|
Martínez-Revollar G, Garay E, Martin-Tapia D, Nava P, Huerta M, Lopez-Bayghen E, Meraz-Cruz N, Segovia J, González-Mariscal L. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res 2015; 339:67-80. [DOI: 10.1016/j.yexcr.2015.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
|
170
|
PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress. Cell Rep 2015; 13:1295-1303. [DOI: 10.1016/j.celrep.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023] Open
|
171
|
Kumar DT, Doss CGP. Investigating the Inhibitory Effect of Wortmannin in the Hotspot Mutation at Codon 1047 of PIK3CA Kinase Domain: A Molecular Docking and Molecular Dynamics Approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:267-97. [PMID: 26827608 DOI: 10.1016/bs.apcsb.2015.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncogenic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) are the most frequently reported in association with various forms of cancer. Several studies have reported the significance of hotspot mutations in a catalytic subunit of PIK3CA in association with breast cancer. Mutations are frequently observed in the highly conserved region of the kinase domain (797-1068 amino acids) of PIK3CA are activating or gain-of-function mutations. Mutation in codon 1047 occurs in the C-terminal region of the kinase domain with histidine (H) replaced by arginine (R), lysine (L), and tyrosine (Y). Pathogenicity and protein stability predictors PhD-SNP, Align GVGD, HANSA, iStable, and MUpro classified H1047R as highly deleterious when compared to H1047L and H1047Y. To explore the inhibitory activity of Wortmannin toward PIK3CA, the three-dimensional structure of the mutant protein was determined using homology modeling followed by molecular docking and molecular dynamics analysis. Docking studies were performed for the three mutants and native with Wortmannin to measure the differences in their binding pattern. Comparative docking study revealed that H1047R-Wortmannin complex has a higher number of hydrogen bonds as well as the best binding affinity next to the native protein. Furthermore, 100 ns molecular dynamics simulation was initiated with the docked complexes to understand the various changes induced by the mutation. Though Wortmannin was found to nullify the effect of H1047R over the protein, further studies are required for designing a better compound. As SNPs are major genetic variations observed in disease condition, personalized medicine would provide enhanced drug therapy.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
172
|
The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy. Oncotarget 2015; 6:802-13. [PMID: 25596739 PMCID: PMC4359256 DOI: 10.18632/oncotarget.2742] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022] Open
Abstract
Deregulation of the Phosphoinositide 3-kinase (PI3K)/AKT signalling network is a hallmark of oncogenesis. Also medulloblastoma, the most common malignant brain tumor in children, is characterized by high levels of AKT phosphorylation and activated PI3K signalling in medulloblastoma is associated with enhanced cellular motility, survival and chemoresistency underscoring its role of as a potential therapeutic target. Here we demonstrate that GDC-0941, a highly specific PI3K inhibitor with good clinical tolerability and promising anti-neoplastic activity in adult cancer, also displays anti-proliferative and pro-apoptotic effects in pediatric human medulloblastoma cell lines. Loss in cell viability is accompanied by reduced phosphorylation of AKT, a downstream target of PI3K. Furthermore, we show that GDC-0941 attenuates the migratory capacity of medulloblastoma cells and targets subpopulations expressing the stem cell marker CD133. GDC-0941 also synergizes with the standard medulloblastoma chemotherapeutic etoposide. In an orthotopic xenograft model of the most aggressive human medulloblastoma variant we document that oral adminstration of GDC-0941 impairs tumor growth and significantly prolongs survival. These findings provide a rational to further investigate GDC-0941 alone and in combination with standard chemotherapeutics for medulloblastoma treatment.
Collapse
|
173
|
Protein kinase B is required for follicle-stimulating hormone mediated beta-catenin accumulation and estradiol production in granulosa cells of cattle. Anim Reprod Sci 2015; 163:97-104. [PMID: 26515369 DOI: 10.1016/j.anireprosci.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
Follicle-stimulating hormone regulation of ovarian estradiol (E2) production requires involvement of beta-catenin (CTNNB1), a transcriptional co-factor. In cultured granulosa cells (GC) of cattle, FSH treatment increased protein abundance of CTNNB1 as well as protein kinase B (AKT), a molecule known to regulate components of the CTNNB1 degradation complex. However, whether FSH induction of CTNNB1 is through direct modulation of AKT remains to be determined. To investigate specific contributions of AKT to CTNNB1 accumulation, GC were treated with insulin-like growth factor-I (IGF-I), a well-established AKT activator, in the presence or absence of FSH. Granulosa cells treated with FSH, IGF-I, and IGF-I plus FSH had increased CTNNB1 accumulation compared with controls (P ≤ 0.02; n=6). E2 medium concentrations were greater (P=0.09; n=4) in FSH treated cells compared to controls (166 and 100 ± 28 pg/mL, respectively). Treatment with IGF-I and IGF-I plus FSH increased (P<0.01) E2 to comparable concentrations. Subsequently, GC treated with lithium chloride (LiCl), a pharmacological activator of AKT, provided a response consistent with IGF-I treated cells, as LiCl, FSH, and FSH plus LiCl increased CTNNB1 accumulation compared with non-treated controls (P ≤ 0.03; n=3). In contrast, inhibition of AKT signaling with LY294002 suppressed the ability of FSH and IGF-I to regulate CTNNB1. Additionally, LY294002 treatment reduced FSH and IGF-I mediated E2 medium concentrations (P ≤ 0.004). These results demonstrate that activation of AKT is required for gonadotropin regulation of CTNNB1 accumulation and subsequent ovarian E2 production.
