151
|
Ansar S, Svendgaard NA, Edvinsson L. Neurokinin-1 receptor antagonism in a rat model of subarachnoid hemorrhage: prevention of upregulation of contractile ETB and 5-HT1B receptors and cerebral blood flow reduction. J Neurosurg 2007; 106:881-6. [PMID: 17542534 DOI: 10.3171/jns.2007.106.5.881] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Cerebral vasospasm following subarachnoid hemorrhage (SAH) leads to reduced cerebral blood flow (CBF) and to cerebral ischemia, in some cases even producing infarction and long-term disability. The goal of the present study was to investigate the hypothesis that inhibition of neurokinin-1 receptors (NK1Rs) by administration of L-822429 blunts the decrease in CBF as well as cerebrovascular receptor upregulation in an animal model of SAH.
Methods
Subarachnoid hemorrhage was induced in rats by injection of 250 μl of blood into the prechiasmatic cistern. The NK1R inhibitor L-822429 was injected intracisternally 30 minutes and 24 hours after the induction of SAH. Two days after SAH induction, the basilar arteries were harvested, and contractile responses to endothelin-1 (ET-1, an ETA- and ETB-receptor agonist) and 5-carboxamidotryptamine (a 5-hydroxytryptamine-1 [5-HT1]-receptor agonist) were investigated using sensitive myographs. To determine whether NK1R inhibition had an influence on local CBF after post-SAH, a quantitative autoradiographic technique was used.
After SAH, the vascular receptor phenotype was changed in cerebral arteries through upregulation of contractile ETB and 5-HT1B receptors, while regional and total CBF were markedly reduced. Treatment with the selective NK1R inhibitor L-822429 prevented both the receptor upregulation and the reduction in regional and global CBF.
Conclusions
The data reveal the coregulation of vascular receptor changes and blood flow effects, and also show that interaction with a small-molecule NK1R antagonist is a promising area of focus for the development of specific treatments for SAH.
Collapse
MESH Headings
- Animals
- Autoradiography
- Brain/blood supply
- Cerebral Infarction/physiopathology
- Cerebral Infarction/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelin B Receptor Antagonists
- Injections, Intraventricular
- Male
- Muscle, Smooth, Vascular/drug effects
- Neurokinin-1 Receptor Antagonists
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1B/physiology
- Receptors, Neurokinin-1/physiology
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Serotonin 5-HT1 Receptor Antagonists
- Subarachnoid Hemorrhage/drug therapy
- Subarachnoid Hemorrhage/physiopathology
- Up-Regulation/drug effects
- Vasodilator Agents/pharmacology
- Vasospasm, Intracranial/drug therapy
- Vasospasm, Intracranial/physiopathology
Collapse
Affiliation(s)
- Saema Ansar
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | | | | |
Collapse
|
152
|
Michelgård A, Appel L, Pissiota A, Frans O, Långström B, Bergström M, Fredrikson M. Symptom provocation in specific phobia affects the substance P neurokinin-1 receptor system. Biol Psychiatry 2007; 61:1002-6. [PMID: 16950220 DOI: 10.1016/j.biopsych.2006.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND Animal studies demonstrate that stress and negative affect enhance the release of the neuropeptide substance P (SP), which binds to the neurokinin 1 (NK1) receptor. This positron emission tomography (PET) study evaluated how the activity in the SP-NK1 receptor system in the amygdala was affected by fear provocation in subjects with specific phobia. METHODS Sixteen adult women with DSM-IV-defined specific phobia for either snakes or spiders but not both viewed pictures of feared and non-feared animals while being PET-scanned for 60 min with the highly specific NK1 receptor antagonist [(11)C]GR205171 as the labeled PET tracer. RESULTS The uptake of the labeled NK1 receptor antagonist was significantly reduced in the right amygdala during phobic stimulation. In the left amygdala no significant differences were found between phobic and non-phobic conditions. There was a negative correlation in the right, but not left, amygdala between subjective anxiety ratings and NK1 tracer binding. CONCLUSIONS Fear provocation affects the SP-NK1 receptor system in the right amygdala. This reflects reduced NK1 receptor availability during fear and could mirror an increased release of endogenous substance P.
Collapse
Affiliation(s)
- Asa Michelgård
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
153
|
Primeaux SD, Barnes MJ, Bray GA. Olfactory bulbectomy increases food intake and hypothalamic neuropeptide Y in obesity-prone but not obesity-resistant rats. Behav Brain Res 2007; 180:190-6. [PMID: 17420059 PMCID: PMC1978179 DOI: 10.1016/j.bbr.2007.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/15/2007] [Accepted: 03/12/2007] [Indexed: 11/28/2022]
Abstract
Obese individuals often suffer from depression. The olfactory bulbectomy (OBX) model is an animal model of depression that produces behavioral, physiological, and neurochemical alterations resembling clinical depression. The OBX model was employed to assess depression-related changes in food intake in obesity-prone, Osborne-Mendel (OM) rats and obesity-resistant, S5B/Pl rats. OBX increased food intake in OM rats beginning 7 days following surgery, however, OBX did not alter food intake in S5B/Pl rats at any time point. Fourteen days following surgery, OBX significantly increased locomotor activity (total lines crossed and rears) in the openfield test in OM and S5B/Pl rats. Fifteen days following surgery, prepro-neuropeptide Y (NPY) mRNA levels were significantly increased in the hypothalamus of bulbectomized OM rats and in the medial nucleus of the amygdala of bulbectomized OM and S5B/Pl rats. OBX decreased NPY Y2 receptor mRNA levels in the hypothalamus and medial nucleus of the amygdala in OM rats, while increasing NPY Y2 receptor mRNA levels in the medial nucleus of the amygdala of S5B/Pl rats. These data indicate that though both obesity-prone and obesity-resistant strains were susceptible to the locomotor effects of OBX, food intake and hypothalamic prepro-NPY mRNA were only increased in OM rats. Therefore, strain specific alterations in hypothalamic NPY may account for increased food intake in the obesity-prone rats following OBX, and suggests a potential mechanism to explain the comorbidity of obesity and depression.
