151
|
Abstract
Intra vital microscopy and whole-body imaging promise to revolutionize how we study the immune system. They compel by the intrinsic beauty of the images obtained and the undeniable direct biological relevance of the observations. However, it is important to remember that in many cases, fundamental insights into the underlying biological processes have already been obtained using ex vivo reductionist approaches. Indeed, it is likely that with the advent of microfluidics, new and exciting avenues will open up for ex vivo experimentation. Here, we give a brief but comprehensive overview of the various imaging techniques available, their relative strengths and shortcomings and how these tools have been used to get us to where we are today. The challenge for the future will be to apply the most suitable technology and to integrate the findings across various imaging disciplines to build a unified, comprehensive "big picture" of the immune system.
Collapse
Affiliation(s)
- Milka Sarris
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK.
| | | |
Collapse
|
152
|
Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J 2009; 23:3659-73. [PMID: 19567369 DOI: 10.1096/fj.09-136200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic CD8(+) T cells are increasingly recognized as key players in various inflammatory and degenerative central nervous system (CNS) disorders. CD8(+) T cells are believed to actively contribute to neural damage in these CNS conditions. Conceptually, one can separate two possible ways that CD8(+) T cells harm neuronal function or integrity: CD8(+) T cells either directly target neurons and their neurites in an antigen- or contact-dependent fashion, or exert their action via "collateral" mechanisms of neuronal damage that might follow destruction of the myelin sheath or glial cells in both the CNS gray and white matter. After introducing clinical examples, in which the putative relevance CD8(+) T cells has been demonstrated, we summarize knowledge on the sequence of initiation and execution of CD8(+) T-cell responses in the CNS. This includes the initial antigen cross-presentation and priming of naive CD8(+) T cells, followed by the invasion, migration, and target-cell recognition of CD8(+) effector T cells in the CNS parenchyma. Moreover, we discuss mechanisms of impaired electrical signaling and cell death of neurons as direct and collateral targets of CD8(+) T cells in the CNS.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany.
| | | | | |
Collapse
|
153
|
Abstract
Classical alphabeta T cells protect the host by monitoring intracellular and extracellular proteins in a two-step process. The first step is protein degradation and combination with a major histocompatibility complex (MHC) molecule, leading to surface expression of this amalgam (antigen processing). The second step is the interaction of the T cell receptor with the MHC-peptide complex, leading to signaling in the T cells (antigen recognition). The context for this interaction is a T cell-antigen presenting cell junction, known as an immunological synapse if symmetric and stable and as a kinapse if asymmetric and mobile. The physiological recognition of a ligand takes place most efficiently in the F-actin-rich lamellipodium and is F-actin dependent in stages of formation and triggering and myosin II dependent for signal amplification. This review discusses how these concepts emerged from early studies on adhesion, signaling, and cell biology of T cells.
Collapse
Affiliation(s)
- Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
154
|
Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. ACTA ACUST UNITED AC 2009; 185:521-34. [PMID: 19398758 PMCID: PMC2700390 DOI: 10.1083/jcb.200809136] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The interaction between a T cell and an antigen-presenting cell (APC) can trigger a signaling response that leads to T cell activation. Prior studies have shown that ligation of the T cell receptor (TCR) triggers a signaling cascade that proceeds through the coalescence of TCR and various signaling molecules (e.g., the kinase Lck and adaptor protein LAT [linker for T cell activation]) into microdomains on the plasma membrane. In this study, we investigated another ligand-receptor interaction (CD58-CD2) that facilities T cell activation using a model system consisting of Jurkat T cells interacting with a planar lipid bilayer that mimics an APC. We show that the binding of CD58 to CD2, in the absence of TCR activation, also induces signaling through the actin-dependent coalescence of signaling molecules (including TCR-zeta chain, Lck, and LAT) into microdomains. When simultaneously activated, TCR and CD2 initially colocalize in small microdomains but then partition into separate zones; this spatial segregation may enable the two receptors to enhance signaling synergistically. Our results show that two structurally distinct receptors both induce a rapid spatial reorganization of molecules in the plasma membrane, suggesting a model for how local increases in the concentration of signaling molecules can trigger T cell signaling.
Collapse
Affiliation(s)
- Yoshihisa Kaizuka
- Department of Cellular and Molecular Pharmacology, The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
155
|
Ghani S, Feuerer M, Doebis C, Lauer U, Loddenkemper C, Huehn J, Hamann A, Syrbe U. T cells as pioneers: antigen-specific T cells condition inflamed sites for high-rate antigen-non-specific effector cell recruitment. Immunology 2009; 128:e870-80. [PMID: 19740348 DOI: 10.1111/j.1365-2567.2009.03096.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cellular infiltration is a classic hallmark of inflammation. Whereas the role of T cells in many types of inflammation is well established, the specific impact of antigen recognition on their migration into the site and on the accumulation of other effector cells are still matters of debate. Using a model of an inflammatory effector phase driven by T-cell receptor (TCR) transgenic T cells, we found (i) that antigen-specific T cells play a crucial role as 'pioneer cells' that condition the tissue for enhanced recruitment of further T effector cells and other leucocytes, and (ii) that the infiltration of T cells is not dependent on antigen specificity. We demonstrate that a small number of antigen-specific T cells suffice to initiate a cascade of cellular immigration into the antigen-loaded site. Although antigen drives this process, accumulation of T cells in the first few days of inflammation was not dependent on T-cell reactivity to the antigen. Both transgenic and wild-type T effector cells showed enhanced immigration into the site of antigen challenge after the initial arrival and activation of antigen-specific pioneer cells. This suggests that bystander accumulation of non-specific effector/memory T cells is a general feature in inflammation. Furthermore, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma were identified as mediators that contribute to conditioning of the inflammatory site for high-rate accumulation of T effector cells in this T-cell-driven model.
Collapse
Affiliation(s)
- Saeed Ghani
- Experimentelle Rheumatologie, Charité-Universitaetsmedizin c/o Deutsches Rheuma-forschungszentrum, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Jacobelli J, Bennett FC, Pandurangi P, Tooley AJ, Krummel MF. Myosin-IIA and ICAM-1 regulate the interchange between two distinct modes of T cell migration. THE JOURNAL OF IMMUNOLOGY 2009; 182:2041-50. [PMID: 19201857 DOI: 10.4049/jimmunol.0803267] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How T cells achieve rapid chemotactic motility under certain circumstances and efficient cell surface surveillance in others is not fully understood. We show that T lymphocytes are motile in two distinct modes: a fast "amoeboid-like" mode, which uses sequential discontinuous contacts to the substrate; and a slower mode using a single continuously translating adhesion, similar to mesenchymal motility. Myosin-IIA is necessary for fast amoeboid motility, and our data suggests that this occurs via cyclical rear-mediated compressions that eliminate existing adhesions while licensing subsequent ones at the front of the cell. Regulation of Myosin-IIA function in T cells is thus a key mechanism to regulate surface contact area and crawling velocity within different environments. This can provide T lymphocytes with motile and adhesive properties that are uniquely suited toward alternative requirements for immune surveillance and response.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Department of Pathology, University of California San Francisco, San Francisco CA 94143, USA
| | | | | | | | | |
Collapse
|
157
|
T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 2009; 8:675-84. [PMID: 19172690 DOI: 10.1038/nri2379] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between T cells and dendritic cells (DCs) in the lymph nodes are crucial for initiating cell-mediated adaptive immune responses. With the help of two-photon imaging, the complexity of these cellular contacts in vivo has recently been captured in time-lapse movies in several immunological contexts. Well beyond the satisfaction of seeing a T-cell response as it happens, these experiments provide fundamental insights into the regulation and the biological meaning of T-cell-DC contact dynamics. This Review focuses on how this emerging field is changing our perception of T-cell activation by DCs.
