151
|
Gómez-Hernández A, Escribano Ó, Perdomo L, Otero YF, García-Gómez G, Fernández S, Beneit N, Benito M. Implication of insulin receptor A isoform and IRA/IGF-IR hybrid receptors in the aortic vascular smooth muscle cell proliferation: role of TNF-α and IGF-II. Endocrinology 2013; 154:2352-64. [PMID: 23677929 DOI: 10.1210/en.2012-2161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To assess the role of insulin receptor (IR) isoforms (IRA and IRB) in the proliferation of vascular smooth muscle cells (VSMCs) involved in the atherosclerotic process, we generated new VSMC lines bearing IR (wild-type VSMCs; IRLoxP(+/+) VSMCs), lacking IR (IR(-/-) VSMCs) or expressing IRA (IRA VSMCs) or IRB (IRB VSMCs). Insulin and different proatherogenic stimuli induced a significant increase of IRA expression in IRLoxP(+/+) VSMCs. Moreover, insulin, through ERK signaling, and the proatherogenic stimuli, through ERK and p38 signaling, induced a higher proliferation in IRA than IRB VSMCs. The latter effect might be due to IRA cells showing a higher expression of angiotensin II, endothelin 1, and thromboxane 2 receptors and basal association between IRA and these receptors. Furthermore, TNF-α induced in a ligand-dependent manner a higher association between IRA and TNF-α receptor 1 (TNF-R1). On the other hand, IRA overexpression might favor the atherogenic actions of IGF-II. Thereby, IGF-II or TNF-α induced IRA and IGF-I receptor (IGF-IR) overexpression as well as an increase of IRA/IGF-IR hybrid receptors in VSMCs. More importantly, we observed a significant increase of IRA, TNF-R1, and IGF-IR expression as well as higher association of IRA with TNF-R1 or IGF-IR in the aorta from ApoE(-/-) and BATIRKO mice, 2 models showing vascular damage. In addition, anti-TNF-α treatment prevented those effects in BATIRKO mice. Finally, our data suggest that the IRA isoform and its association with TNF-R1 or IGF-IR confers proliferative advantage to VSMCs, mainly in response to TNF-α or IGF-II, which might be of significance in the early atherosclerotic process.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Immunoprecipitation
- Insulin-Like Growth Factor II/pharmacology
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Instituto de Investigaciones Sanitarias Hospital Clínico San Carlos, Centro de Investigación Biomédica en Red of Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Madrid 28040, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Wu Z, Wang S, Gruber S, Mata M, Fink DJ. Full-length membrane-bound tumor necrosis factor-α acts through tumor necrosis factor receptor 2 to modify phenotype of sensory neurons. Pain 2013; 154:1778-1782. [PMID: 23711481 DOI: 10.1016/j.pain.2013.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/09/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022]
Abstract
Neuropathic pain resulting from spinal hemisection or selective spinal nerve ligation is characterized by an increase in membrane-bound tumor necrosis factor-alpha (mTNFα) in spinal microglia without detectable release of soluble TNFα (sTNFα). In tissue culture, we showed that a full-length transmembrane cleavage-resistant TNFα (CRTNFα) construct can act through cell-cell contact to activate neighboring microglia. We undertook the current study to test the hypothesis that mTNFα expressed in microglia might also affect the phenotype of primary sensory afferents, by determining the effect of CRTNFα expressed from COS-7 cells on gene expression in primary dorsal root ganglia (DRG) neurons. Co-culture of DRG neurons with CRTNFα-expressing COS-7 cells resulted in a significant increase in the expression of voltage-gated sodium channel isoforms NaV1.7 and NaV1.8, and voltage-gated calcium channel subunit CaV3.2 at both mRNA and protein levels, and enhanced CCL2 expression and release from the DRG neurons. Exposure to sTNFα produced an increase only in CCL2 expression and release. Treatment of the cells with an siRNA against tumor necrosis factor receptor 2 (TNFR2) significantly reduced CRTNFα-induced gene expression changes in DRG neurons, whereas administration of CCR2 inhibitor had no significant effect on CRTNFα-induced increase in gene expression and CCL2 release in DRG neurons. Taken together, the results of this study suggest that mTNFα expressed in spinal microglia can facilitate pain signaling by up-regulating the expression of cation channels and CCL2 in DRG neurons in a TNFR2-dependent manner.
Collapse
Affiliation(s)
- Zetang Wu
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System (Neurology and Geriatric Research Education and Clinical Center), Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
153
|
Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res 2013; 62:641-51. [PMID: 23685857 DOI: 10.1007/s00011-013-0633-0] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/03/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Inflammation is a very important part of innate immunity and is regulated in many steps. One such regulating step is the cytokine network, where tumor necrosis factor α (TNF-α) plays one of the most important roles. METHODS A PubMed and Web of Science databases search was performed for studies providing evidences on the role of TNF-α in inflammation, apoptosis, and cancer. RESULTS AND CONCLUSION This review concisely summarizes the role of this pro-inflammatory cytokine during inflammation. It is focused mainly on TNF-α intracellular signaling and its influence on the typical inflammatory features in the organism. Being one of the most important pro-inflammatory cytokines, TNF-α participates in vasodilatation and edema formation, and leukocyte adhesion to epithelium through expression of adhesion molecules; it regulates blood coagulation, contributes to oxidative stress in sites of inflammation, and indirectly induces fever. The connection between TNF-α and cancer is mentioned as well.
Collapse
Affiliation(s)
- Hana Zelová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42 Brno, Czech Republic
| | | |
Collapse
|
154
|
Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol Renal Physiol 2013; 304:F1231-42. [PMID: 23515717 DOI: 10.1152/ajprenal.00557.2012] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states such as hypertension and diabetes and has been found to mediate both increases and decreases in blood pressure. High levels of TNF-α decrease blood pressure, whereas moderate increases in TNF-α have been associated with increased NaCl retention and hypertension. The explanation for these disparate effects is not clear but could simply be due to different concentrations of TNF-α within the kidney, the physiological status of the subject, or the type of stimulus initiating the inflammatory response. TNF-α alters renal hemodynamics and nephron transport, affecting both activity and expression of transporters. It also mediates organ damage by stimulating immune cell infiltration and cell death. Here we will summarize the available findings and attempt to provide plausible explanations for such discrepancies.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | |
Collapse
|
155
|
To SQ, Knower KC, Clyne CD. Origins and actions of tumor necrosis factor α in postmenopausal breast cancer. J Interferon Cytokine Res 2013; 33:335-45. [PMID: 23472660 DOI: 10.1089/jir.2012.0155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tumor necrosis factor α (TNFα) has many roles in both physiological and pathological states. Initially thought to cause necrosis of tumors, research has shown that in many tumor types, including breast cancer, TNFα contributes to growth and proliferation. The presence of TNFα-derived from the tumor and infiltrating immune cells-within a breast tumor microenvironment has been correlated with a more aggressive phenotype, and the postmenopausal ER+ subtype of breast cancers appears to strongly respond to its many pro-growth signaling functions. We discuss how TNFα regulates estrogen biosynthesis within the breast, affecting the activity of the key estrogen-synthesizing enzymes aromatase, estrone sulfatase, and 17β-HSD type 1. Additionally, we describe the anti-adipogenic actions of TNFα that are critical in preventing adjacent estrogen-producing adipose fibroblasts from differentiating, ensuring that the tumor maintains a constant source of estrogen-producing cells. We examine how the increased risk of developing breast cancer in older and obese individuals may be linked to the levels of TNFα in the body. Finally, we evaluate the feasibility of targeting TNFα and its associated pathways as a novel approach to breast cancer therapeutics.
