151
|
Muller D, Molinari I, Soldati L, Bianchi G. A genetic deficiency in calpastatin and isovalerylcarnitine treatment is associated with enhanced hippocampal long-term potentiation. Synapse 1995; 19:37-45. [PMID: 7709342 DOI: 10.1002/syn.890190106] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Milan hypertensive strain (MHS) of rats, in addition to having hypertension, is also characterized by a genetic deficiency in calpastatin, the endogenous inhibitor of calpain. Since this protease has been implicated in long-term potentiation (LTP), we have investigated whether induction of this form of plasticity was altered in this strain of rats as compared to control animals (Milan normotensive strain, MNS). Progressive induction of LTP by increasing numbers of high frequency trains resulted in a greater degree of potentiation measured with all inducing protocols in MHS as compared with MNS animals. This difference was not related to the hypertension, since another hypertensive strain (the SHR strain) and a segregated Milan hypertensive strain, expressing only the hypertension but not the calpastatin deficiency (the MHNE strain), exhibited an LTP indistinguishable from control rats. Treatment of MHNE rats for 2 months with isovalerylcarnitine, a compound that increases calpain activity, also resulted in a greater amount of LTP induced by high frequency trains. These effects were not related to an enhancement of the NMDA receptor dependent component of responses to burst stimulation. These results are consistent with the idea that conditions under which calpain activation is facilitated are associated with a greater degree of synaptic potentiation.
Collapse
Affiliation(s)
- D Muller
- Department of Pharmacology, CMU, Geneva, Switzerland
| | | | | | | |
Collapse
|
152
|
Bartus RT, Hayward NJ, Elliott PJ, Sawyer SD, Baker KL, Dean RL, Akiyama A, Straub JA, Harbeson SL, Li Z. Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke 1994; 25:2265-70. [PMID: 7974554 DOI: 10.1161/01.str.25.11.2265] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE This research was performed to determine whether a selective inhibitor of the calcium-dependent protease, calpain, could reduce ischemia-associated brain damage when peripherally administered after a vascular occlusion. METHODS A variation of the rat middle cerebral artery occlusion model was used. A range of doses of AK295 (a novel calpain inhibitor synthesized for this purpose) was continuously infused through the internal carotid artery, beginning 1.25 hours from the initiation of the occlusion. Rats were killed at 21 hours, and the infarct volume was quantified. RESULTS Postocclusion (1.25-hour) infusion of the calpain inhibitor AK295 elicited a dose-dependent neuroprotective effect after focal ischemia. The highest dose tested (3 mg/kg per hour) afforded the maximum effect, illustrated by a 32% reduction in infarct volume 21 hours after the ischemia (vehicle, 81.7 +/- 4.7 mm3; AK295, 54.9 +/- 6.9 mm3; P < .007). CONCLUSIONS These data provide the first evidence that a peripherally administered calpain inhibitor can protect against ischemic brain damage. They offer further support for an important role of calpain proteolysis in the brain degeneration associated with cerebral ischemic events and suggest that selective calpain inhibitors provide a rational, novel, and viable means of treating such neurodegenerative problems.
Collapse
|
153
|
Posmantur R, Hayes RL, Dixon CE, Taft WC. Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma 1994; 11:533-45. [PMID: 7861446 DOI: 10.1089/neu.1994.11.533] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined the effect of lateral cortical impact injury on the levels of axonal cytoskeletal proteins in adult rats. Traumatic brain injury (TBI) causes a significant decrease in the protein levels of two prominent neurofilament (NF) proteins, NF68 and NF200. We employed quantitative immunoreactivity measurements on Western blots to examine NF68 and NF200 levels in homogenates of hippocampal and cortical tissue taken at several intervals postinjury. Sham injury had no effect on NF protein levels. However, injury was associated with a significant loss of NF68, restricted to the cortex ipsilateral to the injury site. NF68 loss was detectable as early as 3 h and lasted at least 2 weeks postinjury. Similarly, TBI induced a decrease in NF200 protein, although losses were observed both ipsilateral and contralateral to the injury site. No loss of NF68 or NF200 protein was detected in hippocampal samples obtained from the same injured animals. An increase in the presence of lower molecular weight (MW) NF68 immunopositive bands was associated with the decrease of NF68 in the ipsilateral cortex. This NF68 antigenicity pattern suggests the production of NF68 breakdown products caused by the pathologic activation of neuronal proteases, such as calpain. Putative NF68 breakdown products increase significantly until 1 day postinjury, suggesting that NF degradation may be ongoing until that time and indicating that a potential therapeutic window may exist within the first 24 h postinjury. In summary, these data identify specific biochemical alterations of the neuronal cytoskeleton following TBI and lay a foundation for further investigation of postinjury cytoskeletal changes in neuronal processes.
Collapse
Affiliation(s)
- R Posmantur
- Department of Neurosurgery, University of Texas Houston Health Science Center, Houston
| | | | | | | |
Collapse
|
154
|
Watanabe T, Inui M, Chen B, Iga M, Sobue K. Annexin VI-binding proteins in brain. Interaction of annexin VI with a membrane skeletal protein, calspectin (brain spectrin or fodrin). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32491-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
155
|
Dayhoff J, Hameroff S, Lahoz-Beltra R, Swenberg CE. Cytoskeletal involvement in neuronal learning: a review. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1994; 23:79-93. [PMID: 8050400 DOI: 10.1007/bf00208862] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper introduces the ideas of neural networks in the context of currently recognized cellular structures within neurons. Neural network models and paradigms require adaptation of synapses for learning to occur in the network. Some models of learning paradigms require information to move from axon to dendrite. This motivated us to examine the possibility of intracellular signaling to mediate such signals. The cytoskeleton forms a substrate for intracellular signaling via material transport and other putative mechanisms. Furthermore, many experimental results suggest a link between the cytoskeleton and cognitive processing. In this paper we review research on intracellular signaling in the context of neural network learning.
Collapse
Affiliation(s)
- J Dayhoff
- Institute for Systems Research, University of Maryland, College Park 20742
| | | | | | | |
Collapse
|
156
|
Ibrahim M, Upreti RK, Kidwai AM. Calpain from rat intestinal epithelial cells: age-dependent dynamics during cell differentiation. Mol Cell Biochem 1994; 131:49-59. [PMID: 8047065 DOI: 10.1007/bf01075724] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Micromolar and millimolar Ca(2+)-requiring neutral protease (calpain I and calpain II) along with their endogenous inhibitor calpastatin were isolated and partially purified from the same preparation of rat intestinal epithelial cells. Calpain I and II were partially purified by 1300 and 900-fold with 57 and 53 per cent yield, respectively. The optimum assay conditions revealed pH 7.5, 20 min incubation at 25 degrees C and 0.24% casein substrate for both calpains. The optimum calcium concentration obtained for calpain I and II were 25 microM and 4 mM, respectively. Distribution of rat intestinal epithelial cells calpain I and II along with calpastatin during cell differentiation stages in weanling to senescence age were studied. Calpain I in weanling rats was in an increasing order from villus to crypt regions. Adult rats indicated well expressed consistent calpain I throughout the differentiation stages. Whereas, significant lowering towards crypt region cells were evident in old rats. Calpain II in weanling and adult rats was found to be consistent throughout the differentiation stages. Old animals revealed an increasing trend from villus to crypt region with insignificant activity present in upper villus cells. Concomitantly, different concentrations of calpastatin were observed throughout the differentiation stages in all the age groups. Moreover, the levels of calpains exceeded that of calpastatin in most of the epithelial cell populations during developmental stages. In addition to casein, intestinal epithelial cell membranes were found to be equally good substrates for calpains. Proteolytic susceptibility of weanling, adult and old rat membrane proteins varied significantly all along the ageing process in rats. Simultaneous age-dependent calpastatin response were also evident. Taken together the results obtained provided strong evidence that calpain plays significant role in rat intestinal cell differentiation and ageing process with calpastatin as its specific regulatory protein.
