151
|
Henrich S, Lindberg I, Bode W, Than ME. Proprotein Convertase Models based on the Crystal Structures of Furin and Kexin: Explanation of their Specificity. J Mol Biol 2005; 345:211-27. [PMID: 15571716 DOI: 10.1016/j.jmb.2004.10.050] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 10/14/2004] [Accepted: 10/15/2004] [Indexed: 11/17/2022]
Abstract
In eukaryotes, many secreted proteins and peptide hormones are excised from larger precursors by calcium-dependent serine proteinases, the proprotein/prohormone convertases (PCs). These PCs cleave their protein substrates very specifically following multiple basic residues. The seven mammalian PCs and their yeast orthologue kexin are multi-domain proteinases consisting of a subtilisin-related catalytic domain, a conserved P-domain and a variable, often cysteine-rich domain, which in some PCs is followed by an additional C-terminal trans-membrane domain and a short cytoplasmic domain. The recently published crystal structures of the soluble mouse furin and yeast kexin ectodomains have revealed the relative arrangement of catalytic and P domains, the exact domain fold and the detailed architecture of the substrate binding clefts. Based on these experimental structures, we now have modelled the structures of the other human/mouse PCs. According to topology and to structure-based sequence comparisons, these other PCs closely resemble furin, with PC4, PACE4 and PC5/6 being more similar, and PC1/3, PC2 and PC7 being less similar to furin. Except for PC1 and PC2, this order of similarity is valid for the catalytic as well as for the P domains, and is almost reversed using kexin as a reference molecule. A similar order results from the number and clustering of negative charges lining the non-prime subsites, explaining the gradually decreasing requirement for basic residues N-terminal to substrate cleavage sites. The preference of the different PCs for distinct substrates seems to be governed by overall charge compensation and matching of the detailed charge distribution pattern.
Collapse
Affiliation(s)
- Stefan Henrich
- Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
152
|
Osterwalder T, Kuhnen A, Leiserson WM, Kim YS, Keshishian H. Drosophila serpin 4 functions as a neuroserpin-like inhibitor of subtilisin-like proprotein convertases. J Neurosci 2004; 24:5482-91. [PMID: 15201320 PMCID: PMC6729332 DOI: 10.1523/jneurosci.5577-03.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The proteolytic processing of neuropeptide precursors is believed to be regulated by serine proteinase inhibitors, or serpins. Here we describe the molecular cloning and functional expression of a novel member of the serpin family, Serine protease inhibitor 4 (Spn4), that we propose is involved in the regulation of peptide maturation in Drosophila. The Spn4 gene encodes at least two different serpin proteins, generated by alternate splicing of the last coding exon. The closest vertebrate homolog to Spn4 is neuroserpin. Like neuroserpin, one of the Spn4 proteins (Spn4.1) features a unique C-terminal extension, reminiscent of an endoplasmic reticulum (ER) retention signal; however, Spn4.1 and neuroserpin have divergent reactive site loops, with Spn4.1 showing a generic recognition site for furin/SPC1, the founding member of the intracellularly active family of subtilisin-like proprotein convertases (SPCs). In vitro, Spn4.1 forms SDS-stable complexes with the SPC furin and directly inhibits it. When Spn4.1 is overexpressed in specific peptidergic cells of Drosophila larvae, the animals exhibit a phenotype consistent with disrupted neuropeptide processing. This observation, together with the unique combination of an ER-retention signal, a target sequence for SPCs in the reactive site loop, and the in vitro inhibitory activity against furin, strongly suggests that Spn4.1 is an intracellular regulator of SPCs.
Collapse
Affiliation(s)
- Thomas Osterwalder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
153
|
McMahon S, Grondin F, McDonald PP, Richard DE, Dubois CM. Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem 2004; 280:6561-9. [PMID: 15611046 DOI: 10.1074/jbc.m413248200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is a common tumorigenesis enhancer, mostly owing to its impact on gene expression of many angiogenic and invasion-related mediators, some of which are natural substrates for the proprotein convertase furin. Analysis of furin promoters revealed the presence of putative binding sites for hypoxia-inducible factor-1 (HIF-1), a transcription complex that plays a pivotal role in cellular adaptation to hypoxia. In fact, we demonstrate herein that the levels of fur mRNA, encoding furin, are remarkably increased upon hypoxic challenge. Cotransfection of a HIF-1alpha dominant negative form in wild-type (WT) cells or transfection of a furin promoter-reporter gene in HIF-1-deficient cells indicated the requirement of HIF-1 for furin promoter activation by hypoxia. Direct HIF-1 action on the furin promoter was identified as a canonical hypoxia-responsive element site with enhancer capability. The hypoxic/HIF-1 regulation of furin correlated with an increased proteolytic activation of the substrates membrane-type 1 matrix metalloproteinase and transforming growth factor-beta1. Our findings unveil a new facet of the physiological consequences of hypoxia/HIF-1, through enhanced furin-induced proteolytic processing/activation of proproteins known to be involved in tumorigenesis.
Collapse
Affiliation(s)
- Stephanie McMahon
- Immunology Division, Pulmonary Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec
| | | | | | | | | |
Collapse
|
154
|
Mazzone M, Baldassarre M, Beznoussenko G, Giacchetti G, Cao J, Zucker S, Luini A, Buccione R. Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. J Cell Sci 2004; 117:6275-87. [PMID: 15561768 DOI: 10.1242/jcs.01563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The integral membrane type 1 matrix metalloprotease (MT1-MMP) is a pivotal protease in a number of physiological and pathological processes and confers both non-tumorigenic and tumorigenic cell lines with a specific growth advantage in a three-dimensional matrix. Here we show that, in a melanoma cell line, the majority (80%) of MT1-MMP is sorted to detergent-resistant membrane fractions; however, it is only the detergent-soluble fraction (20%) of MT1-MMP that undergoes intracellular processing to the mature form. Also, this processed MT1-MMP is the sole form responsible for ECM degradation in vitro. Finally, furin-dependent processing of MT1-MMP is shown to occur intracellularly after exit from the Golgi apparatus and prior to its arrival at the plasma membrane. It is thus proposed that the association of MT1-MMP with different membrane subdomains might be crucial in the control of its different activities: for instance in cell migration and invasion and other less defined ones such as MT1-MMP-dependent signaling pathways.
Collapse
Affiliation(s)
- Marco Mazzone
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, S. Maria Imbaro, 66030, Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Kibler KV, Miyazato A, Yedavalli VSRK, Dayton AI, Jacobs BL, Dapolito G, Kim SJ, Jeang KT. Polyarginine inhibits gp160 processing by furin and suppresses productive human immunodeficiency virus type 1 infection. J Biol Chem 2004; 279:49055-63. [PMID: 15371436 DOI: 10.1074/jbc.m403394200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.
Collapse
Affiliation(s)
- Karen V Kibler
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Degnin C, Jean F, Thomas G, Christian JL. Cleavages within the prodomain direct intracellular trafficking and degradation of mature bone morphogenetic protein-4. Mol Biol Cell 2004; 15:5012-20. [PMID: 15356272 PMCID: PMC524762 DOI: 10.1091/mbc.e04-08-0673] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pro bone morphogenetic protein-4 (BMP-4) is initially cleaved at a consensus furin motif adjacent to the mature ligand domain (the S1 site), and this allows for subsequent cleavage at an upstream motif (the S2 site). Previous studies have shown that S2 cleavage regulates the activity and signaling range of mature BMP-4, but the mechanism by which this occurs is unknown. Here, we show that the pro- and mature domains of BMP-4 remain noncovalently associated after S1 cleavage, generating a complex that is targeted for rapid degradation. Degradation requires lysosomal and proteosomal function and is enhanced by interaction with heparin sulfate proteoglycans. Subsequent cleavage at the S2 site liberates mature BMP-4 from the prodomain, thereby stabilizing the protein. We also show that cleavage at the S2, but not the S1 site, is enhanced at reduced pH, consistent with the possibility that the two cleavages occur in distinct subcellular compartments. Based on these results, we propose a model for how cleavage at the upstream site regulates the activity and signaling range of mature BMP-4 after it has been released from the prodomain.
Collapse
Affiliation(s)
- Catherine Degnin
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, School of Medicine, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
157
|
Benet-Pagès A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM. FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004; 35:455-62. [PMID: 15268897 DOI: 10.1016/j.bone.2004.04.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 03/23/2004] [Accepted: 04/01/2004] [Indexed: 11/26/2022]
Abstract
X-linked hypophosphatemia (XLH) and autosomal dominant hypophosphatemic rickets (ADHR) are characterized by renal phosphate wasting, rickets, and osteomalacia. ADHR is caused by gain of function mutations in the fibroblast growth factor 23 gene (FGF23). During secretion, FGF23 is processed at the C-terminus between amino acids 179 and 180. The cleavage site is mutated in ADHR, preventing processing of FGF23. Here, we show that FGF23 is likely to be cleaved by subtilisin-like proprotein convertases (SPC) as cleavage can be inhibited by a specific SPC inhibitor in HEK293 cells. SPCs, which are widely expressed, were demonstrated to be also present in HEK293 cells as well as in osteoblasts. XLH is caused by loss of function mutations in the putative endopeptidase PHEX. It was tempting to speculate that FGF23 is a substrate of PHEX, but studies have been inconclusive so far. Here, we used a secreted form of PHEX (secPHEX) and tagged and untagged FGF23 constructs for co-incubation experiments. These experiments provided evidence against cleavage of intact FGF23(25-251) as well as of N-terminal (FGF23(25-179)) and C-terminal (FGF23(180-251)) fragments by the endopeptidase PHEX.