Collapse
Affiliation(s)
- Sarah Q To
- Cancer Drug Discovery Laboratory, Prince Henry's Institute of Medical Research, Clayton, Australia
| | | | | |
Collapse
|
156
|
Abstract
We introduce and study a simple lattice statistical mechanics modelfor the clustering of tumor necrosis factor receptor I (TNFR1).Our model explains clustering under over-expression of the cytoplasmicsignal transducer as well as the clustering induced via extracellularligand binding; also we explain why the loss of transducer leads to arapid break-up of the clusters. The basic mechanism at work is a first-order(cooperative) phase transition caused by the multimeric binding capability ofthe receptor-transducer complex. Using cooperativity of this type, the cellsare found to have an enhanced sensitivity and robustness. In general, ourmethod can be applied to other receptor-clustering related signaling system.
Collapse
Affiliation(s)
- C Guo
- Dept. of Physics, University of California San Diego, La Jolla, CA 92093-0319 U.S.A
| | | |
Collapse
|
157
|
The renal injury and inflammation caused by ischemia–reperfusion are reduced by genetic inhibition of TNF-αR1: A comparison with infliximab treatment. Eur J Pharmacol 2013; 700:134-46. [DOI: 10.1016/j.ejphar.2012.11.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 11/25/2012] [Accepted: 11/28/2012] [Indexed: 11/15/2022]
|
158
|
Rodgers JM, Miller SD. Cytokine control of inflammation and repair in the pathology of multiple sclerosis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2012; 85:447-68. [PMID: 23239947 PMCID: PMC3516888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytokines are secreted signaling proteins that play an essential role in propagating and regulating immune responses during experimental autoimmune encephalomyelitis (EAE), the mouse model of the neurodegenerative, autoimmune disease multiple sclerosis (MS). EAE pathology is driven by a myelin-specific T cell response that is activated in the periphery and mediates the destruction of myelin upon T cell infiltration into the central nervous system (CNS). Cytokines provide cell signals both in the immune and CNS compartment, but interestingly, some have detrimental effects in the immune compartment while having beneficial effects in the CNS compartment. The complex nature of these signals will be reviewed.
Collapse
Affiliation(s)
- Jane M. Rodgers
- Department of Microbiology-Immunology, Feinberg School of Medicine,
Northwestern University, Chicago, Illinois
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine,
Northwestern University, Chicago, Illinois
| |
Collapse
|
159
|
Govern CC, ten Wolde PR. Fundamental limits on sensing chemical concentrations with linear biochemical networks. PHYSICAL REVIEW LETTERS 2012; 109:218103. [PMID: 23215617 DOI: 10.1103/physrevlett.109.218103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Indexed: 06/01/2023]
Abstract
Living cells often need to extract information from biochemical signals that are noisy. We study how accurately cells can measure chemical concentrations with signaling networks that are linear. For stationary signals of long duration, they can reach, but not beat, the Berg-Purcell limit, which relies on uniformly averaging in time the fluctuations in the input signal. For short times or nonstationary signals, however, they can beat the Berg-Purcell limit, by nonuniformly time averaging the input. We derive the optimal weighting function for time averaging and use it to provide the fundamental limit of measuring chemical concentrations with linear signaling networks.
Collapse
|
160
|
Seifert O, Plappert A, Heidel N, Fellermeier S, Messerschmidt SKE, Richter F, Kontermann RE. The IgM CH2 domain as covalently linked homodimerization module for the generation of fusion proteins with dual specificity. Protein Eng Des Sel 2012; 25:603-12. [PMID: 22988132 DOI: 10.1093/protein/gzs059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dimeric assembly of antibody fragments and other therapeutic molecules can result in increased binding and improved bioactivity. Here, we investigated the use of the IgM heavy chain domain 2 (MHD2) as covalently linked homodimerization module. Fusion of single-chain fragment variable (scFv) molecules directed against epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 to the N- and/or C-terminus of the MHD2, respectively, resulted in molecules with single or dual specificity for tumor cells. Bispecific tetravalent molecules were further generated by fusing a bispecific single-chain diabody directed against EGFR and epithelial cell adhesion molecule to the N-terminus of the MHD2. By combining an anti-EGFR scFv with a single-chain derivative of tumor necrosis factor, a tetravalent bifunctional fusion protein was produced. This fusion protein exhibited improved TNF activity, also mimicking the membrane-bound form of TNF, as shown by the activation of TNFR2-mediated cell killing. Furthermore, the scFv moiety allowed for an antigen-dependent delivery of TNF to EGFR-positive cells and an improved stimulatory TNF action on these cells. Thus, we established the MHD2 as a versatile module for the generation of bispecific and bifunctional fusion proteins.
Collapse
Affiliation(s)
- Oliver Seifert
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
161
|
Martinez TN, Chen X, Bandyopadhyay S, Merrill AH, Tansey MG. Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons. Mol Neurodegener 2012; 7:45. [PMID: 22973882 PMCID: PMC3472284 DOI: 10.1186/1750-1326-7-45] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dopaminergic (DA) neurons in the ventral midbrain selectively degenerate in Parkinson's disease (PD) in part because their oxidative environment in the substantia nigra (SN) may render them vulnerable to neuroinflammatory stimuli. Chronic inhibition of soluble Tumor Necrosis Factor (TNF) with dominant-negative TNF inhibitors protects DA neurons in rat models of parkinsonism, yet the molecular mechanisms and pathway(s) that mediate TNF toxicity remain(s) to be clearly identified. Here we investigated the contribution of ceramide sphingolipid signaling in TNF-dependent toxicity. RESULTS Ceramide dose-dependently reduced the viability of DA neuroblastoma cells and primary DA neurons and pharmacological inhibition of sphingomyelinases (SMases) with three different inhibitors during TNF treatment afforded significant neuroprotection by attenuating increased endoplasmic reticulum (ER) stress, loss of mitochondrial membrane potential, caspase-3 activation and decreases in Akt phosphorylation. Using lipidomics mass spectrometry we confirmed that TNF treatment not only promotes generation of ceramide, but also leads to accumulation of several atypical deoxy-sphingoid bases (DSBs). Exposure of DA neuroblastoma cells to atypical DSBs in the micromolar range reduced cell viability and inhibited neurite outgrowth and branching in primary DA neurons, suggesting that TNF-induced de novo synthesis of atypical DSBs may be a secondary mechanism involved in mediating its neurotoxicity in DA neurons. CONCLUSIONS We conclude that TNF/TNFR1-dependent activation of SMases generates ceramide and sphingolipid species that promote degeneration and caspase-dependent cell death of DA neurons. Ceramide and atypical DSBs may represent novel drug targets for development of neuroprotective strategies that can delay or attenuate the progressive loss of nigral DA neurons in patients with PD.