Collapse
|
158
|
Evans R, Patzak I, Svensson L, De Filippo K, Jones K, McDowall A, Hogg N. Integrins in immunity. J Cell Sci 2009; 122:215-25. [DOI: 10.1242/jcs.019117] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A successful immune response depends on the capacity of immune cells to travel from one location in the body to another–these cells are rapid migrators, travelling at speeds of μm/minute. Their ability to penetrate into tissues and to make contacts with other cells depends chiefly on the β2 integrin known as LFA-1. For this reason, we describe the control of its activity in some detail. For the non-immunologist, the fine details of an immune response often seem difficult to fathom. However, the behaviour of immune cells, known as leukocytes (Box 1), is subject to the same biological rules as many other cell types, and this holds true particularly for the functioning of the integrins on these cells. In this Commentary, we highlight, from a cell-biology point of view, the integrin-mediated immune-cell migration and cell-cell interactions that occur during the course of an immune response.
Collapse
Affiliation(s)
- Rachel Evans
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Irene Patzak
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Lena Svensson
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Katia De Filippo
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Kristian Jones
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Alison McDowall
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Nancy Hogg
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
159
|
Bullen A, Friedman RS, Krummel MF. Two-photon imaging of the immune system: a custom technology platform for high-speed, multicolor tissue imaging of immune responses. Curr Top Microbiol Immunol 2009; 334:1-29. [PMID: 19521679 DOI: 10.1007/978-3-540-93864-4_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Modern imaging approaches are proving important for addressing contemporary issues in the immune system. These approaches are especially useful for characterizing the complex orchestration of immune responses in vivo. Multicolor, two-photon imaging has been proven to be especially enabling for such studies because of its superior tissue penetration, reduced image degradation by light scattering leading to better resolution, and its high image quality deep inside tissues. Here, we examine the functional requirements of two-photon imaging instruments necessary for such immune studies. These requirements include frame rate, spatial resolution and the number of emission channels. We use this discussion as a starting point to compare commercial systems and to introduce a custom technology platform that meets those requirements. This platform is noteworthy because it is very cost-effective, flexible and experimentally useful. Representative data collected with this instrument is used to demonstrate the utility of this platform. Finally, as the field is rapidly evolving, consideration is given to some of the cutting-edge developments in multiphoton microscopy that will likely improve signal strength, depth penetration and/or the experimental usefulness of this approach.
Collapse
Affiliation(s)
- Andrew Bullen
- Department of Pathology and Biological Imaging Development Center, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA.
| | | | | |
Collapse
|
160
|
Dustin ML. Multiscale analysis of T cell activation: correlating in vitro and in vivo analysis of the immunological synapse. Curr Top Microbiol Immunol 2009; 334:47-70. [PMID: 19521681 DOI: 10.1007/978-3-540-93864-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently implemented fluorescence imaging techniques, such as total internal reflection fluorescence microscopy and two-photon laser scanning microscopy, have made possible multiscale analysis of the immune response from single molecules in an interface to cells moving in lymphoid tissues and tumors. In this review, we consider components of T cell sensitivity: the immunological synapse, the coordination of migration, and antigen recognition in vivo. Potency, dose, and detection threshold for peptide-MHC determine T cell sensitivity. The immunological synapse incorporates T cell receptor microclusters that initiate and sustain signaling, and it also determines the positional stability of the T cells through symmetry and symmetry breaking. In vivo decisions by T cells on stopping or migration are based on antigen stop signals and environmental go signals that can sometimes prevent arrest of T cells altogether, and thus can change the outcome of antigen encounters.
Collapse
Affiliation(s)
- Michael L Dustin
- Department of Pathology, Program of Molecular Pathogenesis, Skirball Institute of BioMolecular Medicine, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
161
|
Dustin ML. Hunter to gatherer and back: immunological synapses and kinapses as variations on the theme of amoeboid locomotion. Annu Rev Cell Dev Biol 2008; 24:577-96. [PMID: 18598213 DOI: 10.1146/annurev.cellbio.24.110707.175226] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immunological synapse was initially defined as a stable cell-cell junction composed of three concentric supramolecular activation clusters (SMACs) enriched in particular components: a central SMAC with clustered antigen receptors and kinases, a peripheral SMAC rich in beta2 integrin adhesion molecule LFA-1, and a distal SMAC marked by a critical tyrosine phosphatase. In the past year the SMACs have each been identified with functional modules of amoeboid motility, and the stability of the immunological synapse has been revealed as a reconfiguration of the motile apparatus from an asymmetric hunting mode, a kinapse, to a symmetric gathering mode, the synapse. The genetic control of this process involves actinomyosin regulators PKCtheta and WASp. Crtam is involved in postsynaptic polarity in early kinapses prior to cell division. It is unlikely that the immune system is unique in using symmetrization to stop migration without inactivating motile machinery.
Collapse
Affiliation(s)
- Michael L Dustin
- Helen L. and Martin S. Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
162
|
|
163
|
Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. J Virol 2008; 82:9445-57. [PMID: 18632854 DOI: 10.1128/jvi.00835-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4(+) T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4(+) T cells.
Collapse
|
164
|
Cahalan MD, Parker I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 2008; 26:585-626. [PMID: 18173372 DOI: 10.1146/annurev.immunol.24.021605.090620] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
165
|
Shen K, Thomas VK, Dustin ML, Kam LC. Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc Natl Acad Sci U S A 2008; 105:7791-6. [PMID: 18505845 PMCID: PMC2409411 DOI: 10.1073/pnas.0710295105] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Indexed: 12/24/2022] Open
Abstract
Spatial organization of signaling complexes is a defining characteristic of the immunological synapse (IS), but its impact on cell communication is unclear. In T cell-APC pairs, more IL-2 is produced when CD28 clusters are segregated from central supramolecular activation cluster (cSMAC)-localized CD3 and into the IS periphery. However, it is not clear in these cellular experiments whether the increased IL-2 is driven by the pattern itself or by upstream events that precipitate the patterns. In this article, we recapitulate key features of physiological synapses using planar costimulation arrays containing antibodies against CD3 and CD28, surrounded by ICAM-1, created by combining multiple rounds of microcontact printing on a single surface. Naïve T cells traverse these arrays, stopping at features of anti-CD3 antibodies and forming a stable synapse. We directly demonstrate that presenting anti-CD28 in the cell periphery, surrounding an anti-CD3 feature, enhances IL-2 secretion by naïve CD4(+) T cells compared with having these signals combined in the center of the IS. This increased cytokine production correlates with NF-kappaB translocation and requires PKB/Akt signaling. The ability to arbitrarily and independently control the locations of anti-CD3 and anti-CD28 offered the opportunity to examine patterns not precisely attainable in cell-cell interfaces. With these patterns, we show that the peripheral presentation of CD28 has a larger impact on IL-2 secretion than CD3 colocalization/segregation.