Collapse
Affiliation(s)
- Stefany D Primeaux
- Dietary Obesity Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
154
|
Tsoory M, Cohen H, Richter-Levin G. Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood. Eur Neuropsychopharmacol 2007; 17:245-56. [PMID: 16889944 DOI: 10.1016/j.euroneuro.2006.06.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 05/30/2006] [Accepted: 06/20/2006] [Indexed: 02/02/2023]
Abstract
Epidemiological studies indicate that childhood trauma is predominantly associated with later emergence of several stress-related psychopathologies. While most 'early-stress' animal models focus on pre-weaning exposure, we examined the consequences of exposure to stress during the early pre-pubertal period, "juvenile stress", on adulthood stress responses. Following two different juvenile stress protocols, predator scent or short-term variable stress, we examined adulthood stress responses using the elevated plus-maze and startle response or exploration and avoidance learning. Employing Cut-off Behavioral Criteria analyses of clustering symptoms on the rats' altered stress responses discriminated between different patterns of maladaptive behaviors. Exposure to either juvenile stress protocols resulted in lasting alteration of stress responses with the majority of rats exhibiting anxiety-like behaviors, while the remaining third displayed depressive-like behaviors. The results suggest that the presented "Juvenile stress" model may be relevant to the reported predisposition to develop both anxiety and depression following childhood trauma.
Collapse
Affiliation(s)
- Michael Tsoory
- Department of Psychology and The Brain and Behavior Research Center, University of Haifa, Mount Carmel, 31905 Haifa, Israel
| | | | | |
Collapse
|
155
|
Singewald N. Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev 2007; 31:18-40. [PMID: 16620984 DOI: 10.1016/j.neubiorev.2006.02.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 12/21/2022]
Abstract
Pathological anxiety involves aberrant processing of emotional information that is hypothesized to reflect perturbations in fear/anxiety pathways. The affected neurobiological substrates in patients with different anxiety disorders are just beginning to be revealed. Important leads for this research can be derived from findings obtained in psychopathologically relevant rodent models of enhanced anxiety, by revealing where in the brain neuronal processing in response to diverse challenges is different to that in animals with lower anxiety levels. Different functional mapping methods in various rodent models, including psychogenetically selected lines or genetically modified animals, have been used for this purpose. These studies show that the divergent anxiety-related behavioral response of high-anxiety- vs. normal and/or low-anxiety rodents to emotional challenges is associated with differential neuronal activation in restricted parts of proposed fear/anxiety circuitries including brain areas thought to be important in stress, emotion and memory. The identification of neuronal populations showing differential activation depends in part on the applied emotional challenge, indicating that specific facets of elicited fear or anxiety preferentially engage particular parts of the fear/anxiety circuitry. Hence, only the use of an array of different challenges will reveal most affected brain areas. A number of the neuronal substrates identified are suggested as candidate mediators of dysfunctional brain activation in pathological anxiety. Indeed, key findings revealed in these rodent models show parallels to observations in human symptom provocation studies comparing anxiety disorder patients with healthy volunteers. Work to investigate exactly which of the changed neuronal activation patterns in high-anxiety rodents has to be modulated by therapeutic drugs to achieve effective anxiolysis and via which neurochemical pathways this can be accomplished is at its early stages but has identified a small number of promising candidates. Extending these approaches should help to provide further insight into these mechanisms, revealing new leads for therapeutic targets and strategies.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
156
|
Nguyen NK, Keck ME, Hetzenauer A, Thoeringer CK, Wurst W, Deussing JM, Holsboer F, Müller MB, Singewald N. Conditional CRF receptor 1 knockout mice show altered neuronal activation pattern to mild anxiogenic challenge. Psychopharmacology (Berl) 2006; 188:374-85. [PMID: 16953386 DOI: 10.1007/s00213-006-0513-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Regional-specific corticotropin-releasing factor receptor 1 (CRF-R1) knockout mice have been generated recently as a tool to dissociate CNS functions modulated by this receptor. In these mice, CRF-R1 function is postnatally inactivated in the anterior forebrain including limbic brain structures but not in the pituitary leading to normal activity of the hypothalamic-pituitary-adrenocortical (HPA) axis under basal conditions and reduced anxiety-related behavior in the light-dark box and the elevated plus maze (EPM) as compared to wild-type (WT) mice (Müller et al., Nat Neurosci 6:1100-1107, 2003). OBJECTIVE To identify neurobiological correlates underlying this reduced anxiety-like behavior, the expression of c-Fos, an established marker for neuronal activation, which was examined in response to a mild anxiogenic challenge. MATERIALS AND METHODS Mice were placed for 10 min on the open arm (OA) of the EPM, and regional c-Fos expression was investigated by immunohistochemistry. RESULTS OA exposure enhanced c-Fos expression in both conditional CRF-R1 knockout and WT mice in a number of brain areas (39 of 55 quantified), including cortical, limbic, thalamic, hypothalamic, and hindbrain regions. The c-Fos response in conditional CRF-R1 knockout animals was reduced in a restricted subset of activated neurons (4 out of 39 regions) located in the medial amygdala, ventral lateral septum, prelimbic cortex, and dorsomedial hypothalamus. CONCLUSIONS These results underline the importance of limbic CRF-R1 in modulating anxiety-related behavior and suggest that reduced neuronal activation in the identified limbic and hypothalamic key structures of the anxiety circuitry may mediate or contribute to the anxiolytic-like phenotype observed in mice with region-specific deletion of forebrain CRF-R1.
