151
|
Huang J, Wang R, Dai X, Feng J, Zhang H, Zhao PX. A microRNA biogenesis-like pathway for producing phased small interfering RNA from a long non-coding RNA in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1767-1774. [PMID: 30775774 DOI: 10.1093/jxb/erz056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Phased small interfering RNAs (phasiRNAs) are a class of non-coding RNAs that perform essential functions in plants. Unlike microRNA biogenesis from a hairpin structure, the production of phasiRNAs usually requires a phase initiator and an RNA-dependent RNA polymerase (RDR) to form double-strand RNAs. By using full-length rice cDNA (KL-cDNA) to identify phasiRNA loci, we found that a putative non-coding sequence with a long hairpin structure generates the phasiRNAs, which we name Long Hairpin-structure containing non-coding RNA (LHR). The biogenesis of LHR-derived phasiRNAs was dependent on rice DCL4, but not on RDR2/6, DCL1, or DCL3. Since all of the LHR-phasiRNAs (-5p from the forward strand and -3p from the reverse strand of the dsRNAs) are mapped to the forward strand of LHR, LHR-phasiRNAs should be derived from its hairpin structure, similar to a microRNA precursor. A degradome-based validation suggested that several thylakoid-related genes were targeted by LHR-phasiRNAs. In addition, the production of LHR-phasiRNAs was completely abolished in the lhr mutant, which also exhibited decreased plant height, leaf size, and grain weight, probably through the regulation of photosynthesis. Based on our results, we propose a microRNA biogenesis-like pathway for producing phased siRNAs that expands our understanding of the current model of phased siRNA biogenesis in plants.
Collapse
Affiliation(s)
- Ji Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ruqin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xinbin Dai
- Noble Research Institute, Ardmore, OK, USA
| | - Jiejie Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
152
|
Fang C, Li L, He R, Wang D, Wang M, Hu Q, Ma Q, Qin K, Feng X, Zhang G, Fu X, Liu Z. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. RICE (NEW YORK, N.Y.) 2019; 12:10. [PMID: 30820693 PMCID: PMC6395467 DOI: 10.1186/s12284-019-0271-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/18/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Oryza glumaepatula represents an important resource of genetic diversity that can be used to improve rice production. However, hybrid sterility severely restricts gene flow between Oryza species, and hinders the utilization of distant heterosis in hybrid rice breeding. RESULTS In order to fully exploit the beneficial genes of O. glumaepatula and facilitate the conservation of these gene resources, a set of chromosome single-segment substitution lines (SSSLs) was developed using an indica variety HJX74 as the recurrent parent and an accession of O. glumaepatula as the donor parent. During the process of SSSLs development, S23, a locus conferring hybrid male sterility between O. sativa and O. glumaepatula, was identified and fine mapped to 11.54 kb and 7.08 kb genomic region in O. sativa and O. glumaepatula, respectively, encoding three and two candidate ORFs, respectively. qRT-PCR and sequence analysis excluded one common ORF as the candidate gene. In addition, hybrid male sterility caused by S23 was environment-sensitive, and could be observed only in natural short-day (NSD). CONCLUSION Identification and candidate genes analysis of S23 in this study provides a valuable example to study the crosstalk between interspecific F1 hybrid male sterility and environment-conditioned male sterility in rice, facilitates reserving and utilizing favorable genes or alleles of wild Oryza species, and allows for a more efficient exploitation of distant heterosis in hybrid rice breeding.
Collapse
Affiliation(s)
- Chaowei Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Le Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Present address: Huazhi Rice Bio-Tech Co., Ltd., Changsha, 410124, China
| | - Runming He
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Present address: Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Daiqi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Man Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qianru Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Kaiyi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xueye Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guiquan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuelin Fu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ziqiang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
153
|
Xia R, Chen C, Pokhrel S, Ma W, Huang K, Patel P, Wang F, Xu J, Liu Z, Li J, Meyers BC. 24-nt reproductive phasiRNAs are broadly present in angiosperms. Nat Commun 2019; 10:627. [PMID: 30733503 PMCID: PMC6367383 DOI: 10.1038/s41467-019-08543-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/15/2019] [Indexed: 11/10/2022] Open
Abstract
Small RNAs are key regulators in plant growth and development. One subclass, phased siRNAs (phasiRNAs) require a trigger microRNA for their biogenesis. In grasses, two pathways yield abundant phasiRNAs during anther development; miR2275 triggers one class, 24-nt phasiRNAs, coincident with meiosis, while a second class of 21-nt phasiRNAs are present in premeiotic anthers. Here we report that the 24-nt phasiRNA pathway is widely present in flowering plants, indicating that 24-nt reproductive phasiRNAs likely originated with the evolutionary emergence of anthers. Deep comparative genomic analyses demonstrated that this miR2275/24-nt phasiRNA pathway is widely present in eudicots plants, however, it is absent in legumes and in the model plant Arabidopsis, demonstrating a dynamic evolutionary history of this pathway. In Solanaceae species, 24-nt phasiRNAs were observed, but the miR2275 trigger is missing and some loci displaying 12-nt phasing. Both the miR2275-triggered and Solanaceae 24-nt phasiRNAs are enriched in meiotic stages, implicating these phasiRNAs in anther and/or pollen development, a spatiotemporal pattern consistent in all angiosperm lineages that deploy them.
Collapse
Affiliation(s)
- Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510640, Guangzhou, Guangdong, China.
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 510640, Guangzhou, Guangdong, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510640, Guangzhou, Guangdong, China.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510640, Guangzhou, Guangdong, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 510640, Guangzhou, Guangdong, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510640, Guangzhou, Guangdong, China
| | - Suresh Pokhrel
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Wuqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510640, Guangzhou, Guangdong, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 510640, Guangzhou, Guangdong, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510640, Guangzhou, Guangdong, China
| | - Kun Huang
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Parth Patel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Fuxi Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Jing Xu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510640, Guangzhou, Guangdong, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510640, Guangzhou, Guangdong, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, 510640, Guangzhou, Guangdong, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, 510640, Guangzhou, Guangdong, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|
154
|
Zhao Q, Tong Y, Yang C, Yang Y, Zhang M. Identification and Mapping of a New Soybean Male-Sterile Gene, mst-M. FRONTIERS IN PLANT SCIENCE 2019; 10:94. [PMID: 30787940 PMCID: PMC6372514 DOI: 10.3389/fpls.2019.00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/21/2019] [Indexed: 05/25/2023]
Abstract
The use of sterility is common in plants and multiple loci for hybrid sterility have been identified in crops such as rice. In soybean, fine-mapping and research on the molecular mechanism of male sterility is limited. Here, we identified a male-sterile soybean line, which produces larger, abnormal pollen grains that stain poorly with I2-KI. In an inheritance test, all F 1 plants were fertile and the F 2 and F 2:3 populations conformed with the expected segregation ratio of 3:1 (fertility:sterility) (p = 0.82) and showed a 1:2:0 ratio of homozygous fertile: heterozygous fertile: homozygous sterile genotypes (p = 0.73), suggesting that the sterility was controlled by a single recessive gene (designated "mst-M"). Bulked segregant analysis showed that almost all single-nucleotide polymorphisms (SNPs; 95.92%) were distributed on chromosome 13 and 868 SNPs (95.81%) were distributed in the physical region of Chromosome 13.21877872 to Chromosome 13.22862641. Genetic mapping revealed that mst-M was flanked by W1 and dCAPS-1 with genetic distances of 0.6 and 1.8 cM, respectively. The order of the consensus markers and known sterility genes was: Satt146 - (5.0 cM) - st5 - (2.5 cM) - Satt030 - (15.3 cM) - ms6 - (5.0 cM) - Satt149 - (39.5 cM) - W1 - (0.6 cM) - mst-M - (14.1 cM) - Satt516 (7.5 cM) - ms1 - (16.3 cM) - Satt595. These results suggest that mst-M is a newly identified male-sterility gene, which represents an alternative genetic resource for developing a hybrid seed production system for soybean.