Collapse
Affiliation(s)
- Anna Benet-Pagès
- Institute of Human Genetics, GSF National Research Center, 85764 München-Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
158
|
Richer MJ, Keays CA, Waterhouse J, Minhas J, Hashimoto C, Jean F. The Spn4 gene of Drosophila encodes a potent furin-directed secretory pathway serpin. Proc Natl Acad Sci U S A 2004; 101:10560-5. [PMID: 15247425 PMCID: PMC489976 DOI: 10.1073/pnas.0401406101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Proprotein convertases (PCs) are an important class of host-cell serine endoproteases implicated in many physiological and pathological processes. Owing to their expanding roles in the proteolytic events required for generating infectious microbial pathogens and for tumor growth and invasiveness, there is increasing interest in identifying endogenous PC inhibitors. Here we report the identification of Spn4A, a previously uncharacterized secretory pathway serine protease inhibitor (serpin) from Drosophila melanogaster that contains a consensus furin cleavage site, -Arg(P4)-Arg-Lys-Arg(P1) downsream-, in its reactive site loop (RSL). Our biochemical and kinetics analysis revealed that recombinant Spn4A inhibits human furin (K(i), 13 pM; k(ass), 3.2 x 10(7) M(-1) x s(-1)) and Drosophila PC2 (K(i), 3.5 nM; k(ass), 9.2 x 10(4) M(-1) x s(-1)) by a slow-binding mechanism characteristic of serpin molecules and forms a kinetically trapped SDS-stable complex with each enzyme. For both PCs, the stoichiometry of inhibition by Spn4A is nearly 1, which is characteristic of known physiological serpin-protease interactions. Mass analysis of furin-Spn4A reaction products identified the actual reactive site center of Spn4A to be -Arg(P4)-Arg-Lys-Arg(P1)-downstream-. Moreover, we demonstrate that Spn4A's highly effective PC inhibition properties are critically dependent on the unusual length of its RSL, which is composed of 18 aa instead of the typical 17-residue RSL found in most other inhibitory serpins. The identification of Spn4A, the most potent and effective natural serpin of PCs identified to date, suggests that Spn4A could be a prototype of endogenous serpins involved in the precise regulation of PC-dependent proteolytic cleavage events in the secretory pathway of eukaryotic cells.
Collapse
Affiliation(s)
- Martin J Richer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
159
|
Nejjari M, Berthet V, Rigot V, Laforest S, Jacquier MF, Seidah NG, Remy L, Bruyneel E, Scoazec JY, Marvaldi J, Luis J. Inhibition of proprotein convertases enhances cell migration and metastases development of human colon carcinoma cells in a rat model. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1925-33. [PMID: 15161629 PMCID: PMC1615749 DOI: 10.1016/s0002-9440(10)63753-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although proprotein convertases are involved in tumor development, nothing is known about their role in metastatic dissemination. To investigate the involvement of convertase inhibition, we used human colon carcinoma cells overexpressing alpha1-antitrypsin Portland (alpha1-PDX, PDX39P cells), a potent convertase inhibitor. We previously reported that these cells bear uncleaved integrin alpha subunits and display an altered attachment to vitronectin that is correlated with defects in the intracellular signaling pathways activated by alphavbeta5 integrin ligation. In this study, we demonstrate that the inhibition of proprotein convertase activity either by overexpression of alpha1-PDX or with the synthetic inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone (dec-RVKR-cmk) led to a significant increase in cell migration supported by the alphavbeta5 integrin. A collagen gel invasion assay showed that PDX39P cells also displayed an invasive ability, contrary to control cells. Moreover, when injected to immunosuppressed newborn rats, PDX39P cells were highly invasive, as they induce 10 times more metastases than mock-transfected cells. In addition, the aggressiveness of PDX39P cells can be greatly reduced by a function-blocking monoclonal antibody (mAb) against the alphav subunit. It thus seems that inhibition of proprotein convertases enhances the in vivo invasiveness of colon tumor cells likely due to an increase in cell migration mediated by alphav integrins.
Collapse
|
160
|
Tikhonov I, Ruckwardt TJ, Berg S, Hatfield GS, David Pauza C. Furin cleavage of the HIV-1 Tat protein. FEBS Lett 2004; 565:89-92. [PMID: 15135058 DOI: 10.1016/j.febslet.2004.03.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/26/2004] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Abstract
Extracellular human immunodeficiency virus-1 (HIV-1) Tat protein and Tat-derived peptides are biologically active but mechanisms of Tat processing are not known. Within the highly conserved basic region of HIV-1 Tat protein (amino acids, a.a. 48-56), we identified two putative furin cleavage sites and showed that Tat protein was cleaved in vitro at the second site, RQRR\ (a.a. 53-56\). This in vitro cleavage was blocked by a monoclonal antibody that binds near the cleavage site or by the furin inhibitor alpha-1 PDX. Monocytoid cells rich in furin also degraded Tat and this process was slowed by the furin inhibitor or the specific monoclonal antibody. Furin processing did not affect the rates for Tat uptake and nuclear accumulation in HeLa or Jurkat cells, but the transactivation activity was greatly reduced. Furin processing is a likely mechanism for inactivating extracellular HIV-1 Tat protein.
Collapse
Affiliation(s)
- Ilia Tikhonov
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 W. Lombard St. Rm. N533, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
161
|
Kacprzak MM, Peinado JR, Than ME, Appel J, Henrich S, Lipkind G, Houghten RA, Bode W, Lindberg I. Inhibition of furin by polyarginine-containing peptides: nanomolar inhibition by nona-D-arginine. J Biol Chem 2004; 279:36788-94. [PMID: 15197180 DOI: 10.1074/jbc.m400484200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyarginine-containing peptides represent potent inhibitors of furin, a mammalian endoprotease that plays an important role in metabolism, activation of pathogenic toxins, and viral proliferation. The therapeutic use of D-polyarginines is especially interesting because they are not cleaved by furin and possess inhibitory potency almost equal to L-polyarginines. In this study we attempted to determine the important elements within polyarginines that contribute to effective inhibition. Structure-function analyses of polyarginine peptides showed that inhibition by polyarginine-containing peptides appeared to depend on the total number of basic charges of the positively charged inhibitors bound to the negatively charged substrate binding pocket; peptide positioning did not appear to be rigorously determined. Screening of L- and D-decapeptide positional scanning combinatorial peptide libraries indicated a preference for basic residues in nearly all positions, similar to previous results with hexapeptide libraries. Length and terminal modification studies showed that the most potent D-polyarginine tested was nona-D-arginine (D9R) amide with a K(i) of 1.3 nm. D9R amide was shown to protect RAW264.7 cells against anthrax toxemia with an IC(50) of 3.7 microm. Because of its high stability, specificity, low toxicity, small molecular weight, and extremely low K(i) against furin, D9R amide or its derivatives may represent promising compounds for therapeutic use.
Collapse
Affiliation(s)
- Magdalena M Kacprzak
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Rockwell NC, Thorner JW. The kindest cuts of all: crystal structures of Kex2 and furin reveal secrets of precursor processing. Trends Biochem Sci 2004; 29:80-7. [PMID: 15102434 DOI: 10.1016/j.tibs.2003.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pro-hormone or pro-protein convertases are a conserved family of eukaryotic serine proteases found in the secretory pathway. These endoproteases mature precursors for peptides and proteins that perform a wide range of physiologically important and clinically relevant functions. The first member of this family to be identified was Kex2 in the yeast Saccharomyces cerevisiae. One mammalian member of this family - furin - is responsible for processing substrates that include insulin pro-receptor, human immunodeficiency virus gp160 glycoprotein, Ebola virus glycoprotein, and anthrax protective antigen. Recent determination of the crystal structures for the catalytic core domains of both Kex2 and furin - the first for any members of this family - provide remarkable insights and a new level of understanding of substrate specificity and catalysis by the pro-protein convertases.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California at Berkeley, Room 16, Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
163
|
Berthet V, Rigot V, Nejjari M, Marvaldi J, Luis J. The endoproteolytic processing of alphavbeta5 integrin is involved in cytoskeleton remodelling and cell migration. FEBS Lett 2004; 557:159-63. [PMID: 14741360 DOI: 10.1016/s0014-5793(03)01467-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We previously showed that the post-translational cleavage of alphav subunit is essential for integrin-dependent signalling and cell adhesion. Here, we report that blocking alphav subunit cleavage by expression of alpha1-PDX, a convertase inhibitor, modified the capacity of cells to change shape, via a remodelling of the actin cytoskeleton upon cell attachment. These changes are associated with cell scattering and with a dramatic increase in cell migration to vitronectin. The alphav subunit cleavage is thus essential for integrin function and has a considerable impact on integrin-dependent events, especially those leading to cell migration.