Collapse
MESH Headings
- Amygdala/anatomy & histology
- Amygdala/metabolism
- Animals
- Anxiety Disorders/genetics
- Anxiety Disorders/physiopathology
- Behavior, Animal/physiology
- Hypothalamus, Posterior/anatomy & histology
- Hypothalamus, Posterior/metabolism
- Immunohistochemistry
- Male
- Maze Learning/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Models, Anatomic
- Neurons/metabolism
- Neurons/physiology
- Prefrontal Cortex/anatomy & histology
- Prefrontal Cortex/metabolism
- Proto-Oncogene Proteins c-fos/biosynthesis
- Receptors, Corticotropin-Releasing Hormone/deficiency
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/physiology
- Septal Nuclei/anatomy & histology
- Septal Nuclei/metabolism
- Time Factors
Collapse
Affiliation(s)
- Ngoc Khoi Nguyen
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayrstr. 1, 6020, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Herdade KCP, Strauss CVDA, Zangrossi Júnior H, Viana MDB. Effects of medial amygdala inactivation on a panic-related behavior. Behav Brain Res 2006; 172:316-23. [PMID: 16806522 DOI: 10.1016/j.bbr.2006.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/15/2006] [Accepted: 05/17/2006] [Indexed: 11/16/2022]
Abstract
In the last years, the role played by the medial nucleus of the amygdala (MeA) in the modulation of fear- and anxiety-related behaviors has been increasingly investigated. This nucleus plays an important role in the processing of predator odor-induced defensive reactions, i.e. freezing and risk-assessment behaviors. Immunohistochemical evidence also indicates that the MeA may be involved in the regulation of escape, a defensive behavior related to panic attacks. In this study, we further addressed this question by investigating the effects of the reversible inactivation of the nucleus on escape behavior generated in male Wistar rats by two different aversive stimuli, electrical stimulation of the dorsal periaqueductal gray matter (dPAG) and exposure to one of the open arms of the elevated T-maze. Results showed that intra-MeA administration of either the reversible sodium channel blocker lidocaine (34 nmol/0.2 microl) or the GABA(A) receptor agonist muscimol (0.22 nmol/0.2 microl) raised the threshold of aversive electrical stimulation, increasing the amount of current that applied to the dPAG evokes escape, an antiaversive effect. Local microinjection of muscimol (0.22 nmol/0.2 microl) inhibited escape behavior in the elevated T-maze, also suggesting an antiaversive effect. In this latter test, muscimol did not affect inhibitory avoidance, a behavior associated with generalized anxiety disorder. Muscimol effect in the elevated T-maze was independent of changes in general exploratory activity as measured in an open-field. Taken together, our data corroborate previous evidences suggesting that the MeA is involved in the modulation of escape. Dysfunction of this regulatory mechanism may be of relevance in the genesis/maintenance of panic disorder.