Collapse
Affiliation(s)
- Qingsong Zhao
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ya Tong
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunyan Yang
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yongqing Yang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengchen Zhang
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
155
|
Song Y, Li L, Yang Z, Zhao G, Zhang X, Wang L, Zheng L, Zhuo F, Yin H, Ge X, Zhang C, Yang Z, Ren M, Li F. Target of Rapamycin (TOR) Regulates the Expression of lncRNAs in Response to Abiotic Stresses in Cotton. Front Genet 2019; 9:690. [PMID: 30671083 PMCID: PMC6332313 DOI: 10.3389/fgene.2018.00690] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
TOR (Target of Rapamycin) kinase is an evolutionarily conserved protein kinase, which integrates stress-related cues with growth and metabolic outputs. Long non-coding RNAs (lncRNAs) play a vital role in the regulation of eukaryotic genes. However, little is known about TOR's function in regulating the expression of lncRNAs in plants. In this study, four putative homologous genes encoding the TOR protein were identified by utilizing the recently completed cotton genome. Pharmacological experiments with TOR inhibitor AZD8055 and on silencing GhTOR genes resulted in obvious cotton growth retardation, indicating the conserved role of TOR in plant growth. The expression pattern analyses in different tissues reveal that TOR may play a role in root development, and the transcript levels of TOR genes were changed under different stress conditions. Importantly, we found TOR may be a key player in regulating the expression of long non-coding RNAs (lncRNAs). A total of 10,315 lncRNAs were discovered in cotton seedlings, 90.7% of which were long intergenic ncRNAs. Moreover, we identified the differentially expressed lncRNAs, of which 296 were significantly upregulated and 105 were downregulated in TOR inactivated plants. GO and KEGG analyses of differentially expressed lncRNA neighboring genes reveal that these differentially expressed lncRNA-targeted genes are involved in many life processes, including stress response, glutathione, and ribosomes in cotton. A series of differentially expressed lncRNAs potentially involved in plant stress response was identified under TOR inhibition. Collectively, these results suggest that cotton TOR proteins may directly modulate the expression of putative stress-related lncRNAs and eventually play a potential role in the cotton stress response.
Collapse
Affiliation(s)
- Yun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Linxuan Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueyan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lingling Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lei Zheng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Huan Yin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chaojun Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
156
|
Liu G, Zhao T, You X, Jiang J, Li J, Xu X. Molecular mapping of the Cf-10 gene by combining SNP/InDel-index and linkage analysis in tomato (Solanum lycopersicum). BMC PLANT BIOLOGY 2019; 19:15. [PMID: 30621598 PMCID: PMC6325758 DOI: 10.1186/s12870-018-1616-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/21/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Leaf mold, one of the major diseases of tomato caused by Cladosporium fulvum (C. fulvum), can dramatically reduce the yield and cause multimillion dollar losses annually worldwide. Mapping the resistance genes (R genes) of C. fulvum and devising MAS based strategies for breeding new cultivars is an effective approach to improve the resistance in tomato. Up to now, many C. fulvum genes or QTLs have been mapped using different genetic materials, but few studies focused on Cf-10 gene positioning. RESULTS In this study, we investigated the genetic rules for Cf-10 and used a novel combinatorial strategy to rapidly map the Cf-10 gene. Initially, the performance of F1, F2 and BC1F1 individuals after infection, demonstrated that the resistance against C. fulvum was controlled by a single dominant gene. Two pools of resistant and susceptible individuals from F2 population were investigated, using mapping by sequencing approach and Cf-10 was found to be localized to 3.35 Mb and 3.74 Mb on chromosome 1, employing SNP/InDel index methods, respectively. After accounting for overlapping regions, these two algorithms yielded a total length of 3.29 Mb, narrowing down the target region. We further developed five serviceable KASP markers for this region based on sequencing data and conducted local QTL mapping using individuals from the F2 population, except for mapping by sequencing as mentioned above. Finally Cf-10 gene was mapped spanning a region of 790 kb, where only one gene (Solyc01g007130.3) was annotated as probable receptor protein kinase TMK1 with a LRR motif, a common R gene characteristic. The RT-qPCR analysis further confirmed the localization and the relative expression of Solyc01g007130.3 in Ontario 792 and was found to be significantly higher than that in Moneymaker at 9 dpi and 12 dpi, respectively. CONCLUSION This study proposed a novel combinatorial strategy by combining SNP-index, InDel-index analyses and local QTL mapping using KASP genotyping approach to rapidly map genes responsible for specific traits and provided a robust base for cloning the Cf-10 gene. Furthermore, these analyses suggest that Solyc01g007130.3 is a potential candidate to be regarded as Cf-10 gene.
Collapse
Affiliation(s)
- Guan Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Xiaoqing You
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| |
Collapse
|
157
|
Abstract
Most genetic and molecular analyses of anther development utilize Arabidopsis thaliana, Oryza sativa (rice), and Zea mays (maize). Especially in maize, early stages of anther development are easy to study because: (1) Maize has unisex flowers. (2) Compared to rice or A. thaliana, maize anthers are relatively large, making dissection for molecular and biochemical analyses easy. (3) Anther developmental stage is strongly correlated with maize anther length. Besides these technical advantages, understanding anther and pollen development in maize is of significant agricultural importance. Today maize is a worldwide cereal crop: approximately 25% of all consumed food contains maize. Yield stability or even increases depend on maintenance of hybrid vigor, and production of hybrid seed requires manual detasseling or genetic control of pollen development. Knowledge of pollen development can also be used to manage transgene containment. In the first section of this chapter, we will describe the current model for sequential cell fate specification in maize anther lobes, with reference to rice and A. thaliana to point out similarities and differences. In the second section of this chapter, we will review what is known about the individual cell types in anther lobes. The diversity of anther organization is addressed to a limited extent by cytological studies of anthers, often directed to clarify taxonomic relationships. In the third section, we will comment on how new lines of investigation could clarify questions remaining in our current appreciation of anther development.
Collapse
Affiliation(s)
- Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
158
|
Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 2018; 9:5056. [PMID: 30498193 PMCID: PMC6265284 DOI: 10.1038/s41467-018-07500-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression and plant development. Here, we identified 6,510 lncRNAs in Arabidopsis under normal or stress conditions. We found that the expression of natural antisense transcripts (NATs) that are transcribed in the opposite direction of protein-coding genes often positively correlates with and is required for the expression of their cognate sense genes. We further characterized MAS, a NAT-lncRNA produced from the MADS AFFECTING FLOWERING4 (MAF4) locus. MAS is induced by cold and indispensable for the activation of MAF4 transcription and suppression of precocious flowering. MAS activates MAF4 by interacting with WDR5a, one core component of the COMPASS-like complexes, and recruiting WDR5a to MAF4 to enhance histone 3 lysine 4 trimethylation (H3K4me3). Our study greatly extends the repertoire of lncRNAs in Arabidopsis and reveals a role for NAT-lncRNAs in regulating gene expression in vernalization response and likely in other biological processes.