Collapse
Affiliation(s)
- Virginie Berthet
- CNRS UMR6032, Faculté de Pharmacie, 27 Bd J. Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | |
Collapse
|
164
|
Blakytny R, Ludlow A, Martin GEM, Ireland G, Lund LR, Ferguson MWJ, Brunner G. Latent TGF-beta1 activation by platelets. J Cell Physiol 2004; 199:67-76. [PMID: 14978736 DOI: 10.1002/jcp.10454] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Platelets are a major source of transforming growth factor-beta1 (TGF-beta1) in the circulation as they release latent growth factor in response to activation. We report here that human platelets, when stimulated with thrombin, activated a significant proportion of the latent TGF-beta released. Latent TGF-beta activation was independent of cytokine release, since activation was delayed compared to platelet degranulation. Activation occured in releasates and did not require the continuous presence of platelets. Classical mechanisms of latent TGF-beta activation were not involved, since activation was not affected by gene deletion and/or inhibitors of the known TGF-beta activators/co-factors, thrombospondin-1 (TSP-1), mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR), plasminogen/plasmin, or several other candidate proteases. In contrast, latent TGF-beta activation was significantly inhibited by the furin inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone and L-hexaarginine. We show that platelets contain a furin-like enzyme which is released upon platelet activation. We conclude that, following activation, platelets release and activate latent TGF-beta1 via mechanisms involving the release and activity of a furin-like proprotein convertase. This novel mechanism of latent TGF-beta activation might represent an important mediator and therapeutic target of platelet TGF-beta1 functions, for example, in early wound repair, fibrosis, or arteriosclerosis.
Collapse
Affiliation(s)
- Robert Blakytny
- Department of Cancer Research, Fachklinik Hornheide, University of Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
165
|
Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR. Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem 2004; 279:18111-4. [PMID: 15007080 DOI: 10.1074/jbc.c400080200] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial Na(+) channels (ENaCs) are activated by extracellular trypsin or by co-expression with channel-activating proteases, although there is no direct evidence that these proteases activate ENaC by cleaving the channel. We previously demonstrated that the alpha and gamma subunits of ENaC are cleaved during maturation near consensus sites for furin cleavage. Using site-specific mutagenesis of channel subunits, ENaC expression in furin-deficient cells, and furin-specific inhibitors, we now report that ENaC cleavage correlates with channel activity. Channel activity in furin-deficient cells was rescued by expression of furin. Our data provide the first example of a vertebrate ion channel that is a substrate for furin and whose activity is dependent on its proteolysis.
Collapse
Affiliation(s)
- Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Pullikotil P, Vincent M, Nichol ST, Seidah NG. Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein. J Biol Chem 2004; 279:17338-47. [PMID: 14970232 DOI: 10.1074/jbc.m313764200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of membrane-bound transcription factors such as sterol regulatory element-binding proteins (SREBPs) and the ER-stress response factor ATF6, and glycoproteins of some hemorrhagic fever viruses are initiated by the proprotein convertase SKI-1/S1P. So far, no cellular protein-based inhibitor of the hydrophobic-amino acid specific SKI-1 is known. The prosegment of the basic-amino acid specific convertases (e.g. furin and PC5) or alpha(1)-PDX, a variant of alpha(1)-antitrypsin (alpha(1)-AT) exhibiting an RIPR(358) sequence at the reactive site loop, were shown to potently inhibit these secretory proteinases. Accordingly, we tested the SKI-1-inhibitory potential of various point mutants of either the 198 amino acid preprosegment of SKI-1-(1-198) or alpha(1)-AT. Transient transfections data showed that, out of numerous mutants studied, the R134E prosegment mutant or the alpha(1)-AT reactive site loop variants RRVL(358), RRYL(358) and RRIL(358) are the best specific cellular inhibitors of SKI-1. The observed inhibition of the processing of endogenous SREBP-2, exogenous ATF6 and a PDGF-A (RRLL(86)) variant were >55% and reach approximately 80% in stable transfectants. We also show that SKI-1 forms SDS-stable complexes with these alpha(1)-AT variants, but not with wild-type alpha(1)-AT or alpha(1)-PDX. Finally, these inhibitors were also shown to affect the processing and stability of the Crimean-Congo hemorrhagic fever virus glycoprotein.
Collapse
Affiliation(s)
- Philomena Pullikotil
- Laboratories of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
167
|
Wang P, Tortorella M, England K, Malfait AM, Thomas G, Arner EC, Pei D. Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. J Biol Chem 2004; 279:15434-40. [PMID: 14744861 DOI: 10.1074/jbc.m312797200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A member of the A disintegrin and metalloproteinase domain with thrombospondin type-1 motifs (ADAMTS-4) protease family can efficiently cleave aggrecan at several sites detected in joints of osteoarthritic patients. Although recent studies have shown that removal of the prodomain of ADAMTS4 is critical for its ability to degrade aggrecan, the cellular mechanisms for its processing and trafficking remain unclear. In this study, by using both furin-specific inhibitor and RNA interference technique, we demonstrate that furin plays an important role in the intracellular removal of ADAMTS4 prodomain. Further, we demonstrate that proADAMTS4 can be processed by means of multiple furin recognition sites: (206)RPRR(209), (209)RAKR(212), or (211)KR(212). The processing of proADAMTS4 was completely blocked by brefeldin A treatment, suggesting that processing occurs in the trans-Golgi network. Indeed, ADAMTS4 is co-localized with furin in trans-Golgi network. Interestingly, the pro form of ADAMTS4, not its mature one, co-precipitates with furin, suggesting that furin physically interacts with the prodomain of ADAMTS-4. In addition, our evidence suggests that a furin-independent pathway may also contribute to the activation of ADAMTS4. These results indicate that the activation mechanism for ADAMTS4 can be targeted for therapeutical intervention against this enzyme.
Collapse
Affiliation(s)
- Ping Wang
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Richer MJ, Juliano L, Hashimoto C, Jean F. Serpin mechanism of hepatitis C virus nonstructural 3 (NS3) protease inhibition: induced fit as a mechanism for narrow specificity. J Biol Chem 2003; 279:10222-7. [PMID: 14701815 DOI: 10.1074/jbc.m313852200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) nonstructural 3 (NS3) serine protease disrupts important cellular antiviral signaling pathways and plays a pivotal role in the proteolytic maturation of the HCV polyprotein precursor. This recent discovery has fostered the search for NS3 protease inhibitors. However, the enzyme's unusual induced fit behavior and peculiar molecular architecture have imposed considerable obstacles to the development of small molecule inhibitors. In this article, we demonstrate that such unique induced fit behavior and the chymotrypsin-like catalytic domain can provide the structural plasticity necessary to generate protein-based inhibitors of the NS3 protease. We took advantage of the macromolecular scaffold of a Drosophila serpin, SP6, which intrinsically supports chymotrypsin-like enzyme inhibition, to design a novel class of potent and selective inhibitors. We show that altering the SP6 reactive site loop (RSL) resulted in the development of the first effective (K(i) of 34 nm) and selective serpin, SP6(EVC/S), directed at the NS3 protease. SP6(EVC/S) operates as a suicide substrate inhibitor, and its partitioning between the complex-forming and proteolytic pathways for the NS3 protease is HCV NS4A cofactor-dependent and -specific. Once bound to the protease active site, SP6(EVC/S) partitions with equal probability to undergo proteolysis by NS3 at the C-terminal site of the engineered RSL, (P(6))Glu-Ile-(P(4))Val-Met-Thr-(P(1))Cys- downward arrow -(P(1)')Ser, or to form a covalent acyl-enzyme complex characteristic of cognate protease-serpin pairs. Our results also reveal a novel cofactor-induced serpin mechanism of enzyme inhibition that could be explored for developing effective and selective inhibitors of other important induced fit viral proteases of the Flaviviridae family such as the West Nile virus NS3 endoprotease.
Collapse
Affiliation(s)
- Martin J Richer
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
169
|
Srour N, Lebel A, McMahon S, Fournier I, Fugère M, Day R, Dubois CM. TACE/ADAM-17 maturation and activation of sheddase activity require proprotein convertase activity. FEBS Lett 2003; 554:275-83. [PMID: 14623079 DOI: 10.1016/s0014-5793(03)01159-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proprotein convertases (PCs) have been proposed to play a role in tumor necrosis factor-alpha converting enzyme (TACE) processing/activation. Using the furin-deficient LoVo cells, as well as the furin-proficient synoviocytes and HT1080 cells expressing the furin inhibitor alpha(1)-PDX, we demonstrate that furin activity alone is not sufficient for effective maturation and activation of the TACE enzyme. Data from in vitro and in vivo cleavage assays indicate that PACE-4, PC5/PC6, PC1 and PC2 can directly cleave the TACE protein and/or peptide. PC inhibition in macrophages reduced the release of soluble TNF-alpha from transmembrane pro-TNF-alpha. We therefore conclude that furin, in addition to other candidate PCs, is involved in TACE maturation and activation.
Collapse
Affiliation(s)
- Nadim Srour
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
170
|
Liu ZX, Fei H, Chi CW. Two engineered eglin c mutants potently and selectively inhibiting kexin or furin. FEBS Lett 2003; 556:116-20. [PMID: 14706837 DOI: 10.1016/s0014-5793(03)01393-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eglin c with mutants L45R and D42R at the P(1) and P(4) positions has been reported to become a stable inhibitor toward the proprotein convertases (PC), furin and kexin, with a K(i) of 2.3x10(-8) and 1.3x10(-10) M, respectively. The mutant was further engineered at the P(2)'-P(4)' positions to create a more potent and selective inhibitor for each enzyme. The residue Asp at P(1)' which is crucial for stabilizing the conformation of eglin c remained unchanged. The eglin c mutants cloned into the vector pGEX-2T and expressed in Escherichia coli (DH5alpha) were purified to homogeneity, and their inhibitory activities toward the purified recombinant furin and kexin were examined. The results showed that (1) Leu47 at P(2)' replaced with either a positively or negatively charged residue resulted in a decrease in inhibitory activities to both enzymes; (2) the replacement of Arg with Asp at P(3)' was favorable for inhibiting furin with a K(i) of 7.8 x 10(-9) M, but not for inhibiting kexin; (3) the replacement of Tyr with Glu at P(4)' increased the inhibitory activity to kexin with a K(i) of 3 x 10(-11) M, but was almost without any influence on furin inhibition. It was indicated that the inhibitory specificity of eglin c could be changed from inhibiting elastase to inhibiting PCs by site-directed mutation at the P positions, while the inhibitory selectivity to furin or kexin could be optimized by mutation at the P' positions.
