151
|
Chun N, Ang RL, Chan M, Fairchild RL, Baldwin WM, Horwitz JK, Gelles JD, Chipuk JE, Kelliher MA, Pavlov VI, Li Y, Homann D, Heeger PS, Ting AT. T cell-derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death. JCI Insight 2021; 6:148643. [PMID: 34752416 PMCID: PMC8783689 DOI: 10.1172/jci.insight.148643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
TNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1's death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF that results in RIPK1-dependent cell death remains unclear. To address this, we employed in vitro systems and murine models of T cell-dependent transplant or tumor rejection in which target cell susceptibility to RIPK1-dependent cell death could be genetically altered. We show that TNF released by T cells is necessary and sufficient to activate RIPK1-dependent cell death in target cells and thereby mediate target cell cytolysis independently of T cell frequency. Activation of the RIPK1-dependent cell death program in target cells by T cell-derived TNF accelerates murine cardiac allograft rejection and synergizes with anti-PD1 administration to destroy checkpoint blockade-resistant murine melanoma. Together, the findings uncover a distinct immunological role for TNF released by cytotoxic effector T cells following cognate interactions with their antigenic targets. Manipulating T cell TNF and/or target cell susceptibility to RIPK1-dependent cell death can be exploited to either mitigate or augment T cell-dependent destruction of allografts and malignancies to improve outcomes.
Collapse
Affiliation(s)
- Nicholas Chun
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosalind L. Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M. Baldwin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Julian K. Horwitz
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesse D. Gelles
- Graduate School of Biomedical Sciences and,Tisch Cancer Institute and the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jerry Edward Chipuk
- Tisch Cancer Institute and the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vasile I. Pavlov
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Homann
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S. Heeger
- Department of Medicine and Translational Transplant Research Center and,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian T. Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
152
|
Torres DJL, Arruda TRD, Barros MDS, Gonçales JP, Soares AKA, Oliveira KKDS, Moreira LR, Medeiros C, Cavalcanti MDGAM, Martins SM, Carrazzone C, Oliveira W, Lannes-Vieira J, Lorena VMBD. Is a negative correlation between sTNFR1 and TNF in patients with chronic Chagas disease the key to clinical progression? Immunobiology 2021; 227:152166. [PMID: 34936965 DOI: 10.1016/j.imbio.2021.152166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022]
Abstract
Soluble TNF receptors (sTNFR1 and sTNFR2) are natural endogenous inhibitors of TNF and are elevated in inflammatory, autoimmune, and chronic degenerative diseases. In Chagas disease, pleiotropic cytokine TNF is considered key in immunopathology. Thus, we aimed to evaluate the levels of TNF, sTNFR1, and sTNFR2 in the serum of patients with chronic Chagas disease. TNF and its soluble receptors were quantified using Cytometric Bead Array in the serum of 132 patients, of which 51 had the indeterminate form (IND), 39 the mild cardiac form (CARD 1), 42 the severe cardiac form (CARD 2), and 20 non-infected individuals (NI). The results indicate that the soluble receptors may regulate TNF in Chagas disease, as their leves were higher in T. cruzi-infected individuals when compared to non-infected individuals. We found a moderate negative correlation between sTNFR1 and TNF in individuals with the IND form, suggesting a relationship with non-progression to more severe forms, such as heart disease. sTNFR1 and sTNFR2 were increased in all clinical forms, but with a moderate positive correlation in more severe patients (r = 0.50 and p = 0.0005). TNF levels showed no statistical differences in the groups of patients. These findings suggest the importance of the endogenous balance of the levels of soluble TNF receptors in the protection and balance in patients with chronic Chagas disease, besides revealing the immunological complexity in chronic T. cruzi-infected individuals.
Collapse
Affiliation(s)
- Diego José Lira Torres
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Laboratório de Imunoparasitologia, Recife, PE, Brazil
| | - Tiago Ribeiro De Arruda
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Laboratório de Imunoparasitologia, Recife, PE, Brazil
| | - Michelle da Silva Barros
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Laboratório de Imunoparasitologia, Recife, PE, Brazil
| | - Juliana Prado Gonçales
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami, Laboratório de Virologia, Recife, PE, Brazil
| | | | | | - Leyllane Rafael Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Laboratório de Imunoparasitologia, Recife, PE, Brazil
| | - Carolina Medeiros
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco, Recife, PE, Brazil
| | | | - Sílvia Marinho Martins
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco, Recife, PE, Brazil
| | - Cristina Carrazzone
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco, Recife, PE, Brazil
| | - Wilson Oliveira
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico de Pernambuco, Recife, PE, Brazil
| | - Joseli Lannes-Vieira
- Fundação Oswaldo Cruz- Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
153
|
Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals (Basel) 2021; 11:ani11123539. [PMID: 34944316 PMCID: PMC8698153 DOI: 10.3390/ani11123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Heat stress is a persistent challenge for livestock producers. Molecular changes throughout the body that result from sustained heat stress slow muscle growth and thus are detrimental to carcass yield and value. Feedlot animals are at particularly high risk for heat stress because their confinement limits their ability to pursue shade and other natural cooling behaviors. Changes in infrastructure to reduce the impact of heat stress are often cost-prohibitive, but recent studies have revealed that anti-inflammatory therapies may help to improve growth deficits in heat-stressed animals. This review describes the conditions that cause heat stress and explains the role of inflammation in muscle growth impairment. Additionally, it discusses the potential for several natural anti-inflammatory dietary additives to improve muscle growth outcomes in heat-stressed livestock. Abstract Heat stress is detrimental to well-being and growth performance in livestock, and systemic inflammation arising during chronic heat stress contributes to these poor outcomes. Sustained exposure of muscle and other tissues to inflammation can impair the cellular processes that facilitate muscle growth and intramuscular fat deposition, thus reducing carcass quality and yield. Climate change is expected to produce more frequent extreme heat events, increasing the potential impact of heat stress on sustainable livestock production. Feedlot animals are at particularly high risk for heat stress, as confinement limits their ability to seek cooling from the shade, water, or breeze. Economically practical options to circumvent heat stress in feedlot animals are limited, but understanding the mechanistic role of inflammation in heat stress outcomes may provide the basis for treatment strategies to improve well-being and performance. Feedlot animals receive formulated diets daily, which provides an opportunity to administer oral nutraceuticals and other bioactive products to mitigate heat stress-induced inflammation. In this review, we examine the complex associations between heat stress, systemic inflammation, and dysregulated muscle growth in meat animals. We also present evidence for potential nutraceutical and dietary moderators of inflammation and how they might improve the unique pathophysiology of heat stress.
Collapse
|
154
|
Dual Role of p73 in Cancer Microenvironment and DNA Damage Response. Cells 2021; 10:cells10123516. [PMID: 34944027 PMCID: PMC8700694 DOI: 10.3390/cells10123516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate cancer progression is pivotal for the development of new therapies. Although p53 is mutated in half of human cancers, its family member p73 is not. At the same time, isoforms of p73 are often overexpressed in cancers and p73 can overtake many p53 functions to kill abnormal cells. According to the latest studies, while p73 represses epithelial–mesenchymal transition and metastasis, it can also promote tumour growth by modulating crosstalk between cancer and immune cells in the tumor microenvironment, M2 macrophage polarisation, Th2 T-cell differentiation, and angiogenesis. Thus, p73 likely plays a dual role as a tumor suppressor by regulating apoptosis in response to genotoxic stress or as an oncoprotein by promoting the immunosuppressive environment and immune cell differentiation.