Collapse
Affiliation(s)
- Karina Costa Paes Herdade
- Laboratório de Psicofarmacologia, FFCLRP, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
158
|
Schlereth T, Dittmar JO, Seewald B, Birklein F. Peripheral amplification of sweating--a role for calcitonin gene-related peptide. J Physiol 2006; 576:823-32. [PMID: 16931551 PMCID: PMC1890409 DOI: 10.1113/jphysiol.2006.116111] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuropeptides are the mediators of neurogenic inflammation. Some pain disorders, e.g. complex regional pain syndromes, are characterized by increased neurogenic inflammation and by exaggerated sudomotor function. The aim of this study was to explore whether neuropeptides have a peripheral effect on human sweating. We investigated the effects of different concentrations of calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and substance P (SP) on acetylcholine-induced axon reflex sweating in healthy subjects (total n = 18). All substances were applied via dermal microdialysis. The experiments were done in a parallel setting: ACh alone and ACh combined with CGRP, VIP or SP in various concentrations were applied. Acetylcholine (10(-2) m) always elicited a sweating response, neuropeptides alone did not. However, CGRP significantly enhanced ACh-induced sweating (P < 0.01). Post hoc tests revealed that CGRP in physiological concentrations of 10(-7)-10(-9) m was most effective. VIP at any concentration had no significant effect on axon reflex sweating. The duration of the sweating response (P < 0.01), but not the amount of sweat, was reduced by SP. ACh-induced skin blood flow was significantly increased by CGRP (P < 0.01), but unaltered by VIP and SP. The results indicate that CGRP amplifies axon reflex sweating in human skin.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, Johannes Gutenberg-University Langenbeckstr. 1, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
159
|
Salomé N, Stemmelin J, Cohen C, Griebel G. Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology (Berl) 2006; 187:237-44. [PMID: 16779555 DOI: 10.1007/s00213-006-0424-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/20/2006] [Indexed: 01/22/2023]
Abstract
RATIONALE SSR149415 ((2S, 4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidinecarboxamide), the first selective nonpeptide vasopressin V1b receptor antagonist has been shown to induce antidepressant-and anxiolytic-like effects following systemic administration, whereas intraseptal infusion of the drug engender antidepressant-but not anxiolytic-like effects. OBJECTIVES Based on recent evidence that V1b receptors are located within the amygdaloid complex, a structure which is well known for its modulatory role of emotional processes, the possible involvement of the different amygdaloid nuclei in the anxiolytic- and/or antidepressant-like effects of SSR149415 was examined. METHODS Male Sprague-Dawley or Wistar rats were infused with SSR149415 into the central (CeA), the basolateral (BlA), or the medial (MeA) nucleus of the amygdala and tested 10 min after microinjection in the elevated plus-maze or the forced-swimming test, two models typically used for assessing the anxiolytic and antidepressant effects of drugs, respectively. RESULTS Microinjection of SSR149415 into the BlA (1-10 ng), but not into the CeA or the MeA, increased the percentage of time spent in the open arms of the elevated plus-maze, indicating anxiolytic-like effects. Furthermore, in the forced-swimming test, microinjection of the drug into the CeA (1, 10, and 100 ng), BlA (1-10 ng), or MeA (100 ng) decreased immobility, an effect which is indicative of an antidepressant-like action. Together, these findings indicate that while the antidepressant-like effects of SSR149415 are mediated by different amygdaloid nuclei, its anxiolytic-like effects appear to involve only the basolateral nucleus of the amygdala. Moreover, these results add further evidence to the role of extrahypothalamic vasopressinergic systems in the control of emotional responses.
Collapse
Affiliation(s)
- N Salomé
- Sanofi-Aventis, Department of Psychopharmacology, 31 avenue Paul Vaillant-Couturier, Bagneux 92220, France
| | | | | | | |
Collapse
|
160
|
Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006; 31:251-72. [PMID: 16820980 DOI: 10.1007/s00726-006-0335-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 12/18/2022]
Abstract
Substance P (SP) is one of the most abundant peptides in the central nervous system and has been implicated in a variety of physiological and pathophysiological processes including stress regulation, as well as affective and anxiety-related behaviour. Consistent with these functions, SP and its preferred neurokinin 1 (NK1) receptor has been found within brain areas known to be involved in the regulation of stress and anxiety responses. Aversive and stressful stimuli have been shown repeatedly to change SP brain tissue content, as well as NK1 receptor binding. More recently it has been demonstrated that emotional stressors increase SP efflux in specific limbic structures such as amygdala and septum and that the magnitude of this effect depends on the severity of the stressor. Depending on the brain area, an increase in intracerebral SP concentration (mimicked by SP microinjection) produces mainly anxiogenic-like responses in various behavioural tasks. Based on findings that SP transmission is stimulated under stressful or anxiety-provoking situations it was hypothesised that blockade of NK1 receptors may attenuate stress responses and exert anxiolytic-like effects. Preclinical and clinical studies have found evidence in favour of such an assumption. The status of this research is reviewed here.
Collapse
Affiliation(s)
- K Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
161
|
Chenu F, Guiard BP, Bourin M, Gardier AM. Antidepressant-like activity of selective serotonin reuptake inhibitors combined with a NK1 receptor antagonist in the mouse forced swimming test. Behav Brain Res 2006; 172:256-63. [PMID: 16806519 DOI: 10.1016/j.bbr.2006.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 05/04/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
Substance P antagonists of the neurokinin-1 receptor type (NK1) have growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurons. In line with this assumption, previous intracerebral in vivo microdialysis experiments provided evidence that the NK1 receptor antagonists did not change basal cortical 5-HT levels. However, we found that increases in cortical 5-HT overflow caused by systemic injection of the selective serotonin reuptake inhibitor (SSRI), paroxetine was higher in freely moving (C57BL/6x129sv) NK1-/- mutants than in wild-type NK1+/+ mice. More recently, a pharmacological study has led to a similar conclusion since GR205171, a NK1 receptor antagonist, potentiated paroxetine-induced increases in cortical 5-HT dialysate following its acute systemic or intra-raphe administration to wild-type mice . In the present study, we tested whether an acute combination of SSRI and NK1 receptor antagonist could display antidepressant-like activity using the forced swimming test in Swiss mice. We found that a single systemic dose of GR205171 (10 and 30 mg/kg, i.p.) had no effect by itself. However, it selectively potentiated the antidepressant-like activity of subactive doses of two serotonergic antidepressant drugs, citalopram and paroxetine (without psychomotor stimulant activity), but not that of noradrenaline reuptake inhibitor, desipramine. In agreement with neurochemical data, the present study confirms that co-administration of a NK1 receptor antagonist with an antidepressant drug such as a SSRI may have a therapeutic potential to improve the treatment of major depressive episodes in human compared to SSRI alone.