Collapse
Affiliation(s)
- M Ibrahim
- Biomembrane Division, Industrial Toxicology Research Centre, Lucknow, India
| | | | | |
Collapse
|
157
|
Saido TC, Yokota M, Nagao S, Yamaura I, Tani E, Tsuchiya T, Suzuki K, Kawashima S. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74593-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
158
|
Sheppard AM, Wu JE, Staubli U, Perlmutter LS. Changes in calpain and brain spectrin immunoreactivity accompany sprouting in the deafferented hippocampus. Synapse 1993; 15:239-42. [PMID: 8278900 DOI: 10.1002/syn.890150309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A M Sheppard
- Pulmonary and Critical Care Division, Washington University Medical School, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
159
|
Elliott EM, Mattson MP, Vanderklish P, Lynch G, Chang I, Sapolsky RM. Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo. J Neurochem 1993; 61:57-67. [PMID: 8515288 DOI: 10.1111/j.1471-4159.1993.tb03537.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aberrant elevations in intracellular calcium levels, promoted by the excitatory amino acid glutamate, may be a final common mediator of the neuronal damage that occurs in hypoxic-ischemic and seizure disorders. Glutamate and altered neuronal calcium homeostasis have also been proposed to play roles in more chronic neurodegenerative disorders, including Alzheimer's disease. Any extrinsic factors that may augment calcium levels during such disorders may significantly exacerbate the resulting damage. Glucocorticoids (GCs), the adrenal steroid hormones released during stress, may represent one such extrinsic factor. GCs can exacerbate hippocampal damage induced by excitotoxic seizures and hypoxia-ischemia, and we have observed recently that GCs elevate intracellular calcium levels in hippocampal neurons. We now report that the excitotoxin kainic acid (KA) can elicit antigenic changes in the microtubule-associated protein tau similar to those seen in the neurofibrillary tangles of Alzheimer's disease. KA induced a transient increase in the immunoreactivity of hippocampal CA3 neurons towards antibodies that recognize aberrant forms of tau (5E2 and Alz-50). The tau immunoreactivity appeared within 3 h of KA injection, preceded extensive neuronal damage, and subsequently disappeared as neurons degenerated. KA also caused spectrin breakdown, indicating the involvement of calcium-dependent proteases. Physiological concentrations of corticosterone (the species-typical GC of rats) enhanced the neuronal damage induced by KA and, critically, enhanced the intensity of tau immunoreactivity and spectrin breakdown. Moreover, the GC enhancement of spectrin proteolysis was prevented by energy supplementation, supporting the hypothesis that GC disruption of calcium homeostasis in the hippocampus is energetic in nature. Taken together, these findings demonstrate that neurofibrillary tangle-like alterations in tau, and spectrin breakdown, can be induced by excitatory amino acids and exacerbated by GCs in vivo.
Collapse
Affiliation(s)
- E M Elliott
- Department of Biological Sciences, Stanford University, California
| | | | | | | | | | | |
Collapse
|
160
|
Azarian SM, Schlamp CL, Williams DS. Characterization of calpain II in the retina and photoreceptor outer segments. J Cell Sci 1993; 105 ( Pt 3):787-98. [PMID: 8408304 DOI: 10.1242/jcs.105.3.787] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calpain II was purified to apparent homogeneity from bovine neural retinas. It was found to be biochemically similar to brain calpain II, purified by the same procedure, with respect to: subunit mobility in SDS-polyacrylamide gel electrophoresis; Ca2+ sensitivity; inhibition by calpeptin and other cysteine protease inhibitors; and optimal pH. Semithin cryosections were immuno-labeled with antibodies specific for the catalytic subunit of calpain II. Calpain II was detected in most layers of the retina, with the most pronounced label present in the plexiform layers (synaptic regions) and the photoreceptor outer segments. In dark-adapted retinas, the label was distributed throughout the outer segments. In light-adapted retinas, outer segment labeling was concentrated in the connecting cilium, and the inner segments were labeled. A partially pure preparation of calpain II from isolated rod outer segments was found to have the same biochemical characteristics as calpain II prepared in the same way from the whole retina. The enzyme was distributed fairly evenly between the cytosolic and cytoskeletal fractions of isolated rod outer segments. Immunoblots of the rod outer segment cytoskeleton were used to determine the susceptibility of known components of the actin-based cytoskeleton to proteolysis by calpain II in vitro. Actin was not proteolyzed at all, alpha-actinin was only slowly degraded, but myosin II heavy chain was rapidly proteolyzed. Actin filaments have been shown previously to be associated with myosin II and alpha-actinin in a small domain within the connecting cilium, where they play an essential role in the morphogenesis of new disk membranes. The localization of calpain II in the connecting cilium after light exposure, combined with the in vitro proteolysis of myosin II, suggests that calpain II could be involved in light-dependent regulation of disk membrane morphogenesis by proteolysis of myosin II.
Collapse
Affiliation(s)
- S M Azarian
- Laboratory of Cell Biology, School of Optometry, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
161
|
Saido T, Shibata M, Takenawa T, Murofushi H, Suzuki K. Positive regulation of mu-calpain action by polyphosphoinositides. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35804-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
162
|
Perrin D, Söling HD. No evidence for calpain I involvement in fodrin rearrangements linked to regulated secretion. FEBS Lett 1992; 311:302-4. [PMID: 1397332 DOI: 10.1016/0014-5793(92)81125-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stimulation of secretion in chromaffin and parotid acinar cells is associated with dramatic rearrangements of the subplasmalemmal cytoskeleton, notably of fodrin and F-actin. It has been proposed that a proteolytic cleavage of fodrin resulting from an activation of the neutral calcium activated protease (calpain) could be responsible for these changes. Using an affinity-purified anti-alpha-fodrin antibody, several cleavage products of fodrin could clearly be detected following incubation of total cell homogenates from chromaffin and parotid acinar cells with purified calpain I. On the other hand, maximum stimulation of secretion of chromaffin cells by nicotine, and of parotid acinar cells by carbachol plus isoproterenol, was not associated with an increased appearance of cleavage products of fodrin. This result is not compatible with the 'proteolytic cleavage' hypothesis.