Collapse
|
155
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
156
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
157
|
Liu X, Song L, Ma X, Liu Y, Huang H, Xu Y, Yan W. Overexpression of RAPGEF3 enhances the therapeutic effect of dezocine in treatment of neuropathic pain. Genet Mol Biol 2021; 44:e20200463. [PMID: 34807222 PMCID: PMC8607529 DOI: 10.1590/1678-4685-gmb-2020-0463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pain is a significant problem worldwide that affects the quality of life of patients. Dezocine is a non-addictive analgesic drug with kappa-opioid antagonist activity and has been successfully used to alleviate of postoperative pain. In addition, dezocine has an analgesic effect similar to that of morphine, alleviating moderate to severe pain. Rap guanine nucleotide exchange factor 3 (RAPGEF3) is a guanine nucleotide exchange factor for GTPases Rap1 and Rap2, which could enhance the activity of Rap1 to promote cell adhesion and axon regeneration, as well as promote neurite extension by interacting with nerve growth factors. Here, we first observed that overexpression of RAPGEF3 increased cell viability, as shown by a CCK-8 assay, and recovered brain function in rats. The expression of inflammation-related factors at the mRNA level was detected using qPCR, and the concentration of these factors in a cultured cell medium and rat serum samples were decreased as shown by ELISA after RAPGEF3 overexpression. Through western blotting, we further found that pro-inflammatory proteins were decreased, and these effects might be mediated by inhibition of the Ras/p-38 MAPK signaling pathway. Taken together, we speculated that RAPGEF3overexpression enhances the therapeutic effect of dezocine on neuropathic pain by inhibiting the inflammatory response through inhibition of the Ras/p-38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xue Liu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Li Song
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Xiaojun Ma
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Yong Liu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Hui Huang
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Yongsheng Xu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Wei Yan
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| |
Collapse
|
158
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
159
|
Freeman AJ, Kearney CJ, Silke J, Oliaro J. Unleashing TNF cytotoxicity to enhance cancer immunotherapy. Trends Immunol 2021; 42:1128-1142. [PMID: 34750058 DOI: 10.1016/j.it.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine that is produced and secreted by cytotoxic lymphocytes upon tumor target recognition. Depending on the context, TNF can mediate either pro-survival or pro-death signals. The potential cytotoxicity of T cell-produced TNF, particularly in the context of T cell-directed immunotherapies, has been largely overlooked. However, a spate of recent studies investigating tumor immune evasion through the application of CRISPR-based gene-editing screens have highlighted TNF-mediated killing as an important component of the mammalian T cell antitumor repertoire. In the context of the current understanding of the role of TNF in antitumor immunity, we discuss these studies and touch on their therapeutic implications. Collectively, we provide an enticing prospect to augment immunotherapy responses through TNF cytotoxicity.
Collapse
Affiliation(s)
- Andrew J Freeman
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Conor J Kearney
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
160
|
Harvey M, Chislett B, Perera M, Lawrentschuk N, Bolton D, Jack G. Critical shortage in BCG immunotherapy: How did we get here and where will it take us? Urol Oncol 2021; 40:1-3. [PMID: 34750053 DOI: 10.1016/j.urolonc.2021.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Intravesical Bacillus Calmette-Guérin vaccine, one of the most successful bio-therapies to date, has been the gold standard treatment for non-muscle invasive bladder cancer for 44 years. International shortages have necessitated rationing this life-saving medication with deleterious effects on the primary treatment of high-grade non-muscle invasive bladder cancer. Understanding the history of intravesical Bacillus Calmette-Guérin gives us insight into the current shortages and future perspectives for novel immunotherapy opportunities against this deadly disease.
Collapse
Affiliation(s)
- Michael Harvey
- Department of Urology, Olivia Newton-John Cancer Centre at Austin Health, University of Melbourne, Melbourne, Australia; Department of Urology, Western Health, Melbourne, Australia.
| | - Bodie Chislett
- Department of Urology, Olivia Newton-John Cancer Centre at Austin Health, University of Melbourne, Melbourne, Australia
| | - Marlon Perera
- Department of Urology, Olivia Newton-John Cancer Centre at Austin Health, University of Melbourne, Melbourne, Australia; Department of Urology, Western Health, Melbourne, Australia
| | - Nathan Lawrentschuk
- Uro-Oncology Service, Peter MacCallum Cancer Centre, Victoria Comprehensive Cancer Centre, Melbourne, Australia
| | - Damien Bolton
- Department of Urology, Olivia Newton-John Cancer Centre at Austin Health, University of Melbourne, Melbourne, Australia
| | - Gregory Jack
- Department of Urology, Olivia Newton-John Cancer Centre at Austin Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
161
|
Clark IA. How diseases caused by parasites allowed a wider understanding of disease in general: my encounters with parasitology in Australia and elsewhere over the last 50 years. Int J Parasitol 2021; 51:1265-1276. [PMID: 34757090 DOI: 10.1016/j.ijpara.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
This is an account of how it can prove possible to carve a reasonable scientific career by following what brought most scientific thrill rather than pursue a safe, institution-directed, path. The fascination began when I noticed, quite unexpectedly, that the normal mouse immune response causes Babesia microti to die, en masse, inside circulating red cells. It eventuated that prior Bacillus Calmette Guerin infection caused the same outcome, even before the protozoal infection became patent. It also rendered mice quite immune, long term. I acquired an obsession about this telling us how little we know. Surrounded by basic immunologists, parasitologists and virologists in London, I had been given, in the days that funding was ample, the opportunity to follow any promising lead with a free hand. Through Bacillus Calmette Guerin, this meant stumbling through a set of phenomena that were in their infancies, and could be explained only through nebulous novel soluble mediators such as TNF, described the following year as causing the in vivo necrosis of tumours in mice. Beginning with malarial disease pathogenesis, I followed TNF wherever it led, into innate immunity, acute and chronic infections, neurophysiology and neurodegenerative diseases, in all of which states awareness of the role of this cytokine is still growing fast. Many of these steps can be illustrated and expanded upon in parasitic diseases. Covering the importance of TNF in the pathogenesis of neurodegenerative disease has proved to be highly illuminating, scientifically and otherwise. But the insights it has given me into understanding the temptations to which patent-owners can succumb when faced with opportunities to put money before people is not for the faint hearted. Clearly, parasitologists inhabit a much more common-good yet science-orientated, civilised, world.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
162
|
Chu CQ. Blocking tumor necrosis factor paved the way for targeted therapeutics in inflammatory diseases. Chin Med J (Engl) 2021; 134:2525-2528. [PMID: 34670251 PMCID: PMC8577656 DOI: 10.1097/cm9.0000000000001846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and Rheumatology Section, VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
163
|
Dang T, Chang Z, Meng J, Cui X, Wang P, Chai J. TNF antagonizes CCN1 in apoptosis in esophageal adenocarcinoma. Cytokine 2021; 149:155728. [PMID: 34634651 DOI: 10.1016/j.cyto.2021.155728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
TNF signaling mostly supports cell growth by activating NFκB and only induces cell death when NFκB activation fails. CCN1 is a matricellular protein that has been reported capable to convert TNF from a pro-survival factor into a stimulus for cell death without interfering with NFκB signaling. In this study, we examined the relationship between CCN1 and TNF in the context of esophageal adenocarcinoma and found that CCN1 did not help TNF to induce cell death when they were together, instead, it inhibited TNF expression, as well as TNF-induced JNK activation and apoptosis. CCN1 induced apoptosis in the cancer cells by itself through upregulation of TRAIL and its death receptors. The presence of TNF significantly lowered CCN1 expression and its capability in apoptosis induction. Furthermore, we found that CCN1 boosted ADAM17-mediated cleavage of TNF receptors through ITGA11 and the soluble decoy receptors generated by this action neutralized TNF activity. Taken together, CCN1 and TNF antagonize each other in esophageal cancer cells.