Collapse
|
174
|
[Advances in leukemia inhibitors targeting PI3K/AKT/mTOR pathway]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:888-93. [PMID: 26477776 PMCID: PMC7364943 DOI: 10.3760/cma.j.issn.0253-2727.2015.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
175
|
Das S, Sondarva G, Viswakarma N, Nair RS, Osipo C, Tzivion G, Rana B, Rana A. Human Epidermal Growth Factor Receptor 2 (HER2) Impedes MLK3 Kinase Activity to Support Breast Cancer Cell Survival. J Biol Chem 2015; 290:21705-12. [PMID: 26152725 PMCID: PMC4571892 DOI: 10.1074/jbc.m115.655563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is amplified in ∼ 15-20% of human breast cancer and is important for tumor etiology and therapeutic options of breast cancer. Up-regulation of HER2 oncogene initiates cascades of events cumulating to the stimulation of transforming PI3K/AKT signaling, which also plays a dominant role in supporting cell survival and efficacy of HER2-directed therapies. Although investigating the underlying mechanisms by which HER2 promotes cell survival, we noticed a profound reduction in the kinase activity of a pro-apoptotic mixed lineage kinase 3 (MLK3) in HER2-positive (HER2+) but not in HER2-negative (HER2-) breast cancer tissues, whereas both HER2+ and HER2- tumors expressed a comparable level of MLK3 protein. Furthermore, the kinase activity of MLK3 was inversely correlated with HER2+ tumor grades. Moreover, HER2-directed drugs such as trastuzumab and lapatinib as well as depletion of HER2 or HER3 stimulated MLK3 kinase activity in HER2+ breast cancer cell lines. In addition, the noted inhibitory effect of HER2 on MLK3 kinase activity was mediated via its phosphorylation on Ser(674) by AKT and that pharmacological inhibitors of PI3K/AKT prevented trastuzumab- and lapatinib-induced stimulation of MLK3 activity. Consistent with the pro-apoptotic function of MLK3, stable knockdown of MLK3 in the HER2+ cell line blunted the pro-apoptotic effects of trastuzumab and lapatinib. These findings suggest that HER2 activation inhibits the pro-apoptotic function of MLK3, which plays a mechanistic role in mediating anti-tumor activities of HER2-directed therapies. In brief, MLK3 represents a newly recognized integral component of HER2 biology in HER2+ breast tumors.
Collapse
Affiliation(s)
- Subhasis Das
- From the Department of Molecular Pharmacology and Therapeutics and
| | - Gautam Sondarva
- From the Department of Molecular Pharmacology and Therapeutics and
| | - Navin Viswakarma
- From the Department of Molecular Pharmacology and Therapeutics and
| | | | - Clodia Osipo
- Department of Pathology, Loyola University Chicago, Maywood, Illinois 60153
| | - Guri Tzivion
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Basabi Rana
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, Illinois 60153, and Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Ajay Rana
- From the Department of Molecular Pharmacology and Therapeutics and Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| |
Collapse
|
176
|
Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective. Int J Mol Sci 2015; 16:19671-97. [PMID: 26295391 PMCID: PMC4581319 DOI: 10.3390/ijms160819671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/11/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022] Open
Abstract
Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.
Collapse
|
177
|
Lau D, Bengtson CP, Buchthal B, Bading H. BDNF Reduces Toxic Extrasynaptic NMDA Receptor Signaling via Synaptic NMDA Receptors and Nuclear-Calcium-Induced Transcription of inhba/Activin A. Cell Rep 2015; 12:1353-66. [PMID: 26279570 DOI: 10.1016/j.celrep.2015.07.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/20/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022] Open
Abstract
The health of neurons is critically dependent on the relative signaling intensities of survival-promoting synaptic and death-inducing extrasynaptic NMDA receptors. Here, we show that BDNF is a regulator of this balance and promotes neuroprotection by reducing toxic NMDA receptor signaling. BDNF acts by initiating synaptic NMDA-receptor/nuclear-calcium-driven adaptogenomics, leading to increased expression of inhibin β-A (inhba). Inhibin β-A (its homodimer is known as activin A) in turn reduces neurotoxic extrasynaptic NMDA-receptor-mediated calcium influx, thereby shielding neurons against mitochondrial dysfunction, a major cause of excitotoxicity. Thus, BDNF induces acquired neuroprotection by enhancing synaptic activity and lowering extrasynaptic NMDA receptor death signaling through a nuclear calcium-inhibin β-A pathway. This process, which confers protection against ischemic brain damage in a mouse stroke model, may be compromised in Huntington's disease, Alzheimer's disease, or aging-related neurodegenerative conditions that are associated with reduced BDNF levels and/or enhanced extrasynaptic NMDA receptor signaling.