Collapse
Affiliation(s)
- D Perrin
- Abteilung Klinische Biochemie, Zentrum innere Medizin, Göttingen, Germany
| | | |
Collapse
|
163
|
Shea TB, Balikian P, Beermann ML. Aluminum inhibits neurofilament protein degradation by multiple cytoskeleton-associated proteases. FEBS Lett 1992; 307:195-8. [PMID: 1644172 DOI: 10.1016/0014-5793(92)80766-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The environmental neurotoxin aluminum exerts several distinct biochemical effects on neurofilament proteins, including subunit aggregation, disruption of the normal segregation of phosphorylated subunits within axons leading to abnormal perikaryal accumulation, and inhibition of in vitro degradation by the calcium-dependent neutral protease, calpain. In the present study, we demonstrate that exposure of mouse CNS cytoskeletal preparations to aluminum chloride inhibits the degradation of neurofilament proteins by both calcium-dependent and -independent proteases that co-purify with cytoskeletons. Aluminum inhibited both calcium-dependent and calcium-independent proteolysis of the high and middle molecular weight neurofilament subunits, but inhibited only calcium-dependent, and not calcium-independent proteolysis of the low molecular weight neurofilament subunit. These findings demonstrate that aluminum interferes with multiple aspects of neurofilament protein metabolism.
Collapse
Affiliation(s)
- T B Shea
- Laboratory for Cellular and Developmental Neurobiology, Mailman Research Center, McLean Hospital, Belmont, MA 02178
| | | | | |
Collapse
|
164
|
Abstract
Calcium binding to brain and erythrocyte spectrins was studied at physiological ionic strength by a calcium overlay assay and aqueous two-phase partitioning. When the spectrins were immobilized on nylon membranes by slot blotting, the overlay assay showed that even though both spectrins bound 45Ca2+, the brain protein displayed much greater affinity for calcium ions than erythrocyte spectrin did. Since the observed binding was weaker than that displayed by calmodulin under similar conditions, the overlay assay results indicated that the binding must be weaker than 1 microM. The phase partition experiments showed that there are at least two sites for calcium on brain spectrin and that calcium binding to one of these sites is reduced significantly by magnesium ions. From the partition isotherm, the dissociation constants were estimated as 50 microM for the Mg(2+)-independent site and 150 microM for the Mg(2+)-dependent site. The phase partition results also showed that erythrocyte spectrin bound calcium ions at least 1 order of magnitude weaker. By examining calcium binding to slot-blotted synthetic peptides, we identified two binding sites in brain spectrin. One mapped to the second putative calcium binding site (EF-hand) in alpha-spectrin and the other to the 36 amino acid residue long insert in domain 11. In addition, a tryptic fragment derived from the C-terminal of erythrocyte alpha-spectrin, which contained the two postulated EF-hands, also bound calcium. These findings suggest that the calcium signal system may also involve direct binding of calcium to spectrin beside known calcium modulators such as calmodulin and calpain.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Lundberg
- Department of Biochemistry, University of Umeå, Sweden
| | | | | |
Collapse
|
165
|
Domańska-Janik K, de Nechaud B, Inomata M, Kawashima S, Zalewska T. Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant paralytic tremor rabbit myelin. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1992; 16:273-88. [PMID: 1418220 DOI: 10.1007/bf03159974] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant, paralytic tremor (PT) rabbit myelin and premyelin fractions was studied using immature (4-5 wk) or adult animals. The enzyme was estimated by determination of its catalytic activity as well as by using immunoblot analysis after SDS-PAGE separation. The presence of two forms of CANP--one activated by calcium in the micromolar concentration (mu CANP) range and the other exhibiting low calcium sensitivity in the millimolar concentration range (m-CANP)--was found in the myelin and premyelin fractions. The developmental pattern of the enzyme activity was different for each of these two enzyme isoforms depending on the fraction studied. The higher activity on CANP (both isoforms) found in PT myelin and premyelin could be related to delayed myelination and/or to the higher turnover rate of already formed myelin. These results suggest complex and specific roles for these isoenzymes during myelin formation as is discussed further in this article. Our results confirm the extensive degradation of myelin basic protein (MBP), proteolipid protein (PLP), and, to a lesser extent, the other myelin proteins by endo- and exogenous CANP. This degradation process was significantly elevated in PT rabbit myelin. Moreover as was shown by two-dimensional gel electrophoresis, calcium-controlled proteolysis in nonmutant rabbits affected the net-charge of MBP in a manner similar to that reported for PT myelin, suggesting the possible involvement of CANP in the generation of charge isomers of MBP.
Collapse
Affiliation(s)
- K Domańska-Janik
- Department of Neurochemistry, Polish Academy of Sciences, Warsaw
| | | | | | | | | |
Collapse
|
166
|
Sheppard A, Wu J, Bahr BA, Lynch G. Compartmentation and glycoprotein substrates of calpain in the developing rat brain. Synapse 1991; 9:231-4. [PMID: 1776133 DOI: 10.1002/syn.890090310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An activated form of calpain I associates with telencephalic membranes in a developmentally regulated fashion during early postnatal ontogeny. During this period, the cytoskeletal component spectrin is available and appears to be differentially susceptible to calpain-mediated cleavage. Lectin blotting techniques demonstrated that the leupeptin-sensitive action of calpain is primarily directed toward large proteins which are glycoconjugate in nature; neuronal cell adhesion molecules are among the glycoproteins whose associations with the telencephalic membranes decrease due to calpain activity. These data suggest that cytoplasmic calpain is translocated to the membrane during early brain development in order to act on the cytoskeletal and adhesive structures responsible in part for neuronal shape and function.
Collapse
Affiliation(s)
- A Sheppard
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717-3800
| | | | | | | |
Collapse
|
167
|
Manev H, Favaron M, Siman R, Guidotti A, Costa E. Glutamate neurotoxicity is independent of calpain I inhibition in primary cultures of cerebellar granule cells. J Neurochem 1991; 57:1288-95. [PMID: 1680162 DOI: 10.1111/j.1471-4159.1991.tb08292.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glutamate-induced neurotoxicity and calpain activity were studied in primary cultures of rat cerebellar granule neurons and glial cells. Calpain activation, as monitored by quantitative immunoblotting of spectrin, required micromolar concentrations of Ca2+ in neuronal homogenates (calpain I) and millimolar Ca2+ concentrations in glial homogenates (calpain II). Glutamate-induced toxicity and calpain activation were observed in neuronal, but not in glial, cultures. In neurons, calpain I activation by glutamate was dose-dependent and persisted after withdrawal of neurotoxic doses of glutamate. Natural (GM1) and semisynthetic (LIGA4) gangliosides or the glutamate receptor blocker MK-801 prevented calpain I activation and delayed neuronal death elicited by glutamate. GM1 and LIGA4 had no effect on calpain I activity in neuronal homogenates, however. Furthermore, two calpain I inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal) prevented glutamate-induced spectrin degradation, but failed to affect glutamate neurotoxicity. These results thus suggest that glutamate-induced neurotoxicity is independent of calpain I activation.