Collapse
Affiliation(s)
- Keyue Shen
- *Department of Biomedical Engineering, Columbia University, New York, NY 10027; and
| | - V. Kaye Thomas
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Michael L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Lance C. Kam
- *Department of Biomedical Engineering, Columbia University, New York, NY 10027; and
| |
Collapse
|
166
|
Stachowiak AN, Irvine DJ. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J Biomed Mater Res A 2008; 85:815-28. [DOI: 10.1002/jbm.a.31661] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
167
|
Abstract
T-cell activation requires 'contact' with antigen-presenting cells (APCs) to bring the T-cell receptor (TCR) and antigenic major histocompatibility complex (MHC)-peptide complex together. Contact is defined by the size of the TCR and MHC-peptide complex, which at approximately 13 nm requires extensive interdigitation of the glycocalyx of the T cell and APC. T cells may be activated through formation of a stable T cell-APC junction, referred to as an immunological synapse. It has also been shown in vitro that T cells can integrate signals from APCs without a stable interaction. In vivo imaging studies supported the importance of both motile and stable T cell-APC interactions in T-cell priming. We have found that stability depends not upon turning off motile machinery but by symmetrization of force-generating structures to balance forces and hold the cell in place. Motility is induced by breaking this symmetry, which may be necessary to maintain the differentiation potential of the T cell. Recently, we also discovered a mode of T-cell signaling leading to tolerance in vivo based purely on motile interactions. Because this entire process takes place in a state of continuous T-cell kinesis, I propose the term 'kinapse' for motile T cell-APC contacts leading to signaling. Synapses and kinapses are inter-convertible by symmetrization/symmetry breaking processes, and both modes appear to be involved in normal T-cell priming. Imbalance of synapse/kinapse states may lead to immunopathology.
Collapse
Affiliation(s)
- Michael L Dustin
- Helen and Martin Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
168
|
Pittet MJ, Mempel TR. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 2008; 221:107-29. [PMID: 18275478 DOI: 10.1111/j.1600-065x.2008.00584.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of the immune system are providing us with ever more detailed information on the cellular and molecular mechanisms that underlie our evolutionarily conserved ability to fend off infectious pathogens. Progress has probably been fastest at two levels: the various basic biological functions of isolated cells on one side and the significance of individual molecules or cells to the organism as a whole on the other. In both cases, direct phenomenological observation has been an invaluable methodological approach. Where we know least is the middle ground, i.e. how immune functions are integrated through the dynamic interplay of immune cell subsets within the organism. Most of our knowledge in this area has been obtained through inference from static snapshots of dynamic processes, such as histological sections, or from surrogate cell co-culture models. The latter are employed under the assumption that an in vivo equivalent exists for each type of cellular contact artificially enforced in absence of anatomical compartmentalization. In this review, we summarize recent insights on migration and effector functions of T cells, focusing on observations gained from their dynamic microscopic visualization in physiological tissue environments.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston, MA 02129, USA
| | | |
Collapse
|
169
|
How antigen quantity and quality determine T-cell decisions in lymphoid tissue. Mol Cell Biol 2008; 28:4040-51. [PMID: 18426917 DOI: 10.1128/mcb.00136-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
T lymphocytes (T cells) express T-cell receptor (TCR) molecules on their surface that can recognize peptides (p) derived from antigenic proteins bound to products of the major histocompatibility complex (MHC) genes. The pMHC molecules are expressed on the surface of antigen-presenting cells, such as dendritic cells (DCs). T cells first encounter antigen on DCs in lymph nodes (LN). Intravital microscopy experiments show that upon entering the LN containing antigen, CD8+ T cells first move rapidly. After a few hours, they stop and make extended contacts with DCs. The factors that determine when and how this transition occurs are not well understood. We report results from computer simulations that suggest that the duration of phase one is related to the low probability of productive interactions between T cells and DCs. This is demonstrated by our finding that the antigen dose and type determine when such a transition occurs. These results are in agreement with experimental observations. TCR-pMHC binding characteristics and the antigen dose determine the time required for a productive T-cell-DC encounter (resulting in sustained contact). We find that the ratio of this time scale and the half-life of the pMHC complex itself provide a consolidated measure of antigen quantity and type. Results obtained upon varying different measures of antigen quantity and type fall on one curve when graphed against this ratio of time scales. Thus, we provide a mechanism for how the effects of varying one set of parameters are influenced by other prevailing conditions. This understanding should help guide future experimentation.
Collapse
|
170
|
Katzman SD, Fowell DJ. Pathogen-imposed skewing of mouse chemokine and cytokine expression at the infected tissue site. J Clin Invest 2008; 118:801-11. [PMID: 18188454 DOI: 10.1172/jci33174] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 11/14/2007] [Indexed: 11/17/2022] Open
Abstract
Compartmentalization of immunity ensures tight regulation of T cell activation in the LN and precise effector T cell delivery to inflamed sites. Herein we show that the tissue-specific accumulation of effector T cells can be subverted by a pathogen at the infection site. Using the Leishmania major mouse model of dermal infection, we observed a restricted chemokine profile at the infection site, i.e., the expression of Th2 cell-attracting CCL7 but not of Th1 cell-attracting chemokines. Consistent with these chemokine expression data, recruitment of cytokine-producing T cells to the infection site was also selective. Both IL-4- and IFN-gamma-producing effector T cells homed to inflamed OVA/CFA-immunized dermis, but only IL-4-producing cells homed to L. major-infected dermis. The narrowing of the cytokine repertoire at the site of infection with L. major was driven, in part, by pathogen-induced CCL7. Inflammatory signals failed to disrupt the early restrictive L. major infection site, which suggests that L. major dominantly modifies the local milieu. We have highlighted an emerging principle in pathogen-host interactions: that the cytokine repertoire at the infection site and the LN draining the infection site can be different because of the ability of the pathogen to modify the chemokine profile at the infection site. Thus, pathogens may edit the LN cytokine repertoire through differential recruitment of cytokine-producing cells.
Collapse
Affiliation(s)
- Shoshana D Katzman
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
171
|
Marelli-Berg FM, Cannella L, Dazzi F, Mirenda V. The highway code of T cell trafficking. J Pathol 2008; 214:179-89. [PMID: 18161751 DOI: 10.1002/path.2269] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coordinated migratory events are required for the development of effective and regulated immunity. Naïve T lymphocytes are programmed to recirculate predominantly in secondary lymphoid tissue by non-specific stimuli. In contrast, primed T cells must identify specific sites of antigen location in non-lymphoid tissue to exert targeted effector responses. Following priming, T cells acquire the ability to establish molecular interactions mediated by tissue-selective integrins and chemokine receptors (homing receptors) that allow their access to specific organs, such as the skin and the gut. Recent studies have shown that an additional level of specificity is provided by the induction of specific T cell migration into the tissue following recognition of antigen displayed by the endothelium. In addition, co-stimulatory signals (such as those induced by CD28 and CTLA-4 molecules) have been shown not only to regulate T cell activation and differentiation, but also to orchestrate the anatomy of the ensuing T cell response.