Collapse
Affiliation(s)
- Terina N Martinez
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd., Dallas, TX, 75390, USA
| | - Xi Chen
- Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA, 30322, USA
| | - Sibali Bandyopadhyay
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332-0363, USA
| | - Alfred H Merrill
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332-0363, USA
| | - Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd., Dallas, TX, 75390, USA
- Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA, 30322, USA
| |
Collapse
|
162
|
Chanthaphavong RS, Loughran PA, Lee TYS, Scott MJ, Billiar TR. A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α-converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes. J Biol Chem 2012; 287:35887-98. [PMID: 22898814 DOI: 10.1074/jbc.m112.365171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We and others have previously shown that the inducible nitric-oxide synthase (iNOS) and nitric oxide (NO) are hepatoprotective in a number of circumstances, including endotoxemia. In vitro, hepatocytes are protected from tumor necrosis factor (TNF) α-induced apoptosis via cGMP-dependent and cGMP-independent mechanisms. We have shown that the cGMP-dependent protective mechanisms involve the inhibition of death-inducing signaling complex formation. We show here that LPS-induced iNOS expression leads to rapid TNF receptor shedding from the surface of hepatocytes via NO/cGMP/protein kinase G-dependent activation and surface translocation of TNFα-converting enzyme (TACE/ADAM17). The activation of TACE is associated with the up-regulation of iRhom2 as well as the interaction and phosphorylation of TACE and iRhom2, which are also NO/cGMP/protein kinase G-dependent. These findings suggest that one mechanism of iNOS/NO-mediated protection of hepatocytes involves the rapid shedding of TNF receptor 1 to limit TNFα signaling.
Collapse
Affiliation(s)
- R Savanh Chanthaphavong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
163
|
Anti-inflammatory activity of hyperimmune plasma in a lipopolysaccharide-mediated rat air pouch model of inflammation. Inflammation 2012; 35:58-64. [PMID: 21213030 DOI: 10.1007/s10753-010-9289-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumour necrosis factor-α (TNFα) and polymorphonuclear neutrophils play key and interrelated roles in the inflammatory response against infectious agents. However, these entities can mediate significant tissue damage if their biological activity becomes deregulated. We have previously shown that canine hyperimmune frozen plasma (HFP) contains anti-TNFα activity that is attributable to elevated levels of soluble TNFα receptor 1 (sTNFR1). The aim of this study was to determine the effect of HFP on TNFα levels and neutrophil infiltration in a lipopolysaccharide (LPS)-mediated rat air pouch model of inflammation. Rats were administered either HFP, HFP which had been pre-incubated with anti-sTNFR1 antibody (5 ng/ml), fresh frozen plasma (FFP), physiological saline (PS) at 2 ml/day or Carprofen at 5 mg/kg for 3 days prior to LPS challenge. Pouch fluid was withdrawn at 1, 6, 12, 24 and 48 h post-LPS challenge and assayed for TNFα by ELISA, and for total leukocytes and neutrophils by microscopic examination. At 6 h post-LPS challenge, both TNFα levels and neutrophil counts were significantly lower in HFP-treated rats than was found in FFP, PS or Carprofen treated animals (p<0.05). In a sTNFR1 blocking experiment, incubation of HFP with anti-sTNFR1 antibody resulted in significant increases in neutrophil numbers and TNFα levels, which suggests that the anti-TNFα activity observed in HFP may be due to elevated levels of sTNFR1. The data also revealed a significant inverse correlation between total leukocyte counts and sTNFR1 levels present in pouch fluid (r= -0.73, p<0.0001). Our observations suggest that HFP warrants further investigation as a possible means for modulating acute inflammatory processes where TNFα is a key mediator.
Collapse
|
164
|
Russo I, Caracciolo L, Tweedie D, Choi SH, Greig NH, Barlati S, Bosetti F. 3,6'-Dithiothalidomide, a new TNF-α synthesis inhibitor, attenuates the effect of Aβ1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit. J Neurochem 2012; 122:1181-92. [PMID: 22731394 DOI: 10.1111/j.1471-4159.2012.07846.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence indicates altered neurogenesis in neurodegenerative diseases associated with inflammation, including Alzheimer's disease (AD). Neuroinflammation and its propagation have a critical role in the degeneration of hippocampal neurons, cognitive impairment, and altered neurogenesis. Particularly, tumor necrosis factor (TNF)-α plays a central role in initiating and regulating the cytokine cascade during an inflammatory response and is up-regulated in brain of AD patients. In this study, we investigated the effects of a novel thalidomide-based TNF-α lowering drug, 3,6'-dithiothalidomide, on hippocampal progenitor cell proliferation, neurogenesis and, memory tasks after intracerebroventricular injection of β-amyloid (Aß)(1-42) peptide. Seven days after Aβ(1-42) injection, a significant proliferation of hippocampal progenitor cells and memory impairment were evident. Four weeks after Aβ(1-42) peptide injection, elevated numbers of surviving 5-bromo-2'-deoxyuridine cells and newly formed neurons were detected. Treatment with 3,6'-dithiothalidomide attenuated these Aβ(1-42) provoked effects. Our data indicate that although treatment with 3,6'-dithiothalidomide in part attenuated the increase in hippocampal neurogenesis caused by Aβ(1-42) -induced neuroinflammation, the drug prevented memory deficits associated with increased numbers of activated microglial cells and inflammatory response. Therefore, 3,6'-dithiothalidomide treatment likely reduced neuronal tissue damage induced by neuroinflammation following Aβ(1-42) injection. Understanding the modulation of neurogenesis, and its relationship with memory function could open new therapeutic interventions for AD and other neurodegenerative disorders with an inflammatory component.