Collapse
Affiliation(s)
- David Lau
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Bettina Buchthal
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
178
|
Jethwa N, Chung GHC, Lete MG, Alonso A, Byrne RD, Calleja V, Larijani B. Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. J Cell Sci 2015; 128:3456-65. [PMID: 26240177 DOI: 10.1242/jcs.172775] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022] Open
Abstract
PKB/Akt activation is a common step in tumour growth, proliferation and survival. Akt activation is understood to occur at the plasma membrane of cells in response to growth factor stimulation and local production of the phosphoinositide lipid phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] following phosphoinositide 3-kinase (PI3K) activation. The metabolism and turnover of phosphoinositides is complex--they act as signalling molecules as well as structural components of biological membranes. The localisation and significance of internal pools of PtdIns(3,4,5)P3 has long been speculated upon. By using transfected and recombinant protein probes for PtdIns(3,4,5)P3, we show that PtdIns(3,4,5)P3 is enriched in the nuclear envelope and early endosomes. By exploiting an inducible dimerisation device to recruit Akt to these compartments, we demonstrate that Akt can be locally activated in a PtdIns(3,4,5)P3-dependent manner and has the potential to phosphorylate compartmentally localised downstream substrates. This could be an important mechanism to regulate Akt isoform substrate specificity or influence the timing and duration of PI3K pathway signalling. Defects in phosphoinositide metabolism and localisation are known to contribute to cancer, suggesting that interactions at subcellular compartments might be worthwhile targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nirmal Jethwa
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK
| | - Gary H C Chung
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK
| | - Marta G Lete
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Unidad de Biofísica (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Richard D Byrne
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Véronique Calleja
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Protein Phosphorylation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Unidad de Biofísica (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| |
Collapse
|
179
|
Jeon KI, Phipps RP, Sime PJ, Huxlin KR. Inhibitory effects of PPARγ ligands on TGF-β1-induced CTGF expression in cat corneal fibroblasts. Exp Eye Res 2015; 138:52-8. [PMID: 26142957 DOI: 10.1016/j.exer.2015.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022]
Abstract
Ligands of Peroxisome Proliferator Activated Receptor gamma (PPARγ) possess strong anti-fibrotic properties in the cornea and several other body tissues. In the cornea, we recently showed this class of molecules to prevent stromal myofibroblast differentiation partially by blocking the actions of p38 mitogen-activated protein kinase (MAPK). However, given the important role assigned to connective tissue growth factor (CTGF) in mediating corneal fibrosis, here we asked whether PPARγ ligands also act by affecting transforming growth factor-β (TGF-β) 1-induced expression of CTGF in cultured corneal fibroblasts. Corneal keratocytes were isolated from young, adult cats and early passage cells were exposed to TGF-β1 with or without the PPARγ ligands Rosiglitazone, Troglitazone and 15d-PGJ2. Western blots were used to assay levels of CTGF and alpha smooth muscle actin (αSMA), a marker of myofibroblast differentiation. CTGF siRNA demonstrated a critical role for CTGF in TGF-β1-mediated myofibroblast differentiation, while exogenously applied CTGF potentiated the pro-fibrogenic effects of TGF-β1. TGF-β1-mediated increases in CTGF and αSMA expression were strongly inhibited by all three PPARγ ligands tested, and by a c-jun N-terminal kinase (JNK) inhibitor. However, while extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT) and p38 MAPK inhibitors also blocked TGF-β1-induced αSMA induction, they did not dampen TGF-β1-induced increases in levels of CTGF. Thus, we conclude that PPARγ ligands block TGF-β1-induced increases in CTGF levels in cat corneal fibroblasts. They appear to do this in addition to their anti-fibrotic effect on p38 MAPK, providing a second intracellular pathway by which PPARγ ligands block αSMA induction.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA
| | - Richard P Phipps
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester, Rochester, NY, USA; Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA; Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Flaum Eye Institute, University of Rochester, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
180
|
Jubair S, Li J, Dehlin HM, Manteufel EJ, Goldspink PH, Levick SP, Janicki JS. Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT. Am J Physiol Heart Circ Physiol 2015; 309:H676-84. [PMID: 26071541 DOI: 10.1152/ajpheart.00200.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/04/2015] [Indexed: 11/22/2022]
Abstract
Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT.
Collapse
Affiliation(s)
- Shaiban Jubair
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Jianping Li
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Heather M Dehlin
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Edward J Manteufel
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Paul H Goldspink
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Scott P Levick
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Joseph S Janicki
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina;
| |
Collapse
|
181
|
Guo Q, Ning F, Fang R, Wang HS, Zhang G, Quan MY, Cai SH, Du J. Endogenous Nodal promotes melanoma undergoing epithelial-mesenchymal transition via Snail and Slug in vitro and in vivo. Am J Cancer Res 2015; 5:2098-2112. [PMID: 26269769 PMCID: PMC4529629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023] Open
Abstract
Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou 510006, Guangdong, China
| | - Fen Ning
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou 510006, Guangdong, China
| | - Rui Fang
- Department of Pharmacy, Guangdong Women and Children HospitalGuangzhou 511400, Guangdong, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou 510006, Guangdong, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou 510006, Guangdong, China
| | - Mei-Yu Quan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou 510006, Guangdong, China
| | - Shao-Hui Cai
- Department of Pharmacology, College of Pharmacy, Jinan UniversityGuangzhou 510632, Guangdong, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou 510006, Guangdong, China
| |
Collapse
|
182
|
Sex-determining region Y-related high mobility group box (SOX)-2 is overexpressed in cervical squamous cell carcinoma and contributes cervical cancer cell migration and invasion in vitro. Tumour Biol 2015; 36:7725-33. [PMID: 25935536 DOI: 10.1007/s13277-015-3450-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/10/2015] [Indexed: 10/23/2022] Open
Abstract
Sex-determining region Y-related high mobility group box 2 (SOX-2) is a key pluripotency-associated transcription factor and may be implicated in the pathogenesis of cervical squamous cell carcinoma (SCC). The aim of this study was to explore SOX-2 expression in cervical SCC tissues and to examine whether and how SOX-2 regulates the malignant behaviors of cervical SCC cells in vitro. We here found that SOX-2 expression in the examined cervical SCC tissues was higher than that in the normal cervical and cervical intraepithelial neoplasia (CIN) tissues. Higher protein level of SOX-2 (nuclear positive staining cells ≥50 %) was detected in 34.9 % (29 out of 83 cases) of cervical SCC patients. We also noted that 100 % of well-differentiated and 66.7 % of moderately differentiated cervical SCCs showed lower SOX-2 expression (nuclear positive staining cells <50 %), while 58.8 % of poorly differentiated tumors had higher SOX-2 expression (P < 0.05). Furthermore, the migratory and invasive capabilities of SiHa cervical cancer cells were enhanced when SOX-2 was upregulated whereas suppressed when SOX-2 was downregulated. Also, the phosphorylation levels of protein kinase B (Akt) and extracellular regulated protein kinases (ERK) 1/2 were increased in SOX-2-overexpressed cancer cells but decreased in SOX-2-depleted cells. Additionally, LY294002 (Akt pathway inhibitor) or U0126 (ERK pathway inhibitor) significantly suppressed SOX-2-overexpression-induced migration and invasion in SiHa cells. Our results indicate that differentially expressed SOX-2 is associated with tumor differentiation (P < 0.05) and that SOX-2 contributes to the migratory and invasive behaviors of cervical SCC in vitro.