Collapse
Affiliation(s)
- F M Marelli-Berg
- Department of Immunology, Division of Medicne, Hammersmith Hospital Campus, Imperial College London, UK.
| | | | | | | |
Collapse
|
172
|
|
173
|
Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 2008; 28:402-13. [PMID: 18328743 PMCID: PMC2726439 DOI: 10.1016/j.immuni.2008.01.012] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/10/2007] [Accepted: 01/28/2008] [Indexed: 12/13/2022]
Abstract
The interaction of T cells with dendritic cells (DCs) determines whether an immune response is launched or not. Recognition of antigen leads to formation of immunological synapses at the interface between the cells. The length of interaction is likely to determine the functional outcome, because it limits the number of MHC class II-peptide complexes that can be recruited into the synapse. Here, we show that regulatory T (Treg) cells and naive helper T (Th) cells interact differently with DCs in the absence of proinflammatory stimuli. Although differences in T cell receptor repertoire might contribute, Foxp3-induced phenotypic differences play a major role. We found that Neuropilin-1 (Nrp-1), which is expressed by most Treg cells but not naive Th cells, promoted prolonged interactions with immature DCs (iDCs), resulting in higher sensitivity to limiting amounts of antigen. This is likely to give Treg cells an advantage over naive Th cells, with the same specificity leading to a "default" suppression of immune responses in the absence of "danger signals."
Collapse
|
174
|
Jarmin SJ, David R, Ma L, Chai JG, Dewchand H, Takesono A, Ridley AJ, Okkenhaug K, Marelli-Berg FM. T cell receptor-induced phosphoinositide-3-kinase p110delta activity is required for T cell localization to antigenic tissue in mice. J Clin Invest 2008; 118:1154-64. [PMID: 18259608 PMCID: PMC2230659 DOI: 10.1172/jci33267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022] Open
Abstract
The establishment of T cell-mediated inflammation requires the migration of primed T lymphocytes from the blood stream and their retention in antigenic sites. While naive T lymphocyte recirculation in the lymph and blood is constitutively regulated and occurs in the absence of inflammation, the recruitment of primed T cells to nonlymphoid tissue and their retention at the site are enhanced by various inflammatory signals, including TCR engagement by antigen-displaying endothelium and resident antigen-presenting cells. In this study, we investigated whether signals downstream of TCR ligation mediated by the phosphoinositide-3-kinase (PI3K) subunit p110delta contributed to the regulation of these events. T lymphocytes from mice expressing catalytically inactive p110delta displayed normal constitutive trafficking and migratory responses to nonspecific stimuli. However, these cells lost susceptibility to TCR-induced migration and failed to localize efficiently to antigenic tissue. Importantly, we showed that antigen-induced T cell trafficking and subsequent inflammation was abrogated by selective pharmacological inhibition of PI3K p110delta activity. These observations suggest that pharmacological targeting of p110delta activity is a viable strategy for the therapy of T cell-mediated pathology.
Collapse
Affiliation(s)
- Sarah J. Jarmin
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Rachel David
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Liang Ma
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Jan-Guo Chai
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Hamlata Dewchand
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Aya Takesono
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Anne J. Ridley
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Federica M. Marelli-Berg
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
175
|
Abstract
Activation of the T-cell co-receptor cytotoxic T-lymphocyte antigen 4 (CTLA4) has a pivotal role in adjusting the threshold for T-cell activation and in preventing autoimmunity and massive tissue infiltration by T cells. Although many mechanistic models have been postulated, no single model has yet accounted for its overall function. In this Opinion article, I outline the strengths and weaknesses of the current models, and present a new 'reverse stop-signal model' to account for CTLA4 function.
Collapse
Affiliation(s)
- Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, CB1 4QP Cambridge, UK.
| |
Collapse
|
176
|
Human regulatory T cells inhibit polarization of T helper cells toward antigen-presenting cells via a TGF-beta-dependent mechanism. Proc Natl Acad Sci U S A 2008; 105:2550-5. [PMID: 18268354 DOI: 10.1073/pnas.0708350105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The molecular mechanisms used by regulatory T cells (Treg) to inhibit the effector phase of adaptive immune responses are still elusive. In the present work, we investigated the possibility that Treg may interfere with a basic biological function of T helper cells (T(H)): polarization of secretory machinery for dedicated help delivery. To address this question, we visualized by confocal microscopy different parameters of activation in T(H) and Treg cells interacting simultaneously with individual antigen-presenting cells (APC). Our results show that, although productive TCR engagement in T(H)/APC conjugates was unaffected by the presence of adjacent Treg, the reorientation of T(H) secretory machinery toward APC was strongly inhibited. Blocking TGF-beta completely reverted Treg induced inhibition of T(H) polarization. Our results identify a previously undescribed mechanism by which Treg inhibit effector T cells. TGF-beta produced by adjacent Treg interferes with polarization of T(H) secretory machinery toward APC, thus affecting a crucial step of T(H)-mediated amplification of the immune response.
Collapse
|
177
|
Weber KS, Miller MJ, Allen PM. Th17 Cells Exhibit a Distinct Calcium Profile from Th1 and Th2 Cells and Have Th1-Like Motility and NF-AT Nuclear Localization. THE JOURNAL OF IMMUNOLOGY 2008; 180:1442-50. [DOI: 10.4049/jimmunol.180.3.1442] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
178
|
T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 2008; 9:282-91. [PMID: 18204450 DOI: 10.1038/ni1559] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 12/18/2007] [Indexed: 12/17/2022]
Abstract
After homing to lymph nodes, CD8+ T cells are primed by dendritic cells (DCs) in three phases. During phase one, T cells undergo brief serial contacts with DCs for several hours, whereas phase two is characterized by stable T cell-DC interactions. We show here that the duration of phase one and T cell activation kinetics correlated inversely with the number of complexes of cognate peptide and major histocompatibility complex (pMHC) per DC and with the density of antigen-presenting DCs per lymph node. Very few pMHC complexes were necessary for the induction of full-fledged T cell activation and effector differentiation. However, neither T cell activation nor transition to phase two occurred below a threshold antigen dose determined in part by pMHC stability. Thus, phase one permits T cells to make integrated 'measurements' of antigen dose that determine subsequent T cell participation in immune responses.