Collapse
Affiliation(s)
- H Manev
- FIDIA-Georgetown Institute for the Neurosciences, Georgetown University Medical School, Washington, D.C. 20007
| | | | | | | | | |
Collapse
|
168
|
Najm I, Vanderklish P, Etebari A, Lynch G, Baudry M. Complex interactions between polyamines and calpain-mediated proteolysis in rat brain. J Neurochem 1991; 57:1151-8. [PMID: 1895100 DOI: 10.1111/j.1471-4159.1991.tb08273.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyamine synthesis is induced by various extracellular signals, and it is widely held that this biochemical response participates in cell growth and differentiation. Certain of the triggers for synthesis in brain tissues also increase the breakdown of high-molecular-weight structural proteins, apparently by activating calcium-dependent proteases (calpains). The present experiments tested the possibility that calpain activity is modulated by polyamines. Spermine, spermidine, and putrescine all increased calcium-dependent proteolysis of [14C]casein by soluble fractions of rat brain. The order of potency was spermine greater than spermidine greater than putrescine, with apparent affinities of 30, 300, and 6,000 microM, respectively. Each of the three polyamines at physiological concentrations also potentiated the calcium-dependent breakdown of two endogenous high-molecular-weight structural proteins known to be substrates of calpain, in both supernatant and membrane fractions. The thiol protease inhibitor leupeptin, a known calpain inhibitor, also inhibited calcium-dependent proteolysis in the presence and absence of polyamines. The polyamines did not increase the activity of purified calpain I or calpain II determined with either [14C]casein or purified spectrin as the substrate, nor did they interfere with the inhibitory effects of calpastatin, an endogenous inhibitor of calpain. However, polyamines potentiated the stimulation of endogenous but not purified calpain activity produced by an endogenous calpain activator. These results suggest a role for polyamines in protein degradation as well as protein synthesis.
Collapse
Affiliation(s)
- I Najm
- Section of Neurobiology, University of Southern California, Los Angeles 90089-2520
| | | | | | | | | |
Collapse
|
169
|
Fox J, Austin C, Reynolds C, Steffen P. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98837-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
170
|
Johnson GV, Litersky JM, Jope RS. Degradation of microtubule-associated protein 2 and brain spectrin by calpain: a comparative study. J Neurochem 1991; 56:1630-8. [PMID: 2013758 DOI: 10.1111/j.1471-4159.1991.tb02061.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration.
Collapse
Affiliation(s)
- G V Johnson
- Department of Neurology, University of Alabama, Birmingham
| | | | | |
Collapse
|
171
|
|
172
|
Lynch G, Bahr BA, Vanderklish PW. Induction and Stabilization of Long-Term Potentiation. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-3-642-84526-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
173
|
Nixon RA, Clarke JF, Logvinenko KB, Tan MK, Hoult M, Grynspan F. Aluminum inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes. J Neurochem 1990; 55:1950-9. [PMID: 2121904 DOI: 10.1111/j.1471-4159.1990.tb05781.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We studied the effects of aluminum salts on the degradation of human neurofilament subunits (NF-H, NF-M, and NF-L, the high, middle, and low molecular weight subunits, respectively) and other cytoskeletal proteins using calcium-activated neutral proteinase (calpain) purified from human brain. Calpain-mediated proteolysis of NF-L, tubulin, and glial fibrillary acidic protein (GFAP), three substrates that displayed constant digestion rates in vitro, was inhibited by AlCl3 (IC50 = 200 microM) and by aluminum lactate (IC50 = 400 microM). Aluminum salts inhibited proteolysis principally by affecting the substrates directly. After exposure to 400 microM aluminum lactate and removal of unbound aluminum, human cytoskeletal proteins were degraded two- to threefold more slowly by calpain. When cytoskeleton preparations were exposed to aluminum salt concentrations of 100 microM or higher, proportions of NF-M and NF-H formed urea-insoluble complexes of high apparent molecular mass, which were also resistant to proteolysis by calpain. Complexes of tubulin and of GFAP were not observed under the same conditions. Aluminum salts irreversibly inactivated calpain but only at high aluminum concentrations (IC50 = 1.2 and 2.1 mM for aluminum lactate and AlCl3, respectively), although longer exposure to the ion reduced by twofold the levels required for protease inhibition. These interactions of aluminum with neurofilament proteins and the effects on proteolysis suggest possible mechanisms for the impaired axoplasmic transport of neurofilaments and their accumulation in neuronal perikarya after aluminum administration in vivo.
Collapse
Affiliation(s)
- R A Nixon
- Laboratory of Molecular Neuroscience, Mailman Research Center, McLean Hospital, Belmont, MA 02178
| | | | | | | | | | | |
Collapse
|
174
|
Perlmutter LS, Gall C, Baudry M, Lynch G. Distribution of calcium-activated protease calpain in the rat brain. J Comp Neurol 1990; 296:269-76. [PMID: 2358536 DOI: 10.1002/cne.902960207] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calpain is a calcium-activated neutral protease that degrades a number of cytoskeletal proteins. It may participate in the maintenance of the cytoskeleton and in the rapid turnover of structural proteins associated with synaptic plasticity. Calpain may also be involved in the neurodegeneration that accompanies aging and age-related diseases. To aid in the interpretation of disease-related alterations in staining patterns, the present study examined calpain's normal distribution in the mammalian brain and spinal cord. A monoclonal antibody was employed with the avidin-biotin-peroxidase immunocytochemical technique on samples of rat tissue. Glia (astrocytes, microglia) and virtually all neurons were immunopositive, although neuronal processes exhibited varying staining patterns. The axonal staining pattern depended upon either the origin or destination of the process: those axons remaining within the brain (e.g., corpus callosum) were only lightly immunoreactive, whereas spinal cord and peripheral axons (trigeminal nerve) were more darkly labeled. The architecture of the dendritic tree determined the dendritic staining pattern: neurons with prominent apical and basal dendritic trees (e.g., pyramidal cells) were immunolabeled along their entire extent; labeling of multipolar cells (e.g., hilar cells of dentate gyrus) was limited to the proximal dendrites. The ubiquitous distribution of calpain argues against a primary role for the enzyme in the regional pattern of neuronal death seen in Alzheimer's disease. An alteration in the concentration, localization, or inhibition of the enzyme could, however, lead to the abnormal accumulations of cytoskeletal elements seen with the disease.