Collapse
Affiliation(s)
- Zhi-xue Liu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academic of Science, 200031, Shanghai, PR China
| | | | | |
Collapse
|
171
|
Choi SI, Vidal R, Frangione B, Levy E. Axonal transport of British and Danish amyloid peptides via secretory vesicles. FASEB J 2003; 18:373-5. [PMID: 14656991 DOI: 10.1096/fj.03-0730fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ABri and ADan amyloid peptides deposited in familial British and Danish neurodegenerative disorders are generated by processing mutant forms of the precursor protein BRI2. Although the pathogenic process that leads to deposition of amyloid in the brains of patients has been studied extensively, the cellular processes and normal function of the precursor protein did not receive much attention. We observed in a variety of transfected cell lines the presence of two independent proteolytic processing events. In addition to the previously described cleavage, which results in the production of carboxyl-terminal approximately 3 kDa wild-type peptide or approximately 4 kDa ABri or ADan peptides, we describe a novel amino-terminal cleavage site within BRI2. Both cleavages occur within the cis- or medial-Golgi. Following cleavage, the BRI2-derived carboxyl-terminal peptides are transported via a regulated secretory pathway into secretory vesicles in neuronal cells. Worth noting is that expression of wild-type British or Danish mutants of BRI2, in mouse neuroblastoma N2a cells that do not express endogenous BRI2, induces elongation of neurites, which suggests a role for this protein in differentiation of neuronal cells.
Collapse
Affiliation(s)
- Seung-Il Choi
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
172
|
Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G, Milewicz DM. Profibrillin-1 maturation by human dermal fibroblasts: proteolytic processing and molecular chaperones. J Cell Biochem 2003; 90:641-52. [PMID: 14523997 PMCID: PMC1424223 DOI: 10.1002/jcb.10657] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrillin-1 is synthesized as a proprotein that undergoes proteolytic processing in the unique C-terminal domain by a member of the PACE/furin family of endoproteases. This family of endoproteases is active in the trans-Golgi network (TGN), but metabolic labeling studies have been controversial as to whether profibrillin-1 is processed intracellularly or after secretion. This report provides evidence that profibrillin-1 processing is not an intracellular event. Bafilomycin A(1) and incubation of dermal fibroblasts at 22 degrees C were used to block secretion in the TGN to confirm that profibrillin-1 processing did not occur in this compartment. Profibrillin-1 immunoprecipitation studies revealed that two endoplasmic reticulum-resident molecular chaperones, BiP and GRP94, interacted with profibrillin-1. To determine the proprotein convertase responsible for processing profibrillin-1, a specific inhibitor of furin, alpha-1-antitrypsin, Portland variant, was both expressed in the cells and added to cells exogenously. In both cases, the inhibitor blocked the processing of profibrillin-1, providing evidence that furin is the enzyme responsible for profibrillin-1 processing. These studies delineate the secretion and proteolytic processing of profibrillin-1, and identify the proteins that interact with profibrillin-1 in the secretory pathway.
Collapse
Affiliation(s)
- Debra D. Wallis
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Elizabeth A. Putnam
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Jill S. Cretoiu
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sonya G. Carmical
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Shi-Nian Cao
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Gary Thomas
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201
| | - Dianna M. Milewicz
- Department of Internal Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| |
Collapse
|
173
|
Poole CB, Jin J, McReynolds LA. Cloning and biochemical characterization of blisterase, a subtilisin-like convertase from the filarial parasite, Onchocerca volvulus. J Biol Chem 2003; 278:36183-90. [PMID: 12855702 DOI: 10.1074/jbc.m302601200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blisterase is a subtilisin-like proprotein convertase of nematodes. The enzyme is named after the blistered cuticle found in Caenorhabditis elegans with the bli-4 e937 mutation. The critical role of the enzyme in cuticle production makes it a potential drug target for parasitic nematodes. We have cloned and expressed blisterase from the parasitic nematode Onchocerca volvulus, a major cause of blindness in Africa. The catalytic domain of the protease exhibits 84% identity with the corresponding domain of its closest homologue, C. elegans blisterase. O. volvulus blisterase expressed in insect cells has maximal activity in 1 mm calcium at neutral pH. The protease is inhibited by EDTA, the suicide substrate decanoyl-RVKR-chloromethylketone, alpha1-antitrypsin Portland and by its own propeptide. Substrate assays with fluorescent peptides show that O. volvulus blisterase requires a P4 arginine and a basic amino acid at P1 for cleavage. The kcat of blisterase on the peptide substrate, t-butyloxycarbonyl-RVRR-4-methylcoumaryl-7-amide was determined to be 0.018 s-1. In vitro cleavage studies with the nematode polyprotein antigen demonstrated that blisterase cleaved at tetrabasic (RRKR) but not at dibasic (KR) sites. This report describes the first biochemical characterization of the nematode specific protease, blisterase.
Collapse
Affiliation(s)
- Catherine B Poole
- Molecular Parasitology Division, New England Biolabs, Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|
174
|
Cordelier P, Strayer DS. Mechanisms of alpha1-antitrypsin inhibition of cellular serine proteases and HIV-1 protease that are essential for HIV-1 morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:197-207. [PMID: 12878320 DOI: 10.1016/s0925-4439(03)00084-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proprotein processing is essential for HIV infectivity. Cellular trans-Golgi network (TGN) serine proteases (e.g., furin) are required to cleave HIV envelope gp160 to gp120. In addition, HIV protease (PR), an aspartyl protease, cleaves p55(Gag) to p24, etc., in budding virions. alpha1-Antitrypsin (alpha(1)AT) is cleaved by serine proteases, causing a conformational change in alpha(1)AT that sequesters and so inactivates the protease. alpha(1)AT blocks both gp160 and p55 processing, and so is a powerful inhibitor of HIV replication. We hypothesized that alpha(1)AT inhibited gp160 and p55 processing via different mechanisms, and that in both cases, alpha(1)AT bound and was itself cleaved by the proteases whose activities were blocked. alpha(1)AT delivered by SV(AT), a recombinant, Tag-deleted SV40-derived vector, localized to the TGN, co-precipitated with furin, and depleted furin from the TGN. After SV(AT) transduction and HIV challenge, alpha(1)AT was detected in resulting nascent immature HIV-1 virions. alpha(1)AT also blocked incorporation of the enzymatically active dimeric form of PR into HIV virions. Western analysis using recombinant proteins showed that alpha(1)AT directly bound HIV PR, and was cleaved by it. The simultaneous inhibition of two different steps in HIV morphogenesis both increases alpha(1)AT antilentiviral activity and decreases the possibility that HIV mutations will allow escape from inhibition.
Collapse
Affiliation(s)
- Pierre Cordelier
- Department of Pathology and Cell Biology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA
| | | |
Collapse
|
175
|
Borroto A, Ruiz-Paz S, de la Torre TV, Borrell-Pages M, Merlos-Suarez A, Pandiella A, Blobel CP, Baselga J, Arribas J. Impaired trafficking and activation of tumor necrosis factor-alpha-converting enzyme in cell mutants defective in protein ectodomain shedding. J Biol Chem 2003; 278:25933-9. [PMID: 12714588 DOI: 10.1074/jbc.m301673200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein ectodomain shedding is a specialized type of regulated proteolysis that releases the extracellular domain of transmembrane proteins. The metalloprotease disintegrin tumor necrosis factor-alpha-converting enzyme (TACE) has been convincingly shown to play a central role in ectodomain shedding, but despite its broad interest, very little is known about the mechanisms that regulate its activity. An analysis of the biosynthesis of TACE in mutant cell lines that have a gross defect in ectodomain shedding (M1 and M2) shows a defective removal of the prodomain that keeps TACE in an inactive form. Using LoVo, a cell line that lacks of active furin, and alpha1-Antitrypsin Portland, a protein inhibitor of proprotein convertases, we show that TACE is normally processed by furin and other proprotein convertases. The defect in M1 and M2 cells is due to a blockade of the exit of TACE from the endoplasmic reticulum. The processing of other zinc-dependent metalloproteases, previously suggested to participate in activated ectodomain shedding is normal in the mutant cells, indicating that the component mutated is highly specific for TACE. In summary, the characterization of shedding-defective somatic cell mutants unveils the existence of a specific mechanism that directs the proteolytic activation of TACE through the control of its exit from the ER.