Collapse
|
179
|
Intermediate-affinity LFA-1 binds alpha-actinin-1 to control migration at the leading edge of the T cell. EMBO J 2007; 27:62-75. [PMID: 18079697 PMCID: PMC2147999 DOI: 10.1038/sj.emboj.7601959] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 11/20/2007] [Indexed: 12/14/2022] Open
Abstract
T lymphocytes use LFA-1 to migrate into lymph nodes and inflammatory sites. To investigate the mechanisms regulating this migration, we utilize mAbs selective for conformational epitopes as probes for active LFA-1. Expression of the KIM127 epitope, but not the 24 epitope, defines the extended conformation of LFA-1, which has intermediate affinity for ligand ICAM-1. A key finding is that KIM127-positive LFA-1 forms new adhesions at the T lymphocyte leading edge. This LFA-1 links to the cytoskeleton through α-actinin-1 and disruption at the level of integrin or actin results in loss of cell spreading and migratory speed due to a failure of attachment at the leading edge. The KIM127 pattern contrasts with high-affinity LFA-1 that expresses both 24 and KIM127 epitopes, is restricted to the mid-cell focal zone and controls ICAM-1 attachment. Identification of distinctive roles for intermediate- and high-affinity LFA-1 in T lymphocyte migration provides a biological function for two active conformations of this integrin for the first time.
Collapse
|
180
|
Abstract
Through T cell receptors (TCRs), T cells can detect and respond to very small numbers of foreign peptides among a huge number of self-peptides presented by major histocompatibility complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How T cells achieve such remarkable sensitivity and specificity through pMHC-TCR binding is an intensively pursued issue in immunology today; the key question is how pMHC-TCR binding initiates, or triggers, a signal from TCRs. Multiple competing models have been proposed, none of which fully explains the sensitivity and specificity of TCR triggering. What has been omitted from existing theories is that the pMHC-TCR interaction at the T cell/APC interface must be under constant mechanical stress, due to the dynamic nature of cell-cell interaction. Taking this condition into consideration, we propose the receptor deformation model of TCR triggering. In this model, TCR signaling is initiated by conformational changes of the TCR/CD3 complex, induced by a pulling force originating from the cytoskeleton and transmitted through pMHC-TCR binding interactions with enough strength to resist rupture. By introducing mechanical force into a model of T cell signal initiation, the receptor deformation model provides potential mechanistic solutions to the sensitivity and specificity of TCR triggering.
Collapse
Affiliation(s)
- Zhengyu Ma
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
181
|
Reichardt P, Dornbach B, Gunzer M. The molecular makeup and function of regulatory and effector synapses. Immunol Rev 2007; 218:165-77. [PMID: 17624952 DOI: 10.1111/j.1600-065x.2007.00526.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Physical interactions between T cells and antigen-presenting cells (APCs) form the basis of any specific immune response. Upon cognate contacts, a multimolecular assembly of receptors and adhesion molecules on both cells is created, termed the immunological synapse (IS). Very diverse structures of ISs have been described, yet the functional importance for T-cell differentiation is largely unclear. Here we discuss the principal structure and function of ISs. We then focus on two characteristic T-cell-APC pairs, namely T cells contacting dendritic cells (DCs) or naive B cells, for which extremely different patterns of the IS have been observed as well as fundamentally different effects on the function of the activated T cells. We provide a model on how differences in signaling and the involvement of adhesion molecules might lead to diverse interaction kinetics and, eventually, diverse T-cell differentiation. We hypothesize that the preferred activation of the adhesion molecule leukocyte function-associated antigen-1 (LFA-1) and of the negative regulator for T-cell activation, cytotoxic T-lymphocyte antigen-4 (CTLA-4), through contact with naive B cells, lead to prolonged cell-cell contacts and the generation of T cells with regulatory capacity. In contrast, DCs might have evolved mechanisms to avoid LFA-1 overactivation and CTLA-4 triggering, thereby promoting more dynamic contacts that lead to the preferential generation of effector cells.
Collapse
Affiliation(s)
- Peter Reichardt
- Junior Research Group Immunodynamics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
182
|
Abstract
Integrin adhesion receptors are critical for antigen recognition by T cells and for regulated recirculation and trafficking into and through various tissues in the body. T-cell receptor (TCR) signaling induces rapid increases in integrin function that facilitate T-cell activation by promoting stable contact with antigen-presenting cells and extracellular proteins in the environment. In this review, we outline the molecular mechanisms by which the TCR signals to integrins and present a model that highlights four key events: (i) initiation of proximal TCR signals nucleated by the linker for activated T cells (LAT) adapter protein and involving Itk, phospholipase C-gamma1, Vav1, and Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa; (ii) transmission of integrin activation signals from the LAT signalosome to integrins by protein kinase (PK) C and the adapter protein, adhesion and degranulation-promoting adapter protein; (iii) assembly of integrin-associated signaling complexes that include PKD, the guanosine triphosphatase Rap1 and its effectors, and talin; and (iv) reorganization of the actin cytoskeleton by WAVE2 and other actin-remodeling proteins. These events coordinate changes in integrin conformation and clustering that result in enhanced integrin functional activity following TCR stimulation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
183
|
Galea I, Bernardes-Silva M, Forse PA, van Rooijen N, Liblau RS, Perry VH. An antigen-specific pathway for CD8 T cells across the blood-brain barrier. ACTA ACUST UNITED AC 2007; 204:2023-30. [PMID: 17682068 PMCID: PMC2118703 DOI: 10.1084/jem.20070064] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CD8 T cells are nature's foremost defense in encephalitis and brain tumors. Antigen-specific CD8 T cells need to enter the brain to exert their beneficial effects. On the other hand, traffic of CD8 T cells specific for neural antigen may trigger autoimmune diseases like multiple sclerosis. T cell traffic into the central nervous system is thought to occur when activated T cells cross the blood-brain barrier (BBB) regardless of their antigen specificity, but studies have focused on CD4 T cells. Here, we show that selective traffic of antigen-specific CD8 T cells into the brain occurs in vivo and is dependent on luminal expression of major histocompatibility complex (MHC) class I by cerebral endothelium. After intracerebral antigen injection, using a minimally invasive technique, transgenic CD8 T cells only infiltrated the brain when and where their cognate antigen was present. This was independent of antigen presentation by perivascular macrophages. Marked reduction of antigen-specific CD8 T cell infiltration was observed after intravenous injection of blocking anti–MHC class I antibody. These results expose a hitherto unappreciated route by which CD8 T cells home onto their cognate antigen behind the BBB: luminal MHC class I antigen presentation by cerebral endothelium to circulating CD8 T cells. This has implications for a variety of diseases in which antigen-specific CD8 T cell traffic into the brain is a beneficial or deleterious feature.