Collapse
Affiliation(s)
- Isabella Russo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Lang I, Fick A, Schäfer V, Giner T, Siegmund D, Wajant H. Signaling active CD95 receptor molecules trigger co-translocation of inactive CD95 molecules into lipid rafts. J Biol Chem 2012; 287:24026-42. [PMID: 22645131 PMCID: PMC3390677 DOI: 10.1074/jbc.m111.328211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/04/2012] [Indexed: 12/23/2022] Open
Abstract
The capability of soluble CD95L trimers to trigger CD95-associated signaling pathways is drastically increased by oligomerization. The latter can be achieved, for example, by antibodies recognizing a N-terminal epitope tag in recombinant CD95L variants or by genetic engineering-enforced formation of hexamers. Using highly sensitive and accurate binding studies with recombinant CD95L variants equipped with a Gaussia princeps luciferase reporter domain, we found that oligomerization of CD95L has no major effect on CD95 occupancy. This indicates that the higher activity of oligomerized CD95L trimers is not related to an avidity-related increase in apparent affinity and points instead to a crucial role of aggregation of initially formed trimeric CD95L-CD95 complexes in CD95 activation. Furthermore, binding of soluble CD95L trimers was found to be insufficient to increase the association of CD95 with the lipid raft-containing membrane fraction. However, when Gaussia princeps luciferase-CD95L trimers were used as tracers to "mark" inactive CD95 molecules, increased association of these inactive receptors was observed upon activation of the remaining CD95 molecules by help of highly active hexameric Fc-CD95L or membrane CD95L. Moreover, in cells expressing endogenous CD95 and chimeric CD40-CD95 receptors, triggering of CD95 signaling via endogenous CD95 resulted in co-translocation of CD40-CD95 to the lipid raft fraction, whereas vice versa activation of CD95-associated pathways with Fc-CD40L via CD40-CD95 resulted in co-translocation of endogenous CD95. In sum, this shows that signaling-active CD95 molecules not only enhance their own association with the lipid raft-containing membrane fraction but also those of inactive CD95 molecules.
Collapse
Affiliation(s)
- Isabell Lang
- From the Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany and
| | - Andrea Fick
- From the Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany and
| | - Viktoria Schäfer
- From the Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany and
| | - Tina Giner
- the Department of Dermatology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Daniela Siegmund
- From the Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany and
| | - Harald Wajant
- From the Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany and
| |
Collapse
|
166
|
Winkel C, Neumann S, Surulescu C, Scheurich P. A minimal mathematical model for the initial molecular interactions of death receptor signalling. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2012; 9:663-683. [PMID: 22881031 DOI: 10.3934/mbe.2012.9.663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tumor necrosis factor (TNF) is the name giving member of a large cytokine family mirrored by a respective cell membrane receptor super family. TNF itself is a strong proinflammatory regulator of the innate immune system, but has been also recognized as a major factor in progression of autoimmune diseases. A subgroup of the TNF ligand family, including TNF, signals via so-called death receptors, capable to induce a major form of programmed cell death, called apoptosis. Typical for most members of the whole family, death ligands form homotrimeric proteins, capable to bind up to three of their respective receptor molecules. But also unligated receptors occur on the cell surface as homomultimers due to a homophilic interaction domain. Based on these two interaction motivs (ligand/receptor and receptor/receptor) formation of large ligand/receptor clusters can be postulated which have been also observed experimentally. We use here a mass action kinetics approach to establish an ordinary differential equations model describing the dynamics of primary ligand/receptor complex formation as a basis for further clustering on the cell membrane. Based on available experimental data we develop our model in a way that not only ligand/receptor, but also homophilic receptor interaction is encompassed. The model allows formation of two distict primary ligand/receptor complexes in a ligand concentration dependent manner. At extremely high ligand concentrations the system is dominated by ligated receptor homodimers.
Collapse
Affiliation(s)
- Christian Winkel
- Institute of Applied Analysis and Numerical Simulation, Univ. of Stuttgart, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
167
|
A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling. Mol Cell Biol 2012; 32:3372-81. [PMID: 22733992 DOI: 10.1128/mcb.06739-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-α pathway activity has been realized in several diseases, and antagonists of TNF-α have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-α receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-α, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-α signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-κB activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-α-induced NF-κB signaling that is required for the activation of IκB kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).
Collapse
|
168
|
Fallahi-Sichani M, Kirschner DE, Linderman JJ. NF-κB Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis. Front Physiol 2012; 3:170. [PMID: 22685435 PMCID: PMC3368390 DOI: 10.3389/fphys.2012.00170] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 05/09/2012] [Indexed: 02/03/2023] Open
Abstract
The NF-κB signaling pathway is central to the body’s response to many pathogens. Mathematical models based on cell culture experiments have identified important molecular mechanisms controlling the dynamics of NF-κB signaling, but the dynamics of this pathway have never been studied in the context of an infection in a host. Here, we incorporate these dynamics into a virtual infection setting. We build a multi-scale model of the immune response to the pathogen Mycobacterium tuberculosis (Mtb) to explore the impact of NF-κB dynamics occurring across molecular, cellular, and tissue scales in the lung. NF-κB signaling is triggered via tumor necrosis factor-α (TNF) binding to receptors on macrophages; TNF has been shown to play a key role in infection dynamics in humans and multiple animal systems. Using our multi-scale model, we predict the impact of TNF-induced NF-κB-mediated responses on the outcome of infection at the level of a granuloma, an aggregate of immune cells and bacteria that forms in response to infection and is key to containment of infection and clinical latency. We show how the stability of mRNA transcripts corresponding to NF-κB-mediated responses significantly controls bacterial load in a granuloma, inflammation level in tissue, and granuloma size. Because we incorporate intracellular signaling pathways explicitly, our analysis also elucidates NF-κB-associated signaling molecules and processes that may be new targets for infection control.
Collapse
|
169
|
Tweedie D, Ferguson RA, Fishman K, Frankola KA, Van Praag H, Holloway HW, Luo W, Li Y, Caracciolo L, Russo I, Barlati S, Ray B, Lahiri DK, Bosetti F, Greig NH, Rosi S. Tumor necrosis factor-α synthesis inhibitor 3,6'-dithiothalidomide attenuates markers of inflammation, Alzheimer pathology and behavioral deficits in animal models of neuroinflammation and Alzheimer's disease. J Neuroinflammation 2012; 9:106. [PMID: 22642825 PMCID: PMC3405480 DOI: 10.1186/1742-2094-9-106] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neuroinflammation is associated with virtually all major neurodegenerative disorders, including Alzheimer's disease (AD). Although it remains unclear whether neuroinflammation is the driving force behind these disorders, compelling evidence implicates its role in exacerbating disease progression, with a key player being the potent proinflammatory cytokine TNF-α. Elevated TNF-α levels are commonly detected in the clinic and animal models of AD. METHODS The potential benefits of a novel TNF-α-lowering agent, 3,6'-dithiothalidomide, were investigated in cellular and rodent models of neuroinflammation with a specific focus on AD. These included central and systemic inflammation induced by lipopolysaccharide (LPS) and Aβ(1-42) challenge, and biochemical and behavioral assessment of 3xTg-AD mice following chronic 3,6'-dithiothaliodmide. RESULTS 3,6'-Dithiothaliodmide lowered TNF-α, nitrite (an indicator of oxidative damage) and secreted amyloid precursor protein (sAPP) levels in LPS-activated macrophage-like cells (RAW 264.7 cells). This translated into reduced central and systemic TNF-α production in acute LPS-challenged rats, and to a reduction of neuroinflammatory markers and restoration of neuronal plasticity following chronic central challenge of LPS. In mice centrally challenged with A(β1-42) peptide, prior systemic 3,6'-dithiothalidomide suppressed Aβ-induced memory dysfunction, microglial activation and neuronal degeneration. Chronic 3,6'-dithiothalidomide administration to an elderly symptomatic cohort of 3xTg-AD mice reduced multiple hallmark features of AD, including phosphorylated tau protein, APP, Aβ peptide and Aβ-plaque number along with deficits in memory function to levels present in younger adult cognitively unimpaired 3xTg-AD mice. Levels of the synaptic proteins, SNAP25 and synaptophysin, were found to be elevated in older symptomatic drug-treated 3xTg-AD mice compared to vehicle-treated ones, indicative of a preservation of synaptic function during drug treatment. CONCLUSIONS Our data suggest a strong beneficial effect of 3,6'-dithiothalidomide in the setting of neuroinflammation and AD, supporting a role for neuroinflammation and TNF-α in disease progression and their targeting as a means of clinical management.