Collapse
|
183
|
Cui HJ, Yang AL, Zhou HJ, Wang C, Luo JK, Lin Y, Zong YX, Tang T. Buyang huanwu decoction promotes angiogenesis via vascular endothelial growth factor receptor-2 activation through the PI3K/Akt pathway in a mouse model of intracerebral hemorrhage. Altern Ther Health Med 2015; 15:91. [PMID: 25886469 PMCID: PMC4381446 DOI: 10.1186/s12906-015-0605-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/12/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a fatal subtype of stroke that lacks effective treatments. Angiogenesis following ICH is an important response mediating brain recovery and repair. Phosphorylation of vascular endothelial growth factor receptor 2 (pVEGFR2) via PI3K/Akt signaling plays a key role in mediating cellular processes involved in repair, such as mitogenesis, angiogenesis, and vascular permeability. This study aimed to investigate the potential effects of Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula, on angiogenesis by VEGFR2 activation through the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway in a mouse model of ICH. METHODS Adult male Kunming mice (n = 50) were randomly assigned into sham and ICH-operated groups and treated with one of the followings SU5416 (VEGFR2 inhibitor), BYHWT and BYHWT + SU5416. ICH was induced in mice by injecting collagenase (type VII) into the right globus pallidus of the mouse brain. BYHWD (4.36 g/kg) was administrated in mice by intragastric infusion. Neurological function was evaluated in mice by a modified Neurological Severity Scores (mNSS) as well as corner turn and foot-fault tests. Angiogenesis was examined by intraperitoneal injection of 5-bromodeoxyuridine (BrdU) in mice to quantify new brain vessel growth. SU5416 treatment and assessment of VEGFR2 phosphorylation as well as alterations in PI3K/Akt signaling were performed to determine whether the effect of BYHWD on angiogenesis was partly mediated by phosphorylation of VEGFR2 via the PI3K/Akt signaling pathway. RESULTS We show that BYHWD treated mice exhibited (i) significantly better recovery from neurological dysfunction, (ii) increased BrdU(+) nuclei in vWF(+) dilated brain vessels and (iii) higher VEGFR2 phosphorylation immunoreactivity in brain microvessels (P <0.05), (iv) higher expression of PI3K and pAkt at the protein level (P <0.05) when compared to untreated ICH mice. These beneficial effects were reversed by SU5416 (P <0.05). CONCLUSIONS BYHWD promoted neurological recovery and angiogenesis after ICH in mice by enhancing VEGFR2 phosphorylation through the PI3K/Akt signaling pathway.
Collapse
|
184
|
Li Y, Chen X, Tang X, Zhang C, Wang L, Chen P, Pan M, Lu C. DNA synthesis during endomitosis is stimulated by insulin via the PI3K/Akt and TOR signaling pathways in the silk gland cells of Bombyx mori. Int J Mol Sci 2015; 16:6266-80. [PMID: 25794286 PMCID: PMC4394531 DOI: 10.3390/ijms16036266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 01/23/2023] Open
Abstract
Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU) labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K)/Akt, the target of rapamycin (TOR) and the extracellular signal-regulated kinase (ERK) pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.
Collapse
Affiliation(s)
- Yaofeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Xiangyun Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Xiaofang Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Chundong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China.
| | - La Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
185
|
Zub KA, de Sousa MML, Sarno A, Sharma A, Demirovic A, Rao S, Young C, Aas PA, Ericsson I, Sundan A, Jensen ON, Slupphaug G. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One 2015; 10:e0119857. [PMID: 25769101 PMCID: PMC4358942 DOI: 10.1371/journal.pone.0119857] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/16/2015] [Indexed: 01/16/2023] Open
Abstract
Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.
Collapse
Affiliation(s)
- Kamila Anna Zub
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Aida Demirovic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Shalini Rao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Clifford Young
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Per Arne Aas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Ida Ericsson
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Anders Sundan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Ole Nørregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology NTNU, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| |
Collapse
|
186
|
Lu Y, Wang C, Xue Z, Li C, Zhang J, Zhao X, Liu A, Wang Q, Zhou W. PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13. Int J Neuropsychopharmacol 2015; 18:pyu110. [PMID: 25542689 PMCID: PMC4376553 DOI: 10.1093/ijnp/pyu110] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND VGF (nonacryonimic) and phosphatidylinositol 3-kinase (PI3K)/AKT (also known as protein kinase B, PKB)/mammalian target of rapamycin (mTOR) signaling play pivotal roles in depression. However, whether phosphatidylinositol 3-kinase/AKT/mTOR signaling-mediated VGF participates in rapid-acting antidepressant-like actions of GLYX-13 is unclear. METHODS Herein, we evaluated the effects of acute treatment of GLYX-13 (0.5, 5, and 10mg/kg, i.p.) in the forced swim test. In addition, we assessed whether the acute treatment with GLYX-13 reverses the depressive-like behaviors induced by chronic unpredictable mild stress. Furthermore, we determined whether the Vgf knockdown in hippocampus of mice blocks the effects of GLYX-13. Moreover, we also demonstrated the effects of intra-hippocampus infusion of LY294002 (10 nmol/side), a specific phosphatidylinositol 3-kinase inhibitor prior to the treatment of GLYX-13 in the forced swim test. Lastly, whether alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and mTOR activation involves in the antidepressant-like effects of GLYX-13 was examined. RESULTS Our results shown that GLYX-13 dose-dependently reversed the depressive-like behaviors in forced swim test. Additionally, GLYX-13 significantly reversed the downregulation of phosphorylation of AKT, mTOR, and eukaryotic elongation factor 2 as well as VGF induced by chronic unpredictable mild stress in hippocampus. Further, Vgf knockdown in hippocampus of mice significantly blocked the rapid-acting antidepressant-like effects and upregulation on phosphatidylinositol 3-kinase/AKT/mTOR/VGF signaling of GLYX-13. Moreover, intra-hippocampus infusion of LY294002 significantly abolished the antidepressant-like effects and upregulation on phosphatidylinositol 3-kinase/AKT/mTOR/VGF signaling of GLYX-13. Finally, antidepressant-like effects of GLYX-13 required AMPA receptor and mTOR activation, as evidenced by the ability of NBQX and rapamycin to block the effects of GLYX-13, respectively. CONCLUSIONS Our results suggest that phosphatidylinositol 3-kinase/AKT/mTOR signaling-mediated VGF in hippocampus may be involved in the antidepressant-like effects of GLYX-13.