Collapse
Affiliation(s)
- F Chenu
- Laboratoire de Pharmacologie de l'anxiété et de la dépression EA3256, Faculté de Médecine, 1 Rue Gaston Veil, 44035 Nantes cedex, France
| | | | | | | |
Collapse
|
162
|
Frank E, Salchner P, Aldag JM, Salomé N, Singewald N, Landgraf R, Wigger A. Genetic predisposition to anxiety-related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat. Behav Neurosci 2006; 120:60-71. [PMID: 16492117 DOI: 10.1037/0735-7044.120.1.60] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic background may influence an individual's susceptibility to, and subsequent coping strategy for, an acute stressor. When exposed to social defeat (SD), rats bred for high (HAB) or low (LAB) trait anxiety, which also differ in depression-like behavior, showed highly divergent passive and active coping behaviors, respectively. HABs spent more time freezing and emitted more ultrasound vocalization calls during SD than LABs, which spent more time rearing and grooming. Although the behavioral data confirmed the prediction that heightened trait anxiety would make rats more prone to experience stress, adrenocorticotropin and corticosterone were secreted to a higher extent in LABs than in HABs. In the latter, Fos expression upon SD was enhanced in the amygdala and hypothalamic areas compared with LABs, whereas it was diminished in prefrontal and brainstem areas.
Collapse
|
163
|
Hermel EES, Faccioni-Heuser MC, Marcuzzo S, Rasia-Filho AA, Achaval M. Ultrastructural features of neurons and synaptic contacts in the posterodorsal medial amygdala of adult male rats. J Anat 2006; 208:565-75. [PMID: 16637879 PMCID: PMC2100224 DOI: 10.1111/j.1469-7580.2006.00559.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2005] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to describe the ultrastructure of neurons (from eight animals) and to analyse the synaptic terminal distribution (from two animals) in the posterodorsal subnucleus of the medial amygdala (MePD) of adult male rats. Using transmission electron microscopy, it was possible to identify many spiny and aspiny dendrites, unmyelinated axonal bundles, single axonal processes, a few myelinated axons, blood vessels and glial processes in the neuropil. Axodendritic synapses were the most frequently observed (67.5%), appearing to be of either the inhibitory or the excitatory types. The presynaptic region contained round or flattened vesicles that occurred either singly or with dense-cored vesicles (DCVs). The dendrites often received many synapses on a single shaft, and axon terminals displayed synaptic contacts with one or more postsynaptic structures. Dendritic spines showed different morphologies and the synapses on them (23.1%) formed a single and apparently excitatory synaptic contact with round, electron-lucid vesicles alone or, less frequently, with DCVs. Inhibitory and excitatory axosomatic synapses (8.2%) and excitatory axoaxonic synapses (1.2%) were also identified. The present report provides new findings relevant to the study of the MePD cellular organization and could be combined with other morphological data in order to reveal the functional activity of this area in male rats.
Collapse
Affiliation(s)
- E E S Hermel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
164
|
Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006; 7:137-51. [PMID: 16429123 DOI: 10.1038/nrn1846] [Citation(s) in RCA: 1123] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All available antidepressant medications are based on serendipitous discoveries of the clinical efficacy of two classes of antidepressants more than 50 years ago. These tricyclic and monoamine oxidase inhibitor antidepressants were subsequently found to promote serotonin or noradrenaline function in the brain. Newer agents are more specific but have the same core mechanisms of action in promoting these monoamine neurotransmitters. This is unfortunate, because only approximately 50% of individuals with depression show full remission in response to these mechanisms. This review summarizes the obstacles that have hindered the development of non-monoamine-based antidepressants, and provides a progress report on some of the most promising current strategies.
Collapse
Affiliation(s)
- Olivier Berton
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA
| | | |
Collapse
|
165
|
Kc P, Karibi-Ikiriko A, Rust CF, Jayam-Trouth A, Haxhiu MA. Phenotypic traits of the hypothalamic PVN cells innervating airway-related vagal preganglionic neurons. Respir Physiol Neurobiol 2006; 154:319-30. [PMID: 16515895 PMCID: PMC1828905 DOI: 10.1016/j.resp.2006.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/10/2006] [Accepted: 01/12/2006] [Indexed: 11/19/2022]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) integrates multiple inputs via projections from arginine vasopressin (AVP)- and oxytocin (OXT)-containing neurons to the brain stem and spinal cord as well as regulates respiratory and cardiovascular stress-related responses, which also affect airway function. In the present study, we used immunocytochemistry and the retrograde transneuronal tracer, Bartha strain of pseudorabies virus expressing green fluorescent protein (PRV-GFP), to localize AVP- and OXT-producing neurons that project to airway-related vagal preganglionic neurons (AVPNs) innervating intrapulmonary airways. PRV-GFP was microinjected into the upper right lung lobe, and after 4 days survival, hypothalamic tissue sections were processed for co-expression of PRV-GFP and AVP or PRV-GFP and OXT. In addition, in a separate group of five rats, Phaseolus vulgaris leucoagglutinin (PHAL), an anterograde tracer, was injected unilaterally into the PVN and cholera toxin beta subunit was microinjected into the tracheal wall. Analysis of five successfully infected animals showed that 14% of PRV-GFP labeled neurons express AVP traits and 18% of transneuronally-labeled neurons contain OXT. Furthermore, the identified AVPNs innervating extrathoracic trachea receive axon terminals of the PVN neurons. The results indicate that AVP- and OXT-producing PVN cells, via direct projections to the AVPNs, could modulate cholinergic outflow to the airways, as a part of overall changes in response to stress.