Collapse
|
159
|
Birchler JA. An overview of rice genetics research in China. J Genet Genomics 2018; 45:563-564. [PMID: 30482272 DOI: 10.1016/j.jgg.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
160
|
Tamim S, Cai Z, Mathioni SM, Zhai J, Teng C, Zhang Q, Meyers BC. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. THE NEW PHYTOLOGIST 2018; 220:865-877. [PMID: 29708601 DOI: 10.1111/nph.15181] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 05/06/2023]
Abstract
Post-transcriptional gene silencing in plants results from independent activities of diverse small RNA types. In anthers of grasses, hundreds of loci yield noncoding RNAs that are processed into 21- and 24-nucleotide (nt) phased small interfering RNAs (phasiRNAs); these are triggered by miR2118 and miR2275. We characterized these 'reproductive phasiRNAs' from rice (Oryza sativa) panicles and anthers across seven developmental stages. Our computational analysis identified characteristics of the 21-nt reproductive phasiRNAs that impact their biogenesis, stability, and potential functions. We demonstrate that 21-nt reproductive phasiRNAs can function in cis to target their own precursors. We observed evidence of this cis regulatory activity in both rice and maize (Zea mays). We validated this activity with evidence of cleavage and a resulting shift in the pattern of phasiRNA production. We characterize biases in phasiRNA biogenesis, demonstrating that the Pol II-derived 'top' strand phasiRNAs are consistently higher in abundance than the bottom strand. The first phasiRNA from each precursor overlaps the miR2118 target site, and this impacts phasiRNA accumulation or stability, evident in the weak accumulation of this phasiRNA position. Additional influences on this first phasiRNA duplex include the sequence composition and length, and we show that these factors impact Argonaute loading.
Collapse
Affiliation(s)
- Saleh Tamim
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| | - Zhaoxia Cai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Sandra M Mathioni
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chong Teng
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
- Division of Plant Sciences, 52 Agriculture Lab, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
161
|
Birchler JA. WITHDRAWN: An overview of rice genetics research in China. J Genet Genomics 2018. [DOI: 10.1016/j.jgg.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
162
|
Tamim S, Cai Z, Mathioni SM, Zhai J, Teng C, Zhang Q, Meyers BC. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. THE NEW PHYTOLOGIST 2018; 220:865-877. [PMID: 29708601 DOI: 10.1101/243907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 05/21/2023]
Abstract
Post-transcriptional gene silencing in plants results from independent activities of diverse small RNA types. In anthers of grasses, hundreds of loci yield noncoding RNAs that are processed into 21- and 24-nucleotide (nt) phased small interfering RNAs (phasiRNAs); these are triggered by miR2118 and miR2275. We characterized these 'reproductive phasiRNAs' from rice (Oryza sativa) panicles and anthers across seven developmental stages. Our computational analysis identified characteristics of the 21-nt reproductive phasiRNAs that impact their biogenesis, stability, and potential functions. We demonstrate that 21-nt reproductive phasiRNAs can function in cis to target their own precursors. We observed evidence of this cis regulatory activity in both rice and maize (Zea mays). We validated this activity with evidence of cleavage and a resulting shift in the pattern of phasiRNA production. We characterize biases in phasiRNA biogenesis, demonstrating that the Pol II-derived 'top' strand phasiRNAs are consistently higher in abundance than the bottom strand. The first phasiRNA from each precursor overlaps the miR2118 target site, and this impacts phasiRNA accumulation or stability, evident in the weak accumulation of this phasiRNA position. Additional influences on this first phasiRNA duplex include the sequence composition and length, and we show that these factors impact Argonaute loading.
Collapse
Affiliation(s)
- Saleh Tamim
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| | - Zhaoxia Cai
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Sandra M Mathioni
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chong Teng
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
- Division of Plant Sciences, 52 Agriculture Lab, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
163
|
Kakrana A, Mathioni SM, Huang K, Hammond R, Vandivier L, Patel P, Arikit S, Shevchenko O, Harkess AE, Kingham B, Gregory BD, Leebens-Mack JH, Meyers BC. Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots. Genome Res 2018; 28:1333-1344. [PMID: 30002159 PMCID: PMC6120631 DOI: 10.1101/gr.228163.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 07/11/2018] [Indexed: 11/25/2022]
Abstract
In grasses, two pathways that generate diverse and numerous 21-nt (premeiotic) and 24-nt (meiotic) phased siRNAs are highly enriched in anthers, the male reproductive organs. These "phasiRNAs" are analogous to mammalian piRNAs, yet their functions and evolutionary origins remain largely unknown. The 24-nt meiotic phasiRNAs have only been described in grasses, wherein their biogenesis is dependent on a specialized Dicer (DCL5). To assess how evolution gave rise to this pathway, we examined reproductive phasiRNA pathways in nongrass monocots: garden asparagus, daylily, and lily. The common ancestors of these species diverged approximately 115-117 million years ago (MYA). We found that premeiotic 21-nt and meiotic 24-nt phasiRNAs were abundant in all three species and displayed spatial localization and temporal dynamics similar to grasses. The miR2275-triggered pathway was also present, yielding 24-nt reproductive phasiRNAs, and thus originated more than 117 MYA. In asparagus, unlike in grasses, these siRNAs are largely derived from inverted repeats (IRs); analyses in lily identified thousands of precursor loci, and many were also predicted to form foldback substrates for Dicer processing. Additionally, reproductive phasiRNAs were present in female reproductive organs and thus may function in both male and female germinal development. These data describe several distinct mechanisms of production for 24-nt meiotic phasiRNAs and provide new insights into the evolution of reproductive phasiRNA pathways in monocots.