Collapse
Affiliation(s)
- Tong Dang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Zhiheng Chang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Jing Meng
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Xia Cui
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Pei Wang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China; Laboratory of Gastrointestinal Injury and Cancer, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
164
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
165
|
Alizadeh AA, Morris MB, Church WB, Yaqoubi S, Dastmalchi S. A mechanistic perspective, clinical applications, and phage-display-assisted discovery of TNFα inhibitors. Drug Discov Today 2021; 27:503-518. [PMID: 34628042 DOI: 10.1016/j.drudis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/20/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
TNFα participates in a variety of physiological processes, but at supra-physiological concentrations it has been implicated in the pathology of inflammatory and autoimmune diseases. Therefore, much attention has been devoted to the development of strategies that overcome the effects of aberrant TNFα concentration. Promising strategies include drugs that destabilize the active (trimeric) form of TNFα and antagonists of TNFα receptor type I. Underpinning these strategies is the successful application of phage-display technology to identify anti-TNFα peptides and antibodies. Here, we review the development of inhibitors of the TNFα-TNF receptor system, with particular focus on the phage-display-assisted identification of molecules that interfere with this system by acting as inhibitors of TNFα or by sequestering TNFα away from its receptor.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael B Morris
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - W Bret Church
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| | - Shadi Yaqoubi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
166
|
Sain A, Sen P, Venkataraman K, Vijayalakshmi MA. Expression of a Tagless Single-Chain Variable Fragment (scFv) of Anti-TNF-α by a Salt Inducible System and its Purification and Characterization. Protein Pept Lett 2021; 28:1272-1280. [PMID: 34551688 DOI: 10.2174/0929866528666210922141402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anti-TNF-α scFv is gaining acceptance as an effective drug for various diseases, such as rheumatoid arthritis and Crohn's disease that involve elevated levels of TNF-α. The single-chain variable fragment (scFv) consists of variable regions of heavy and light chains of monoclonal antibodies (mAb). Due to its smaller size, it curbs the mAb's auto-antibody effects and their limitation of penetration into the tissues during the neutralization of TNF-α. OBJECTIVE In this work, a cDNA coding for anti-TNF-α scFv was successfully cloned into a pRSET-B vector and efficiently expressed in an E. coli strain GJ1158, a salt inducible system that uses sodium chloride instead of IPTG as an inducer. METHODS The protein was expressed in the form of inclusion bodies (IB), solubilized using urea, and refolded by pulse dilution. Further, the amino acid sequence coverage of scFv was confirmed by ESI-Q-TOF MS/MS and MALDI-TOF. Further studies on scaling up the production of scFv and its application of scFv are being carried out. RESULTS The soluble fraction of anti-TNF-α scFv was then purified in a single chromatographic step using CM-Sephadex chromatography, a weak cation exchanger with a yield of 10.3 mg/L. The molecular weight of the scFv was found to be ~ 28 kDa by SDS PAGE, and its presence was confirmed by western blot analysis and mass spectrometry. CONCLUSION Anti-TNF-α scFv has been successfully purified in a salt inducible system GJ1158. As per the best of our knowledge, this is the first report of purification of Anti-TNF-α scFv in a salt inducible system from soluble fractions as well as inclusion bodies.
Collapse
Affiliation(s)
- Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu,India
| | - Priyankar Sen
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu,India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu,India
| | | |
Collapse
|
167
|
Tumor Necrosis Factor's Pathway in Crohn's Disease: Potential for Intervention. Int J Mol Sci 2021; 22:ijms221910273. [PMID: 34638616 PMCID: PMC8508644 DOI: 10.3390/ijms221910273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Crohn’s disease (CD) is a chronic disorder characterized by full thickness patchy inflammation of the gastrointestinal tract. The pathogenesis is multifactorial and involves defective innate immune responses, microbiome alterations, and dysregulated activation of the acquired component of mucosal immunity. One of the molecular mediators that is involved at different levels in the initiation and progression of intestinal inflammation characteristic of CD is tumor necrosis factor (TNF). The present manuscript provides a comprehensive review focused on the potential role of TNF in the different phases of CD pathogenesis, particularly in light of its potential clinical implications. Currently available drugs blocking TNF are evaluated and discussed, specifically for open issues that still remain utilizing such therapy. TNF exerts a paramount role in the established phase of intestinal inflammation that characterizes CD patients, and anti-TNF biologics have definitely changed patient management, offering effective and safe options of treatment. Nonetheless, many patients still do not respond to anti-TNF therapy or experience unwanted side-effects. This could partially be due to the role that TNF plays in intestinal homeostasis that is particularly important during the early phase of the inflammatory process. In fact, emerging evidence supporting the dichotomous role of TNF and the identification of molecular markers will guide a more tailored and refined therapy for CD patients in the near future.
Collapse
|
168
|
Cohrs G, Blumenröther AK, Sürie JP, Synowitz M, Held-Feindt J, Knerlich-Lukoschus F. Fetal and perinatal expression profiles of proinflammatory cytokines in the neuroplacodes of rats with myelomeningoceles: A contribution to the understanding of secondary spinal cord injury in open spinal dysraphism. J Neurotrauma 2021; 38:3376-3392. [PMID: 34541905 DOI: 10.1089/neu.2021.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular and molecular mechanisms that presumably underlie the progressive functional decline of the myelomeningocele (MMC) placode are not well understood. We previously identified key players in posttraumatic spinal cord injury cascades in human MMC tissues obtained during postnatal repair. In this study we conducted experiments to further investigate these mediators in the prenatal time course under standardized conditions in a retinoic-acid-induced MMC rat model. A retinoic acid MMC model was established using time-dated Sprague-Dawley rats, which were gavage-fed with all-trans retinoic acid (RA; 60 mg/kg) dissolved in olive oil at E10. Control animals received olive oil only. Fetuses from both groups were obtained at E16, E18, E22. The spinal cords (SCs) of both groups were formalin-fixed or snap-frozen. Tissues were screened by real-time RT-PCR for the expression of cytokines and chemokines known to play a role in the lesion cascades of the central nervous system after trauma. MMC placodes exhibited inflammatory cells and glial activation in the later gestational stages. At the mRNA level, IL-1b, TNFa, and TNF-R1 exhibited significant induction at E22. IL1-R1 mRNA was induced significantly at E16 and E22. Double labeling experiments confirmed the costaining of these cytokines and their receptors with Iba1 (i.e., inflammatory cells), Vimentin, and Nestin in different anatomical SC areas and NeuN in ventral horn neurons. CXCL12 mRNA was elevated in control and MMC animals at E16 compared to E18 and E22. CX3CL1 mRNA was lower in MMC tissues than in control tissues on E16. The presented findings contribute to the concept that pathophysiological mechanisms, such as cytokine induction in the neuroplacode, in addition to the "first hit", promote secondary spinal cord injury with functional loss in the late fetal time course. Furthermore, these mediators should be taken into consideration in the development of new therapeutic approaches for open spinal dysraphism.
Collapse
Affiliation(s)
- Gesa Cohrs
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Dept. of Neurosurgery, Arnold-Heller-Straße 3, Kiel, Germany, 24105;
| | - Ann-Kathrin Blumenröther
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Jan-Philip Sürie
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Michael Synowitz
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Janka Held-Feindt
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Friederike Knerlich-Lukoschus
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany.,Asklepios Kinderklinik Sankt Augustin, 248587, Pediatric Neurosurgery, Sankt Augustin, Nordrhein-Westfalen, Germany;
| |
Collapse
|
169
|
Dakhel S, Lizak C, Matasci M, Mock J, Villa A, Neri D, Cazzamalli S. An Attenuated Targeted-TNF Localizes to Tumors In Vivo and Regains Activity at the Site of Disease. Int J Mol Sci 2021; 22:10020. [PMID: 34576184 PMCID: PMC8469155 DOI: 10.3390/ijms221810020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Antibody-cytokine fusion proteins (immunocytokines) are gaining importance for cancer therapy, but those products are often limited by systemic toxicity related to the activity of the cytokine payload in circulation and in secondary lymphoid organs. Tumor necrosis factor (TNF) is used as a pro-inflammatory payload to trigger haemorrhagic necrosis and boost anti-cancer immunity at the tumor site. Here we describe a depotentiated version of TNF (carrying the single point mutation I97A), which displayed reduced binding affinity to its cognate receptor tumor necrosis factor receptor 1 (TNFR-1) and lower biocidal activity. The fusion of the TNF(I97A) mutant to the L19 antibody promoted restoration of anti-tumor activity upon accumulation on the cognate antigen, the alternatively spliced EDB domain of fibronectin. In vivo administration of high doses (375 μg/Kg) of the fusion protein showed a potent anti-tumor effect without apparent toxicity compared with the wild type protein. L19-TNFI97A holds promise for the targeted delivery of TNF activity to neoplastic lesions, helping spare normal tissues.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Cricetulus
- Cytokines/genetics
- Cytokines/metabolism
- Female
- Fibronectins/genetics
- Fibronectins/metabolism
- Fluorescent Antibody Technique
- Immunotherapy
- Mice, Inbred BALB C
- Mutation
- Protein Structure, Secondary
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Sheila Dakhel
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Christian Lizak
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Mattia Matasci
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Jacqueline Mock
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Alessandra Villa
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| | - Dario Neri
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
- Philogen S.p.A., Piazza La Lizza, 7, 53100 Siena, Italy
| | - Samuele Cazzamalli
- Philochem AG, CH-8112 Otelfingen, Switzerland; (S.D.); (C.L.); (M.M.); (J.M.); (A.V.); (D.N.)