Collapse
Affiliation(s)
- Prabha Kc
- Specialized Neuroscience Research Program, Department of Physiology and Biophysics, Howard University College of Medicine, 520 "W" St., N.W., Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|
166
|
Baier PC, Branisa P, Koch R, Schindehütte J, Paulus W, Trenkwalder C. Circadian distribution of motor-activity in unilaterally 6-hydroxy-dopamine lesioned rats. Exp Brain Res 2006; 169:283-8. [PMID: 16432693 DOI: 10.1007/s00221-005-0343-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Sleep abnormalities in idiopathic Parkinson's disease (PD) frequently consist in a reduction of total sleep time and efficacy and subsequent excessive daytime sleepiness. As it remains unclear whether these phenomena are part of the disease itself or result from pharmacological treatment, animal models for investigating the pathophysiology of sleep alterations in PD may add knowledge to this research area. In the present study, we investigate whether changes in circadian motor activity occur in 6-OHDA-lesioning model for PD, and allow a screening for disturbed sleep-waking behaviour. Activity measurements of six male Wistar rats with 6-OHDA-lesions in the medial forebrain bundle and six controls were carried out in two consecutive 12:12 h light-dark (LD) cycles. A computer-based video-analysis system, recording the animals' movement tracks was used. Distance travelled and number of transitions between movement periods and resting periods were determined. Although 6-OHDA-lesioned animals show a reduced locomotor activity compared to non-lesioned rats, the circadian distribution basically remained intact. However, some lesioning effects were more pronounced in the resting phase than in the activity phase, possibly paralleling nocturnal akinesia in PD. In order to further elucidate the described phenomena, it will be necessary to perform studies combining sleep recordings with locomotor activity measurements.
Collapse
Affiliation(s)
- Paul Christian Baier
- Department of Clinical Neurophysiology, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
167
|
Renoldi G, Invernizzi RW. Blockade of tachykinin NK1 receptors attenuates stress-induced rise of extracellular noradrenaline and dopamine in the rat and gerbil medial prefrontal cortex. J Neurosci Res 2006; 84:961-8. [PMID: 16862563 DOI: 10.1002/jnr.20997] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Substance P receptor antagonists cause antidepressant- and anxiolytic-like effects in rodents that are thought to involve brain monoamines. In the present study, we examined the effects of the NK1 receptor antagonist GR-205,171 on basal and stress-induced rise of extracellular noradrenaline (NA) and dopamine (DA) in the medial prefrontal cortex (mPFC) of conscious rats and gerbils with the in vivo microdialysis technique. GR-205,171 given intraperitoneally to rats (10 and 30 mg/kg) and gerbils (0.3 and 1 mg/kg) did not affect extracellular NA in either species and increased extracellular DA in rats. Forty minutes of immobilization increased extracellular NA and DA by, respectively, 179% and 188% of baseline values in rats and 222% and 316% of baseline values in gerbils. At 10 mg/kg, GR-205,171 attenuated the stress-induced increase of extracellular NA in the rat. At 30 mg/kg, GR-205,171 suppressed the effect of stress on extracellular DA but had no effect on NA. A lower dose (1 mg/kg) attenuated the stress-induced rise of extracellular NA and DA in the mPFC of gerbils. The results show that blockade of NK1 receptors marginally increased basal extracellular DA in rats but had no effect in gerbils, whereas the stress-induced rise of extracellular NA and DA was markedly attenuated in both species. It is suggested that catecholamines may contribute to the functional effects of GR-205,171.
Collapse
|
168
|
Forestiero D, Manfrim CM, Guimarães FS, de Oliveira RMW. Anxiolytic-like effects induced by nitric oxide synthase inhibitors microinjected into the medial amygdala of rats. Psychopharmacology (Berl) 2006; 184:166-72. [PMID: 16362401 DOI: 10.1007/s00213-005-0270-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 11/11/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE The amygdaloid complex plays a central role in the neuroanatomical circuits that coordinate defensive responses. Nitric oxide (NO) has been involved in the neurochemical, hormonal, and behavioral changes related to stress and anxiety. A high density of NO-producing neurons is observed in the medial amygdala (MeA). These neurons are activated after exposure to threatening stimuli such as a live predator. OBJECTIVE To test the hypothesis that microinjection into the MeA of two NO synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME) or 7-nitroindazole (7-NI), would produce anxiolytic effects. METHODS Male Wistar rats (n=8-10/group) were submitted to stereotaxic surgery to implant bilateral stainless steel guide cannulae aimed at the MeA. Six days after the surgery, the animals received intra-MeA microinjections of the drugs or vehicle and, 10 min later, were submitted to the elevated plus-maze (EPM) or the light-dark transition procedures. RESULTS Both L-NAME (50-200 nmol) and 7-NI (5 and 10 nmol) increased open-arm exploration in the EPM without changing the number of enclosed arm entries, indicating an anxiolytic-like effect. The anxiolytic-like effect of L-NAME (200 nmol) was prevented by pretreatment with L-arginine (100 nmol). Injections of 7-NI or L-NAME outside the MeA did not produce any significant change in EPM exploration. When tested in the light-dark test, L-NAME (200 nmol) or 7-NI (10 nmol) increased the time when the animal remained in the light compartment of the light-dark box. CONCLUSIONS The present results suggest that inhibition of NO formation in the MeA produces anxiolytic-like effect in rats.