Collapse
Affiliation(s)
- Aldo Borroto
- Laboratori de Recerca Oncològica, Servei d'Oncologia Mèdica, Hospital Universitari Vall d'Hebron, Psg. Vall d'Hebron 119-129, Barcelona 08035, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Komiyama T, VanderLugt B, Fugère M, Day R, Kaufman RJ, Fuller RS. Optimization of protease-inhibitor interactions by randomizing adventitious contacts. Proc Natl Acad Sci U S A 2003; 100:8205-10. [PMID: 12832612 PMCID: PMC166207 DOI: 10.1073/pnas.1032865100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polypeptide protease inhibitors are often found to inhibit targets with which they did not coevolve, as in the case of high-affinity inhibition of bacterial subtilisin by the leech inhibitor eglin c. Two kinds of contacts exist in such complexes: (i) reactive site loop-active site contacts and (ii) interactions outside of these that form the broader enzyme-inhibitor interface. We hypothesized that the second class of "adventitious" contacts could be optimized to generate significant increases in affinity for a target enzyme or discrimination of an inhibitor for closely related target proteases. We began with a modified eglin c, Arg-42-Arg-45-eglin, in which the reactive site loop had been optimized for subtilisin-related processing proteases of the Kex2/furin family. We randomized 10 potential adventitious contact residues and screened for inhibition of soluble human furin. Substitutions at one of these sites, Y49, were also screened against yeast Kex2 and human PC7. These screens identified not only variants that exhibited increased affinity (up to 20-fold), but also species that exhibited enhanced selectivity, that is, increased discrimination between the target enzymes (up to 41-fold for furin versus PC7 and 20-fold for PC7 versus furin). One variant, Asp-49-Arg-42-Arg-45-eglin, exhibited a Ki of 310 pM for furin and blocked furin-dependent processing of von Willebrand factor in COS-1 cells when added to the culture medium of the cells. The exploitation of adventitious contact sites may provide a versatile technique for developing potent, selective inhibitors for newly discovered proteases and could in principle be applied to optimize numerous protein-protein interactions.
Collapse
Affiliation(s)
- Tomoko Komiyama
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Bryan VanderLugt
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Martin Fugère
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Robert Day
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Randal J. Kaufman
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
| | - Robert S. Fuller
- Department of Biological Chemistry,
Howard Hughes Medical Institute, University of
Michigan Medical School, Ann Arbor, MI 48109; and
Institut de Pharmacologie se Sherbrooke,
Universite de Sherbrooke, QC, Canada J1H 5N4
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
177
|
Taylor NA, Van De Ven WJM, Creemers JWM. Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 2003; 17:1215-27. [PMID: 12832286 DOI: 10.1096/fj.02-0831rev] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proprotein convertases (PCs) are a seven-member family of endoproteases that activate proproteins by cleavage at basic motifs. Expression patterns for individual PCs vary widely, and all cells express several members. The list of substrates activated by PCs has grown to include neuropeptides, peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules, blood coagulation factors, plasma proteins, viral coat proteins, and bacterial toxins. It has become clear that the PC family plays a crucial role in a variety of physiological processes and is involved in the pathology of diseases such as cancer, viral infection, and Alzheimer's disease. Recent studies using PC inhibitors have demonstrated their potential as therapeutic targets. Despite the avalanche of in vitro data, the physiological role of individual PCs has remained largely elusive. Recently, however, knockout mouse models have been developed for furin, PC1, PC2, PC4, PC6B, LPC, and PACE4, and human patients with PC1 deficiency have been identified. The phenotypes range from undetectable to early embryonic lethality. The major lesson learned from these studies is that specific PC-substrate pairs do exist, but that there is substantial redundancy for the majority of substrates. To some extent, redundancy may be cell type and even species dependent.
Collapse
Affiliation(s)
- Neil A Taylor
- Laboratory of Molecular Oncology, Department for Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Gasthuisberg O/N 6, Herestraat 49, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
178
|
Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chrétien M, Seidah NG, Khatib AM. The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest 2003. [DOI: 10.1172/jci200317220] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
179
|
Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chrétien M, Seidah NG, Khatib AM. The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest 2003; 111:1723-32. [PMID: 12782675 PMCID: PMC156106 DOI: 10.1172/jci17220] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Accepted: 03/19/2003] [Indexed: 01/13/2023] Open
Abstract
The secretory factor VEGF-C has been directly implicated in various physiological processes during embryogenesis and human cancers. However, the importance of the conversion of its precursor proVEGF-C to mature VEGF-C in tumorigenesis, and vessel formation and the identity of the protease(s) that regulate these processes is/are not known. The intracellular processing of proVEGF-C that occurs within the dibasic motif HSIIRR(227)SL suggests the involvement of the proprotein convertases (PCs) in this process. In addition, furin and VEGF-C were found to be coordinately expressed in adult mouse tissues. Cotransfection of the furin-deficient colon carcinoma cell line LoVo with proVEGF-C and different PC members revealed that furin, PC5, and PC7 are candidate VEGF-C convertases. This finding is consistent with the in vitro digestions of an internally quenched synthetic fluorogenic peptide mimicking the cleavage site of proVEGF-C ((220)Q-VHSIIRR downward arrow SLP(230)). The processing of proVEGF-C is blocked by the inhibitory prosegments of furin, PC5, and PACE4, as well as by furin-motif variants of alpha2-macroglobulin and alpha1-antitrypsin. Subcutaneous injection of CHO cells stably expressing VEGF-C into nude mice enhanced angiogenesis and lymphangiogenesis, but not tumor growth. In contrast, expression of proVEGF-C obtained following mutation of the cleavage site (HSIIRR(227)SL to HSIISS(227)SL) inhibits angiogenesis and lymphangiogenesis as well as tumor growth. Our findings demonstrate the processing of proVEGF-C by PCs and highlight the potential use of PC inhibitors as agents for inhibiting malignancies induced by VEGF-C.
Collapse
Affiliation(s)
- Geraldine Siegfried
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 2003; 161:521-33. [PMID: 12732614 PMCID: PMC2172928 DOI: 10.1083/jcb.200302072] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lysosome-related organelles are cell type-specific intracellular compartments with distinct morphologies and functions. The molecular mechanisms governing the formation of their unique structural features are not known. Melanosomes and their precursors are lysosome-related organelles that are characterized morphologically by intralumenal fibrous striations upon which melanins are polymerized. The integral membrane protein Pmel17 is a component of the fibrils and can nucleate their formation in the absence of other pigment cell-specific proteins. Here, we show that formation of intralumenal fibrils requires cleavage of Pmel17 by a furin-like proprotein convertase (PC). As in the generation of amyloid, proper cleavage of Pmel17 liberates a lumenal domain fragment that becomes incorporated into the fibrils; longer Pmel17 fragments generated in the absence of PC activity are unable to form organized fibrils. Our results demonstrate that PC-dependent cleavage regulates melanosome biogenesis by controlling the fibrillogenic activity of a resident protein. Like the pathologic process of amyloidogenesis, the formation of other tissue-specific organelle structures may be similarly dependent on proteolytic activation of physiological fibrillogenic substrates.
Collapse
Affiliation(s)
- Joanne F Berson
- Dept. of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, USA
| | | | | | | | | | | |
Collapse
|
181
|
Artigiani S, Barberis D, Fazzari P, Longati P, Angelini P, van de Loo JW, Comoglio PM, Tamagnone L. Functional regulation of semaphorin receptors by proprotein convertases. J Biol Chem 2003; 278:10094-101. [PMID: 12533544 DOI: 10.1074/jbc.m210156200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PLEXIN genes encode receptors for secreted and membrane-bound semaphorins. It was proposed that the extracellular domain of plexins acts as an inhibitory moiety, preventing receptor activation. Here we show that plexin-B1 and plexin-B2 undergo proteolytic processing in their extracellular portion, thereby converting single-chain precursors into non-disulfide-linked, heterodimeric receptors. We demonstrate that plexin processing is mediated by subtilisin-like proprotein convertases, by inhibition with alpha1-antitrypsin Portland, and by mutagenesis of the substrate-cleavage sites. We provide evidence indicating that proprotein convertases cleave plexins in a post-Golgi compartment and, likely, at the cell surface. In addition, we find that both cell surface targeting and proteolytic processing of plexin-B1 depend on protein-protein interaction motifs in the cytoplasmic domain of the receptor. We then show that proteolytic conversion of plexin-B1 into a heterodimeric receptor greatly increases the binding and the functional response to its specific ligand semaphorin 4D/CD100. Thus, we conclude that cleavage by proprotein convertases is a novel regulatory step for semaphorin receptors localized at the cell surface.
Collapse
Affiliation(s)
- Stefania Artigiani
- Institute for Cancer Research and Treatment (IRCC), University of Torino School of Medicine, 10060 Candiolo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
The central role of endoconvertases and HIV-1 protease (HIV-1 PR) in the processing of HIV proproteins makes the design of specific inhibitors important in anti-HIV gene therapy. Accordingly, we tested native alpha(1) antitrypsin (alpha(1)AT) delivered by a recombinant simian virus-40-based vector, SV(AT), as an inhibitor of HIV-1 proprotein maturation. Cell lines and primary human lymphocytes were transduced with SV(AT) without selection and detectable toxicity. Expression of alpha(1)AT was confirmed by Northern blotting, immunoprecipitation and immunostaining. SV(AT)-transduced cells showed no evidence of HIV-1-related cytopathic effects when challenged with high doses of HIV-1(NL4-3). As measured by HIV-1 p24 assay, SV(AT)-transduced cells were protected from HIV-1(NL4-3) at challenge dose of 40 000 TCID(50) (MOI = 0.04). In addition, peripheral blood lymphocytes treated with SV(AT) were protected from HIV doses challenge up to 40 000 TCID(50) (MOI = 0.04). By Western blot analyses, the delivered alpha(1)AT inhibited cellular processing of gp160 to gp120 and decreased HIV-1 virion gp120. SV(AT) inhibited processing of p55(Gag) as well. Furthermore, high levels of uncleaved p55(Gag) protein were detected in HIV virus particles recovered from SV(AT)-transduced cells lines and primary lymphocytes. Thus, delivering alpha(1)AT using SV(AT) to human lymphocytes strongly inhibits replication of HIV-1, most likely by inhibiting the activities both of the cellular serine proteases involved in processing gp160 and of the aspartyl protease, HIV-1 PR, which cleaves p55(Gag). alpha(1)AT delivered by SV(AT) may represent a novel and effective strategy for gene therapy to interfere with HIV replication, by blocking a stage in the virus replicative cycle that has until now been inaccessible to gene therapeutic intervention.