Collapse
Affiliation(s)
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Lindström NO, Lawrence ML, Burn SF, Johansson JA, Bakker ERM, Ridgway RA, Chang CH, Karolak MJ, Oxburgh L, Headon DJ, Sansom OJ, Smits R, Davies JA, Hohenstein P. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife 2015; 3:e04000. [PMID: 25647637 PMCID: PMC4337611 DOI: 10.7554/elife.04000] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The different segments of the nephron and glomerulus in the kidney balance the processes of water homeostasis, solute recovery, blood filtration, and metabolite excretion. When segment function is disrupted, a range of pathological features are presented. Little is known about nephron patterning during embryogenesis. In this study, we demonstrate that the early nephron is patterned by a gradient in β-catenin activity along the axis of the nephron tubule. By modifying β-catenin activity, we force cells within nephrons to differentiate according to the imposed β-catenin activity level, thereby causing spatial shifts in nephron segments. The β-catenin signalling gradient interacts with the BMP pathway which, through PTEN/PI3K/AKT signalling, antagonises β-catenin activity and promotes segment identities associated with low β-catenin activity. β-catenin activity and PI3K signalling also integrate with Notch signalling to control segmentation: modulating β-catenin activity or PI3K rescues segment identities normally lost by inhibition of Notch. Our data therefore identifies a molecular network for nephron patterning.
Collapse
Affiliation(s)
- Nils O Lindström
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Melanie L Lawrence
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally F Burn
- Department of Genetics and Development, Columbia University, New York, United States
| | - Jeanette A Johansson
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Elvira RM Bakker
- Laboratory of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Rachel A Ridgway
- Department of Invasion and Metastasis, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - C-Hong Chang
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Michele J Karolak
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, United States
| | - Denis J Headon
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Owen J Sansom
- Beatston Institute for Cancer Research, Glasgow, United Kingdom
| | - Ron Smits
- Laboratory of Gastroenterology and Hepatology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Jamie A Davies
- Centre for Integrated Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Hohenstein
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| |
Collapse
|
188
|
Brand M, Measures AM, Wilson BG, Cortopassi WA, Alexander R, Höss M, Hewings DS, Rooney TPC, Paton RS, Conway SJ. Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol 2015; 10:22-39. [PMID: 25549280 DOI: 10.1021/cb500996u] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bromodomains are protein modules that bind to acetylated lysine residues. Their interaction with histone proteins suggests that they function as "readers" of histone lysine acetylation, a component of the proposed "histone code". Bromodomain-containing proteins are often found as components of larger protein complexes with roles in fundamental cellular process including transcription. The publication of two potent ligands for the BET bromodomains in 2010 demonstrated that small molecules can inhibit the bromodomain-acetyl-lysine protein-protein interaction. These molecules display strong phenotypic effects in a number of cell lines and affect a range of cancers in vivo. This work stimulated intense interest in developing further ligands for the BET bromodomains and the design of ligands for non-BET bromodomains. Here we review the recent progress in the field with particular attention paid to ligand design, the assays employed in early ligand discovery, and the use of computational approaches to inform ligand design.
Collapse
Affiliation(s)
- Michael Brand
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Angelina M. Measures
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Brian G. Wilson
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Wilian A. Cortopassi
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | | | | | - David S. Hewings
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy P. C. Rooney
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Robert S. Paton
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
189
|
Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J 2014; 463:413-27. [PMID: 25177796 PMCID: PMC4209782 DOI: 10.1042/bj20140889] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50–60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80–90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K. We characterize VPS34-IN, a potent and selective inhibitor of class III Vps34 PI3K. Using VPS34-IN1, we demonstrate that PtdIns(3)P, produced by Vps34 controls phosphorylation and activity of the SGK3 protein kinase.
Collapse
|
190
|
Andrs M, Korabecny J, Jun D, Hodny Z, Bartek J, Kuca K. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring. J Med Chem 2014; 58:41-71. [PMID: 25387153 DOI: 10.1021/jm501026z] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) and phosphatidylinositol 3-kinase-related protein kinases (PIKKs) are two related families of kinases that play key roles in regulation of cell proliferation, metabolism, migration, survival, and responses to diverse stresses including DNA damage. To design novel efficient strategies for treatment of cancer and other diseases, these kinases have been extensively studied. Despite their different nature, these two kinase families have related origin and share very similar kinase domains. Therefore, chemical inhibitors of these kinases usually carry analogous structural motifs. The most common feature of these inhibitors is a critical hydrogen bond to morpholine oxygen, initially present in the early nonspecific PI3K and PIKK inhibitor 3 (LY294002), which served as a valuable chemical tool for development of many additional PI3K and PIKK inhibitors. While several PI3K pathway inhibitors have recently shown promising clinical responses, inhibitors of the DNA damage-related PIKKs remain thus far largely in preclinical development.