Collapse
Affiliation(s)
- Daniel Forestiero
- Department of Pharmacology, University of Maringá, Av. Colombo 5790, 87020-900, Maringá, Parana, Brazil
| | | | | | | |
Collapse
|
169
|
McDougall SJ, Widdop RE, Lawrence AJ. Central autonomic integration of psychological stressors: Focus on cardiovascular modulation. Auton Neurosci 2005; 123:1-11. [PMID: 16289941 DOI: 10.1016/j.autneu.2005.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/14/2005] [Accepted: 09/28/2005] [Indexed: 02/04/2023]
Abstract
During stress the sympathoadrenal system and the hypothalamo-pituitary-adrenal axis act in a coordinated manner to force changes within an animal's current physiological and behavioral state. Such changes have been described as 'fight flight' or stress responses. The central nervous system may generate a stress response by different neural circuits, this being dependent upon the type of stressor presented. For instance, the central control of the autonomic function during physical stress would seem to be based on existing homeostatic mechanisms. In contrast, with exposure to psychological stress the means by which autonomic outflow is regulated has not been fully established. This review discusses recent observations of autonomic flow, cardiovascular components in particular, during psychological stress and the possible implications these may have for our understanding of the central nervous system. In addition, an update of recent findings concerning several regions thought to be important to the regulation of autonomic function during psychological stress exposure is provided.
Collapse
Affiliation(s)
- Stuart J McDougall
- Howard Florey Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
170
|
Guiard BP, Froger N, Hamon M, Gardier AM, Lanfumey L. Sustained pharmacological blockade of NK1 substance P receptors causes functional desensitization of dorsal raphe 5-HT 1A autoreceptors in mice. J Neurochem 2005; 95:1713-23. [PMID: 16219031 DOI: 10.1111/j.1471-4159.2005.03488.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT 1A autoreceptors within the dorsal raphe nucleus (DRN). We investigated whether this receptor adaptation also occurs upon NK1 receptor blockade. C57B/L6J mice were treated for 21 days with the selective NK1 receptor antagonist GR 205171 (10 mg/kg daily) through subcutaneously implanted osmotic mini pumps, and DRN 5-HT 1A autoreceptor functioning was assessed using various approaches. Recording of DRN serotonergic neurons in brainstem slices showed that GR 205171 treatment reduced (by approximately 1.5 fold) the potency of the 5-HT 1A receptor agonist, ipsapirone, to inhibit cell firing. In parallel, the 5-HT 1A autoreceptor-mediated [35S]GTP-gamma-S binding induced by 5-carboxamidotryptamine onto the DRN in brainstem sections was significantly decreased in GR 205171-treated mice. In vivo microdialysis showed that the cortical 5-HT overflow caused by acute injection of the SSRI paroxetine (1 mg/kg) was twice as high in GR 205171-treated as in vehicle-treated controls. In the DRN, basal 5-HT outflow was significantly enhanced by GR 205171 treatment. These data supported the hypothesis that chronic NK1 receptor blockade induces a functional desensitization of 5-HT 1A autoreceptors similar to that observed with SSRIs.
Collapse
Affiliation(s)
- Bruno P Guiard
- INSERM/UPMC, Neuropsychopharmacologie, CHU Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
171
|
Abstract
Increasing evidence suggests that substance P (SP) and its receptor (neurokinin [NK]-1 receptor [NK1R]) might play an important role in the modulation of stress-related, affective and/or anxious behaviour. First, SP and NK1R are expressed in brain regions that are involved in stress, fear and affective response (e.g. amygdala, hippocampus, hypothalamus and frontal cortex). Second, the SP content in these areas changes upon application of stressful stimuli. Third, the central administration of SP produces a range of fear-related behaviours. In addition, the SP/NK1R system shows significant spatial overlap with neurotransmitters such as serotonin and noradrenaline (norepinephrine), which are known to be involved in the regulation of stress, mood and anxiety. Therefore, it was hypothesised that blockade of the NK1R might have anxiolytic as well as antidepressant effects. Preclinical studies investigating the effects of genetic or pharmacological NK1R inactivation on animal behaviour in assays relevant to depression and anxiety revealed that the behavioural changes resemble those seen with reference antidepressant or anxiolytic drugs. Furthermore, antagonism or genetic inactivation of the NK1R causes alterations in serotonin and norepinephrine neuronal transmission that are likely to contribute to the antidepressant/anxiolytic activity of NK1R antagonists but that are--at least partially--distinct from those produced by established antidepressant drugs. This underlines the conceivable unique mechanism of action of this new class of compounds. In three independent clinical trials with three different compounds (aprepitant [MK-869], L-759274 and CP-122721), an antidepressant effect of NK1R antagonists could be demonstrated. These results, however, have been challenged by recent failed studies with aprepitant. There are numerous indications from preclinical studies that, in addition to SP and NK1R, other neurokinins and/or neurokinin receptors might also be involved in the modulation of stress-related behaviour and that exclusive blockade of the NK1R might not be sufficient to produce consistent anxiolytic and antidepressant effects. One such candidate is the neurokinin-2 receptor (NK2R), and clinical trials to assess the antidepressant effects of NK2R antagonists are currently underway. Of special interest might also be substances that block more than one receptor type such as NK1/2R antagonists or NK1/2/3R antagonists. These compounds may be more efficacious in antagonising the effects of SP than compounds that only block the NK1R.