| |
Collapse
|
170
|
Al-Salihi M, Bornikoel A, Zhuang Y, Stachura P, Scheller J, Lang KS, Lang PA. The role of ADAM17 during liver damage. Biol Chem 2021; 402:1115-1128. [PMID: 34192832 DOI: 10.1515/hsz-2021-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 17 is a membrane bound protease, involved in the cleavage and thus regulation of various membrane proteins, which are critical during liver injury. Among ADAM17 substrates are tumor necrosis factor α (TNFα), tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), the epidermal growth factor receptor (EGFR) ligands amphiregulin (AR) and heparin-binding-EGF-like growth factor (HB-EGF), the interleukin-6 receptor (IL-6R) and the receptor for a hepatocyte growth factor (HGF), c-Met. TNFα and its binding receptors can promote liver injury by inducing apoptosis and necroptosis in liver cells. Consistently, hepatocyte specific deletion of ADAM17 resulted in increased liver cell damage following CD95 stimulation. IL-6 trans-signaling is critical for liver regeneration and can alleviate liver damage. EGFR ligands can prevent liver damage and deletion of amphiregulin and HB-EGF can result in increased hepatocyte death and reduced proliferation. All of which indicates that ADAM17 has a central role in liver injury and recovery from it. Furthermore, inactive rhomboid proteins (iRhom) are involved in the trafficking and maturation of ADAM17 and have been linked to liver damage. Taken together, ADAM17 can contribute in a complex way to liver damage and injury.
Collapse
Affiliation(s)
- Mazin Al-Salihi
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Anna Bornikoel
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
171
|
Zhang Y, Zhang D, Meng Q, Liu Z, Xie H, Liu L, Xu F, Chen X. Precision treatment exploration of breast cancer based on heterogeneity analysis of lncRNAs at the single-cell level. BMC Cancer 2021; 21:918. [PMID: 34388989 PMCID: PMC8361656 DOI: 10.1186/s12885-021-08617-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a complex disease with high heterogeneity, which often leads to great differences in treatment results. Current common molecular typing method is PAM50, which shows positive results for precision medicine; however, room for improvement still remains because of the different prognoses of subtypes. Therefore, in this article, we used lncRNAs, which are more tissue-specific and developmental stage-specific than other RNAs, as typing markers and combined single-cell expression profiles to retype BC, to provide a new method for BC classification and explore new precise therapeutic strategies based on this method. METHODS Based on lncRNA expression profiles of 317 single cells from 11 BC patients, SC3 was used to retype BC, and differential expression analysis and enrichment analysis were performed to identify biological characteristics of new subtypes. The results were validated for survival analysis using data from TCGA. Then, the downstream regulatory genes of lncRNA markers of each subtype were searched by expression correlation analysis, and these genes were used as targets to screen therapeutic drugs, thus proposing new precision treatment strategies according to the different subtype compositions of patients. RESULTS Seven lncRNA subtypes and their specific biological characteristics are obtained. Then, 57 targets and 210 drugs of 7 subtypes were acquired. New precision medicine strategies were proposed according to the different compositions of patient subtypes. CONCLUSIONS For patients with different subtype compositions, we propose a strategy to select different drugs for different patients, which means using drugs targeting multi subtype or combinations of drugs targeting a single subtype to simultaneously kill different cancer cells by personalized treatment, thus reducing the possibility of drug resistance and even recurrence.
Collapse
Affiliation(s)
- Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Denan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Qingkang Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Ziqi Liu
- Department of Pharmacy, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang Province, P. R. China
| | - Hongbo Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Lei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Fei Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China
| | - Xiujie Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, P. R. China.
| |
Collapse
|
172
|
Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFα and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer? Int J Mol Sci 2021; 22:ijms22168691. [PMID: 34445397 PMCID: PMC8395431 DOI: 10.3390/ijms22168691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings, but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.
Collapse
|
173
|
Ghilardi N, Pappu R, Arron JR, Chan AC. 30 Years of Biotherapeutics Development-What Have We Learned? Annu Rev Immunol 2021; 38:249-287. [PMID: 32340579 DOI: 10.1146/annurev-immunol-101619-031510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.
Collapse
Affiliation(s)
- Nico Ghilardi
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Rajita Pappu
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Joseph R Arron
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Andrew C Chan
- Research-Biology, Genentech, South San Francisco, California 94080, USA;
| |
Collapse
|
174
|
COVID-19 Disease, Women's Predominant Non-Heparin Vaccine-Induced Thrombotic Thrombocytopenia and Kounis Syndrome: A Passepartout Cytokine Storm Interplay. Biomedicines 2021; 9:biomedicines9080959. [PMID: 34440163 PMCID: PMC8391920 DOI: 10.3390/biomedicines9080959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitute one of the deadliest pandemics in modern history demonstrating cardiovascular, gastrointestinal, hematologic, mucocutaneous, respiratory, neurological, renal and testicular manifestations and further complications. COVID-19-induced excessive immune response accompanied with uncontrolled release of cytokines culminating in cytokine storm seem to be the common pathogenetic mechanism of these complications. The aim of this narrative review is to elucidate the relation between anaphylaxis associated with profound hypotension or hypoxemia with pro-inflammatory cytokine release. COVID-19 relation with Kounis syndrome and post-COVID-19 vaccination correlation with heparin-induced thrombocytopenia with thrombosis (HITT), especially serious cerebral venous sinus thrombosis, were also reviewed. Methods: A current literature search in PubMed, Embase and Google databases was performed to reveal the pathophysiology, prevalence, clinical manifestation, correlation and treatment of COVID-19, anaphylaxis with profuse hypotension, Kounis acute coronary syndrome and thrombotic events post vaccination. Results: The same key immunological pathophysiology mechanisms and cells seem to underlie COVID-19 cardiovascular complications and the anaphylaxis-associated Kounis syndrome. The myocardial injury in patients with COVID-19 has been attributed to coronary spasm, plaque rupture and microthrombi formation, hypoxic injury or cytokine storm disposing the same pathophysiology with the three clinical variants of Kounis syndrome. COVID-19-interrelated vaccine excipients as polysorbate, polyethelene glycol (PEG) and trometamol constitute potential allergenic substances. Conclusion: Better acknowledgement of the pathophysiological mechanisms, clinical similarities, multiorgan complications of COVID-19 or other viral infections as dengue and human immunodeficiency viruses along with the action of inflammatory cells inducing the Kounis syndrome could identify better immunological approaches for prevention, treatment of the COVID-19 pandemic as well as post-COVID-19 vaccine adverse reactions.
Collapse
|
175
|
Purification and radioiodination of 2, 4 di-tertiary- butyl phenol extracted from Lactococcus lactis subsp. lactis CAU: 3138-GM2 and its application on myeloma cells. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
176
|
You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol 2021; 9:727075. [PMID: 34395451 PMCID: PMC8361451 DOI: 10.3389/fcell.2021.727075] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as immunomodulation, fever, inflammatory response, inhibition of tumor formation, and inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in developing organs and they regulate the survival, proliferation, and apoptosis of embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory factor that also regulates the inflammatory response during organogenesis, and its cytotoxic effects can interfere with normal developmental processes, even leading to the onset of diseases. This review summarizes the various roles of TNF-α in organogenesis in terms of its secreting pattern, concentration-dependent activities, and interactions with other signaling pathways. We also explored new potential functions of TNF-α.