Collapse
Affiliation(s)
- Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove , Sokolska 81, 500 05 Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|
191
|
Sato M, Dehvari N, Oberg AI, Dallner OS, Sandström AL, Olsen JM, Csikasz RI, Summers RJ, Hutchinson DS, Bengtsson T. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes 2014; 63:4115-29. [PMID: 25008179 DOI: 10.2337/db13-1860] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an increasing worldwide epidemic of type 2 diabetes that poses major health problems. We have identified a novel physiological system that increases glucose uptake in skeletal muscle but not in white adipocytes. Activation of this system improves glucose tolerance in Goto-Kakizaki rats or mice fed a high-fat diet, which are established models for type 2 diabetes. The pathway involves activation of β2-adrenoceptors that increase cAMP levels and activate cAMP-dependent protein kinase, which phosphorylates mammalian target of rapamycin complex 2 (mTORC2) at S2481. The active mTORC2 causes translocation of GLUT4 to the plasma membrane and glucose uptake without the involvement of Akt or AS160. Stimulation of glucose uptake into skeletal muscle after activation of the sympathetic nervous system is likely to be of high physiological relevance because mTORC2 activation was observed at the cellular, tissue, and whole-animal level in rodent and human systems. This signaling pathway provides new opportunities for the treatment of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Glucose Tolerance Test
- Glucose Transporter Type 4/metabolism
- Mechanistic Target of Rapamycin Complex 2
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multiprotein Complexes/metabolism
- Muscle, Skeletal/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nodi Dehvari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anette I Oberg
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Olof S Dallner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Anna L Sandström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jessica M Olsen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Robert I Csikasz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roger J Summers
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dana S Hutchinson
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
192
|
Alshaker H, Krell J, Frampton AE, Waxman J, Blyuss O, Zaikin A, Winkler M, Stebbing J, Yagüe E, Pchejetski D. Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res 2014; 16:426. [PMID: 25482303 PMCID: PMC4303110 DOI: 10.1186/s13058-014-0426-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Obesity is a known risk factor for breast cancer. Sphingosine kinase 1 (SK1) is an oncogenic lipid kinase that is overexpressed in breast tumours and linked with poor prognosis, however, its role in obesity-driven breast cancer was never elucidated. METHODS Human primary and secondary breast cancer tissues were analysed for SK1 and leptin receptor expression using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Leptin-induced signalling was analysed in human oestrogen receptor (ER)-positive and negative breast cancer cells using Western blotting, qRT-PCR and radiolabelling assays. RESULTS Our findings show for the first time that human primary breast tumours and associated lymph node metastases exhibit a strong correlation between SK1 and leptin receptor expression (Pearson R = 0.78 and R = 0.77, respectively, P <0.001). Both these genes are elevated in metastases of ER-negative patients and show a significant increase in patients with higher body mass index (BMI). Leptin induces SK1 expression and activation in ER-negative breast cancer cell lines MDAMB-231 and BT-549, but not in ER-positive cell lines. Pharmacological inhibition and gene knockdown showed that leptin-induced SK1 activity and expression are mediated by activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and Src family kinase (SFK) pathways, but not by the major pathways downstream of leptin receptor (LEPR) - janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Src-homology 2 domain-containing phosphatase 2 (SHP2) appeared to be key to SK1 activation, and may function as an adaptor protein between SFKs and LEPR. Importantly, leptin-induced breast cancer cell proliferation was abrogated by SK1-specific small interfering RNA (siRNA). CONCLUSIONS Overall, our findings demonstrate a novel SFK/ERK1/2-mediated pathway that links leptin signalling and expression of oncogenic enzyme SK1 in breast tumours and suggest the potential significance of this pathway in ER-negative breast cancer.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Adam E Frampton
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Jonathan Waxman
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Oleg Blyuss
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Alexey Zaikin
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Elizabeth Fry Building, Norwich Research Park, Norwich, NR47TJ UK
| |
Collapse
|
193
|
RAFFO DIEGO, PONTIGGIA OSVALDO, DE KIER JOFFÉ ELISABAL, SIMIAN MARINA. Non-genomic actions of estradiol and 4-OH-tamoxifen on murine breast cancer cells. Oncol Rep 2014; 33:439-47. [DOI: 10.3892/or.2014.3558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 11/06/2022] Open
|
194
|
The inhibitory effect of PIK-75 on inflammatory mediator response induced by hydrogen peroxide in feline esophageal epithelial cells. Mediators Inflamm 2014; 2014:178049. [PMID: 25276052 PMCID: PMC4170708 DOI: 10.1155/2014/178049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022] Open
Abstract
Isoform-selective inhibitors of phosphoinositide 3-kinase (PI3K) activation have an anti-inflammatory effect by reducing proinflammatory cytokines. Cultured feline esophageal epithelial cells (EEC) of passages 3~4 were treated with hydrogen peroxide and PIK-75. The cell viability was measured by a MTT incorporation assay. The distribution of PI3K isoforms, p-Akt, IL-1β, and IL-8 was inferred from Western blots. The release of IL-6 was determined by ELISA. The cell morphology was not considerably different from nontreated cells if the cells were pretreated with PIK-75 and treated with 300 μM hydrogen peroxide. The density of p110α of PI3K was increased, but that of other types was not affected after the treatment with hydrogen peroxide. The density of p-Akt, when the cells were exposed to PIK-75 and hydrogen peroxide, was diminished dose dependently more than that of hydrogen peroxide treatment only. The decrease of p-Akt showed an inhibition of PI3K by PIK-75. PIK-75 dose dependently reduced the expression of IL-1β, IL-8, and the level of IL-6 compared with hydrogen peroxide treatment only. These results suggest evidence that p110α mediates esophageal inflammation and that PIK-75 has an anti-inflammatory effect by reducing proinflammatory cytokines on feline esophageal epithelial cultured cells.