Collapse
Affiliation(s)
- David Tweedie
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Sama DM, Mohmmad Abdul H, Furman JL, Artiushin IA, Szymkowski DE, Scheff SW, Norris CM. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats. PLoS One 2012; 7:e38170. [PMID: 22666474 PMCID: PMC3362564 DOI: 10.1371/journal.pone.0038170] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.
Collapse
Affiliation(s)
- Diana M. Sama
- Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hafiz Mohmmad Abdul
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jennifer L. Furman
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Irina A. Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
171
|
The tumor necrosis factor receptor stalk regions define responsiveness to soluble versus membrane-bound ligand. Mol Cell Biol 2012; 32:2515-29. [PMID: 22547679 DOI: 10.1128/mcb.06458-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membrane-bound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligand-independent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention.
Collapse
|
172
|
Costa GN, Vindeirinho J, Cavadas C, Ambrósio AF, Santos PF. Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Mol Cell Neurosci 2012; 50:113-23. [PMID: 22522145 DOI: 10.1016/j.mcn.2012.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/16/2012] [Accepted: 04/02/2012] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness among working-age adults, holds several hallmarks of an inflammatory disease. The increase in cell death in neural retina is an early event in the diabetic retina, preceding the loss of microvascular cells. Since tumor necrosis factor-α (TNF-α) has been shown to trigger the death of perycites and endothelial cells as well as the breakdown of the blood-retinal barrier, we set out to investigate whether TNF-α acting through tumor necrosis factor receptor 1 (TNFR1), the major receptor responsible for mediating TNF-induced cell death, could also be responsible for the early neuronal cell death observed in DR. We used retinal neural cell cultures exposed to high glucose conditions, to mimic hyperglycaemia, and evaluated the contribution of TNFR1 in neural cell death. TNFR1 was found to be present to a great extent in retinal neurons and the levels of this receptor were found to be altered in cells cultured in high glucose conditions. High glucose induced an early decrease in cell viability, an increase in apoptosis and a higher immunoreactivity for the cleaved caspase-3, indicating a high glucose-induced caspase-dependent cell death. These observations were correlated with an increase in TNF-α expression. Nonetheless, inhibiting the activation of TNFR1 was sufficient to prevent the decrease in cell viability and the increase in retinal cell death by apoptosis. In conclusion, our data indicate that TNF-α acting through TNFR1 is responsible for the high glucose-induced cell death and that blocking the activity of this receptor is an adequate strategy to avoid cell loss in such conditions.
Collapse
Affiliation(s)
- G N Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
173
|
Naudé PJW, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R, Engelborghs S, Luiten PGM, De Deyn PP, den Boer JA, Eisel ULM. Lipocalin 2: novel component of proinflammatory signaling in Alzheimer's disease. FASEB J 2012; 26:2811-23. [PMID: 22441986 DOI: 10.1096/fj.11-202457] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is associated with an altered immune response, resulting in chronic increased inflammatory cytokine production with a prominent role of TNF-α. TNF-α signals are mediated by two receptors: TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Signaling through TNFR2 is associated with neuroprotection, whereas signaling through TNFR1 is generally proinflammatory and proapoptotic. Here, we have identified a TNF-α-induced proinflammatory agent, lipocalin 2 (Lcn2) via gene array in murine primary cortical neurons. Further investigation showed that Lcn2 protein production and secretion were activated solely upon TNFR1 stimulation when primary murine neurons, astrocytes, and microglia were treated with TNFR1 and TNFR2 agonistic antibodies. Lcn2 was found to be significantly decreased in CSF of human patients with mild cognitive impairment and AD and increased in brain regions associated with AD pathology in human postmortem brain tissue. Mechanistic studies in cultures of primary cortical neurons showed that Lcn2 sensitizes nerve cells to β-amyloid toxicity. Moreover, Lcn2 silences a TNFR2-mediated protective neuronal signaling cascade in neurons, pivotal for TNF-α-mediated neuroprotection. The present study introduces Lcn2 as a molecular actor in neuroinflammation in early clinical stages of AD.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Karosi T, Csomor P, Sziklai I. Tumor necrosis factor-α receptor expression correlates with mucosal changes and biofilm presence in chronic rhinosinusitis with nasal polyposis. Laryngoscope 2012; 122:504-10. [PMID: 22231697 DOI: 10.1002/lary.23190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/06/2011] [Accepted: 12/14/2011] [Indexed: 01/23/2023]
Abstract
OBJECTIVES/HYPOTHESIS Biofilms might play a potential role in the pathogenesis and high recurrence rate of chronic rhinosinusitis with nasal polyposis (CRSwNP). Biofilm persistence has been thought to correlate with epithelial damage, subepithelial inflammatory cell infiltration, and tumor necrosis factor-α receptor (TNFR) expression in CRSwNP. STUDY DESIGN Case-control experimental study. METHODS A total of 36 patients with CRSwNP undergoing endoscopic sinus surgery were analyzed. The negative control group consisted of eight patients undergoing septoplasty for nasal obstruction without CRSwNP. The nasal polyps and inferior turbinate mucosa samples applied as negative controls were processed by hematoxylin-eosin (HE) and Gram staining and TNFR-I and TNFR-II-specific immunofluorescent assay. RESULTS Biofilm was detected in 29 of 36 patients with CRSwNP and in none of the eight negative controls. Staining by HE showed strong correlation with the results of Gram staining protocol. In the biofilm-positive cases, TNFR-I and TNFR-II displayed homogeneous pattern of significantly increased epithelial expression compared to the biofilm-negative nasal polyps. In cases of biofilm absence, the expression pattern of TNF-α receptors was characterized by increased TNFR-II-specific immunoreaction. It was found that biofilm detectability corresponded to the integrity of nasal epithelium and to the dominant inflammatory cell type of the subepithelial layer. CONCLUSIONS Persisting biofilms might increase the epithelial sensitivity against TNF-α that result in epithelium destruction. Coexistence of biofilms and increased TNFR expression might explain the inflammatory mucosal changes, functional disorders, and therapy resistance featuring CRSwNP.