Collapse
Affiliation(s)
- Atul Kakrana
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Sandra M Mathioni
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Kun Huang
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Reza Hammond
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Lee Vandivier
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Parth Patel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen and Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Olga Shevchenko
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Alex E Harkess
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Bruce Kingham
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
164
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018; 8:336. [PMID: 30073121 PMCID: PMC6056351 DOI: 10.1007/s13205-018-1355-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B. Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M. Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K. Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M. Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
165
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018. [PMID: 30073121 DOI: 10.1007/s13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
166
|
Wang J, Yang Y, Jin L, Ling X, Liu T, Chen T, Ji Y, Yu W, Zhang B. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC PLANT BIOLOGY 2018; 18:104. [PMID: 29866032 PMCID: PMC5987537 DOI: 10.1186/s12870-018-1332-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long Noncoding-RNAs (LncRNAs) are known to be involved in some biological processes, but their roles in plant-virus interactions remain largely unexplored. While circular RNAs (circRNAs) have been studied in animals, there has yet to be extensive research on them in a plant system, especially in tomato-tomato yellow leaf curl virus (TYLCV) interaction. RESULTS In this study, RNA transcripts from the susceptible tomato line JS-CT-9210 either infected with TYLCV or untreated, were sequenced in a pair-end strand-specific manner using ribo-zero rRNA removal library method. A total of 2056 lncRNAs including 1767 long intergenic non-coding RNA (lincRNAs) and 289 long non-coding natural antisense transcripts (lncNATs) were obtained. The expression patterns in lncRNAs were similar in susceptible tomato plants between control check (CK) and TYLCV infected samples. Our analysis suggested that lncRNAs likely played a role in a variety of functions, including plant hormone signaling, protein processing in the endoplasmic reticulum, RNA transport, ribosome function, photosynthesis, glulathione metabolism, and plant-pathogen interactions. Using virus-induced gene silencing (VIGS) analysis, we found that reduced expression of the lncRNA S-slylnc0957 resulted in enhanced resistance to TYLCV in susceptible tomato plants. Moreover, we identified 184 circRNAs candidates using the CircRNA Identifier (CIRI) software, of which 32 circRNAs were specifically expressed in untreated samples and 83 circRNAs in TYLCV samples. Approximately 62% of these circRNAs were derived from exons. We validated the circRNAs by both PCR and Sanger sequencing using divergent primers, and found that most of circRNAs were derived from the exons of protein coding genes. The silencing of these circRNAs parent genes resulted in decreased TYLCV virus accumulation. CONCLUSION In this study, we identified novel lncRNAs and circRNAs using bioinformatic approaches and showed that these RNAs function as negative regulators of TYLCV infection. Moreover, the expression patterns of lncRNAs in susceptible tomato plants were different from that of resistant tomato plants, while exonic circRNAs expression positively associated with their respective protein coding genes. This work provides a foundation for elaborating the novel roles of lncRNAs and circRNAs in susceptible tomatoes following TYLCV infection.
Collapse
Affiliation(s)
- Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Lamei Jin
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Tingli Liu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Wengui Yu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| |
Collapse
|
167
|
Sun L, Sun G, Shi C, Sun D. Transcriptome analysis reveals new microRNAs-mediated pathway involved in anther development in male sterile wheat. BMC Genomics 2018; 19:333. [PMID: 29739311 PMCID: PMC5941544 DOI: 10.1186/s12864-018-4727-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Background 337S is a novel bi-pole-photo-thermo-sensitive genic male sterile line in wheat, and sensitive to both long day length/high temperature and short day length/low temperature condition. Although the regulatory function of MicroRNAs (miRNAs) in reproductive development has been increasingly studied, their roles in pre-meiotic and meiotic cells formation of plants have not been clearly explored. Here, we explored the roles of miRNAs in regulating male sterility of 337S at short day length/low temperature condition. Results Small RNA sequencing and degradome analyses were employed to identify miRNAs and their targets in the 337S whose meiotic cells collapsed rapidly during male meiotic prophase, resulting in failure of meiosis at SL condition. A total of 102 unique miRNAs were detected. Noticeably, the largest miRNA family was MiR1122. The target CCR4-associated factor 1 (CAF1) of miR2275, a subunit of the Carbon Catabolite Repressed 4-Negative on TATA-less (CCR4-NOT) complex, contributes to the process of early meiosis, and was first identified here. Further studies showed that the expression of several pivotal anther-related miRNAs was altered in 337S at SL condition, especially tae-miR1127a, which may be related to male sterility of 337S. Here, we also identified a new member of SWI/SNF factors SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A, member 3-like 3 (SMARCA3L3) targeted by tae-miR1127a, whose function might be involved in faithful progression of meiosis in male reproductive cells. Conclusion The miRNA-target interactions of tae-miR2275-CAF1 and tae-miR1127a-SMARCA3L3 might be involved in regulating male fertility in 337S. Our results also implied that multiple roles for SMARCA3L3 and CAF1 in DNA repair and transcriptional regulation jointly orchestrated a tight and orderly system for maintaining chromatin and genome integrity during meiosis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4727-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Longqing Sun
- College of plant science & technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Chenxia Shi
- College of plant science & technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dongfa Sun
- College of plant science & technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
168
|
Hang R, Wang Z, Deng X, Liu C, Yan B, Yang C, Song X, Mo B, Cao X. Ribosomal RNA Biogenesis and Its Response to Chilling Stress in Oryza sativa. PLANT PHYSIOLOGY 2018; 177:381-397. [PMID: 29555785 PMCID: PMC5933117 DOI: 10.1104/pp.17.01714] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 05/20/2023]
Abstract
Ribosome biogenesis is crucial for plant growth and environmental acclimation. Processing of ribosomal RNAs (rRNAs) is an essential step in ribosome biogenesis and begins with transcription of the rDNA. The resulting precursor-rRNA (pre-rRNA) transcript undergoes systematic processing, where multiple endonucleolytic and exonucleolytic cleavages remove the external and internal transcribed spacers (ETS and ITS). The processing sites and pathways for pre-rRNA processing have been deciphered in Saccharomyces cerevisiae and, to some extent, in Xenopus laevis, mammalian cells, and Arabidopsis (Arabidopsis thaliana). However, the processing sites and pathways remain largely unknown in crops, particularly in monocots such as rice (Oryza sativa), one of the most important food resources in the world. Here, we identified the rRNA precursors produced during rRNA biogenesis and the critical endonucleolytic cleavage sites in the transcribed spacer regions of pre-rRNAs in rice. We further found that two pre-rRNA processing pathways, distinguished by the order of 5' ETS removal and ITS1 cleavage, coexist in vivo. Moreover, exposing rice to chilling stress resulted in the inhibition of rRNA biogenesis mainly at the pre-rRNA processing level, suggesting that these energy-intensive processes may be reduced to increase acclimation and survival at lower temperatures. Overall, our study identified the pre-rRNA processing pathway in rice and showed that ribosome biogenesis is quickly inhibited by low temperatures, which may shed light on the link between ribosome biogenesis and environmental acclimation in crop plants.
Collapse
MESH Headings
- Cold Temperature
- Models, Biological
- Oryza/genetics
- Oryza/physiology
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal, 18S/metabolism
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Small/metabolism
- Stress, Physiological
Collapse
Affiliation(s)
- Runlai Hang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
169
|
Deng P, Muhammad S, Cao M, Wu L. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:965-975. [PMID: 29327403 PMCID: PMC5902766 DOI: 10.1111/pbi.12882] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 05/02/2023]
Abstract
Several varieties of small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are generated in plants to regulate development, genome stability and response to adverse environments. Phased siRNA (phasiRNA) is a type of secondary siRNA that is processed from a miRNA-mediated cleavage of RNA transcripts, increasing silencing efficiency or simultaneously suppressing multiple target genes. Trans-acting siRNAs (ta-siRNAs) are a particular class of phasiRNA produced from noncoding transcripts that silence targets in trans. It was originally thought that 'one-hit' and 'two-hit' models were essential for processing distinct TAS precursors; however, a single hit event was recently shown to be sufficient at triggering all types of ta-siRNAs. This review discusses the findings about biogenesis, targeting modes and regulatory networks of plant ta-siRNAs. We also summarize recent advances in the generation of other phasiRNAs and their possible biological benefits to plants.