Collapse
Affiliation(s)
- Kai You
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewen Xu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
177
|
Su J, Liao D, Su Y, Liu S, Jiang L, Wu J, Liu Z, Wu Y. Novel polysaccharide extracted from Sipunculus nudus inhibits HepG2 tumour growth in vivo by enhancing immune function and inducing tumour cell apoptosis. J Cell Mol Med 2021; 25:8338-8351. [PMID: 34302428 PMCID: PMC8419178 DOI: 10.1111/jcmm.16793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
A novel polysaccharide was extracted from Sipunculus nudus (SNP). The molecular weight (MW) of SNP was determined to be 9223 Da by high‐performance gel permeation chromatography analyses, and the structure of the SNP repeat units was determined to be →3,4‐β‐D‐GlcpNAC (1→ and →4) ‐α‐D‐Glcp (1→ in the ratio of 15:1; →2) ‐α ‐D‐Galp ‐ (1→ as a side chain; and β‐D‐Galp‐(1→ and α‐ D‐Glcp ‐ (1→ as end groups by GC‐MS analysis and NMR assays. The effect of SNP on hepatoma HepG2‐bearing mice was analysed to verify its potential in the clinical treatment of liver cancer. A total of 90 male athymic nu/nu mice were divided into therapeutic and preventive groups and fed with different amounts of SNP. The antitumour effect of SNP on HepG2‐bearing mice and mechanism of such were studied by analysing the tumour size, spleen index, thymus index, immune factors in the blood, tumour apoptosis factors, etc. The results suggest that SNP not only increased the index of immune organs in the body, but also enhanced the secretion of immune factors, including interleukin‐2, interferon gamma and tumour necrosis factor‐alpha in the serum. SNP induced the apoptosis of tumour cells via the mitochondrial apoptosis pathway, which upregulated caspase‐3, caspase‐8, caspase‐9 and BCL2‐associated X, but downregulated B‐cell lymphoma‐2 and vascular endothelial growth factor protein expression. In conclusion, SNP inhibited tumour growth by enhancing immune function and inducing tumour cell apoptosis in HepG2‐bearing mice. Therefore, SNP may be further investigated as a promising candidate for future antitumour drugs.
Collapse
Affiliation(s)
- Jie Su
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Dengyuan Liao
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yongchang Su
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Shuji Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Linlin Jiang
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Jingna Wu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yuping Wu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
178
|
Wang M, Zhai X, Li J, Guan J, Xu S, Li Y, Zhu H. The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Front Immunol 2021; 12:670391. [PMID: 34367136 PMCID: PMC8339552 DOI: 10.3389/fimmu.2021.670391] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the overall survival (OS) and progression-free survival (PFS) of patients with advanced cancer has been significantly improved due to the application of immune checkpoint inhibitors (ICIs). Low response rate and high occurrence of immune-related adverse events (irAEs) make urgently need for ideal predictive biomarkers to identity efficient population and guide treatment strategies. Cytokines are small soluble proteins with a wide range of biological activity that are secreted by activated immune cells or tumor cells and act as a bridge between innate immunity, infection, inflammation and cancer. Cytokines can be detected in peripheral blood and suitable for dynamic detection. During the era of ICIs, many studies investigated the role of cytokines in prediction of the efficiency and toxicity of ICIs. Herein, we review the relevant studies on TNF-α, IFN-γ, IL-6, IL-8, TGF-β and other cytokines as biomarkers for predicting ICI-related reactions and adverse events, and explore the immunomodulatory mechanisms. Finally, the most important purpose of this review is to help identify predictors of ICI to screen patients who are most likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingyuan Guan
- Department of Cardiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Shuhui Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - YuYing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
179
|
Minamidate A, Onizawa M, Saito C, Hikichi R, Mochimaru T, Murakami M, Sakuma C, Asakawa T, Hiraoka Y, Oshima S, Nagaishi T, Tsuchiya K, Ohira H, Okamoto R, Watanabe M. A potent endocytosis inhibitor Ikarugamycin up-regulates TNF production. Biochem Biophys Rep 2021; 27:101065. [PMID: 34286109 PMCID: PMC8274290 DOI: 10.1016/j.bbrep.2021.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Ikarugamycin (IK) is an antibiotic which has been reported to have a variety of functions, such as inhibition of clathrin-mediated endocytosis (CME), anti-tumor effects and regulation of the immune system. Whether IK influences cytokine production is poorly understood. We have investigated the relationship between IK and production of tumor necrosis factor-α (TNF). TNF plays a pivotal role in pathogenesis of many diseases. Although the dynamics of soluble TNF (sTNF) has been widely explored so far, the functions of the membrane form of TNF (mTNF) have not been fully elucidated. We demonstrated that IK increases the amount of mTNF and prolongs the duration of TNF expression. This effect is unrelated to the shedding activity of disintegrin and metalloproteinase domain-containing protein 17 (ADAM 17). Our results revealed that there is a mechanism to terminate inflammation at the cellular level which IK dysregulates. Furthermore, IK can be a tool to study TNF signaling due to its effect of increasing mTNF expression.
Collapse
Affiliation(s)
- Ai Minamidate
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michio Onizawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, Japan
| | - Chikako Saito
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, Japan
| | - Rie Hikichi
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, Japan
| | - Tomoaki Mochimaru
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, Japan
| | - Mai Murakami
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, Japan
| | - Chiharu Sakuma
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, Japan
| | - Takehito Asakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology and Hepatology, Fukushima Medical University, Fukushima, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
180
|
Manrique-Suárez V, Macaya L, Contreras MA, Parra N, Maura R, González A, Toledo JR, Sánchez O. Design and characterization of a novel dimeric blood-brain barrier penetrating TNFα inhibitor. Proteins 2021; 89:1508-1521. [PMID: 34219271 DOI: 10.1002/prot.26173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor-alpha (TNFα) inhibitors could prevent neurological disorders systemically, but their design generally relies on molecules unable to cross the blood-brain barrier (BBB). This research was aimed to design and characterize a novel TNFα inhibitor based on the angiopeptide-2 as a BBB shuttle molecule fused to the extracellular domain of human TNFα receptor 2 and a mutated vascular endothelial growth factor (VEGF) dimerization domain. This new chimeric protein (MTV) would be able to trigger receptor-mediated transcytosis across the BBB via low-density lipoprotein receptor-related protein-1 (LRP-1) and inhibit the cytotoxic effect of TNFα more efficiently because of its dimeric structure. Stably transformed CHO cells successfully expressed MTV, and its purification by Immobilized-Metal Affinity Chromatography (IMAC) rendered high purity degree. Mutated VEGF domain included in MTV did not show cell proliferation or angiogenic activities measured by scratch and aortic ring assays, which corroborate that the function of this domain is restricted to dimerization. The pairs MTV-TNFα (Kd 279 ± 40.9 nM) and MTV-LRP1 (Kd 399 ± 50.5 nM) showed high affinity by microscale thermophoresis, and a significant increase in cell survival was observed after blocking TNFα with MTV in a cell cytotoxicity assay. Also, the antibody staining in CHOK1 and bEnd3 cells demonstrated the adhesion of MTV to the LRP1 receptor located in the cell membrane. These results provide compelling evidence for the proper functioning of the three main domains of MTV individually, which encourage us to continue the research with this new molecule as a potential candidate for the systemic treatment of neurological disorders.