Collapse
Affiliation(s)
- Tamás Karosi
- Department of Otolaryngology and Head and Neck Surgery, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary.
| | | | | |
Collapse
|
175
|
Abstract
Abstract
Collapse
|
176
|
Le Buanec H, Bensussan A, Bagot M, Gallo RC, Zagury D. Active and passive anticytokine immune therapies: current status and development. Adv Immunol 2012; 115:187-227. [PMID: 22608260 DOI: 10.1016/b978-0-12-394299-9.00007-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anticytokine (AC) immune therapies derived from vaccine procedures aim at enhancing natural immune defense mechanisms ineffective to contain abnormally produced cytokines and counteract their pathogenic effects. Given their short half-life, cytokines, the production of which by effector immune cells (T and B lymphocytes, antigen-presenting cells (APCs), natural killer (NK) and endothelial cells) is inducible and controlled by negative feedback regulation, (1) exert locally their signaling to paracrine/autocrine target responder cells carrying high-affinity membrane receptors and (2) are commonly present at minimal concentration in the body fluid (lymph, serum). Aberrant signaling triggered by cytokines, uncontrolly released by effector immune cells or produced by cancer and other pathologic cells, contribute to the pathogenesis of chronic diseases including cancer, viral infections, allergy, and autoimmunity. To block these ectopic cytokine signaling and prevent their pathogenic effects, AC Abs supplied either by injections (passive AC immune therapy) or elicited by immunization with cytokine-derived immunogenes called Kinoids (active AC immune therapy) proved to be experimentally effective and safe. In this review, we detailed the rationale and the requirements for the use of AC immunotherapies in humans, the proof of efficacy of these medications in animal disease models, and their current clinical development and outcome, including adverse side effects they may generate. We particularly show that, to date, the benefit:risk ratio of AC immune therapies is highly positive.
Collapse
|
177
|
Caminero A, Comabella M, Montalban X. Role of tumour necrosis factor (TNF)-α and TNFRSF1A R92Q mutation in the pathogenesis of TNF receptor-associated periodic syndrome and multiple sclerosis. Clin Exp Immunol 2011; 166:338-45. [PMID: 22059991 PMCID: PMC3232381 DOI: 10.1111/j.1365-2249.2011.04484.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 12/31/2022] Open
Abstract
It has long been known that tumour necrosis factor (TNF)/TNFRSF1A signalling is involved in the pathophysiology of multiple sclerosis (MS). Different genetic and clinical findings over the last few years have generated renewed interest in this relationship. This paper provides an update on these recent findings. Genome-wide association studies have identified the R92Q mutation in the TNFRSF1A gene as a genetic risk factor for MS (odds ratio 1·6). This allele, which is also common in the general population and in other inflammatory conditions, therefore only implies a modest risk for MS and provides yet another piece of the puzzle that defines the multiple genetic risk factors for this disease. TNFRSF1A mutations have been associated with an autoinflammatory disease known as TNF receptor-associated periodic syndrome (TRAPS). Clinical observations have identified a group of MS patients carrying the R92Q mutation who have additional TRAPS symptoms. Hypothetically, the co-existence of MS and TRAPS or a co-morbidity relationship between the two could be mediated by this mutation. The TNFRSF1A R92Q mutation behaves as a genetic risk factor for MS and other inflammatory diseases, including TRAPS. Nevertheless, this mutation does not appear to be a severity marker of the disease, neither modifying the clinical progression of MS nor its therapeutic response. An alteration in TNF/TNFRS1A signalling may increase proinflammatory signals; the final clinical phenotype may possibly be determined by other genetic or environmental modifying factors that have not yet been identified.
Collapse
Affiliation(s)
- A Caminero
- Centre d'Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | | | | |
Collapse
|
178
|
Fick A, Lang I, Schäfer V, Seher A, Trebing J, Weisenberger D, Wajant H. Studies of binding of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) to fibroblast growth factor inducible 14 (Fn14). J Biol Chem 2011; 287:484-495. [PMID: 22081603 DOI: 10.1074/jbc.m111.287656] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To perform highly sensitive cellular binding studies with TNF-like weak inducer of apoptosis (TWEAK), we developed a bioluminescent variant of soluble TWEAK (GpL-FLAG-TNC-TWEAK) by fusing it genetically to the C terminus of the luciferase of Gaussia princeps (GpL). Equilibrium binding studies on human (HT1080 and HT29) and murine (Renca and B16) cell lines at 37 °C revealed high affinities of human TWEAK from 53 to 112 pm. The dissociation rate constant of the TWEAK-Fn14 interaction was between 0.48×10(-3) s(-1) (HT29) and 0.58×10(-3) s(-1) (HT1080) for the human molecules, and the association rate constant obtained was 3.3×10(6) m(-1) s(-1) for both cell lines. It has been shown previously that oligomerization of soluble TWEAK trimers results in enhanced Fn14-mediated activation of the classical NFκB pathway. Binding studies with GpL-FLAG-TNC-TWEAK trimers oligomerized by help of a FLAG tag-specific antibody gave no evidence for a major increase in Fn14 occupancy by oligomerized ligand despite strongly enhanced induction of the NFκB target IL8. Thus, aggregated complexes of soluble TWEAK and Fn14 have a higher intrinsic activity to stimulate the classical NFκB pathway and qualitatively differ from isolated trimeric TWEAK-Fn14 complexes. Furthermore, determination of IL8 induction as a function of occupied activated receptors revealed that the intrinsic capability of TNFR1 to stimulate the classical NFκB pathway and IL8 production was ∼100-fold higher than Fn14. Thus, although ∼25 activated TNFR1 trimers were sufficient to trigger half-maximal IL8 production, more than 2500 cell-bound oligomerized TWEAK trimers were required to elicit a similar response.