Collapse
Affiliation(s)
- Pingchuan Deng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Sajid Muhammad
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Min Cao
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Liang Wu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
170
|
McSwiggin HM, O'Doherty AM. Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction 2018; 156:R9-R21. [PMID: 29717022 DOI: 10.1530/rep-18-0009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022]
Abstract
Infertility is an often devastating diagnosis encountered by around one in six couples who are trying to conceive. Moving away from the long-held belief that infertility is primarily a female issue, it is now recognised that half, if not more, of these cases may be due to male factors. Recent evidence has suggested that epigenetic abnormalities in chromatin dynamics, DNA methylation or sperm-borne RNAs may contribute to male infertility. In light of advances in deep sequencing technologies, researchers have been able to increase the coverage and depth of sequencing results, which in turn has allowed more comprehensive analyses of spermatozoa chromatin dynamics and methylomes and enabled the discovery of new subsets of sperm RNAs. This review examines the most current literature related to epigenetic processes in the male germline and the associations of aberrant modifications with fertility and development.
Collapse
Affiliation(s)
- H M McSwiggin
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno School of Medicine, Center for Molecular Medicine, Reno, North Virginia, USA
| | - A M O'Doherty
- Animal Genomics LaboratoryUCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
171
|
Exploration of miRNAs and target genes of cytoplasmic male sterility line in cotton during flower bud development. Funct Integr Genomics 2018; 18:457-476. [PMID: 29626311 DOI: 10.1007/s10142-018-0606-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022]
Abstract
Cytoplasmic male sterility (CMS) lines provide crucial material to harness heterosis for crop plants, which serves as an important strategy for hybrid seed production. However, the molecular mechanism remains obscure. Although microRNAs (miRNAs) play important roles in vegetative growth and reproductive growth, there are few reports on miRNAs regulating the development of male sterility in Upland cotton. In present study, 12 small RNA libraries were constructed and sequenced for two development stages of flower buds from a CMS line and its maintainer line. Based on the results, 256 novel miRNAs were allocated to 141 new miRNA families, and 77 known miRNAs belonging to 54 conserved miRNA families were identified as well. Comparative analysis revealed that 61 novel and 10 conserved miRNAs were differentially expressed. Further transcriptome analysis identified 232 target genes for these miRNAs, which participated in cellular developmental process, cell death, pollen germination, and sexual reproduction. In addition, expression patterns of typical miRNA and the negatively regulated target genes, such as PPR, ARF, AP2, and AFB, were verified by qRT-PCR in cotton flower buds. These targets were previously reported to be related to reproduction development and male sterility, suggesting that miRNAs might act as regulators of CMS occurrence. Some miRNAs displayed specific expression profiles in special developmental stages of CMS line and its fertile hybrid (F1). Present study offers new information on miRNAs and their related target genes in exploiting CMS mechanism, and revealing the miRNA regulatory networks in Upland cotton.
Collapse
|
172
|
Gong R, Cao H, Zhang J, Xie K, Wang D, Yu S. Divergent functions of the GAGA-binding transcription factor family in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:32-47. [PMID: 29383786 DOI: 10.1111/tpj.13837] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/09/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
OsGBPs are a small family of four genes in rice (Oryza sativa L.) that function as transcription factors recognizing the GAGA motif; however, their functions in plant growth and development remain unclear. Here we report the functions of OsGBPs in plant growth and grain development. Knock-down and knock-out of OsGBP1 promoted seedling growth and enhanced grain length, whereas overexpression of OsGBP1 exhibited the opposite effect on seedling growth and grain length, indicating that OsGBP1 repressed grain length and seedling growth. In addition, overexpression of OsGBP1 led to delayed flowering time and suppressed plant height. OsGBP1 could regulate OsLFL1 expression through binding to the (GA)12 element of its promoter. In contrast, OsGBP3 induced grain length and plant height. Grain length and plant height were decreased in OsGBP3RNAi lines and were increased in OsGBP3 overexpression lines. We also found a synergistic effect of these two genes on grain width and plant growth. RNAi of both OsGBP1 and OsGBP3 resulted in severe dwarfism, compared with RNAi of a single gene. These results suggest the presence of functional divergence of OsGBPs in the regulation of grain size and plant growth; these results enrich our understanding of the roles of GAGA-binding transcription factors in the regulatory pathways of plant development.
Collapse
Affiliation(s)
- Rong Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianing Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
173
|
Guo G, Liu X, Sun F, Cao J, Huo N, Wuda B, Xin M, Hu Z, Du J, Xia R, Rossi V, Peng H, Ni Z, Sun Q, Yao Y. Wheat miR9678 Affects Seed Germination by Generating Phased siRNAs and Modulating Abscisic Acid/Gibberellin Signaling. THE PLANT CELL 2018; 30:796-814. [PMID: 29567662 PMCID: PMC5969276 DOI: 10.1105/tpc.17.00842] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 05/19/2023]
Abstract
Seed germination is important for grain yield and quality and rapid, near-simultaneous germination helps in cultivation; however, cultivars that germinate too readily can undergo preharvest sprouting (PHS), which causes substantial losses in areas that tend to get rain around harvest time. Moreover, our knowledge of mechanisms regulating seed germination in wheat (Triticum aestivum) remains limited. In this study, we analyzed function of a wheat-specific microRNA 9678 (miR9678), which is specifically expressed in the scutellum of developing and germinating seeds. Overexpression of miR9678 delayed germination and improved resistance to PHS in wheat through reducing bioactive gibberellin (GA) levels; miR9678 silencing enhanced germination rates. We provide evidence that miR9678 targets a long noncoding RNA (WSGAR) and triggers the generation of phased small interfering RNAs that play a role in the delay of seed germination. Finally, we found that abscisic acid (ABA) signaling proteins bind the promoter of miR9678 precursor and activate its expression, indicating that miR9678 affects germination by modulating the GA/ABA signaling.