Collapse
Affiliation(s)
- Viana Manrique-Suárez
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luis Macaya
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Maria Angélica Contreras
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Natalie Parra
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Rafael Maura
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Alaín González
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
| | - Jorge R Toledo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Science, Universidad de Concepción, Concepcion, Chile.,Center of Biotechnology and Biomedicine Spa, Concepción, Chile
| | - Oliberto Sánchez
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center of Biotechnology and Biomedicine Spa, Concepción, Chile
| |
Collapse
|
181
|
D'Haens GR, van Deventer S. 25 years of anti-TNF treatment for inflammatory bowel disease: lessons from the past and a look to the future. Gut 2021; 70:1396-1405. [PMID: 33431575 DOI: 10.1136/gutjnl-2019-320022] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Anti-tumour necrosis factor (TNF) antibodies have been widely used for approximately 25 years now. The first clinical observations in patients with refractory Crohn's disease rapidly responding to infliximab prompted accelerated clinical development and approval for this indication. However, many questions remained unanswered when this treatment came to market related to maintenance schedules, pharmacokinetics, toxicity and positioning. Many of these open questions were addressed by investigators and sponsors during more than two decades of clinical use. The authors were among the first to use infliximab in Crohn's disease and felt that now is a good time to look back and draw lessons from the remarkable anti-TNF story. Even today, new insights continue to appear. But more importantly, what was learnt in the past 25 years has created a platform for future development of even stronger and safer therapies. We should not forget to learn from the past.
Collapse
Affiliation(s)
- Geert R D'Haens
- Gastroenterology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | |
Collapse
|
182
|
Yang F, Yao L, Zeng XL. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
C17H9ClN2O2, monoclinic, P21/c (no. 14), a = 13.6888(4) Å, b = 8.3775(2) Å, c = 12.9180(3) Å, β = 110.515(3)°, V = 1387.46(7) Å3, Z = 4, R
gt
(F) = 0.0420, wR
ref
(F
2) = 0.1224, T = 293(2) K.
Collapse
Affiliation(s)
- Fan Yang
- Respiratory Medicine People’s Hospital of Changshan , Changshan , 324200 , Zhejiang , P. R. China
| | - Lin Yao
- Respiratory Medicine People’s Hospital of Changshan , Changshan , 324200 , Zhejiang , P. R. China
| | - Xu-Li Zeng
- Respiratory Medicine People’s Hospital of Changshan , Changshan , 324200 , Zhejiang , P. R. China
| |
Collapse
|
183
|
Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH ® Micro-Immunotherapy Treatment. Int J Mol Sci 2021; 22:ijms22136717. [PMID: 34201546 PMCID: PMC8268272 DOI: 10.3390/ijms22136717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are two cytokines involved in the perpetuation of the chronic inflammation state characterizing rheumatoid arthritis (RA). Significant advances in the treatment of this pathology have been made over the past ten years, partially through the development of anti-TNF and anti-IL-1 therapies. However, major side effects still persist and new alternative therapies should be considered. The formulation of the micro-immunotherapy medicine (MIM) 2LARTH® uses ultra-low doses (ULD) of TNF-α, IL-1β, and IL-2, in association with other immune factors, to gently restore the body’s homeostasis. The first part of this review aims at delineating the pivotal roles played by IL-1β and TNF-α in RA physiopathology, leading to the development of anti-TNF and anti-IL-1 therapeutic agents. In a second part, an emphasis will be made on explaining the rationale of using multiple therapeutic targets, including both IL-1β and TNF-α in 2LARTH® medicine. Particular attention will be paid to the ULD of those two main pro-inflammatory factors in order to counteract their overexpression through the lens of their molecular implication in RA pathogenesis.
Collapse
|
184
|
Aoyama S, Nakagawa R, Nemoto S, Perez-Villarroel P, Mulé JJ, Mailloux AW. Checkpoint blockade accelerates a novel switch from an NKT-driven TNFα response toward a T cell driven IFN-γ response within the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2020-002269. [PMID: 34135102 PMCID: PMC8211075 DOI: 10.1136/jitc-2020-002269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth. Methods C57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays. Results The distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth. Conclusions Despite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Ryosuke Nakagawa
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Satoshi Nemoto
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | | | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Adam William Mailloux
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
185
|
The immunocytokine L19-TNF eradicates sarcomas in combination with chemotherapy agents or with immune check-point inhibitors. Anticancer Drugs 2021; 31:799-805. [PMID: 32304410 DOI: 10.1097/cad.0000000000000938] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-cytokine fusion proteins (also called 'immunocytokines') represent an emerging class of biopharmaceutical products, which are being considered for cancer immunotherapy. When used as single agents, pro-inflammatory immunocytokines are rarely capable of inducing complete and durable cancer regression in mouse models and in patients. However, the combination treatment with conventional chemotherapy or with other immune-stimulatory agents typically increases the therapeutic efficacy of immunocytokines. In this article, we describe combination treatments of a tumor-targeting antibody-cytokine fusion protein based on the L19 antibody (specific to a splice isoform of fibronectin) fused to murine tumor necrosis factor with standard chemotherapy (dacarbazine, trabectedin or melphalan) or with an immune check-point inhibitor (anti-PD-1) in a BALB/c derived immunocompetent murine model of sarcoma (WEHI-164). All combination treatments led to improved tumor remission compared to single-agent treatments, suggesting that these combination partners may be suitable for further clinical development in sarcoma patients.
Collapse
|
186
|
Okoro EU. TNFα-Induced LDL Cholesterol Accumulation Involve Elevated LDLR Cell Surface Levels and SR-B1 Downregulation in Human Arterial Endothelial Cells. Int J Mol Sci 2021; 22:ijms22126236. [PMID: 34207810 PMCID: PMC8227244 DOI: 10.3390/ijms22126236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Excess lipid droplets are frequently observed in arterial endothelial cells at sites of advanced atherosclerotic plaques. Here, the role of tumor necrosis factor alpha (TNFα) in modulating the low-density lipoprotein (LDL) content in confluent primary human aortic endothelial cells (pHAECs) was investigated. TNFα promoted an up to 2 folds increase in cellular cholesterol, which was resistant to ACAT inhibition. The cholesterol increase was associated with increased 125I-LDL surface binding. Using the non-hydrolysable label, Dil, TNFα could induce a massive increase in Dil-LDL by over 200 folds. The elevated intracellular Dil-LDL was blocked with excess unlabeled LDL and PCSK9, but not oxidized LDL (oxLDL), or apolipoprotein (apoE) depletion. Moreover, the TNFα-induced increase of LDL-derived lipids was elevated through lysosome inhibition. Using specific LDLR antibody, the Dil-LDL accumulation was reduced by over 99%. The effects of TNFα included an LDLR cell surface increase of 138%, and very large increases in ICAM-1 total and surface proteins, respectively. In contrast, that of scavenger receptor B1 (SR-B1) was reduced. Additionally, LDLR antibody bound rapidly in TNFα-treated cells by about 30 folds, inducing a migrating shift in the LDLR protein. The effect of TNFα on Dil-LDL accumulation was inhibited by the antioxidant tetramethythiourea (TMTU) dose-dependently, but not by inhibitors against NF-κB, stress kinases, ASK1, JNK, p38, or apoptosis caspases. Grown on Transwell inserts, TNFα did not enhance apical to basolateral LDL cholesterol or Dil release. It is concluded that TNFα promotes LDLR functions through combined increase at the cell surface and SR-B1 downregulation.
Collapse
Affiliation(s)
- Emmanuel Ugochukwu Okoro
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
187
|
Bousounis P, Bergo V, Trompouki E. Inflammation, Aging and Hematopoiesis: A Complex Relationship. Cells 2021; 10:1386. [PMID: 34199874 PMCID: PMC8227236 DOI: 10.3390/cells10061386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing. These changes can have significant pathological consequences. Here, we provide an overview of the current literature on the complex interplay between HSCs and inflammatory signaling, and how this relationship contributes to age-related phenotypes. Understanding the mechanisms and outcomes of this interaction during different life stages will have significant implications in the modulation and restoration of the hematopoietic system in human disease, recovery from cancer and chemotherapeutic treatments, stem cell transplantation, and aging.