Collapse
|
195
|
Manzo-Merino J, Contreras-Paredes A, Vázquez-Ulloa E, Rocha-Zavaleta L, Fuentes-Gonzalez AM, Lizano M. The Role of Signaling Pathways in Cervical Cancer and Molecular Therapeutic Targets. Arch Med Res 2014; 45:525-39. [DOI: 10.1016/j.arcmed.2014.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/29/2014] [Indexed: 12/24/2022]
|
196
|
Gan ZY, Fitter S, Vandyke K, To LB, Zannettino ACW, Martin SK. The effect of the dual PI3K and mTOR inhibitor BEZ235 on tumour growth and osteolytic bone disease in multiple myeloma. Eur J Haematol 2014; 94:343-54. [PMID: 25179233 DOI: 10.1111/ejh.12436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2014] [Indexed: 12/17/2022]
Abstract
The plasma cell malignancy multiple myeloma (MM) is unique among haematological malignancies in its capacity to cause osteoclast-mediated skeletal destruction. The PI3K/Akt/mTOR pathway mediates proliferation, survival and drug resistance in MM plasma cells and is also involved in regulating the formation and activity of bone-forming osteoblasts and bone-resorbing osteoclasts. NVP-BEZ235 is a dual pan class I PI3K and mTOR inhibitor that is currently undergoing clinical evaluation in several tumour settings. In this study, we examined the anti-tumorigenic effects of BEZ235 in an immunocompetent mouse model of MM and assessed the effects of BEZ235 on osteoblast and osteoclast formation and function. BEZ235 treatment (50 mg/kg) resulted in a significant decrease in serum paraprotein and tumour burden, and μCT analysis of the proximal tibia revealed a significant reduction in the number of osteolytic bone lesions in BEZ235-treated animals. Levels of the serum osteoblast marker P1NP were significantly higher in BEZ235-treated animals, while levels of the osteoclast marker TRAcP5 were reduced. In vitro, BEZ235 decreased MM plasma cell proliferation, osteoclast formation and function and promoted osteoblast formation and function. These findings suggest that, in addition to its anti-tumour properties, BEZ235 could be useful in treating osteolytic bone disease in MM patients.
Collapse
Affiliation(s)
- Zhen Ying Gan
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA; Centre for Stem Cell Research, Robinson Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Adelaide, SA; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA
| | | | | | | | | | | |
Collapse
|
197
|
Herzog S, Fink MA, Weitmann K, Friedel C, Hadlich S, Langner S, Kindermann K, Holm T, Böhm A, Eskilsson E, Miletic H, Hildner M, Fritsch M, Vogelgesang S, Havemann C, Ritter CA, Meyer zu Schwabedissen HE, Rauch B, Hoffmann W, Kroemer HK, Schroeder H, Bien-Möller S. Pim1 kinase is upregulated in glioblastoma multiforme and mediates tumor cell survival. Neuro Oncol 2014; 17:223-42. [PMID: 25155357 DOI: 10.1093/neuonc/nou216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The current therapy for glioblastoma multiforme (GBM), the most aggressive and common primary brain tumor of adults, involves surgery and a combined radiochemotherapy that controls tumor progression only for a limited time window. Therefore, the identification of new molecular targets is highly necessary. Inhibition of kinases has become a standard of clinical oncology, and thus the oncogenic kinase Pim1 might represent a promising target for improvement of GBM therapy. METHODS Expression of Pim1 and associated signaling molecules was analyzed in human GBM samples, and the potential role of this kinase in patients' prognosis was evaluated. Furthermore, we analyzed the in vivo role of Pim1 in GBM cell growth in an orthotopic mouse model and examined the consequences of Pim1 inhibition in vitro to clarify underlying pathways. RESULTS In comparison with normal brain, a strong upregulation of Pim1 was demonstrated in human GBM samples. Notably, patients with short overall survival showed a significantly higher Pim1 expression compared with GBM patients who lived longer than the median. In vitro experiments with GBM cells and analysis of patients' GBM samples suggest that Pim1 regulation is dependent on epidermal growth factor receptor. Furthermore, inhibition of Pim1 resulted in reduced cell viability accompanied by decreased cell numbers and increased apoptotic cells, as seen by elevated subG1 cell contents and caspase-3 and -9 activation, as well as modulation of several cell cycle or apoptosis regulatory proteins. CONCLUSIONS Altogether, Pim1 could be a novel therapeutic target, which should be further analyzed to improve the outcome of patients with aggressive GBM.