Collapse
Affiliation(s)
- L S Perlmutter
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | | | |
Collapse
|
175
|
Kenessey A, Banay-Schwartz M, DeGuzman T, Lajtha A. Calpain II activity and calpastatin content in brain regions of 3- and 24-month-old rats. Neurochem Res 1990; 15:243-9. [PMID: 2366929 DOI: 10.1007/bf00968667] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In previous studies, we found a significantly higher (100% or more) content of cathepsin D in the aging brain. In the present study, we determined activity of Ca2(+)-activated neutral protease requiring millimolar Ca2+ (calpain II, CANP II) and amount of its endogenous inhibitor, calpastatin, in extracts of various brain regions of 3-month-old and 24-month-old male Fischer-344 rats. Calpain II was separated from calpastatin in a single step (chromatography) and its activity was tested using as substrates [methyl-14C]alpha-casein, the cytoskeletal proteins desmin and actin, and a mixture of neurofilament triplet proteins and glial fibrillary acidic proteins (GFAP). We found no changes in calpain II activity in pons-medulla and spinal cord, but significant increases were detected in cortex (72%) and striatum (63%) of the 24-month-old rats using [methyl-14C]alpha-casein as substrate. The profile of desmin and actin breakdown showed regional variations somewhat different from those of [methyl-14C]alpha-casein. With desmin, the greatest increases with age were in the striatum (82%) and hypothalamus (46%), but there were no alterations in cortex, cerebellum, and pons-medulla. With actin, slightly enhanced activity in cortex and cerebellum was noticeable. Calpastatin content in brain regions was also increased, with the regional pattern of increase fairly similar to the pattern of enzyme activity increase. The causes and the physiological consequences of increased calpain and calpastatin content in the aged brain are being investigated. That changes with age are somewhat different with the various brain protein substrates indicates that some of the properties of the enzyme also undergo alteration with age.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Kenessey
- Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Ward's Island, New York 10035
| | | | | | | |
Collapse
|
176
|
Lynch G, Kessler M, Arai A, Larson J. The nature and causes of hippocampal long-term potentiation. PROGRESS IN BRAIN RESEARCH 1990; 83:233-50. [PMID: 2168058 DOI: 10.1016/s0079-6123(08)61253-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the most fascinating features of the hippocampus is its capacity for plasticity. Long-term potentiation (LTP), a stable facilitation of synaptic potentials after high-frequency synaptic activity, is very prominent in hippocampus and is a leading candidate memory storage mechanism. Here, we discuss the nature and causes of LTP and relate them to endogenous rhythmic neuronal activity patterns and their potential roles in memory. Anatomical studies indicate that LTP is accompanied by postsynaptic structural modifications while pharmacological studies strongly suggest that LTP is not due to an increase in presynaptic transmitter release. In field CA1, LTP induction appears to be triggered by a postsynaptic influx of calcium through NMDA receptor-linked channels. Possible roles of several calcium-sensitive enzyme systems in LTP are discussed and it is argued that activation of a calcium-dependent protease (calpain) could produce the structural changes linked to LTP. Rhythmic bursting activity is highly effective in inducing LTP and it is argued that the endogenous hippocampal theta rhythm plays a role in LTP induction in vivo. Finally, studies indicate that LTP and certain types of memory share a common pharmacology and the use of electrical brain stimulation as a sensory cue suggests that LTP develops when the significance of that cue is learned.
Collapse
Affiliation(s)
- G Lynch
- Honney Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | | | |
Collapse
|
177
|
Lynch G, Seubert P. Links between long-term potentiation and neuropathology. An hypothesis involving calcium-activated proteases. Ann N Y Acad Sci 1989; 568:171-80. [PMID: 2560897 DOI: 10.1111/j.1749-6632.1989.tb12505.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- G Lynch
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | |
Collapse
|
178
|
Nixon RA. Calcium-activated neutral proteinases as regulators of cellular function. Implications for Alzheimer's disease pathogenesis. Ann N Y Acad Sci 1989; 568:198-208. [PMID: 2560900 DOI: 10.1111/j.1749-6632.1989.tb12509.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Evidence is emerging that calcium-activated neutral proteinases (CANPs) not only participate in intracellular protein turnover but help to regulate the functional reorganization of cytoskeletal proteins in response to calcium and second-messenger stimulation. The high concentration of CANPs in certain neurons has suggested prominent roles for this proteolytic system in neuronal and synaptic function. In addition to acting directly on specific constituents of the cytoplasmic and membrane-associated cytoskeletal networks, CANP may amplify its effects by modulating the activities of protein kinase C and possibly other kinases and phosphatases by limited proteolysis. Given its suspected involvement at the cytoskeleton-membrane interface, calcium-mediated proteolysis is an example of a metabolic process which, if impaired, could provide a unifying basis for the slow progressive development of diverse structural and functional abnormalities within neurons. The multiplicity of mechanisms regulating its activity makes the CANP system a vulnerable target for disruption from various sources. A working hypothesis is advanced that down-regulation (inhibition) of neuronal calcium-mediated proteolysis in Alzheimer's disease is one critical and early step in the development of neurofibrillary degeneration and altered membrane cytoskeleton dynamics, which leads to membrane injury, accumulation of abnormal proteins, and synaptic dysfunction.
Collapse
Affiliation(s)
- R A Nixon
- Ralph Lowell Laboratories, McLean Hospital, Belmont, Massachusetts 02178
| |
Collapse
|
179
|
Harris AS, Croall DE, Morrow JS. Calmodulin Regulates Fodrin Susceptibility to Cleavage by Calciumdependent Protease I. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71508-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
180
|
Affiliation(s)
- K K Wang
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
181
|
De Cesaris P, Filippini A, Stefanini M, Ziparo E. Spectrin, fodrin and protein 4.1-like proteins in differentiating rat germ cells. Differentiation 1989; 41:216-22. [PMID: 2612769 DOI: 10.1111/j.1432-0436.1989.tb00750.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presence and the distribution of proteins of the membrane skeleton in differentiating germ cells of the rat has been investigated. Immunofluorescence and immunoblotting analysis, performed using monoclonal and polyclonal antibodies to human erythroid alpha-spectrin and protein 4.1 and to brain spectrin (fodrin), demonstrated the presence of analogues of spectrin and fodrin in spermatocytes and round spermatids and of protein 4.1-like molecules in spermatocytes, spermatids and spermatozoa. Spectrin and fodrin showed molecular weights comparable to those of their analogues in erythrocytes but a distinct intracellular distribution. Fodrin was localized along the plasma membrane while spectrin appeared associated with the regions of the Golgi apparatus and of the developing acrosome. Antibodies to protein 4.1 recognized molecules with a molecular weight not comparable with that in erythrocytes, and their presence in spermatozoa was confined to specific regions of the head and of the tail.
Collapse
Affiliation(s)
- P De Cesaris
- Istituto di Istologia ed Embriologia generale, Università degli Studi di Roma La Sapienza, Italy
| | | | | | | |
Collapse
|
182
|
Jones OT, Kunze DL, Angelides KJ. Localization and mobility of omega-conotoxin-sensitive Ca2+ channels in hippocampal CA1 neurons. Science 1989; 244:1189-93. [PMID: 2543080 DOI: 10.1126/science.2543080] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Voltage-dependent Ca2+ channels (VDCCs) are modulators of synaptic plasticity, oscillatory behavior, and rhythmic firing in brain regions such as the hippocampus. The distribution and lateral mobility of VDCCs on CA1 hippocampal neurons have been determined with biologically active fluorescent and biotinylated derivatives of the selective probe omega-conotoxin in conjunction with circular dityndallism, digital fluorescence imaging, and photobleach recovery microscopy. On noninnervated cell bodies, VDCCs were found to be organized in multiple clusters, whereas after innervation the VDCCs were concentrated and immobilized at synaptic contact sites. On dendrites, VDCC distribution was punctate and was interrupted by extensive bare regions or abruptly terminated. More than 85% of the dendritic VDCCs were found to be immobile by fluorescence photobleach recovery. Thus, before synaptic contact, specific mechanisms target, segregate, and immobilize VDCCs to neuronal cell bodies and to specialized dendritic sites. Regulation of this distribution may be critical in determining the firing activity and integrative properties of hippocampal CA1 neurons.