Collapse
Affiliation(s)
- Guanghui Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Fenglong Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Jie Cao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Na Huo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Bala Wuda
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Vincenzo Rossi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, I-24126 Bergamo, Italy
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
174
|
Liu X, Li D, Zhang D, Yin D, Zhao Y, Ji C, Zhao X, Li X, He Q, Chen R, Hu S, Zhu L. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. THE NEW PHYTOLOGIST 2018; 218:774-788. [PMID: 29411384 DOI: 10.1111/nph.15023] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/25/2017] [Indexed: 05/20/2023]
Abstract
Natural antisense long noncoding RNAs (lncRNAs) are widespread in many organisms. However, their biological functions remain largely unknown, particularly in plants. We report the identification and characterization of an endogenous lncRNA, TWISTED LEAF (TL), which is transcribed from the opposite strand of the R2R3 MYB transcription factor gene locus, OsMYB60, in rice (Oryza sativa). TL and OsMYB60 were found to be coexpressed in many different tissues, and the expression level of TL was higher than that of OsMYB60. Downregulation of TL by RNA interference (RNAi) and overexpression of OsMYB60 resulted in twisted leaf blades in transgenic rice. The expression level of OsMYB60 was significantly increased in TL-RNAi transgenic plants. This suggests that TL may play a cis-regulatory role on OsMYB60 in leaf morphological development. We also determined that the antisense transcription suppressed the sense gene expression by mediating chromatin modifications. We further discovered that a C2H2 transcription factor, OsZFP7, is an OsMYB60 binding partner and involved in leaf development. Taken together, these findings reveal that the cis-natural antisense lncRNA plays a critical role in maintaining leaf blade flattening in rice. Our study uncovers a regulatory mechanism of lncRNA in plant leaf development.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Donglei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengjun Ji
- Department of Ecology, Peking University, Beijing, 100871, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
175
|
Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C. Rice Functional Genomics Research: Past Decade and Future. MOLECULAR PLANT 2018; 11:359-380. [PMID: 29409893 DOI: 10.1016/j.molp.2018.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa) is a major staple food crop for more than 3.5 billion people worldwide. Understanding the regulatory mechanisms of complex agronomic traits in rice is critical for global food security. Rice is also a model plant for genomics research of monocotyledons. Thanks to the rapid development of functional genomic technologies, over 2000 genes controlling important agronomic traits have been cloned, and their molecular biological mechanisms have also been partially characterized. Here, we briefly review the advances in rice functional genomics research during the past 10 years, including a summary of functional genomics platforms, genes and molecular regulatory networks that regulate important agronomic traits, and newly developed tools for gene identification. These achievements made in functional genomics research will greatly facilitate the development of green super rice. We also discuss future challenges and prospects of rice functional genomics research.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehui Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhukuan Cheng
- National Center for Plant Gene Research, State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
176
|
Ma W, Chen C, Liu Y, Zeng M, Meyers BC, Li J, Xia R. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. THE NEW PHYTOLOGIST 2018; 217:1535-1550. [PMID: 29218722 DOI: 10.1111/nph.14934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play vital regulatory roles in plant growth and development. Little is known about these small RNAs in litchi (Litchi chinensis), an economically important fruit crop widely cultivated in Southeast Asia. We profiled the litchi small RNA population with various deep-sequencing techniques and in-depth bioinformatic analyses. The genome-wide identification of miRNAs, their target genes, and phasiRNA-generating (PHAS) genes/loci showed that the function of miR482/2118 has expanded, relative to its canonical function. We also discovered that, for 29 PHAS loci, miRNA-mediated phasiRNA production was coupled with alternative splicing (AS) and alternative polyadenylation (APA). Most of these loci encoded long noncoding RNAs. An miR482/2118 targeted locus gave rise to four main transcript isoforms through AS/APA, and diverse phasiRNAs generated from these isoforms appeared to target long terminal repeat (LTR) retrotransposons and other unrelated genes. This coupling enables phasiRNA production from different exons of noncoding PHAS genes and yields diverse phasiRNA populations, both broadening and altering the range of downstream phasiRNA-regulated genes. Our results reveal the diversity of miRNA and phasiRNA in litchi, and demonstrate AS/APA as a new layer of regulation in small RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Wuqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zeng
- Modern Education and Technology Center, South China Agricultural University, Guangzhou, 510642, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
177
|
Fan Y, Zhang Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. PLANT REPRODUCTION 2018; 31:3-14. [PMID: 29094211 DOI: 10.1007/s00497-017-0310-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/22/2017] [Indexed: 05/20/2023]
Abstract
A review on photoperiod and temperature-sensitive genic male sterility in rice. Male sterility in plants, facilitating the development of hybrid crops, has made great contribution to crop productivity worldwide. Environment-sensitive genic male sterility (EGMS), including photoperiod-sensitive genic male sterility (PGMS) and temperature-sensitive genic male sterility (TGMS), has provided a special class of germplasms for the breeding of "two-line" hybrids in several crops. In rice, the finding of the PGMS NK58S mutant in 1973 started the journey of research and breeding of two-line hybrids. Genetic and molecular characterization of these germplasms demonstrated diverse genes and molecular mechanisms of male sterility regulation. Two loci identified from NK58S, PMS1 and PMS3, both encode long noncoding RNAs. A major TGMS locus, TMS5, found in the TGMS line Annong S-1, encodes an RNase Z. A reverse PGMS mutant carbon starved anther encodes an R2R3 MYB transcription factor. Breeding efforts in the last three decades have resulted in hundreds of EGMS lines and two-line hybrids released to rice production, which have greatly elevated the yield potential and grain quality of rice varieties. The enhanced molecular understanding will offer new strategies for the development of EGMS lines thus further improving two-line hybrid breeding of rice as well as other crops.
Collapse
Affiliation(s)
- Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
178
|
Mi J, Yang D, Chen Y, Jiang J, Mou H, Huang J, Ouyang Y, Mou T. Accelerated molecular breeding of a novel P/TGMS line with broad-spectrum resistance to rice blast and bacterial blight in two-line hybrid rice. RICE (NEW YORK, N.Y.) 2018; 11:11. [PMID: 29455311 PMCID: PMC5816735 DOI: 10.1186/s12284-018-0203-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/08/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Breeding two-line hybrid rice with disease resistance is an effective approach to stabilize rice yield in commercial rice production of China. RESULTS We improved the blast and bacterial blight resistance of Guangzhan63-4S, an elite photoperiod- and thermo-sensitive male sterile (P/TGMS) line widely used in two-line hybrid rice, by introducing the R genes Pi2 and Xa7 conferring resistance to rice blast and bacterial blight, respectively. Through the backcrossing and gene pyramiding breeding coupled with molecular marker-assisted selection, a new P/TGMS line Hua1228S carrying Pi2, Xa7, and tms5 was developed. Based on 200,000 SNP markers by next-generation sequencing, Hua1228S covered 87.6% of the recurrent genome, as well as 4.5% of the donor genome from VE6219 and 7.9% from YR7029-39. When infected with seven tested Xanthomonas oryzae pv. oryzae strains, Hua1228S conferred high resistance (0 level) to six bacterial blight strains. Moreover, Hua1228S showed broad-spectrum resistance to rice blast isolates with a high resistance frequency of 90.91%. High levels of resistance to leaf blast and neck blast were observed under heavy disease pressure in natural field. Importantly, Hua1228S showed identical fertility-sterility alteration pattern to Guangzhan63-4S. Thus, two hybrid combinations Hua Liangyou 2821 and Hua Liangyou 284 derived from Hua1228S exhibited enhanced resistance and higher yield compared with the control variety Feng Liangyou 4. CONCLUSIONS These results indicate that Hua1228S has tremendous potentiality to increase and stabilize the rice yield, through the introgression of two R genes by marker-assisted selection strategy.
Collapse
Affiliation(s)
- Jiaming Mi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Dabing Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yi Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiefeng Jiang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Haipeng Mou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Junbin Huang
- College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazshong Agricultural University, Wuhan, 430070 China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
179
|
Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, Liu D, Zhao B, Duan L, Qi X. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun 2018; 9:604. [PMID: 29426861 PMCID: PMC5807508 DOI: 10.1038/s41467-018-03048-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/16/2018] [Indexed: 11/26/2022] Open
Abstract
In flowering plants, the pollen coat protects the released male germ cells from desiccation and damage during pollination. However, we know little about the mechanism by which the chemical composition of the pollen coat prevents dehydration of pollen grains. Here we report that deficiency of a grass conserved triterpene synthase, OsOSC12/OsPTS1, in rice leads to failure of pollen coat formation. The mutant plants are male sterile at low relative humidity (RH < 60%), but fully male fertile at high relative humidity (>80%). The lack of three major fatty acids in the pollen coat results in rapid dehydration of pollen grains. We show that applying mixtures of linolenic acid and palmitic acid or stearic acid are able to prevent over-dehydration of mutant pollen grains. We propose that humidity-sensitive genic male sterility (HGMS) could be a desirable trait for hybrid breeding in rice, wheat, maize, and other crops. In flowering plants, the pollen coat surrounds the male germ cells and protects against dehydration, damage and pathogen attack. Here, the authors show that a deficiency in terpenoid synthesis results in rice pollen over-dehydration and leads to a humidity-sensitive conditional male sterile phenotype.