Collapse
Affiliation(s)
- Pavlos Bousounis
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
188
|
Active Human and Murine Tumor Necrosis Factor α Cytokines Produced from Silkworm Baculovirus Expression System. INSECTS 2021; 12:insects12060517. [PMID: 34199525 PMCID: PMC8230043 DOI: 10.3390/insects12060517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
The tumor necrosis factor α (TNFα) has been employed as a promising reagent in treating autoimmunity and cancer diseases. To meet the substantial requirement of TNFα proteins, we report in this study that mature types of recombinant human and murine TNFα proteins are successfully expressed in the baculovirus expression system using silkworm larvae as hosts. The biological activities of purified products were verified in culture murine L929 cells, showing better performance over a commercial Escherichia coli-derived murine TNFα. By comparing the activity of purified TNFα with or without the tag removal, it is also concluded that the overall activity of purified TNFα cytokines could be further improved by the complete removal of C-terminal fusion tags. Collectively, our current attempt demonstrates an alternative platform for supplying high-quality TNFα products with excellent activities for further pharmaceutical and clinical trials.
Collapse
|
189
|
Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021; 15:2269-2287. [PMID: 34079226 PMCID: PMC8166316 DOI: 10.2147/dddt.s308578] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key components of the immune system and play pivotal roles in anticancer immune response. Cytokines as either therapeutic agents or targets hold clinical promise for cancer precise treatment. Here, we provide an overview of the various roles of cytokines in the cancer immunity cycle, with a particular focus on the clinical researches of cytokine-based drugs in cancer therapy. We review 27 cytokines in 2630 cancer clinical trials registered with ClinicalTrials.gov that had completed recruitment up to January 2021 while summarizing important cases for each cytokine. We also discuss recent progress in methods for improving the delivery efficiency, stability, biocompatibility, and availability of cytokines in therapeutic applications.
Collapse
Affiliation(s)
- Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Mengxi Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Leyi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yiqi Tang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yuan Pan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
190
|
Pizarro TT, Dinarello CA, Cominelli F. Editorial: Cytokines and Intestinal Mucosal Immunity. Front Immunol 2021; 12:698693. [PMID: 34054881 PMCID: PMC8161542 DOI: 10.3389/fimmu.2021.698693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
191
|
Göbel A, Dell’Endice S, Jaschke N, Pählig S, Shahid A, Hofbauer LC, Rachner TD. The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:5078. [PMID: 34064859 PMCID: PMC8151893 DOI: 10.3390/ijms22105078] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefania Dell’Endice
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nikolai Jaschke
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Amna Shahid
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Lorenz C. Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Tilman D. Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| |
Collapse
|
192
|
Wang W, Wang C, Chen W, Ding S. Advances in immunological research of amphioxus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103992. [PMID: 33387559 DOI: 10.1016/j.dci.2020.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Amphioxus, one of the most closely related invertebrates to vertebrates, is an important animal model for studying the origin and evolution of vertebrate immunity, especially the transition from innate immunity to adaptive immunity. The current research progresses of amphioxus in the field of immune organs, immune cells, complement system, cytokines, nuclear factor kappa B, immune-related lectins and enzymes are summarized, and some issues that remain to be understood or are in need of further clarification are highlighted. We hope to provide references for more in-depth study of the amphioxus immune system and lay a solid foundation for the construction of three-dimensional immune network in amphioxus from ontogeny to phylogeny.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| |
Collapse
|
193
|
Laha D, Grant R, Mishra P, Nilubol N. The Role of Tumor Necrosis Factor in Manipulating the Immunological Response of Tumor Microenvironment. Front Immunol 2021; 12:656908. [PMID: 33986746 PMCID: PMC8110933 DOI: 10.3389/fimmu.2021.656908] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is an intricate system within solid neoplasms. In this review, we aim to provide an updated insight into the TME with a focus on the effects of tumor necrosis factor-α (TNF-α) on its various components and the use of TNF-α to improve the efficiency of drug delivery. The TME comprises the supporting structure of the tumor, such as its extracellular matrix and vasculature. In addition to cancer cells and cancer stem cells, the TME contains various other cell types, including pericytes, tumor-associated fibroblasts, smooth muscle cells, and immune cells. These cells produce signaling molecules such as growth factors, cytokines, hormones, and extracellular matrix proteins. This review summarizes the intricate balance between pro-oncogenic and tumor-suppressive functions that various non-tumor cells within the TME exert. We focused on the interaction between tumor cells and immune cells in the TME that plays an essential role in regulating the immune response, tumorigenesis, invasion, and metastasis. The multifunctional cytokine, TNF-α, plays essential roles in diverse cellular events within the TME. The uses of TNF-α in cancer treatment and to facilitate cancer drug delivery are discussed. The effects of TNF-α on tumor neovasculature and tumor interstitial fluid pressure that improve treatment efficacy are summarized.
Collapse
Affiliation(s)
| | | | | | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
194
|
Schliemann C, Hemmerle T, Berdel AF, Angenendt L, Kerkhoff A, Hering JP, Heindel W, Hartmann W, Wardelmann E, Chawla SP, de Braud F, Lenz G, Neri D, Kessler T, Berdel WE. Dose escalation and expansion phase I studies with the tumour-targeting antibody-tumour necrosis factor fusion protein L19TNF plus doxorubicin in patients with advanced tumours, including sarcomas. Eur J Cancer 2021; 150:143-154. [PMID: 33901793 DOI: 10.1016/j.ejca.2021.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND L19TNF is a recombinant fusion protein composed of a human antibody fragment and human tumour necrosis factor. L19TNF targets the EDB domain of oncofetal fibronectin highly expressed in tumour vasculature and induces tumour remission in mouse tumours. We summarise two phase I trials testing a combination of L19TNF with doxorubicin in patients with solid tumours, particularly soft tissue sarcomas (STS). PATIENTS AND METHODS The first study, an open-label, dose-escalation and expansion phase I study of L19TNF plus doxorubicin, enrolled 27 patients. Three cohorts (10.4-17 μg/kg L19TNF) of patients received L19TNF intravenously at days 1, 3, and 5 and doxorubicin (75 mg/m2, then 60 mg/m2) on day 1 every 3 weeks. The expansion cohort enrolled patients with STS. The second study tried to re-escalate the doxorubicin dose to 75 mg/m2 with 13 μg/kg L19TNF. Among primary objectives was the establishment of a recommended dose (RD). RESULTS The combination was safely applicable. Dose-limiting toxicity occurred either at 17 μg/kg L19TNF or at 75 mg/m2 doxorubicin. RD is 13 μg/kg L19TNF plus 60 mg/m2 doxorubicin. In 15 STS patients of the extension cohort evaluable for efficacy, antitumour activity was observed with complete remission in 1, partial remission in 1 and minor tumour shrinkage in 7 patients. The median overall survival for this heavily pretreated cohort was 14.9 months. CONCLUSION L19TNF can be safely applied in combination with doxorubicin and induces encouraging tumour remissions in patients with soft tissue sarcomas.
Collapse
Affiliation(s)
- Christoph Schliemann
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany.
| | | | - Andrew F Berdel
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Linus Angenendt
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Jan P Hering
- Institute for Clinical Radiology, University Hospital Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Walter Heindel
- Institute for Clinical Radiology, University Hospital Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute for Pathology, University Hospital of Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute for Pathology, University Hospital of Muenster, Albert Schweitzer Campus 1, Muenster, 48149, Germany
| | - Sant P Chawla
- Sarcoma Oncology Center, 2811 Wilshire Blvd, Santa Monica, CA, 90403, USA
| | - Filippo de Braud
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milano MI, 20133, Italy
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | | | - Torsten Kessler
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology, University Hospital Muenster, Albert Schweitzer Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
195
|
Uzzan S, Azab AN. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021; 26:molecules26082368. [PMID: 33921721 PMCID: PMC8073844 DOI: 10.3390/molecules26082368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Millions of people around the world suffer from psychiatric illnesses, causing unbearable burden and immense distress to patients and their families. Accumulating evidence suggests that inflammation may contribute to the pathophysiology of psychiatric disorders such as major depression and bipolar disorder. Copious studies have consistently shown that patients with mood disorders have increased levels of plasma tumor necrosis factor (TNF)-α. Given these findings, selective anti-TNF-α compounds were tested as a potential therapeutic strategy for mood disorders. This mini-review summarizes the results of studies that examined the mood-modulating effects of anti-TNF-α drugs.