Collapse
Affiliation(s)
- O T Jones
- Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030
| | | | | |
Collapse
|
183
|
Kuwaki T, Satoh H, Ono T, Shibayama F, Yamashita T, Nishimura T. Nilvadipine attenuates ischemic degradation of gerbil brain cytoskeletal proteins. Stroke 1989; 20:78-83. [PMID: 2911839 DOI: 10.1161/01.str.20.1.78] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously demonstrated that transient cerebral ischemia induces marked decreases in concentrations of cytoskeletal proteins and have suggested putative involvement of calpain in the decrease of microtubule-associated protein 2 (MAP2) content. We examine the effect of nilvadipine, a new calcium channel blocker, on protein degradation in gerbil brains after 5 minutes of bilateral carotid artery occlusion and compare this effect with those of nimodipine and nicardipine. By densitometric quantification of the electrophoretically separated soluble proteins, mean +/- SEM MAP2 content in the hippocampus (14.4 +/- 1.8 micrograms/mg protein) was depleted (5.4 +/- 0.5 micrograms/mg, p less than 0.01) 4 days after ischemia; this depletion was significantly inhibited by 1 or 10 mg nilvadipine/kg/day. MAP2 content was also depleted in vitro when normal nonischemic brain extract was incubated with calcium, but this degradation was not inhibited by the calcium channel blockers. Our results suggest that calcium channel blockers do not act directly on calpain but act at the calcium channels of neurons and may suppress activation of the enzyme and attenuate ischemic degradation of cytoskeletal protein. We found nilvadipine to be the most potent drug among those studied, and we believe it could be useful for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- T Kuwaki
- Department of Pharmacology, Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan
| | | | | | | | | | | |
Collapse
|
184
|
Wasenius VM, Saraste M, Salvén P, Erämaa M, Holm L, Lehto VP. Primary structure of the brain alpha-spectrin. J Cell Biol 1989; 108:79-93. [PMID: 2910879 PMCID: PMC2115353 DOI: 10.1083/jcb.108.1.79] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have determined the nucleotide sequence coding for the chicken brain alpha-spectrin. It is derived both from the cDNA and genomic sequences, comprises the entire coding frame, 5' and 3' untranslated sequences, and terminates in the poly(A)-tail. The deduced amino acid sequence was used to map the domain structure of the protein. The alpha-chain of brain spectrin contains 22 segments of which 20 correspond to the repeat of the human erythrocyte spectrin (Speicher, D. W., and V. T. Marchesi. 1984. Nature (Lond.). 311:177-180.), typically made of 106 residues. These homologous segments probably account for the flexible, rod-like structure of spectrin. Secondary structure prediction suggests predominantly alpha-helical structure for the entire chain. Parts of the primary structure are excluded from the repetitive pattern and they reside in the middle part of the sequence and in its COOH terminus. Search for homology in other proteins showed the presence of the following distinct structures in these nonrepetitive regions: (a) the COOH-terminal part of the molecule that shows homology with alpha-actinin, (b) two typical EF-hand (i.e., Ca2+-binding) structures in this region, (c) a sequence close to the EF-hand that fulfills the criteria for a calmodulin-binding site, and (d) a domain in the middle of the sequence that is homologous to a NH2-terminal segment of several src-tyrosine kinases and to a domain of phospholipase C. These regions are good candidates to carry some established as well as some yet unestablished functions of spectrin. Comparative analysis showed that alpha-spectrin is well conserved across the species boundaries from Xenopus to man, and that the human erythrocyte alpha-spectrin is divergent from the other spectrins.
Collapse
Affiliation(s)
- V M Wasenius
- Department of Pathology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
185
|
Landis DM. Membrane and cytoplasmic structure at synaptic junctions in the mammalian central nervous system. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1988; 10:129-51. [PMID: 2906693 DOI: 10.1002/jemt.1060100203] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Application of rapid freezing, freeze substitution fixation, and freeze fracture techniques to the study of synaptic junctions in the mammalian central nervous system has revealed new aspects of synaptic structure that are consistent with and partially explicate advances in synaptic biochemistry and physiology. In the axoplasm adjacent to the presynaptic active zone, synaptic vesicles are linked to large spectrin-like filamentous proteins by shorter proteins that resemble synapsin I in morphology. This mesh of presynaptic filamentous proteins serves to concentrate synaptic vesicles in the vicinity of the active zone. The affinity with which the vesicles are bound by the mesh is probably modulated by the extent of phosphorylation at specific sites on the constituent filamentous proteins, and changes in the binding affinity result in changes in transmitter release. The structural organization of the postsynaptic density in Purkinje cell dendritic spines consists of very fine strands with adherent, heterogeneous globular proteins. Some of these globular proteins probably correspond to protein kinases and their substrates. The postsynaptic density, positioned at the site of the maximal depolarization caused by synaptic currents, apparently serves as a supporting framework for a variety of proteins, which respond to and transduce postsynaptic depolarization. At least two classes of filamentous protein fill the cytoplasm of spines with a complex mesh, which presumably contributes to maintenance of the spine shape. Membrane bound cisterns are a ubiquitous feature of Purkinje cell dendritic spines. Studies of rapidly frozen tissue with electron probe microanalysis and elemental imaging reveal that these cisterns take up and sequester calcium, which is derived from the extracellular space, and which probably enters the spine as part of the synaptic current.
Collapse
Affiliation(s)
- D M Landis
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
186
|
The calmodulin-binding site in alpha-fodrin is near the calcium-dependent protease-I cleavage site. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)37652-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
187
|
Virtanen I, Närvänen O, Lehto VP. Differential immunoreactivity and Ca2+-dependent degradation of vimentin in human fibroblasts and fibrosarcoma cells. Int J Cancer 1988; 42:256-60. [PMID: 3042635 DOI: 10.1002/ijc.2910420219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunostaining of normal human fibroblasts with a monoclonal antibody (MAb) (V22AC12) revealed typical cytoplasmic arrays of vimentin filaments in both mitotic and interphase cells. In human A8387 fibrosarcoma cells and SV40-virus-transformed human fibroblasts, the same antibody showed positivity only in mitotic cells and in interphase cells only after treatment of the fixed cells with alkaline phosphatase. Upon immunoblotting with the MAb, an Mr 57,000 vimentin polypeptide was seen in normal fibroblasts. In fibrosarcoma cells the same polypeptide was revealed by this antibody only after treatment with alkaline phosphatase. The Mr 57,000 vimentin polypeptide was a major cytoskeletal protein in both fibroblasts and fibrosarcoma cells. Inclusion of Ca2+ into the cytoskeleton extraction medium brought about a somewhat increased degradation of vimentin in fibroblasts. In fibrosarcoma cells, such treatment caused a quantitative disappearance of the Mr 57,000 protein with a concomitant appearance of 3 distinct, low-molecular-weight degradation products in the detergent-soluble fraction. Another Ca2+-induced change in the polypeptide profile of fibrosarcoma cells was the disappearance of the Mr 240,000 non-erythroid alpha-spectrin and the concomitant appearance of a prominent Mr 140,000 degradation product. Inclusion of proteolysis inhibitors in the Ca2+-supplemented extraction medium inhibited degradation of both vimentin and alpha-spectrin polypeptides. The results suggest differences in the composition of the cytoskeletons of normal fibroblasts and fibrosarcoma cells, manifested in the differential Ca2+-susceptibility of vimentin and non-erythroid alpha-spectrin. Results with MAb V22AC12 suggest that differential phosphorylation of vimentin could account for at least part of this difference.