Collapse
Affiliation(s)
- Zheyong Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Xia Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yuan Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yingchun Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Dan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Binbin Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Lixin Duan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.
| |
Collapse
|
180
|
Mishra A, Bohra A. Non-coding RNAs and plant male sterility: current knowledge and future prospects. PLANT CELL REPORTS 2018; 37:177-191. [PMID: 29332167 DOI: 10.1007/s00299-018-2248-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants. Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.
Collapse
Affiliation(s)
- Ankita Mishra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
181
|
microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. SCIENCE CHINA-LIFE SCIENCES 2018; 61:138-147. [DOI: 10.1007/s11427-017-9237-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
182
|
Kim YJ, Zhang D. Molecular Control of Male Fertility for Crop Hybrid Breeding. TRENDS IN PLANT SCIENCE 2018; 23:53-65. [PMID: 29126789 DOI: 10.1016/j.tplants.2017.10.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 05/22/2023]
Abstract
In many plant species, male-sterile female lines with cytoplasmic male sterility (CMS) or nuclear-controlled environment-sensitive genic male sterility (EGMS) have long been used to efficiently produce hybrids that harness hybrid vigor or heterosis. However, the underlying molecular mechanisms for these applications have only recently been uncovered in a few species. We provide here an update on the understanding of cytoplasmic-nuclear communication based on the discovery of mitochondrial CMS genes and their corresponding nuclear fertility determinants. Recent findings that uncover diverse mechanisms such as epigenetic, transcriptional, and post-transcriptional controls of EGMS by temperature and photoperiod signals are also reviewed. Furthermore, translational research that applies basic knowledge of plant male fertility control to hybrid seed production practice is highlighted.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|
183
|
Abstract
Postranscriptional regulation has been widely shown to be regulated by several classes of small non-coding RNAs; most abundantly, microRNAs, which have been shown to be the first dominant class and has been widely characterized as post-transcriptional regulators. In addition to microRNAs, triggered by miRNAs, transcripts called as PHAS (or TAS) generate abundant class of small RNAs in 21-nt manner, which is a pattern formed by DICER-LIKE 4 (DCL4) processing. Although PHAS can be identified by aligning transcripts to reported PHAS in other species, the most sensitive and accurate way to discovery them is by mapping of the smallRNAs taking into account the transcript coordinates. Here, we describe a workflow that can be used for the identification PHAS and corresponding phasiRNAs in Brachypodium distachyon using publically availabe smallRNAs datasets.
Collapse
|
184
|
Tang H, Xie Y, Liu YG, Chen L. Advances in understanding the molecular mechanisms of cytoplasmic male sterility and restoration in rice. PLANT REPRODUCTION 2017; 30:179-184. [PMID: 28988325 DOI: 10.1007/s00497-017-0308-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Cytoplasmic male sterility (CMS) in plants is a male reproductive defect determined by mitochondrial genes and inherited maternally. CMS can be suppressed by nuclear restorer of fertility (Rf) genes. Therefore, CMS/Rf systems provide a classic model for the study of mitochondrial-nuclear interactions in plants. Moreover, CMS/Rf systems are economical, effective tools for the production of hybrid seeds. For example, CMS/Rf systems have been applied in over forty countries to breed hybrid rice (Oryza sativa L.) with improved yields due to hybrid vigor. The production of hybrid rice mainly depends on three types of CMS systems, namely Wild-Abortive type CMS (CMS-WA), Hong-Lian type CMS (CMS-HL) and Boro II type CMS (CMS-BT). Understanding the molecular mechanisms underlying these CMS/Rf systems will help us to understand mitochondrial-nuclear interactions, and accelerate the utilization of heterosis for improvement in yield. In the past decades, research benefitting from the availability of the high-quality, annotated mitochondrial and nuclear genome sequences of rice has isolated many CMS genes, identified the cognate nuclear Rf genes and studied the molecular mechanisms underlying CMS and restoration in rice. Here, we focus on recent advances in studies of the three major CMS/Rf systems in rice and discuss the key issues facing basic research and application of CMS/Rf systems in the future.
Collapse
Affiliation(s)
- Huiwu Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
185
|
Yu Y, Jia T, Chen X. The 'how' and 'where' of plant microRNAs. THE NEW PHYTOLOGIST 2017; 216:1002-1017. [PMID: 29048752 PMCID: PMC6040672 DOI: 10.1111/nph.14834] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 05/18/2023]
Abstract
Contents 1002 I. 1002 II. 1007 III. 1010 IV. 1013 1013 References 1013 SUMMARY: MicroRNAs (miRNAs) are small non-coding RNAs, of typically 20-24 nt, that regulate gene expression post-transcriptionally through sequence complementarity. Since the identification of the first miRNA, lin-4, in the nematode Caenorhabditis elegans in 1993, thousands of miRNAs have been discovered in animals and plants, and their regulatory roles in numerous biological processes have been uncovered. In plants, research efforts have established the major molecular framework of miRNA biogenesis and modes of action, and are beginning to elucidate the mechanisms of miRNA degradation. Studies have implicated restricted and surprising subcellular locations in which miRNA biogenesis or activity takes place. In this article, we summarize the current knowledge on how plant miRNAs are made and degraded, and how they repress target gene expression. We discuss not only the players involved in these processes, but also the subcellular sites in which these processes are known or implicated to take place. We hope to raise awareness that the cell biology of miRNAs holds the key to a full understanding of these enigmatic molecules.
Collapse
Affiliation(s)
- Yu Yu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Tianran Jia
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
- Department of Botany and Plant Sciences, Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA
| |
Collapse
|
186
|
Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Natl Acad Sci U S A 2017; 114:12327-12332. [PMID: 29087306 DOI: 10.1073/pnas.1705189114] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plants employ dynamic molecular networks to control development in response to environmental changes, yet the underlying mechanisms are largely unknown. Here we report the identification of two rice leucine-rich repeat receptor-like kinases, Thermo-Sensitive Genic Male Sterile 10 (TMS10) and its close homolog TMS10-Like (TMS10L), which redundantly function in the maintenance of the tapetal cell layer and microspore/pollen viability under normal temperature conditions with TMS10 playing an essential role in higher temperatures (namely, 28 °C). tms10 displays male sterility under high temperatures but male fertility under low temperatures, and the tms10 tms10l double mutant shows complete male sterility under both high and low temperatures. Biochemical and genetic assays indicate that the kinase activity conferred by the intracellular domain of TMS10 is essential for tapetal degeneration and male fertility under high temperatures. Furthermore, indica or japonica rice varieties that contain mutations in TMS10, created by genetic crosses or genome editing, also exhibit thermo-sensitive genic male sterility. These findings demonstrate that TMS10 and TMS10L act as a key switch in postmeiotic tapetal development and pollen development by buffering environmental temperature changes, providing insights into the molecular mechanisms by which plants develop phenotypic plasticity via genotype-environment temperature interaction. TMS10 may be used as a genetic resource for the development of hybrid seed production systems in crops.