Collapse
Affiliation(s)
- P Cordelier
- Department of Pathology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
183
|
Bassi DE, Mahloogi H, Lopez De Cicco R, Klein-Szanto A. Increased furin activity enhances the malignant phenotype of human head and neck cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:439-47. [PMID: 12547702 PMCID: PMC1851171 DOI: 10.1016/s0002-9440(10)63838-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many proteins are synthesized as inactive proforms requiring a proteolytic processing to render them active. A variety of proteases catalyze these cleavage reactions. Proprotein convertases are a family of serine proteases capable of activating substrates that will subsequently intervene in extracellular matrix (ECM) degradation, cell growth, differentiation and viral pathogenesis. Furin, the prototype of this family, has been implicated in many physiological and pathological processes. Some of its substrates such as TGF-beta, MT-MMP's, and IGFR-1 have been identified. Overexpression of furin has been observed in several human tumors. In this report we demonstrate that overexpression of furin causes a significant increase in the invasive potential of human tumor cells of low and moderate aggressive potential in vitro and in vivo. SCC12 and SCC15 were transfected with furin cDNA, resulting in efficient processing of furin substrates. An in vivo invasion assay showed enhancement of invasive ability. Inhibition of furin activity with the synthetic inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl-ketone, CMK, showed a significant decrease in both processing and in vitro invasiveness. A moderate enhancement in proliferation rate was observed when cells were transfected with furin. CMK treatment resulted in a marked reduction of this effect. Tumors obtained after subcutaneous (s.c.) inoculation of furin-overexpressing cells were larger and developed earlier than the controls. Furin overexpression caused an imbalance in the activation of invasion and proliferation-related substrates leading to the acquisition of an advanced malignant phenotype. In addition, inhibition of furin activity decreases substrate activation, proliferation rate, and invasive potential of cancer cells, suggesting that furin is a potentially useful target for therapeutics.
Collapse
Affiliation(s)
- Daniel E Bassi
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
184
|
Tsuji A, Sakurai K, Kiyokage E, Yamazaki T, Koide S, Toida K, Ishimura K, Matsuda Y. Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix. Potential role of PACE4 in the activation of proproteins in the extracellular matrix. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1645:95-104. [PMID: 12535616 DOI: 10.1016/s1570-9639(02)00532-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PACE4, PC6 and furin are potent subtilisin-like proprotein convertases (SPCs) which are responsible for the activation of transforming growth factor-beta (TGFbeta)-related factors such as bone morphogenetic proteins. Heparan sulfate proteoglycan within the extracellular matrix (ECM) is known to regulate the biological activity of various differentiation factors including TGFbeta-related molecules. PACE4 binds tightly to heparin and its heparin-binding region was found to be a cationic stretch of amino acids between residues 743 and 760. Furthermore, PACE4 was detected in the extracellular material fraction of the HEK293 cells, defined as the material remaining on the culture plate following the removal of the cells from the plate. PACE4 bound to the extracellular fraction was selectively dislodged by heparin into the culture medium. Heparin has no inhibitory activity against PACE4. Similarly, PC6A is also able to bind to heparin, whereas soluble furin does not. In human placenta, PACE4 is mainly present in syncytiotrophoblasts and can be released by heparin. These results suggest that PACE4 and PC6 are unique SPC family proteases that anchor heparan sulfate proteoglycans at the ECM. The interaction between PACE4 and heparan sulfate proteoglycans might play an important role in the delicate spatiotemporal regulation of TGFbeta-related factors' biological activity.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, 770-8506, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Nour N, Basak A, Chrétien M, Seidah NG. Structure-function analysis of the prosegment of the proprotein convertase PC5A. J Biol Chem 2003; 278:2886-95. [PMID: 12414802 DOI: 10.1074/jbc.m208009200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate if some residues within the prosegment of PC5A are important for its optimal proteolytic function, various PC5A mutants were cellularly expressed, and their processing activities were compared using pro-vascular endothelial growth factor C (pro-VEGF-C) as a substrate. Although wild type PC5A almost completely processes pro-VEGF-C, a prosegment deletion as well as both P1 mutants of the primary (R116A) and secondary (R84A) autocatalytic cleavage sites are inactive. The in vitro inhibitory potency of various decapeptides mimicking the C-terminal sequence of PC5 prosegment (pPC5) revealed that the native (107)QQVVKKRTKR(116) peptide is a nanomolar inhibitor, whereas its P6 mutant K111H is more selective toward PC5A than Furin. In vitro activity assays using the bacterially expressed pPC5 and its mutants revealed them to be very potent nanomolar inhibitors (IC(50)) and only approximately 6-fold more selective inhibitors of PC5A versus Furin. Expression of the preprosegment of PC5 (ppPC5) and its mutants in Chinese hamster ovary FD11 cells overexpressing pro-VEGF-C with either PC5A or Furin showed them to be as good inhibitors of PC5A as the serpin alpha1-antitrypsin Portland (alpha1-PDX), ppFurin, or ppPACE4 but less potent toward overexpressed Furin. In conclusion, cleavages of the prosegment of PC5A at both Arg(116) and Arg(84) are required for PC5A cellular activity, and ppPC5 is a very potent but modestly selective cellular inhibitor of PC5A.
Collapse
Affiliation(s)
- Nadia Nour
- Laboratories of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
186
|
Rockwell NC, Krysan DJ, Komiyama T, Fuller RS. Precursor processing by kex2/furin proteases. Chem Rev 2002; 102:4525-48. [PMID: 12475200 DOI: 10.1021/cr010168i] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan C Rockwell
- Department of Biological Chemistry, University of Michigan Medical Center, Room 5413 Med Sci I, 1301 East Catherine, Ann Arbor Michigan 48109, USA
| | | | | | | |
Collapse
|
187
|
Sarac MS, Cameron A, Lindberg I. The furin inhibitor hexa-D-arginine blocks the activation of Pseudomonas aeruginosa exotoxin A in vivo. Infect Immun 2002; 70:7136-9. [PMID: 12438396 PMCID: PMC133042 DOI: 10.1128/iai.70.12.7136-7139.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/06/2002] [Accepted: 08/20/2002] [Indexed: 12/11/2022] Open
Abstract
The Pseudomonas aeruginosa exotoxin A (PEA) protein requires furin-mediated cleavage for manifestation of toxicity. We show here that the small stable furin inhibitor hexa-D-arginine amide effectively blocks PEA-induced cell lysis and is itself noncytotoxic. Administration of hexa-D-arginine to PEA-treated mice significantly improves their survival rate and also decreases circulating levels of tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Miroslav S Sarac
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans 70112, USA
| | | | | |
Collapse
|
188
|
Laprise MH, Grondin F, Cayer P, McDonald PP, Dubois CM. Furin gene (fur) regulation in differentiating human megakaryoblastic Dami cells: involvement of the proximal GATA recognition motif in the P1 promoter and impact on the maturation of furin substrates. Blood 2002; 100:3578-87. [PMID: 12411321 DOI: 10.1182/blood.v100.10.3578] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The convertase furin is involved in the maturation of key growth/aggregation mediators synthesized by the platelet producers, megakaryocytes, but the regulation of furin in these cells remains unknown. Computer-assisted search of the furin promoter sequence revealed multiple potential binding motifs for GATA-1, suggesting that furin is expressed and regulated in these cells. Using megakaryoblastic Dami cells, we observed that fur mRNA expression increased gradually on phorbol 12-myristate 13-acetate-induced differentiation, reaching maximum levels (8.3-fold increase) at 10 days. Transient transfections with P1, P1A, or P1B fur-LUC-promoter constructs revealed that in Dami cells, the P1 promoter is the strongest and the most sensitive to forced expression of GATA-1. Coexpression of GATA-1 and its comodulator, Friend of GATA-1 (FOG-1), resulted in a cooperative increase in P1 activity. Deletion analysis indicated that important GATA-1-regulated sequences are located in the most proximal region of the P1 promoter. Further analysis revealed 2 potential GATA-binding motifs at positions -66 and +62. Point mutation of each of the 2 motifs indicated that the intactness of the first GATA site is required for full basal and GATA-1-stimulated promoter activity. Finally, the inhibition of furin activity through gene transfer of the inhibitor alpha1-AT-PDX led to a block in maturation of the furin substrates transforming growth factor-beta1 and platelet-derived growth factor. Taken together, these results indicate that the most proximal GATA element in the P1 promoter is needed for fur gene expression in megakaryoblastic cells. They also suggest that proper regulation of the fur gene in megakaryocytes has an impact on the activation of furin substrates involved in megakaryocyte maturation and platelet functions.