Collapse
Affiliation(s)
- Susann Herzog
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Matthias Alexander Fink
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Kerstin Weitmann
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Claudius Friedel
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Stefan Hadlich
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Sönke Langner
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Katharina Kindermann
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Tobias Holm
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Andreas Böhm
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Eskil Eskilsson
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Hrvoje Miletic
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Markus Hildner
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Michael Fritsch
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Silke Vogelgesang
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Christoph Havemann
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Christoph Alexander Ritter
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Henriette Elisabeth Meyer zu Schwabedissen
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Bernhard Rauch
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Wolfgang Hoffmann
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Heyo Klaus Kroemer
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Henry Schroeder
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| | - Sandra Bien-Möller
- Department of Pharmacology/C_DAT (S.H., M.H., M.A.F., T.H., A.B., H.E.M.z.S., H.K.K., B.R., S.B-M.); Institute of Pathology (S.V.); Institute of Pharmacy (C.A.R.); Institute for Community Medicine (K.W., C.H., W.H.); Clinic of Neurosurgery (C.F., M.F., H.S.); Institute of Radiology and Neuroradiology, Universitätsmedizin Greifswald, Greifswald, Germany (S.H., K.K., S.L.); Department of Biomedicine, University of Bergen, Bergen, Norway (E.E., H.M.); Department of Pathology, Haukeland University Hospital, Bergen, Norway (E.E., H.M.)
| |
Collapse
|
198
|
Huang JD, Amaral J, Lee JW, Rodriguez IR. 7-Ketocholesterol-induced inflammation signals mostly through the TLR4 receptor both in vitro and in vivo. PLoS One 2014; 9:e100985. [PMID: 25036103 PMCID: PMC4103802 DOI: 10.1371/journal.pone.0100985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/01/2014] [Indexed: 12/23/2022] Open
Abstract
The cholesterol oxide 7-ketocholesterol (7KCh) has been implicated in numerous age-related diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer and age-related macular degeneration. It is formed by the autooxidation of cholesterol and especially cholesterol-fatty acid esters found in lipoprotein deposits. This molecule causes complex and potent inflammatory responses in vitro and in vivo. It is suspected of causing chronic inflammation in tissues exposed to oxidized lipoprotein deposits. In this study we have examined the inflammatory pathways activated by 7KCh both in cultured ARPE19 cells and in vivo using 7KCh-containing implants inserted into the anterior chamber of the rat eye. Our results indicate that 7KCh-induced inflammation is mediated mostly though the TLR4 receptor with some cross-activation of EGFR-related pathways. The majority of the cytokine inductions seem to signal via the TRIF/TRAM side of the TLR4 receptor. The MyD88/TIRAP side only significantly effects IL-1β inductions. The 7KCh-induced inflammation also seems to involve a robust ER stress response. However, this response does not seem to involve a calcium efflux-mediated UPR. Instead the ER stress response seems to be mediated by yet identified kinases activated through the TLR4 receptor. Some of the kinases identified are the RSKs which seem to mediate the cytokine inductions and the cell death pathway but do not seem to be involved in the ER stress response.
Collapse
Affiliation(s)
- Jiahn-Dar Huang
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan Amaral
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jung Wha Lee
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ignacio R. Rodriguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
199
|
Lewerenz J, Baxter P, Kassubek R, Albrecht P, Van Liefferinge J, Westhoff MA, Halatsch ME, Karpel-Massler G, Meakin PJ, Hayes JD, Aronica E, Smolders I, Ludolph AC, Methner A, Conrad M, Massie A, Hardingham GE, Maher P. Phosphoinositide 3-kinases upregulate system xc(-) via eukaryotic initiation factor 2α and activating transcription factor 4 - A pathway active in glioblastomas and epilepsy. Antioxid Redox Signal 2014; 20:2907-22. [PMID: 24219064 PMCID: PMC4038988 DOI: 10.1089/ars.2013.5455] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/25/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023]
Abstract
AIMS Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc(-) imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc(-) and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. RESULTS PI3Ks induce system xc(-) through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. INNOVATION Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc(-). Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. CONCLUSION PI3K-regulated system xc(-) activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Paul Baxter
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joeri Van Liefferinge
- Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Paul J. Meakin
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - John D. Hayes
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- SEIN—Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Ilse Smolders
- Pharmaceutical Chemistry and Drug Analysis, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Axel Methner
- Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn), Department of Neurology, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ann Massie
- Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Giles E. Hardingham
- Center for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
200
|
Bisht K, Wegiel B, Tampe J, Neubauer O, Wagner KH, Otterbein LE, Bulmer AC. Biliverdin modulates the expression of C5aR in response to endotoxin in part via mTOR signaling. Biochem Biophys Res Commun 2014; 449:94-9. [PMID: 24814708 PMCID: PMC4051991 DOI: 10.1016/j.bbrc.2014.04.150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 02/09/2023]
Abstract
Macrophages play a crucial role in the maintenance and resolution of inflammation and express a number of pro- and anti-inflammatory molecules in response to stressors. Among them, the complement receptor 5a (C5aR) plays an integral role in the development of inflammatory disorders. Biliverdin and bilirubin, products of heme catabolism, exert anti-inflammatory effects and inhibit complement activation. Here, we define the effects of biliverdin on C5aR expression in macrophages and the roles of Akt and mammalian target of rapamycin (mTOR) in these responses. Biliverdin administration inhibited lipopolysaccharide (LPS)-induced C5aR expression (without altering basal expression), an effect partially blocked by rapamycin, an inhibitor of mTOR signaling. Biliverdin also reduced LPS-dependent expression of the pro-inflammatory cytokines TNF-α and IL-6. Collectively, these data indicate that biliverdin regulates LPS-mediated expression of C5aR via the mTOR pathway, revealing an additional mechanism underlying biliverdin's anti-inflammatory effects.
Collapse
Affiliation(s)
- Kavita Bisht
- Heart Foundation Research Center, Griffith Health Institute, Griffith University, Gold Coast, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Barbara Wegiel
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jens Tampe
- Griffith Enterprise, Griffith University, Nathan, Australia
| | - Oliver Neubauer
- Emerging Field Oxidative Stress and DNA Stability and Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Emerging Field Oxidative Stress and DNA Stability and Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Andrew C Bulmer
- Heart Foundation Research Center, Griffith Health Institute, Griffith University, Gold Coast, Australia.
| |
Collapse
|