Collapse
Affiliation(s)
- Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, School for Community Health Professions—Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, School for Community Health Professions—Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- Department of Nursing, School for Community Health Professions—Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- Correspondence: ; Tel.: +972-8-6479880; Fax: +972-8-6477683
| |
Collapse
|
196
|
Ray SK, Meshram Y, Mukherjee S. Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma with Clinical Insight. Curr Mol Med 2021; 21:221-236. [PMID: 32838717 DOI: 10.2174/1566524020666200824103749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy endeavours in harnessing the delicate strength and specificity of the immune system for therapy of different malignancies, including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include the administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies, including colorectal carcinoma in a recent decade. Despite the considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect the therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review, we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.
Collapse
Affiliation(s)
- Suman K Ray
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Yamini Meshram
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
197
|
Mechanistic Insights into the Link between Obesity and Prostate Cancer. Int J Mol Sci 2021; 22:ijms22083935. [PMID: 33920379 PMCID: PMC8069048 DOI: 10.3390/ijms22083935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Obesity is a pandemic of increasing worldwide prevalence. There is evidence of an association between obesity and the risk of prostate cancer from observational studies, and different biologic mechanisms have been proposed. The chronic low-level inflammation within the adipose tissue in obesity results in oxidative stress, activation of inflammatory cytokines, deregulation of adipokines signaling, and increased circulating levels of insulin and insulin-like growth factors (IGF). These mechanisms may be involved in epithelial to mesenchymal transformation into a malignant phenotype that promotes invasiveness, aggressiveness, and metastatic potential of prostate cancer. A thorough understanding of these mechanisms may be valuable in the development of effective prostate cancer prevention strategies and treatments. This review provides an overview of these mechanisms.
Collapse
|
198
|
Gubernatorova EO, Polinova AI, Petropavlovskiy MM, Namakanova OA, Medvedovskaya AD, Zvartsev RV, Telegin GB, Drutskaya MS, Nedospasov SA. Dual Role of TNF and LTα in Carcinogenesis as Implicated by Studies in Mice. Cancers (Basel) 2021; 13:1775. [PMID: 33917839 PMCID: PMC8068266 DOI: 10.3390/cancers13081775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) and lymphotoxin alpha (LTα) are two related cytokines from the TNF superfamily, yet they mediate their functions in soluble and membrane-bound forms via overlapping, as well as distinct, molecular pathways. Their genes are encoded within the major histocompatibility complex class III cluster in close proximity to each other. TNF is involved in host defense, maintenance of lymphoid tissues, regulation of cell death and survival, and antiviral and antibacterial responses. LTα, known for some time as TNFβ, has pleiotropic functions including control of lymphoid tissue development and homeostasis cross talk between lymphocytes and their environment, as well as lymphoid tissue neogenesis with formation of lymphoid follicles outside the lymph nodes. Along with their homeostatic functions, deregulation of these two cytokines may be associated with initiation and progression of chronic inflammation, autoimmunity, and tumorigenesis. In this review, we summarize the current state of knowledge concerning TNF/LTα functions in tumor promotion and suppression, with the focus on the recently uncovered significance of host-microbiota interplay in cancer development that may explain some earlier controversial results.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Almina I. Polinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail M. Petropavlovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga A. Namakanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexandra D. Medvedovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ruslan V. Zvartsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Georgij B. Telegin
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences (BIBCh, RAS), 142290 Pushchino, Russia;
| | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.P.); (M.M.P.); (O.A.N.); (A.D.M.); (R.V.Z.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, 354340 Krasnodarsky Krai, Russia
| |
Collapse
|
199
|
Bogdanet D, Reddin C, Murphy D, Doheny HC, Halperin JA, Dunne F, O’Shea PM. Emerging Protein Biomarkers for the Diagnosis or Prediction of Gestational Diabetes-A Scoping Review. J Clin Med 2021; 10:jcm10071533. [PMID: 33917484 PMCID: PMC8038821 DOI: 10.3390/jcm10071533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Gestational diabetes (GDM), defined as hyperglycemia with onset or initial recognition during pregnancy, has a rising prevalence paralleling the rise in type 2 diabetes (T2DM) and obesity. GDM is associated with short-term and long-term consequences for both mother and child. Therefore, it is crucial we efficiently identify all cases and initiate early treatment, reducing fetal exposure to hyperglycemia and reducing GDM-related adverse pregnancy outcomes. For this reason, GDM screening is recommended as part of routine pregnancy care. The current screening method, the oral glucose tolerance test (OGTT), is a lengthy, cumbersome and inconvenient test with poor reproducibility. Newer biomarkers that do not necessitate a fasting sample are needed for the prompt diagnosis of GDM. The aim of this scoping review is to highlight and describe emerging protein biomarkers that fulfill these requirements for the diagnosis of GDM. Materials and Methods: This scoping review was conducted according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for scoping reviews using Cochrane Central Register of Controlled Trials (CENTRAL), the Cumulative Index to Nursing & Allied Health Literature (CINAHL), PubMed, Embase and Web of Science with a double screening and extraction process. The search included all articles published in the literature to July 2020. Results: Of the 3519 original database citations identified, 385 were eligible for full-text review. Of these, 332 (86.2%) were included in the scoping review providing a total of 589 biomarkers studied in relation to GDM diagnosis. Given the high number of biomarkers identified, three post hoc criteria were introduced to reduce the items set for discussion: we chose only protein biomarkers with at least five citations in the articles identified by our search and published in the years 2017-2020. When applied, these criteria identified a total of 15 biomarkers, which went forward for review and discussion. Conclusions: This review details protein biomarkers that have been studied to find a suitable test for GDM diagnosis with the potential to replace the OGTT used in current GDM screening protocols. Ongoing research efforts will continue to identify more accurate and practical biomarkers to take GDM screening and diagnosis into the 21st century.
Collapse
Affiliation(s)
- Delia Bogdanet
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
- Correspondence: ; Tel.: +35-38-3102-7771
| | - Catriona Reddin
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Dearbhla Murphy
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Helen C. Doheny
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Jose A. Halperin
- Divisions of Haematology, Brigham & Women’s Hospital, Boston, MA 02115, USA;
| | - Fidelma Dunne
- College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland;
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| | - Paula M. O’Shea
- Centre for Diabetes Endocrinology and Metabolism, Galway University Hospital, Newcastle Road, H91YR71 Galway, Ireland; (C.R.); (D.M.); (H.C.D.); (P.M.O.)
| |
Collapse
|
200
|
Abstract
Immune checkpoint inhibitors (ICIs) are effective in the treatment of patients with advanced cancer and have emerged as a pillar of standard cancer care. However, their use is complicated by adverse effects known as immune-related adverse events (irAEs), including ICI-induced inflammatory arthritis. ICI-induced inflammatory arthritis is distinguished from other irAEs by its persistence and requirement for long-term treatment. TNF inhibitors are commonly used to treat inflammatory diseases such as rheumatoid arthritis, spondyloarthropathies and inflammatory bowel disease, and have also been adopted as second-line agents to treat irAEs refractory to glucocorticoid treatment. Experiencing an irAE is associated with a better antitumour response after ICI treatment. However, whether TNF inhibition can be safely used to treat irAEs without promoting cancer progression, either by compromising ICI therapy efficacy or via another route, remains an open question. In this Review, we discuss clinical and preclinical studies that address the relationship between TNF, TNF inhibition and cancer. The bulk of the evidence suggests that at least short courses of TNF inhibitors are safe for the treatment of irAEs in patients with cancer undergoing ICI therapy. Data from preclinical studies hint that TNF inhibition might augment the antitumour effect of ICI therapy while simultaneously ameliorating irAEs.
Collapse
|