Collapse
Affiliation(s)
- Ian Galea
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Southampton, UK.
| | | | | | | | | | | |
Collapse
|
184
|
Huang JH, Cárdenas-Navia LI, Caldwell CC, Plumb TJ, Radu CG, Rocha PN, Wilder T, Bromberg JS, Cronstein BN, Sitkovsky M, Dewhirst MW, Dustin ML. Requirements for T lymphocyte migration in explanted lymph nodes. THE JOURNAL OF IMMUNOLOGY 2007; 178:7747-55. [PMID: 17548612 DOI: 10.4049/jimmunol.178.12.7747] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although the requirements for T lymphocyte homing to lymph nodes (LNs) are well studied, much less is known about the requirements for T lymphocyte locomotion within LNs. Imaging of murine T lymphocyte migration in explanted LNs using two-photon laser-scanning fluorescence microscopy provides an opportunity to systematically study these requirements. We have developed a closed system for imaging an intact LN with controlled temperature, oxygenation, and perfusion rate. Naive T lymphocyte locomotion in the deep paracortex of the LN required a perfusion rate of >13 microm/s and a partial pressure of O(2) (pO(2)) of >7.4%. Naive T lymphocyte locomotion in the subcapsular region was 38% slower and had higher turning angles and arrest coefficients than naive T lymphocytes in the deep paracortex. T lymphocyte activation decreased the requirement for pO(2), but also decreased the speed of locomotion in the deep paracortex. Although CCR7(-/-) naive T cells displayed a small reduction in locomotion, systemic treatment with pertussis toxin reduced naive T lymphocyte speed by 59%, indicating a contribution of Galpha(i)-mediated signaling, but involvement of other G protein-coupled receptors besides CCR7. Receptor knockouts or pharmacological inhibition in the adenosine, PG/lipoxygenase, lysophosphatidylcholine, and sphingosine-1-phosphate pathways did not individually alter naive T cell migration. These data implicate pO(2), tissue architecture, and G-protein coupled receptor signaling in regulation of naive T lymphocyte migration in explanted LNs.
Collapse
Affiliation(s)
- Julie H Huang
- Program in Molecular Pathogenesis, Kimmel Center for Biology and Medicine, Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Smith A, Stanley P, Jones K, Svensson L, McDowall A, Hogg N. The role of the integrin LFA-1 in T-lymphocyte migration. Immunol Rev 2007; 218:135-46. [PMID: 17624950 DOI: 10.1111/j.1600-065x.2007.00537.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A successful immune response depends on the migration of lymphocytes into lymph nodes or inflamed tissues where they make contact with antigen-presenting cells. We are interested in how one member of the integrin family, leukocyte function-associated antigen-1 (LFA-1), controls the function and, in particular, the migration of immune cells. We find that this integrin operates not only as an adhesion receptor for T lymphoblasts (T cells) but also induces their migration in vitro at approximately 15 microm/min. Migration requires active myosin light chain kinase at the leading edge and Rho kinase at the trailing edge of the cell. Two active conformations of LFA-1 are differently distributed on the T-cell membrane and regulate independent aspects of migration. High-affinity LFA-1 is located in a midcell 'focal zone' and influences the speed of migration, whereas intermediate affinity LFA-1 controls leading edge adhesions. Manipulating LFA-1 conformation in vivo can be performed, for example, by creating the active conformation in a transgenic mouse, and this model gives further insight into the role of LFA-1 in migration. In humans, the beneficial effect of functioning CD18 integrins in combating infections in vivo is illustrated by rare patients displaying two forms of leukocyte adhesion deficiency. In summary, we speculate that T cells have evolved a mode of rapid migration that is of paramount importance in achieving the high-speed immune surveillance upon which depends the body's protection against diverse invaders from pathogens to cancer cells.
Collapse
Affiliation(s)
- Andrew Smith
- Leukocyte Adhesion Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | | | |
Collapse
|
186
|
Skokos D, Shakhar G, Varma R, Waite JC, Cameron TO, Lindquist RL, Schwickert T, Nussenzweig MC, Dustin ML. Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nat Immunol 2007; 8:835-44. [PMID: 17632517 DOI: 10.1038/ni1490] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 06/19/2007] [Indexed: 12/15/2022]
Abstract
T cells survey antigen-presenting dendritic cells (DCs) by migrating through DC networks, arresting and maintaining contact with DCs for several hours after encountering high-potency complexes of peptide and major histocompatibility complex (pMHC), leading to T cell activation. The effects of low-potency pMHC complexes on T cells in vivo, however, are unknown, as is the mechanism controlling T cell arrest. Here we evaluated T cell responses in vivo to high-, medium- and low-potency pMHC complexes and found that regardless of potency, pMHC complexes induced upregulation of CD69, anergy and retention of T cells in lymph nodes. However, only high-potency pMHC complexes expressed by DCs induced calcium-dependent T cell deceleration and calcineurin-dependent anergy. The pMHC complexes of lower potency instead induced T cell anergy by a biochemically distinct process that did not affect T cell dynamics.
Collapse
Affiliation(s)
- Dimitris Skokos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Huse M, Klein LO, Girvin AT, Faraj JM, Li QJ, Kuhns MS, Davis MM. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 2007; 27:76-88. [PMID: 17629516 DOI: 10.1016/j.immuni.2007.05.017] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/26/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
The precise timing of signals downstream of the T cell receptor (TCR) is poorly understood. To address this problem, we prepared major histocompatibility complexes containing an antigenic peptide that is biologically inert until exposed to ultraviolet (UV) light. UV irradiation of these complexes in contact with cognate T cells enabled the high-resolution temporal analysis of signaling. Phosphorylation of the LAT adaptor molecule was observed in 4 s, and diacylglycerol production and calcium flux was observed in 6-7 s. TCR activation also induced cytoskeletal polarization within 2 min. Antibody blockade of CD4 reduced the intensity of LAT phosphorylation and the speed of calcium flux. Furthermore, strong desensitization of diacylglycerol production, but not LAT phosphorylation, occurred shortly after TCR activation, suggesting that different molecular events play distinct signal-processing roles. These results establish the speed and localization of early signaling steps, and have important implications regarding the overall structure of the network.
Collapse
Affiliation(s)
- Morgan Huse
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Irvine DJ, Doh J, Huang B. Patterned surfaces as tools to study ligand recognition and synapse formation by T cells. Curr Opin Immunol 2007; 19:463-9. [PMID: 17616382 DOI: 10.1016/j.coi.2007.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/07/2007] [Accepted: 05/16/2007] [Indexed: 11/26/2022]
Abstract
Activation of immune cells is often achieved via ligand-receptor interactions occurring at a cell-cell junction known as an immunological synapse (IS). Synapse structures, probably best studied in the context of T cell-antigen presenting cell (APC) interactions, are characterized by clustering of cell surface receptors and intracellular signaling components, and in some settings, the formation of microscale or submicron patterns of receptors in the cell-cell interface. To help expand our understanding of how synapses form and function, substrates bearing patterned protein ligands are being developed as simplified models of the APC surface. These new tools allow well-defined signal inputs to be delivered to the T cell in order to ask how the physical organization and composition of APC-derived signals control T cell activation.