Collapse
Affiliation(s)
- Inga Herpfer
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Freiburg, Germany
| | | |
Collapse
|
172
|
Gobbi G, Blier P. Effect of neurokinin-1 receptor antagonists on serotoninergic, noradrenergic and hippocampal neurons: comparison with antidepressant drugs. Peptides 2005; 26:1383-93. [PMID: 16042978 DOI: 10.1016/j.peptides.2005.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neurokinin-1 (NK1) receptor antagonists have been reported to possess antidepressant and anxiolytic properties in controlled trials. Since antidepressant and anxiolytic drugs act mainly by enhancing serotonin (5-HT) and norepinephrine (NE) neurotransmission in forebrain areas, the main focus of the present review is to critically examine the electrophysiological effects of NK1 receptor antagonists on serotoninergic and noradrenergic neurons, and then hippocampal neurons. It is concluded that NK1 antagonists increase the firing and burst activity of 5-HT neurons, increase burst activity of NE neurons, and modulate postsynaptic transmission at the hippocampus level. Further research is needed in order to develop more selective ligands for the human NK1 receptor and to gain better knowledge of required brain penetration and optimal pharmacodynamic conditions for their use in patients.
Collapse
Affiliation(s)
- Gabriella Gobbi
- Department of Psychiatry, Univ. de Montreal and McGill University, 1033, Av. des Pins Ouest, Montreal, Canada H3A 1A1.
| | | |
Collapse
|
173
|
Cordero MI, Rodríguez JJ, Davies HA, Peddie CJ, Sandi C, Stewart MG. Chronic restraint stress down-regulates amygdaloid expression of polysialylated neural cell adhesion molecule. Neuroscience 2005; 133:903-10. [PMID: 15927407 DOI: 10.1016/j.neuroscience.2005.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/08/2005] [Accepted: 03/16/2005] [Indexed: 11/16/2022]
Abstract
The amygdala is a brain area which plays a decisive role in fear and anxiety. Since exposure to chronic stress can induce profound effects in emotion and cognition, plasticity in specific amygdaloid nuclei in response to prior stress has been hypothesized to account for stress-induced emotional alterations. In order to identify amygdala nuclei which may be affected under chronic stress conditions we evaluated the effects of 21-days chronic restraint stress on the expression of a molecule implicated crucially in alterations in structural plasticity: the polysialylated neural cell adhesion molecule. We found that polysialylated neural cell adhesion molecule-immunoreactivity within the amygdala, present in somata and neuronal processes, has a regional gradient with the central medial and medial amygdaloid nuclei showing the highest levels. Our results demonstrate that chronic restraint stress induced an overall reduction in polysialylated neural cell adhesion molecule-immunoreactivity in the amygdaloid complex, mainly due to a significant decrease in the central medial amygdaloid and medial amygdaloid nuclei. Our data suggest that polysialylated neural cell adhesion molecule in these nuclei may play a prominent role in functional and structural remodeling induced by stress, being a potential mechanism for cognitive and emotional modulation. Furthermore, these finding provide the first clear evidence that life experiences can regulate the expression of polysialylated neural cell adhesion molecule in the amygdaloid complex.
Collapse
Affiliation(s)
- M I Cordero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | | | | | |
Collapse
|
174
|
Singewald N, Sinner C, Hetzenauer A, Sartori SB, Murck H. Magnesium-deficient diet alters depression- and anxiety-related behavior in mice—influence of desipramine and Hypericum perforatum extract. Neuropharmacology 2004; 47:1189-97. [PMID: 15567428 DOI: 10.1016/j.neuropharm.2004.08.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/21/2004] [Accepted: 08/17/2004] [Indexed: 11/19/2022]
Abstract
A relation between magnesium (Mg) status and mood disorders has been suggested, but evidence remains inconsistent. Therefore, we examined in mice whether Mg-depletion would alter behavior evaluated in established animal models of depression and anxiety and whether these effects would be sensitive to antidepressants. Compared to control mice fed with normal diet, mice receiving a low Mg diet (10% of daily requirement) for several weeks displayed increased immobility time in the forced swim test, indicating enhanced depression-like behavior. In addition, the partial Mg-depletion increased anxiety-related behavior in the light/dark and open field test, while locomotor activity or motor coordination was not influenced. Chronic oral administration of desipramine (30 mg/kg/day), or Hypericum extract LI160 (Hyp, 380 mg/kg/day) prevented the "pro-depression-like" forced swim behavior in Mg-depleted mice. Furthermore, the increase in anxiety-related behavior of Mg-depleted mice was abolished in both the open field and light dark test by Hyp. Taken together, we report that Mg-depletion leads to enhanced depression- and anxiety-related behavior in mice, which was further validated by the reversibility of the behavioral changes by known antidepressant and anxiolytic substances. Further, the utility of Mg-depletion as a new screening model for clinically active antidepressant and anxiolytic drugs is suggested.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens-University of Innsbruck, Peter-Mayr-Str. 1, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|