Collapse
Affiliation(s)
- Marie-Hélène Laprise
- Immunology Division, Department of Pediatrics, Faculty of Medicine, University of Sherbrooke, Québec, PQ, Canada
| | | | | | | | | |
Collapse
|
189
|
Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 2002; 3:753-66. [PMID: 12360192 PMCID: PMC1964754 DOI: 10.1038/nrm934] [Citation(s) in RCA: 939] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Furin catalyses a simple biochemical reaction--the proteolytic maturation of proprotein substrates in the secretory pathway. But the simplicity of this reaction belies furin's broad and important roles in homeostasis, as well as in diseases ranging from Alzheimer's disease and cancer to anthrax and Ebola fever. This review summarizes various features of furin--its structural and enzymatic properties, intracellular localization, trafficking, substrates, and roles in vivo.
Collapse
Affiliation(s)
- Gary Thomas
- Vollum Institute, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| |
Collapse
|
190
|
Khatib AM, Siegfried G, Chrétien M, Metrakos P, Seidah NG. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1921-35. [PMID: 12057895 PMCID: PMC1850825 DOI: 10.1016/s0002-9440(10)61140-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mammalian subtilisin/kexin-like proprotein convertase (PC) family has been implicated in the activation of a wide spectrum of proteins. These proteins are usually synthesized as inactive precursors before their conversion to fully mature bioactive forms. A large majority of these active proteins such as matrix metalloproteases, growth factors, and adhesion molecules are crucial in the processes of cellular transformation, acquisition of the tumorigenic phenotype, and metastases formation. Inhibition of PCs significantly affects the malignant phenotype of various tumor cells. In addition to direct tumor cell proliferation and migration blockade, PC inhibitors can also be used to target tumor angiogenesis. In this Review article we discuss a number of recent findings on the clinical relevance of PCs in cancer patients, their implication in the regulation of multiple cellular functions that impact on the invasive/metastatic potential of cancer cells. Thus, PC inhibitors may constitute new promising agents for the treatment of multiple tumors and/or in adjuvant therapy to prevent recurrence.
Collapse
Affiliation(s)
- Abdel-Majid Khatib
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
191
|
Anderson ED, Molloy SS, Jean F, Fei H, Shimamura S, Thomas G. The ordered and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. J Biol Chem 2002; 277:12879-90. [PMID: 11799113 PMCID: PMC1424220 DOI: 10.1074/jbc.m108740200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The propeptide of furin has multiple roles in guiding the activation of the endoprotease in vivo. The 83-residue N-terminal propeptide is autoproteolytically excised in the endoplasmic reticulum (ER) at the consensus furin site, -Arg(104)-Thr-Lys-Arg(107)-, but remains bound to furin as a potent autoinhibitor. Furin lacking the propeptide is ER-retained and proteolytically inactive. Co-expression with the propeptide, however, restores trans-Golgi network (TGN) localization and enzyme activity, indicating that the furin propeptide is an intramolecular chaperone. Blocking this step results in localization to the ER-Golgi intermediate compartment (ERGIC)/cis-Golgi network (CGN), suggesting the ER and ERGIC/CGN recognize distinct furin folding intermediates. Following transport to the acidified TGN/endosomal compartments, furin cleaves the bound propeptide at a second, internal P1/P6 Arg site (-Arg-Gly-Val(72)-Thr-Lys-Arg(75)-) resulting in propeptide dissociation and enzyme activation. Cleavage at Arg(75), however, is not required for proper furin trafficking. Kinetic analyses of peptide substrates indicate that the sequential pH-modulated propeptide cleavages result from the differential recognition of these sites by furin. Altering this preference by converting the internal site to a canonical P1/P4 Arg motif (Val(72) --> Arg) caused ER retention and blocked activation of furin, demonstrating that the structure of the furin propeptide mediates folding of the enzyme and directs its pH-regulated, compartment-specific activation in vivo.
Collapse
|
192
|
Croissandeau G, Basak A, Seidah NG, Chrétien M, Mbikay M. Proprotein convertases are important mediators of the adipocyte differentiation of mouse 3T3-L1 cells. J Cell Sci 2002; 115:1203-11. [PMID: 11884519 DOI: 10.1242/jcs.115.6.1203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mouse 3T3-L1 cells are widely used to study adipocyte differentiation in vitro. When treated with insulin, dexamethasone and isobutylmethylxanthine these fibroblastic cells differentiate into round triglyceride-rich adipocytes. Because several proteins implicated in adipocyte differentiation(e.g. type 1 IGF receptors) are proteolytically activated by endoproteinases of the proprotein convertase family, we sought to determine whether these endoproteinases are crucial for adipose conversion. In this study, we show that expression of the proprotein convertases PACE4, PC7 and furin increases when 3T3-L1 cells are induced to differentiate into adipocytes. The differentiation was blocked in transfected cells expressingα1-antitrypsin Portland or in normal cells pre-treated with the synthetic inhibitor decanoyl-RVKR-chloromethylketone. Both inhibitors are known to specifically inactivate proprotein convertases. The block was associated with impaired proteolytic activation of proIGF-1 receptor, absence of induction of the adipogenic transcriptional factor PPARγ and marked reduction of the nuclear translocation of the C/EBPβ factor. Taken together, these data constitute evidence that proprotein convertases are crucial mediators of adipogenesis.
Collapse
Affiliation(s)
- Gilles Croissandeau
- Diseases of Aging Program, Ottawa Health Research Institute at Ottawa Hospital, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4K9, Canada
| | | | | | | | | |
Collapse
|
193
|
Fugère M, Limperis PC, Beaulieu-Audy V, Gagnon F, Lavigne P, Klarskov K, Leduc R, Day R. Inhibitory potency and specificity of subtilase-like pro-protein convertase (SPC) prodomains. J Biol Chem 2002; 277:7648-56. [PMID: 11723118 DOI: 10.1074/jbc.m107467200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The SPCs (subtilisin-like pro-protein convertases) are a family of enzymes responsible for the proteolytic processing of numerous precursor proteins of the constitutive and regulated secretory pathways. SPCs are themselves synthesized as inactive zymogens. Activation of SPCs occurs via the intramolecular autocatalytic removal of the prodomain. SPC prodomains have been proposed as templates in the development of potent and specific SPC inhibitors. In this study, we investigated the specificity and potency of complete prodomains and short C-terminal prodomain peptides of each SPC on highly purified, soluble enzyme preparations of human SPC1, SPC6, and SPC7. Progress curve kinetic analysis of prodomain peptides and complete prodomains showed competitive inhibitory profiles in the low nanomolar range. Complete prodomains were 5-100 times more potent than C-terminal prodomain peptides, suggesting that N-terminal determinants are involved in the recognition process. However, complete prodomains and prodomain peptides exhibit only a partial specificity toward their cognate enzyme. Ala-scan structure activity studies indicated the importance of basic residues in the P(4), P(5), and P(6) positions for inhibition of SPC1. In contrast, hydrophobic residues in P(6) and P(7), as well as basic residues in P(4) and P(5), were critical for inhibition of SPC7. Our data demonstrated that the use of prodomains as specific inhibitors acting in trans would be of limited usefulness, unless modified into more specific compounds.
Collapse
Affiliation(s)
- Martin Fugère
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Tsuji A, Ikoma T, Hashimoto E, Matsuda Y. Development of selectivity of alpha1-antitrypsin variant by mutagenesis in its reactive site loop against proprotein convertase. A crucial role of the P4 arginine in PACE4 inhibition. Protein Eng Des Sel 2002; 15:123-30. [PMID: 11917148 DOI: 10.1093/protein/15.2.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PACE4, furin and PC6 are Ca2+-dependent serine endoproteases that belong to the subtilisin-like proprotein convertase (SPC) family. Recent reports have supported the involvement of these enzymes in processing of growth/differentiation factors, viral replication, activation of bacterial toxins and tumorigenesis, indicating that these enzymes are a fascinating target for therapeutic agents. In this work, we evaluated the sensitivity and selectivity of three rat alpha1-antitrypsin variants which contained RVPR352, AVRR352 and RVRR352, respectively, within their reactive site loop using both inhibition of enzyme activity toward a fluorogenic substrate in vitro and formation of a SDS-stable protease/inhibitor complex ex vivo. The RVPR variant showed relatively broad selectivity, whereas the AVRR and RVRR variants were more selective than the RVPR variant. The AVRR variant inhibited furin and PC6 but not PACE4. This selectivity was further confirmed by complex formation and inhibition of pro-complement C3 processing. On the other hand, although the RVRR variant inhibited both PACE4 and furin effectively, it needed a 600-fold higher concentration than the RVPR variant to inhibit PC6 in vitro. These inhibitors will be useful tools in helping us to understand the roles of PACE4, furin and PC6.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|
195
|
Kim SH, Creemers JWM, Chu S, Thinakaran G, Sisodia SS. Proteolytic processing of familial British dementia-associated BRI variants: evidence for enhanced intracellular accumulation of amyloidogenic peptides. J Biol Chem 2002; 277:1872-7. [PMID: 11709554 DOI: 10.1074/jbc.m108739200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different mutations in the BRI(2) gene cause rare neurodegenerative conditions, termed familial British dementia (FBD) and familial Danish dementia (FDD). The mutant genes encode BRI-L and BRI-D, the precursors of fibrillogenic ABri and ADan peptides, respectively. We previously reported that furin processes both BRI-L and its wild type counterpart, BRI, resulting in the secretion of C-terminal peptides; elevated levels of peptides were generated from BRI-L. In the present study, we show that inducible expression of alpha1-antitrypsin Portland, a furin inhibitor, inhibits the endoproteolysis of BRI and BRI-L in a dose-dependent manner. Moreover, comparison of the activities of several proprotein convertases reveals that furin is most efficient in endoproteolysis of BRI and BRI-L; PACE4, PC6A, PC6B, and LPC show much lower activities. Interestingly, LPC also exhibits enhanced cleavage of BRI-L compared with BRI. Finally, we demonstrate that BRI-D is also processed by furin and, like BRI-L, the cleavage of BRI-D is more efficient than that of BRI. Interestingly, while the ABri peptide is detected both intracellularly and in the medium, the ADan peptide accumulates predominantly in intracellular compartments. We propose that intracellular accumulation of amyloidogenic ADan or ABri peptides results in the neuronal damage leading to FDD and FBD, respectively.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
196
|
|
197
|
Chen CD, Huff ME, Matteson J, Page L, Phillips R, Kelly JW, Balch WE. Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca(2+) stabilization. EMBO J 2001; 20:6277-87. [PMID: 11707399 PMCID: PMC125307 DOI: 10.1093/emboj/20.22.6277] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hereditary familial amyloidosis of Finnish type (FAF) leading to amyloid in the peripheral and central nervous systems stems from deposition of a 71 residue fragment generated from the D187N/Y variants of plasma gelsolin by two sequential endoproteolytic events. We identify the protease accomplishing the first cleavage as furin, a proprotein convertase. Endoproteolysis of plasma gelsolin occurs in the trans-Golgi network due to the inability of the FAF variants to bind and be stabilized by Ca(2+). Secretion and processing of the FAF variants by furin can be uncoupled by blocking the convergence of the exocytic pathway transporting plasma gelsolin and the endocytic recycling of furin. We propose that coincidence of membrane trafficking pathways contributes to the development of proteolysis-initiated amyloid disease.