Collapse
Affiliation(s)
- Darrell J Irvine
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
189
|
Li YF, Tang RH, Puan KJ, Law SKA, Tan SM. The cytosolic protein talin induces an intermediate affinity integrin alphaLbeta2. J Biol Chem 2007; 282:24310-9. [PMID: 17591777 DOI: 10.1074/jbc.m701860200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrin alphaLbeta2 mediates leukocyte adhesion and migration that are required for a functional immune system. It is known that inside-out signaling triggers alphaLbeta2 conformational changes, which affect its ligand-binding affinity. At least three alphaLbeta2 affinity states (low, intermediate, and high) were described. The cytosolic protein talin connects alphaLbeta2 to the actin filament. The talin head domain is also known to activate alphaLbeta2 ligand binding. However, it remains to be determined whether talin promotes an intermediate or high affinity alphaLbeta2. In this study using transfectants and T cells, we showed that talin induced an intermediate affinity alphaLbeta2 that adhered constitutively to its ligand intercellular adhesion molecule (ICAM)-1 but not ICAM-3. Adhesion to ICAM-3 was induced when an additional exogenous activating agent was included. Similar profiles were observed with soluble ICAMs. In addition, the intermediate affinity alphaLbeta2 induced by talin allowed adhesion and migration of T cells on immobilized ICAMs.
Collapse
Affiliation(s)
- Yan-Feng Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | | |
Collapse
|
190
|
Adamopoulou E, Diekmann J, Tolosa E, Kuntz G, Einsele H, Rammensee HG, Topp MS. Human CD4+ T cells displaying viral epitopes elicit a functional virus-specific memory CD8+ T cell response. THE JOURNAL OF IMMUNOLOGY 2007; 178:5465-72. [PMID: 17442927 DOI: 10.4049/jimmunol.178.9.5465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.
Collapse
Affiliation(s)
- Eleni Adamopoulou
- Medical Clinic and Polyclinic II, Julius-Maximilian University of Würzburg, Röntgernring 11, D-97070 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
191
|
Marelli-Berg FM, Okkenhaug K, Mirenda V. A two-signal model for T cell trafficking. Trends Immunol 2007; 28:267-73. [PMID: 17481953 DOI: 10.1016/j.it.2007.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 03/19/2007] [Accepted: 04/18/2007] [Indexed: 11/22/2022]
Abstract
T-cell-receptor triggering and the delivery of co-stimulation are essential events leading to T cell expansion, differentiation and effector function. The influence that such signals exert on T cell migration during and following priming has been highlighted by recent reports. Moreover, induction of peripheral tolerance might act in part by affecting T cell migration. Here, we propose that the integration of co-stimulatory signals, which regulate the ability of primed T cells to access nonlymphoid tissue, and cognate recognition of the endothelium, which determines the selective recruitment of specific T cells, contribute to the anatomy of T cell-mediated immunity and tolerance. The implications for therapeutic strategies manipulating these signals are discussed.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK, W12 0NN.
| | | | | |
Collapse
|
192
|
Manes TD, Shiao SL, Dengler TJ, Pober JS. TCR signaling antagonizes rapid IP-10-mediated transendothelial migration of effector memory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:3237-43. [PMID: 17312172 DOI: 10.4049/jimmunol.178.5.3237] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human microvascular endothelial cells (ECs) constitutively express MHC class II in peripheral tissues, the function of which remains unknown. In vitro assays have established that the recognition of EC MHC class II can affect cytokine expression, proliferation, and delayed transendothelial migration of allogeneic memory, but not naive, CD4+ T cells. Previously, we have shown that effector memory CD4+ T cells will rapidly transmigrate in response to the inflammatory chemokine IFN-gamma-inducible protein-10 (IP-10) in a process contingent upon the application of venular levels of shear stress. Using two models that provide polyclonal TCR signaling by ECs in this flow system, we show that TCR engagement antagonizes the rapid chemokine-dependent transmigration of memory CD4+ T cells. Inhibitor studies suggest that TCR signaling downstream of Src family tyrosine kinase(s) but upstream of calcineurin activation causes memory CD4+ T cell arrest on the EC surface, preventing the transendothelial migration response to IP-10.
Collapse
Affiliation(s)
- Thomas D Manes
- Department of Pathology, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
193
|
Irvine DJ, Doh J. Synthetic surfaces as artificial antigen presenting cells in the study of T cell receptor triggering and immunological synapse formation. Semin Immunol 2007; 19:245-54. [PMID: 17398113 DOI: 10.1016/j.smim.2007.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
T cell activation occurs when T cell receptors engage peptide-major histocompatibility complex (pMHC) molecules displayed on the surface of antigen presenting cells (APCs). Clustering of TCRs and other receptors in physical patterns at the T-APC interface forms a structure known as an immunological synapse (IS). Studies of the IS are challenging due to the cell-cell contact context of the governing interactions. Model surfaces as synthetic APCs have thus been developed, where the type, quantity, and physical arrangement of ligands displayed to T cells are precisely controlled. These model systems have provided important insights into the structure and function of the IS.
Collapse
Affiliation(s)
- Darrell J Irvine
- Department of Materials Science & Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
194
|
Simonson WTN, Franco SJ, Huttenlocher A. Talin1 regulates TCR-mediated LFA-1 function. THE JOURNAL OF IMMUNOLOGY 2007; 177:7707-14. [PMID: 17114441 DOI: 10.4049/jimmunol.177.11.7707] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The leukocyte integrin LFA-1 plays a critical role in T cell trafficking and T cell adhesion to APCs. It is known that integrin-mediated adhesion is regulated by changes in integrin ligand-binding affinity and valency through inside-out signaling. However, the molecular mechanisms involved in TCR-mediated LFA-1 regulation are not well understood. In this study, we show that the cytoskeletal protein talin1 is required for TCR-mediated activation of LFA-1 through regulation of LFA-1 affinity and clustering. Depletion of talin1 from human T cells by small interfering RNAs impairs TCR-induced adhesion to ICAM-1 and T cell-APC conjugation. TCR-induced LFA-1 polarization, but not actin polarization, is defective in talin1-deficient T cells. Although LFA-1 affinity is also reduced in talin1-deficient T cells, rescue of LFA-1 affinity alone is not sufficient to restore LFA-1 adhesive function. Together, our findings indicate that TCR-induced up-regulation of LFA-1-dependent adhesiveness and resulting T cell-APC conjugation require talin1.
Collapse
Affiliation(s)
- William T N Simonson
- Program in Cellular and Molecular Biology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
195
|
Alon R, Dustin ML. Force as a Facilitator of Integrin Conformational Changes during Leukocyte Arrest on Blood Vessels and Antigen-Presenting Cells. Immunity 2007; 26:17-27. [PMID: 17241958 DOI: 10.1016/j.immuni.2007.01.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Integrins comprise a large family of cell-cell and cell-matrix adhesion receptors that rapidly modulate their adhesiveness. The arrest of leukocyte integrins on target vascular beds involves instantaneous conformational switches generating shear-resistant adhesions. Structural data suggest that these integrins are maintained in low-affinity conformations and must rapidly undergo conformational switches transduced via cytoplasmic changes ("inside-out" signaling) and simultaneous ligand-induced rearrangements ("outside-in"). This bidirectional activation is accelerated by signals from endothelial chemoattractants (chemokines). Recent studies predict that shear forces in the piconewton (pN) range per integrin can facilitate these biochemical switches. After extravasation, antigen recognition involves smaller internal forces from cytoskeletal motors and actin polymers forming the immune synapse. In this review, we address how forces facilitate allosteric integrin activation by biochemical signals. Evidence suggests that preformed cytoskeletal anchorage rather than free integrin mobility is key for force-enhanced integrin activation by chemokines and TCR signals.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
196
|
Krummel MF, Macara I. Maintenance and modulation of T cell polarity. Nat Immunol 2006; 7:1143-9. [PMID: 17053799 DOI: 10.1038/ni1404] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/14/2006] [Indexed: 02/07/2023]
Abstract
As T cells move through the lymphatics and tissues, chemokine receptors, adhesion molecules, costimulatory molecules and antigen receptors engage their ligands in the microenvironment and contribute to establishing and maintaining cell polarity. Cytoskeletal assemblies, surface proteins and vesicle traffic are essential components of polarity and probably stabilize the activity of lymphocytes that must negotiate their 'noisy' environment. An additional component of polarity is a family of polarity proteins in T cells that includes Dlg, Scrib and Lgl, as well as a complex of partitioning-defective proteins. Ultimately, the strength of a T cell response may rely on correct T cell polarization. Therefore, loss of polarity regulators or guidance cues may interfere with T cell activation.