Collapse
Affiliation(s)
- Andrea Fick
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Viktoria Schäfer
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Axel Seher
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Johannes Trebing
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| |
Collapse
|
179
|
He P, Liu Q, Wu J, Shen Y. Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J 2011; 26:334-45. [PMID: 21982949 DOI: 10.1096/fj.11-192716] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The distribution of postsynaptic glutamate receptors has been shown to be regulated by proimmunocytokine tumor necrosis factor α (TNF-α) signaling. The role of TNF-α receptor subtypes in mediating glutamate receptor expression, trafficking, and function still remains unclear. Here, we report that TNF receptor subtypes (TNFR1 and TNFR2) differentially modulate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) clustering and function in cultured cortical neurons. We find that genetic deletion of TNFR1 decreases surface expression and synaptic localization of the AMPAR GluA1 subunit, reduces the frequency of miniature excitatory postsynaptic current (mEPSC), and reduces AMPA-induced maximal whole-cell current. In addition, these results are not observed in TNFR2-deleted neurons. The decreased AMPAR expression and function in TNFR1-deleted cells are not significantly restored by short (2 h) or long (24 h) term exposure to TNF-α. In TNFR2-deleted cells, TNF-α promotes AMPAR trafficking to the synapse and increases mEPSC frequency. In the present study, we find no significant change in the GluN1 subunit of NMDAR clusters, location, and mEPSC. This includes applying or withholding the TNF-α treatment in both TNFR1- and TNFR2-deleted neurons. Our results indicate that TNF receptor subtype 1 but not 2 plays a critical role in modulating AMPAR clustering, suggesting that targeting TNFR1 gene might be a novel approach to preventing neuronal AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Ping He
- Center for Advanced Therapeutic Strategies for Brain Disorders, Roskamp Institute, Sarasota, FL, USA
| | | | | | | |
Collapse
|
180
|
Yi CO, Jeon BT, Shin HJ, Jeong EA, Chang KC, Lee JE, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Resveratrol activates AMPK and suppresses LPS-induced NF-κB-dependent COX-2 activation in RAW 264.7 macrophage cells. Anat Cell Biol 2011; 44:194-203. [PMID: 22025971 PMCID: PMC3195823 DOI: 10.5115/acb.2011.44.3.194] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/10/2011] [Accepted: 08/23/2011] [Indexed: 02/02/2023] Open
Abstract
AMP-activated protein kinase (AMPK), an enzyme involved in energy homeostasis, regulates inflammatory responses, but its precise mechanisms are not fully understood. Recent evidence has shown that resveratrol (RES), an AMPK activator, reduces prostaglandin E2 production in lipopolysaccharide (LPS)-treated microglia. Here, we examined the effect of RES on nuclear factor kappa B (NF-κB) dependent cyclooxygenase (COX)-2 activation in LPS-treated RWA 264.7 macrophages. We found that treatment with RES increased AMPK activation. AMPK and acetyl CoA carboxylase phosphorylation were attenuated in cells treated with LPS+RES, compared to cells treated with LPS alone. RES inhibited tumor necrosis factor (TNF)-α and TNF receptor 1 in LPS-treated cells. Finally, RES inhibited LPS-induced NF-κB translocation into the nucleus and COX-2 expression. Moreover, the effects of 5-aminoimidazole-4-carboxamide ribose and compound C were consistent with the effects of RES in LPS-treated cells. Taken together, these results suggest that the anti-inflammatory action of RES in RAW 264.7 macrophages is dependent on AMPK activation and is associated with inhibition of the LPS-stimulated NF-κB-dependent COX-2 signaling pathway.
Collapse
Affiliation(s)
- Chin-Ok Yi
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFκB-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFκB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival.
Collapse
|
182
|
Yang G, Lucas R, Caldwell R, Yao L, Romero MJ, Caldwell RW. Novel mechanisms of endothelial dysfunction in diabetes. J Cardiovasc Dis Res 2011; 1:59-63. [PMID: 20877687 PMCID: PMC2945199 DOI: 10.4103/0975-3583.64432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diabetes mellitus is a major risk factor for cardiovascular morbidity and mortality. This condition increases the risk of developing coronary, cerebrovascular, and peripheral arterial disease fourfold. Endothelial dysfunction is a major contributor to the pathogenesis of vascular disease in diabetes mellitus patients and has recently received increased attention. In this review article, some recent developments that could improve the knowledge of diabetes-induced endothelial dysfunction are discussed.
Collapse
Affiliation(s)
- Guang Yang
- Department of Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
183
|
Yang G, Hamacher J, Gorshkov B, White R, Sridhar S, Verin A, Chakraborty T, Lucas R. The Dual Role of TNF in Pulmonary Edema. J Cardiovasc Dis Res 2011; 1:29-36. [PMID: 21188088 PMCID: PMC3004168 DOI: 10.4103/0975-3583.59983] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
—Pulmonary edema, a major manifestation of left ventricular heart failure, renal insufficiency, shock, diffuse alveolar damage and lung hypersensitivity states, is a significant medical problem worldwide and can be life-threatening. The proinflammatory cytokine tumor necrosis factor (TNF) has been shown to contribute to the pathogenesis and development of pulmonary edema. However, some recent studies have demonstrated surprisingly that TNF can also promote alveolar fluid reabsorption in vivo and in vitro. This protective effect of the cytokine is mediated by the lectin-like domain of the cytokine, which is spatially distinct from the TNF receptor binding sites. The TIP peptide, a synthetic mimic of the lectin-like domain of TNF, can significantly increase alveolar fluid clearance and improve lung compliance in pulmonary edema models. In this review, we will discuss the dual role of TNF in pulmonary edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center & Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Panoskaltsis-Mortari A, Griese M, Madtes DK, Belperio JA, Haddad IY, Folz RJ, Cooke KR. An official American Thoracic Society research statement: noninfectious lung injury after hematopoietic stem cell transplantation: idiopathic pneumonia syndrome. Am J Respir Crit Care Med 2011; 183:1262-79. [PMID: 21531955 DOI: 10.1164/rccm.2007-413st] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Acute lung dysfunction of noninfectious etiology, known as idiopathic pneumonia syndrome (IPS), is a severe complication following hematopoietic stem cell transplantation (HSCT). Several mouse models have been recently developed to determine the underlying causes of IPS. A cohesive interpretation of experimental data and their relationship to the findings of clinical research studies in humans is needed to better understand the basis for current and future clinical trials for the prevention/treatment of IPS. OBJECTIVES Our goal was to perform a comprehensive review of the preclinical (i.e., murine models) and clinical research on IPS. METHODS An ATS committee performed PubMed and OVID searches for published, peer-reviewed articles using the keywords "idiopathic pneumonia syndrome" or "lung injury" or "pulmonary complications" AND "bone marrow transplant" or "hematopoietic stem cell transplant." No specific inclusion or exclusion criteria were determined a priori for this review. MEASUREMENTS AND MAIN RESULTS Experimental models that reproduce the various patterns of lung injury observed after HSCT have identified that both soluble and cellular inflammatory mediators contribute to the inflammation engendered during the development of IPS. To date, 10 preclinical murine models of the IPS spectrum have been established using various donor and host strain combinations used to study graft-versus-host disease (GVHD). This, as well as the demonstrated T cell dependency of IPS development in these models, supports the concept that the lung is a target of immune-mediated attack after HSCT. The most developed therapeutic strategy for IPS involves blocking TNF signaling with etanercept, which is currently being evaluated in clinical trials. CONCLUSIONS IPS remains a frequently fatal complication that limits the broader use of allogeneic HSCT as a successful treatment modality. Faced with the clinical syndrome of IPS, one can categorize the disease entity with the appropriate tools, although cases of unclassifiable IPS will remain. Significant research efforts have resulted in a paradigm shift away from identifying noninfectious lung injury after HSCT solely as an idiopathic clinical syndrome and toward understanding IPS as a process involving aspects of both the adaptive and the innate immune response. Importantly, new laboratory insights are currently being translated to the clinic and will likely prove important to the development of future strategies to prevent or treat this serious disorder.