Collapse
Affiliation(s)
- Ci-Di Chen
- Departments of Molecular and Cell Biology, Department of Chemistry, Skaggs Institute of Chemical Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA Corresponding authors e-mail: or
C.-D.Chen and M.E.Huff contributed equally to this work
| | - Mary E. Huff
- Departments of Molecular and Cell Biology, Department of Chemistry, Skaggs Institute of Chemical Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA Corresponding authors e-mail: or
C.-D.Chen and M.E.Huff contributed equally to this work
| | - Jeanne Matteson
- Departments of Molecular and Cell Biology, Department of Chemistry, Skaggs Institute of Chemical Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA Corresponding authors e-mail: or
C.-D.Chen and M.E.Huff contributed equally to this work
| | - Lesley Page
- Departments of Molecular and Cell Biology, Department of Chemistry, Skaggs Institute of Chemical Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA Corresponding authors e-mail: or
C.-D.Chen and M.E.Huff contributed equally to this work
| | - Rebecca Phillips
- Departments of Molecular and Cell Biology, Department of Chemistry, Skaggs Institute of Chemical Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA Corresponding authors e-mail: or
C.-D.Chen and M.E.Huff contributed equally to this work
| | - Jeffery W. Kelly
- Departments of Molecular and Cell Biology, Department of Chemistry, Skaggs Institute of Chemical Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA Corresponding authors e-mail: or
C.-D.Chen and M.E.Huff contributed equally to this work
| | - William E. Balch
- Departments of Molecular and Cell Biology, Department of Chemistry, Skaggs Institute of Chemical Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA Corresponding authors e-mail: or
C.-D.Chen and M.E.Huff contributed equally to this work
| |
Collapse
|
198
|
Bahbouhi B, Seidah NG, Bahraoui E. Replication of HIV-1 viruses in the presence of the Portland alpha1-antitrypsin variant (alpha1-PDX) inhibitor. Biochem J 2001; 360:127-34. [PMID: 11695999 PMCID: PMC1222209 DOI: 10.1042/0264-6021:3600127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Portland alpha1-antitrypsin variant (alpha1-PDX) inhibits gp160 cleavage into gp120 and gp41 by different prohormone convertases (PCs) including furin, PC5 and PC7. Jurkat cells stably transfected with this inhibitor (J-PDX cells) and, as controls, Jurkat cells transfected with the empty vector (J-pcDNA3) were tested for their susceptibility to HIV-1 infection. We found that HIV-1 replication was significantly impaired in J-PDX cells. However, the analysis of the infectivity of HIV-1 viruses produced in J-PDX cells on different days during the infection indicated that they recovered infectivity starting from 13 days post-infection. The sequencing of viruses collected earlier and later from J-PDX cells revealed no mutations in envelope-glycoprotein precursor (Env) maturation sites or in the N-terminal sequence of gp41 fusion peptide, which plays a key role in membrane fusion. Although conserved mutations were detected at the C-terminus of the gp41 fusion peptide and ectodomain, the replication of mutant HIV-1 viruses produced on day 20 in J-PDX cells was inhibited at a similar level to wild-type viruses after a second passage in J-PDX cells. We then investigated the expression of the alpha1-PDX protein, and found that HIV-1 replication activated its proteolysis since the 54 kDa cleaved form became predominant later on in the infection. In contrast, the expression of PC7, a protein that is transported through the secretory pathway, was unaltered in HIV-1 infected cells. We conclude that recovered HIV-1 infectivity in J-PDX cells was due to a loss of alpha1-PDX activity via its extensive processing by intracellular proteases that cleave it through the substrate pathway.
Collapse
Affiliation(s)
- B Bahbouhi
- Laboratoire d'immuno-virologie, EA 30-38 Université Paul Sabatier, UFR/SVT, 31062 Toulouse, France
| | | | | |
Collapse
|
199
|
Bahbouhi B, Bendjennat M, Chiva C, Kogan M, Albericio F, Giralt E, Seidah NG, Bahraoui E. Inhibition of HIV-2(ROD) replication in a lymphoblastoid cell line by the alpha1-antitrypsin Portland variant (alpha1-PDX) and the decRVKRcmk peptide: comparison with HIV-1(LAI). Microbes Infect 2001; 3:1073-84. [PMID: 11709287 DOI: 10.1016/s1286-4579(01)01467-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effects of alpha1-antitrypsine Portland variant (alpha1-PDX) and decanoylRVKRchloromethylketone (decRVKRcmk) on HIV-2(ROD) replication in the Jurkat lymphoblastoid cell line. To this end, cells were stably transfected with the alpha1-PDX (J-PDX) and used as targets for HIV-2(ROD) infection. Controls were prepared with the empty vector (J-pcDNA3). HIV-2(ROD) and HIV-1(LAI) replications were significantly inhibited and delayed in the presence of the alpha1-PDX protein. When decRVKRcmk was used at 35 microM, inhibition rates were 70-80% for HIV-2(ROD) and HIV-1(LAI), while total inhibition occurred at 70 microM. Control peptides consisting of decanoylRVKR and acetylYVADcmk had no effect. In the presence of the alpha1-PDX or the decRVKRcmk at 35 microM, the infectivity of HIV-2(ROD) and HIV-1(LAI) produced was 3-4-fold lower. Both molecules inhibited syncytium formation by HIV-2(ROD) and HIV-1(LAI) to a considerable extent. Finally, the inhibition of viral replication was correlated with the ability of the decRVKRcmk at 35 and 70 microM and of the alpha1-PDX, to inhibit the processing of envelope glycoprotein precursors. The alpha1-PDX protein and the decRVKRcmk peptide at 35 microM inhibited HIV-2 and HIV-1 to a similar level suggesting that identical or closely related endoproteases are involved in the maturation of their envelope glycoprotein precursors into surface and transmembrane glycoproteins. The significant inhibition observed with alpha1-PDX indicates that furin or furin-like endoproteases appear to play a major role in the maturation process.
Collapse
Affiliation(s)
- B Bahbouhi
- Laboratoire dimmuno-virologie, Université Paul Sabatier, Bât 4R3, UFR/SVT, 118, route de Narbonne, 31062 cedex, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Dufour EK, Denault JB, Bissonnette L, Hopkins PC, Lavigne P, Leduc R. The contribution of arginine residues within the P6-P1 region of alpha 1-antitrypsin to its reaction with furin. J Biol Chem 2001; 276:38971-9. [PMID: 11479287 DOI: 10.1074/jbc.m102959200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of mutants incorporating furin recognition sequences within the P6-P1 region of the reactive site loop of alpha(1)-antitrypsin were constructed. Variants containing different combinations of basic residues in the P1, P2, P4, and P6 positions replacing the wild type (P6)LEAIPM(P1) sequence were evaluated for their capacity to establish SDS-resistant complexes with furin, to affect association rate constants (k(ass) and k'(ass)), or to inhibit furin-dependent proteolysis of a model precursor in vivo. Each variant abolished processing of pro-von Willebrand factor in transfected hEK293 cells. The k(ass) of all variants were found to be similar (1.1-1.7 x 10(6) m(-1) s(-1)) except for one mutant, RERIRR, which had a k(ass) of 3.3 x 10(5) m(-1) s(-1). However, the stoichiometry of inhibition varied with values ranging from 2.9 to >24, indicating rapid formation of the acyl-enzyme intermediate (high k'(ass)). Moreover, those variants having high stoichiometry of inhibition values were accompanied by the rapid formation of cleaved forms of the inhibitors. The data suggest that the rate of conversion of the acyl-enzyme (EI') into the highly stable complex (EI*) was affected by replacement of specific residues within the reactive site loop. Taken together, the results reveal how furin recognition sequences within the context of the biochemical properties of serpins will play a role in the capacity of the protein to follow either the inhibitory or the substrate pathway.
Collapse
Affiliation(s)
- E K Dufour
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141, USA
| | | | | | | | | | | |
Collapse
|