Collapse
Affiliation(s)
- I Virtanen
- Department of Pathology, University of Helsinki, Finland
| | | | | |
Collapse
|
188
|
Flückiger J, Christen P. Degradation of the precursor of mitochondrial aspartate aminotransferase in chicken embryo fibroblasts. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68899-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
189
|
Bennett H, Condeelis J. Isolation of an immunoreactive analogue of brain fodrin that is associated with the cell cortex of Dictyostelium amoebae. CELL MOTILITY AND THE CYTOSKELETON 1988; 11:303-17. [PMID: 3219734 DOI: 10.1002/cm.970110408] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have used a polyclonal affinity-purified antibody made against chicken brain fodrin (both 240 and 235 Kd subunits) as a probe to determine if a fodrinlike protein exists in amoebae of Dictyostelium discoideum. In Western blots of whole cells and the isolated cell cortex, polypeptides measuring 220 and 70 Kd are recognized by the fodrin antibodies. In situ localization by indirect immunofluorescence with antifodrin indicates that the immunoreactive polypeptides are cortical. The immunoreactive analogues copatch and cocap with concanavalin A. At the level of resolution of the electron microscope, immunocytochemistry with antifodrin and colloidal gold confirms that the immunoreactive analogues are cortical proteins associated with microfilaments on the cytoplasmic side of the plasma membrane. We have isolated and characterized the 220 Kd protein to determine if it is similar to fodrin and to investigate its relationship to the 70 Kd polypeptide. The 220 Kd protein can be extracted from the cortex in the absence of detergent and isolated by gel filtration and sucrose density gradient sedimentation. The 220 Kd is a rod-shaped protein 118 +/- 17.8 nm (N = 37) in length. It has a sedimentation coefficient of 9.3 S and Stokes' radius of 13 nm and exists as a dimer of approximately 500,000 daltons (Mr). Isolated 220 Kd binds to actin filaments in vitro when assayed by rotary shadowing. Morphological criteria distinguish 220 Kd from Dictyostelium myosin II heavy chain (215 Kd) and the filaminlike protein at 240 Kd. The 70 Kd polypeptide appears to be a cleavage fragment of the 220 Kd, since it is found after prolonged storage when formerly only the 220 Kd was present. Furthermore, the 220 and 70 Kd polypeptides exhibit similar one-dimensional peptide maps when treated with TPCK trypsin. On the basis of its physical and immunoreactive characteristics, and location in the cell, the 220 Kd may be a fodrinlike protein.
Collapse
Affiliation(s)
- H Bennett
- Department of Anatomy and Structural biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
190
|
Perlmutter LS, Siman R, Gall C, Seubert P, Baudry M, Lynch G. The ultrastructural localization of calcium-activated protease "calpain" in rat brain. Synapse 1988; 2:79-88. [PMID: 2843999 DOI: 10.1002/syn.890020111] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Calpain I, a calcium-activated neutral protease which degrades a number of cytoskeletal proteins, has been implicated in the rapid turnover of structural proteins that may participate in synaptic plasticity. In the present study, an antibody raised against purified erythrocyte calpain I was biochemically characterized and demonstrated to specifically bind the Mr = 80,000 subunit of both rat erythrocyte and brain calpain I. This antibody was used to examine the cellular distribution of calpain I at the electron microscopic level in rat brain and spinal cord using the avidin-biotin immunocytochemical technique. Reaction product was observed throughout neuronal perikarya, within both axonal and dendritic processes, and within spine heads and necks. Postsynaptic densities in both shaft and spine synapses were also immunoreactive. Glial cell bodies and processes were densely stained. In both neurons and glia, the reaction product was deposited along cytoskeletal elements. The localization of calpain I immunoreactivity to glial processes suggests this degradative enzyme may play a role in the glial hypertrophy and process retraction seen in brain. The presence of the enzyme in spines and postsynaptic densities is consistent with the hypothesis that it is involved in the turnover of synaptic cytoskeleton, thus providing a means through which transient physiological events effect lasting changes in the chemistry and morphology of spines.
Collapse
Affiliation(s)
- L S Perlmutter
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
191
|
Goodman SR, Krebs KE, Whitfield CF, Riederer BM, Zagon IS. Spectrin and related molecules. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1988; 23:171-234. [PMID: 3048888 DOI: 10.3109/10409238809088319] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review begins with a complete discussion of the erythrocyte spectrin membrane skeleton. Particular attention is given to our current knowledge of the structure of the RBC spectrin molecule, its synthesis, assembly, and turnover, and its interactions with spectrin-binding proteins (ankyrin, protein 4.1, and actin). We then give a historical account of the discovery of nonerythroid spectrin. Since the chicken intestinal form of spectrin (TW260/240) and the brain form of spectrin (fodrin) are the best characterized of the nonerythroid spectrins, we compare these molecules to RBC spectrin. Studies establishing the existence of two brain spectrin isoforms are discussed, including a description of the location of these spectrin isoforms at the light- and electron-microscope level of resolution; a comparison of their structure and interactions with spectrin-binding proteins (ankyrin, actin, synapsin I, amelin, and calmodulin); a description of their expression during brain development; and hypotheses concerning their potential roles in axonal transport and synaptic transmission.
Collapse
Affiliation(s)
- S R Goodman
- Cell and Molecular Biology Center, Milton S. Hershey Medical Center, Pennsylvania State University
| | | | | | | | | |
Collapse
|
192
|
Ivy GO, Seubert P, Baudry M, Lynch G. Presence of brain spectrin in dendrites of mammalian brain: technical factors involved in immunocytochemical detection. Synapse 1988; 2:329-33. [PMID: 3062834 DOI: 10.1002/syn.890020324] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- G O Ivy
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | | | |
Collapse
|
193
|
Kimura F, Tsumoto T, Sobue K. Postnatal development of immunohistochemically localized spectrin-like protein (calspectin or fodrin) in the rat visual cortex: its excessive expression in developing cortical neurons. JOURNAL OF NEUROCYTOLOGY 1987; 16:649-65. [PMID: 3694236 DOI: 10.1007/bf01637657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Postnatal development of the expression and localization of a membrane-associated cytoskeletal protein, calspectin (fodrin or brain spectrin), in the visual cortex, was immunohistochemically studied in newborn to adult rats, by using an anti-calspectin antibody. At birth, calspectin-immunoreactivity was already present at the plasma membrane and in the cytoplasm of neurons which were mostly pyramidal cells located in the upper part of the cortical subplate. Immature neurons located in the cortical plate were not stained by the antibody, suggesting that calspectin is expressed only in neurons which have differentiated or are differentiating. At postnatal days 2 to 7, immunoreactive neurons were dramatically increased in layers V and VI and very intense labelling was seen in the apical dendrites of layer V pyramidal cells. Most of the stained processes of these and other neurons showed signs of rapid dendritic growth, i.e. non-terminal as well as terminal growth cones and filopodia. At days 10 to 17, dendrites of pyramidal cells in layers II and III became clearly detectable, although still slender. At days 24 to 34, the basal dendrites of pyramidal cells in layers II, III and V became intensely immunoreactive and dendritic spines were visualized by the antibody. In the adult, however, the calspectin immunoreactivity became very weak and spines were not recognizable. At all the ages, axons and neuroglia were unstained. Also, most of the neurons in layer IV of the cortex were not immunoreactive. These results suggest that calspectin is most abundantly expressed in growing parts of the dendrites and spines. A hypothesis that calspectin may play a role in synaptic plasticity in the developing visual cortex is discussed.