Collapse
Affiliation(s)
- Matthew F Krummel
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143-0511, USA.
| | | |
Collapse
|
197
|
Oliaro J, Pasam A, Waterhouse NJ, Browne KA, Ludford-Menting MJ, Trapani JA, Russell SM. Ligation of the cell surface receptor, CD46, alters T cell polarity and response to antigen presentation. Proc Natl Acad Sci U S A 2006; 103:18685-90. [PMID: 17116876 PMCID: PMC1693723 DOI: 10.1073/pnas.0602458103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lymphocyte function in vivo is dictated by multiple external cues, but the integration of different signals is not well understood. Here, we show that competition for the axis of polarization dictates functional outcomes. We investigated the effect of ligation of the immunoregulatory cell surface receptor, CD46, on lymphocyte polarity during antigen presentation and cytotoxic effector function. Ligation of CD46 on human T cells prevented recruitment of the microtubule organizing center, CD3, and perforin to the interface with the antigen-presenting cell and caused a reduction in IFN-gamma production. In human NK cells, similar changes in polarity induced by CD46 ligation inhibited the recruitment of the microtubule organizing center and perforin to the interface with target cells and correlated with reduced killing. These data indicate that external signals can alter lymphocyte polarization toward antigen-presenting cells or target cells, inhibiting lymphocyte function.
Collapse
Affiliation(s)
- Jane Oliaro
- *Immune Signalling Laboratory and
- Department of Pathology, Faculty of Medicine, University of Melbourne, Melbourne VIC 3010, Australia; and
| | - Anupama Pasam
- *Immune Signalling Laboratory and
- Department of Pathology, Faculty of Medicine, University of Melbourne, Melbourne VIC 3010, Australia; and
| | - Nigel J. Waterhouse
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, and
- Department of Pathology, Faculty of Medicine, University of Melbourne, Melbourne VIC 3010, Australia; and
| | - Kylie A. Browne
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, and
| | | | - Joseph A. Trapani
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, and
- Department of Pathology, Faculty of Medicine, University of Melbourne, Melbourne VIC 3010, Australia; and
| | - Sarah M. Russell
- *Immune Signalling Laboratory and
- Centre for MicroPhotonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn VIC 3122, Australia
- To whom correspondence should be addressed at:
Peter MacCallum Cancer Centre, St. Andrew's Place, East Melbourne VIC 3002, Australia. E-mail:
| |
Collapse
|
198
|
Zhu DM, Dustin ML, Cairo CW, Golan DE. Analysis of two-dimensional dissociation constant of laterally mobile cell adhesion molecules. Biophys J 2006; 92:1022-34. [PMID: 17085486 PMCID: PMC1779959 DOI: 10.1529/biophysj.106.089649] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We formulate a general analysis to determine the two-dimensional dissociation constant (2D Kd), and use this method to study the interaction of CD2-expressing T cells with glass-supported planar bilayers containing fluorescently labeled CD58, a CD2 counter-receptor. Both CD2 and CD58 are laterally mobile in their respective membranes. Adhesion is indicated by accumulation of CD2 and CD58 in the cell-bilayer contact area; adhesion molecule density and contact area size attain equilibrium within 40 min. The standard (Scatchard) analysis of solution-phase binding is not applicable to the case of laterally mobile adhesion molecules due to the dynamic nature of the interaction. We derive a new binding equation, B/F=[(Ntxf)/(KdxScell)]-[(Bxp)/Kd], where B and F are bound and free CD58 density in the contact area, respectively; Nt is CD2 molecule number per cell; f is CD2 fractional mobility; Scell is cell surface area; and p is the ratio of contact area at equilibrium to Scell. We use this analysis to determine that the 2D Kd for CD2-CD58 is 5.4-7.6 molecules/microm2. 2D Kd analysis provides a general and quantitative measure of the mechanisms regulating cell-cell adhesion.
Collapse
Affiliation(s)
- De-Min Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Hematology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
199
|
Friedman RS, Jacobelli J, Krummel MF. Surface-bound chemokines capture and prime T cells for synapse formation. Nat Immunol 2006; 7:1101-8. [PMID: 16964261 DOI: 10.1038/ni1384] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/28/2006] [Indexed: 01/20/2023]
Abstract
T cell activation in vivo occurs in a lymphoid milieu that presents chemotactic and T cell receptor signals concurrently. Here we demonstrate that T cell zone chemokines such as CCL21 are bound to the surface of lymph node dendritic cells. Contact with antigen-presenting cells bearing chemokines costimulated T cells by a previously unknown two-step contact mechanism. T cells initially formed an antigen-independent 'tethered' adhesion on chemokine-bearing antigen-presenting cells. The formation of those tethers superseded T cell receptor signaling and immunological synapse formation. However, chemokine-tethered T cells were hyper-responsive to subsequent contacts with antigen-presenting cells. Thus, T cells are costimulated 'in trans' and sequentially after initial engagement with their chemokine-rich environment.
Collapse
Affiliation(s)
- Rachel S Friedman
- The Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
200
|
van den Boorn JG, Le Poole IC, Luiten RM. T-cell avidity and tuning: the flexible connection between tolerance and autoimmunity. Int Rev Immunol 2006; 25:235-58. [PMID: 16818373 PMCID: PMC3462655 DOI: 10.1080/08830180600743081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thymic T-cell selection mechanisms generate a cross-reactive, self-MHC restricted peripheral T-cell pool. Affinity and avidity are of profound influence on this selection and the generation of immunity. Autoreactive T cells can escape thymic deletion by lowering their avidity and retain this "tuned" state in the periphery. Upon activation, tuned T cells can cause autoimmunity, while immunotherapeutic strategies may be hampered by existing T-cell tolerance. The regulation of T-cell avidity and tuning therefore determines the balance between tolerance and autoimmunity and should be taken into account in the design of therapeutic strategies aimed at T-cell reactivity.
Collapse
Affiliation(s)
- Jasper G van den Boorn
- Netherlands Institute for Pigment Disorders and Department of Dermatology, AMC, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|