Collapse
|
187
|
Yu Y, Zhou Y, Zhang Y, Chen Y. Grass phasiRNAs and male fertility. SCIENCE CHINA-LIFE SCIENCES 2017; 61:148-154. [PMID: 29052095 DOI: 10.1007/s11427-017-9166-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Recent studies have indicated that a special type of small noncoding RNAs, phased small-interfering RNAs (phasiRNAs) play crucial roles in many cellular processes of plant development. PhasiRNAs are generated from long RNA precursors at intervals of 21 or 24 nt in plants, and they are produced from both protein-coding gene and long noncoding RNA genes. Different from those in eudicots, grass phasiRNAs include a special class of small RNAs that are specifically expressed in reproductive organs. These grass phasiRNAs are associated with gametogenesis, especially with anther development and male fertility. In this review, we summarized current knowledge on these small noncoding RNAs in male germ cells and their possible biological functions and mechanisms in grass species.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanfei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
188
|
Liu XQ, Liu ZQ, Yu CY, Dong JG, Hu SW, Xu AX. TGMS in Rapeseed ( Brassica napus) Resulted in Aberrant Transcriptional Regulation, Asynchronous Microsporocyte Meiosis, Defective Tapetum, and Fused Sexine. FRONTIERS IN PLANT SCIENCE 2017; 8:1268. [PMID: 28775729 PMCID: PMC5517502 DOI: 10.3389/fpls.2017.01268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
The thermo-sensitive genic male sterility (TGMS) line SP2S is a spontaneous rapeseed mutation with several traits that are favorable for the production of two-line hybrids. To uncover the key cellular events and genetic regulation associated with TGMS expression, a combined study using cytological observation, transcriptome profiling, and gene expression analysis was conducted for SP2S and its near-isogenic line SP2F grown under warm conditions. Asynchronous microsporocyte meiosis and abnormal tapetal plastids and elaioplasts were demonstrated in the anther of SP2S. The tetrad microspore did not undergo mitosis before the cytoplasm degenerated. Delayed degradation of the tetrad wall, which led to tetrad microspore aggregation, resulted in postponement of sexine (outer layer of pollen exine) formation and sexine fusion in the tetrad. The nexine (foot layer of exine) was also absent. The delay of tetrad wall degradation and abnormality of the exine structure suggested that the defective tapetum lost important functions. Based on transcriptomic comparisons between young flower buds of SP2S and SP2F plants, a total of 465 differentially expressed transcripts (DETs) were identified, including 303 up-regulated DETs and 162 down-regulated DETs in SP2S. Several genes encoding small RNA degrading nuclease 2, small RNA 2'-O-methyltransferase, thioredoxin reductase 2, regulatory subunit A alpha isoform of serine/threonine-protein phosphatase 2A, glycine rich protein 1A, transcription factor bHLH25, leucine-rich repeat receptor kinase At3g14840 like, and fasciclin-like arabinogalactan proteins FLA19 and FLA20 were greatly depressed in SP2S. Interestingly, a POLLENLESS3-LIKE 2 gene encoding the Arabidopsis MS5 homologous protein, which is necessary for microsporocyte meiosis, was down-regulated in SP2S. Other genes that were up-regulated in SP2S encoded glucanase A6, ethylene-responsive transcription factor 1A-like, pollen-specific SF3, stress-associated endoplasmic reticulum protein 2, WRKY transcription factors and pentatricopeptide repeat (PPR) protein At1g07590. The tapetum-development-related genes, including BnEMS1, BnDYT1, and BnAMS, were slightly up-regulated in 3-mm-long flower buds or their anthers, and their downstream genes, BnMS1 and BnMYB80, which affect callose dissolution and exine formation, were greatly up-regulated in SP2S. This aberrant genetic regulation corresponded well with the cytological abnormalities. The results suggested that expression of TGMS associates with complex transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Cheng-Yu Yu
- Department of Plant Science and Technology, College of Agronomy, Northwest A&F UniversityYangling, China
| | | | | | | |
Collapse
|
189
|
Tang J, Chu C. MicroRNAs in crop improvement: fine-tuners for complex traits. NATURE PLANTS 2017; 3:17077. [PMID: 28665396 DOI: 10.1038/nplants.2017.77] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/28/2017] [Indexed: 05/20/2023]
Abstract
One of the most common challenges for both conventional and modern crop improvement is that the appearance of one desirable trait in a new crop variety is always balanced by the impairment of one or more other beneficial characteristics. The best way to overcome this problem is the flexible utilization of regulatory genes, especially genes that provide more efficient and precise regulation in a targeted manner. MicroRNAs (miRNAs), a type of short non-coding RNA, are promising candidates in this area due to their role as master modulators of gene expression at the post-transcriptional level, targeting messenger RNAs for cleavage or directing translational inhibition in eukaryotes. We herein highlight the current understanding of the biological role of miRNAs in orchestrating distinct agriculturally important traits by summarizing recent functional analyses of 65 miRNAs in 9 major crops worldwide. The integration of current miRNA knowledge with conventional and modern crop improvement strategies is also discussed.
Collapse
Affiliation(s)
- Jiuyou Tang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
190
|
Wei H, Chen C, Ma X, Zhang Y, Han J, Mei H, Yu S. Comparative Analysis of Expression Profiles of Panicle Development among Tolerant and Sensitive Rice in Response to Drought Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:437. [PMID: 28405199 PMCID: PMC5370274 DOI: 10.3389/fpls.2017.00437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/14/2017] [Indexed: 05/14/2023]
Abstract
Water deficit caused a serious threat to crops, especially panicle development at reproductive growth phase. We investigated grain yield components and gene expression profiles of panicle among tolerant and sensitive rice in response to drought stress. Panicle morphologies exhibited that secondary branches per panicle were more severely affected as compared to primary branches per panicle. Moreover, grain weight per panicle showed significant decrease for both tolerant and sensitive varieties except for MILT1444. Expression profile analysis revealed that 783 differentially expressed genes (DEGs) were identified to be drought-induced from young panicles in 2 cm length. Hierarchical clustering indicated that 76.8% of DEGs were up-regulated for all six rice varieties, and the percentage of down-regulated genes was higher in sensitive group than tolerant group. Biological process category revealed that the shared Gene Ontology (GO) terms were involved in response to abiotic stimulus and stress, whereas the specific GO terms in tolerant group were identified as regulation of biological quality, homeostatic process, cell growth, anatomical structure morphogenesis and development, and the unique terms in sensitive varieties were identified as lipid metabolic process and secondary metabolic process. Furthermore, the gene-based association analysis narrowed down list of DEGs, and four genes common to all six varieties were selected as candidate for breeders. Together, we found several shared and distinct biological processes between tolerant and sensitive varieties, and candidate stress-responsive genes. These findings provided insight into functional mechanisms regulating drought stress response in panicle development and may also help to crop tolerant improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunwu Yu
- Shanghai Agrobiological Gene CenterShanghai, China
| |
Collapse
|