Collapse
Affiliation(s)
- F Kimura
- Department of Neurophysiology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
194
|
Sikela JM, Hahn WE. Screening an expression library with a ligand probe: isolation and sequence of a cDNA corresponding to a brain calmodulin-binding protein. Proc Natl Acad Sci U S A 1987; 84:3038-42. [PMID: 3033675 PMCID: PMC304797 DOI: 10.1073/pnas.84.9.3038] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The use of cloning vectors that express inserted cDNA as fusion protein has led to the isolation of genes encoding a variety of eukaryotic proteins. In these instances antisera or monoclonal antibodies were used as probes to screen expression libraries. Since fusion proteins sometimes display biological activity reflective of the insert-specified portion, we tested the possibility that ligand-binding sites might exist in fusion proteins. Specifically we used 125I-labeled calmodulin as a probe to screen a mouse brain lambda gt11 library. One clone, lambda ICM-1 isolated using this approach, produces fusion protein that binds calmodulin with high affinity (Kd, 3-10 nM) in a Ca2+-dependent manner. Molecular genetic mapping experiments and deduction of the predicted higher-order structure from sequence data indicate the binding site is, or is within, a basic, amphiphilic alpha-helical domain composed of approximately 20 amino acids. lambda ICM-1 hybridizes with brain mRNA of 2.1 and 3.5 kb but not with mRNA from liver or kidney, suggesting possible restriction of the protein to brain. We discuss several observations that suggest lambda ICM-1 corresponds to Ca2+/calmodulin-dependent protein kinase II, an enzyme that phosphorylates several neuronal proteins, some of which apparently play a role in synaptic function. Our results suggest certain types of ligands may be useful probes to isolate genes encoding various receptor proteins, particularly when the protein is very rare or when it is difficult to obtain antibodies suitable for screening libraries.
Collapse
|
195
|
Brocklehurst K, Willenbrock F, Salih E. Chapter 2 Cysteine proteinases. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0167-7306(09)60016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
196
|
Baudry M, DuBrin R, Lynch G. Subcellular compartmentalization of calcium-dependent and calcium-independent neutral proteases in brain. Synapse 1987; 1:506-11. [PMID: 3332055 DOI: 10.1002/syn.890010603] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the present experiments, we studied the subcellular distribution of three types of extralysosomal, neutral proteolytic activities in rat telencephalon: (1) nonthiol proteases (NTP), (2) thiol proteases (TP), and (3) calcium-activated thiol proteases (calpains I and II). Subcellular fractionation was performed by using conventional differential and sucrose-gradient centrifugation techniques. The only significant proteolytic activity detected in crude homogenates could be assigned to calpain II, the high-threshold calcium-activated protease. Within the primary fractions prepared from the homogenates, the highest levels of calpain II were found in S3, or the soluble cytoplasmic fraction. Significant activity of the enzyme was also present in P2, the crude mitochondrial/synaptosomal fraction. In contrast, the specific activity of calpain I was greatest in P2 with somewhat lesser enzymatic activity in P1 and S3. Most of the calpain I in P2 was recovered after differential centrifugation through sucrose gradients and lysis of the resultant subfractions. In marked contrast, only a small percentage of the calpain II activity was recovered in the gradient bands. In all, calpain II appears to be predominantly localized in the soluble cytoplasmic compartment while the greatest concentrations of calpain I are found in the soluble components of small glial and neuronal processes (pinched off during homogenization) that constitute the P2 fraction. The highest specific activity of the calcium-independent proteases was obtained in P3, a fraction essentially devoid of calpain, with a secondary peak in P2. Subfractionation of P2 revealed that calcium-independent TP in P2 was associated with mitochondria while the calcium-independent NTP was more uniformly distributed across myelin, synaptosomes, and mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Baudry
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | |
Collapse
|
197
|
Lynch G, Larson J, Staubli U, Baudry M. New perspecties on the phusiology, chemistry, and pharmacology of memory. Drug Dev Res 1987. [DOI: 10.1002/ddr.430100409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
198
|
Baudry M, Seubert P, Lynch G. A possible second messenger system for the production of long-term changes in synapses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 221:291-311. [PMID: 2893523 DOI: 10.1007/978-1-4684-7618-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M Baudry
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | |
Collapse
|
199
|
Seubert P, Baudry M, Dudek S, Lynch G. Calmodulin stimulates the degradation of brain spectrin by calpain. Synapse 1987; 1:20-4. [PMID: 2850618 DOI: 10.1002/syn.890010105] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain spectrin has been shown to be a preferential substrate of calcium-dependent proteases (Baudry, Bundman, Smith, and Lynch: Science 212:937-938, 1981) and a major calmodulin-binding protein (Kakiuchi, Sobue, and Fujita: FEBS Lett. 132:144-148, 1981). Since calmodulin, spectrin, and a proteolytically derived spectrin fragment are all components of isolated postsynaptic density preparations (Grab, Berzins, Cohen, and Siekevitz: J. Biol. Chem. 254:8690-8696, 1979; Carlin, Bartelt, and Siekevitz: J. Cell Biol. 96:443-448, 1983), we investigated the functional role of calmodulin binding to brain spectrin with respect to its susceptibility to digestion by proteases. We report that calmodulin's interaction with brain spectrin results in a marked acceleration of the rate of spectrin degradation by calcium-dependent proteases (calpains I and II), but not by chymotrypsin. The cleavage of erythrocyte spectrin (which lacks a high-affinity calmodulin binding site) by calpain I is unaffected by the presence of calmodulin. The stimulatory effect of calmodulin is blocked by trifluoperazine, a calmodulin antagonist, which by itself does not modify brain spectrin proteolysis by calcium-dependent proteases. These results suggest a novel role for calmodulin in neuronal function--namely, a synergistic interaction with calcium-dependent proteases in the regulation of cytoskeletal integrity.
Collapse
Affiliation(s)
- P Seubert
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717
| | | | | | | |
Collapse
|
200
|
Shimo-Oka T, Atsumi S. Localization of alpha-spectrin in chicken and monkey ventral horns by immunoelectron microscopy. JOURNAL OF NEUROCYTOLOGY 1986; 15:715-23. [PMID: 3546602 DOI: 10.1007/bf01625189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Localization of alpha-spectrin in chicken and monkey ventral horns has been studied by immunoperoxidase techniques at the electron microscopic level. For this purpose, an antiserum specific for chicken alpha-spectrin (240 kD subunit of spectrin) was prepared. The characteristics of the staining patterns of both chicken and monkey ventral horns were essentially identical. The reaction product for peroxidase was contained in the somata of large cells (presumably motor neurons), dendrites and axons. No specific staining was seen with either preimmune or blocked sera. The staining within the cell somata was primarily localized in cortical cytoplasm. Within dendrites and axons the immunocytochemical label was associated predominantly with the cortical cytoplasm and with microtubules. Staining was heavy over postsynaptic densities. Although presynaptic terminals showed weak staining as a whole, heavy staining was sometimes observed in areas adjacent to the presynaptic plasma membrane facing the postsynaptic density. These results indicate that spectrin distributes widely and functions in many biological activities in the nervous system.
Collapse
|