Collapse
|
185
|
Koh G, Lee DY. Mathematical modeling and sensitivity analysis of the integrated TNFα-mediated apoptotic pathway for identifying key regulators. Comput Biol Med 2011; 41:512-28. [PMID: 21632045 DOI: 10.1016/j.compbiomed.2011.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 03/30/2011] [Accepted: 04/28/2011] [Indexed: 12/20/2022]
Abstract
TNFα-mediated apoptosis is one of the complex and tightly regulated cellular processes as it involves the activation of both pro- and anti-apoptotic signaling pathways. Thus, it is important to elucidate the molecular players of this process and their dynamics in order to gain an in-depth understanding of the mechanisms underlying apoptosis. To this end, we proposed an integrated model of TNFα-mediated apoptosis pathway in Type I cells, formulated based on the principles of mass action kinetics. The model includes major apoptotic modules-the extrinsic and intrinsic pathways, the NFκB survival signaling and various regulatory mechanisms. We performed simulations and sensitivity analyses to study the role of NFκB pathway in regulating apoptosis, and identified IAP as one of the more potent regulators of apoptosis.
Collapse
Affiliation(s)
- Geoffrey Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore.
| | | |
Collapse
|
186
|
Tarrats N, Moles A, Morales A, García-Ruiz C, Fernández-Checa JC, Marí M. Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology 2011; 54:319-27. [PMID: 21523796 PMCID: PMC3125435 DOI: 10.1002/hep.24388] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Tumor necrosis factor (TNF) has been implicated in the progression of many chronic liver diseases leading to fibrosis; however, the role of TNF in fibrogenesis is controversial and the specific contribution of TNF receptors to hepatic stellate cell (HSC) activation remains to be established. Using HSCs from wild-type, TNF-receptor-1 (TNFR1) knockout, TNF-receptor-2 (TNFR2) knockout, or TNFR1/R2 double-knockout (TNFR-DKO) mice, we show that loss of both TNF receptors reduced procollagen-α1(I) expression, slowed down HSC proliferation, and impaired platelet-derived growth factor (PDGF)-induced promitogenic signaling in HSCs. TNFR-DKO HSCs exhibited decreased AKT phosphorylation and in vitro proliferation in response to PDGF. These effects were reproduced in TNFR1 knockout, but not TNFR2 knockout, HSCs. In addition, matrix metalloproteinase 9 (MMP-9) expression was dependent on TNF binding to TNFR1 in primary mouse HSCs. These results were validated in the human HSC cell line, LX2, using neutralizing antibodies against TNFR1 and TNFR2. Moreover, in vivo liver damage and fibrogenesis after bile-duct ligation were reduced in TNFR-DKO and TNFR1 knockout mice, compared to wild-type or TNFR2 knockout mice. CONCLUSION TNF regulates HSC biology through its binding to TNFR1, which is required for HSC proliferation and MMP-9 expression. These data indicate a regulatory role for TNF in extracellular matrix remodeling and liver fibrosis, suggesting that targeting TNFR1 may be of benefit to attenuate liver fibrogenesis.
Collapse
Affiliation(s)
- Núria Tarrats
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - Anna Moles
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - Albert Morales
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - Carmen García-Ruiz
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| | - José C. Fernández-Checa
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Montserrat Marí
- IDIBAPS, Liver Unit-Hospital Clínic, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, 08036-Barcelona, Spain
| |
Collapse
|
187
|
Chignola R, Vyshemirsky V, Farina M, Del Fabbro A, Milotti E. Modular model of TNFalpha cytotoxicity. Bioinformatics 2011; 27:1754-7. [PMID: 21561921 DOI: 10.1093/bioinformatics/btr297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Tumour Necrosis Factor alpha (TNF) initiates a complex series of biochemical events in the cell upon binding to its type R1 receptor (TNF-R1). Recent experimental work has unravelled the molecular regulation of the signalling complexes that lead either to cell survival or death. Survival signals are activated by direct binding of TNF to TNF-R1 at the cell membrane whereas apoptotic signals by endocytosed TNF/TNF-R1 complexes. Here we describe a reduced, effective model with few free parameters, where we group some intricate mechanisms into effective modules, that successfully describes this complex set of actions. We study the parameter space to show that the model is structurally stable and robust over a broad range of parameter values. RESULTS We use state-of-the-art Bayesian methods (a Sequential Monte Carlo sampler) to perform inference of plausible values of the model parameters from experimental data. As a result, we obtain a robust model that can provide a solid basis for further modelling of TNF signalling. The model is also suitable for inclusion in multi-scale simulation programs that are presently under development to study the behaviour of large tumour cell populations. AVAILABILITY We provide supplementary material that includes all mathematical details and all algorithms (Matlab code) and models (SBML descriptions). CONTACT edoardo.milotti@ts.infn.it
Collapse
Affiliation(s)
- Roberto Chignola
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15-CV1, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
188
|
Caminero A, Comabella M, Montalban X. Tumor necrosis factor alpha (TNF-α), anti-TNF-α and demyelination revisited: An ongoing story. J Neuroimmunol 2011; 234:1-6. [DOI: 10.1016/j.jneuroim.2011.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/21/2011] [Accepted: 03/10/2011] [Indexed: 12/31/2022]
|
189
|
Frankola KA, Greig NH, Luo W, Tweedie D. Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2011; 10:391-403. [PMID: 21288189 PMCID: PMC4663975 DOI: 10.2174/187152711794653751] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/30/2010] [Indexed: 12/21/2022]
Abstract
Inflammatory signals generated within the brain and peripheral nervous system direct diverse biological processes. Key amongst the inflammatory molecules is tumor necrosis factor-α (TNF-α), a potent pro-inflammatory cytokine that, via binding to its associated receptors, is considered to be a master regulator of cellular cascades that control a number of diverse processes coupled to cell viability, gene expression, synaptic integrity and ion homeostasis. Whereas a self-limiting neuroinflammatory response generally results in the resolution of an intrinsically or extrinsically triggered insult by the elimination of toxic material or injured tissue to restore brain homeostasis and function, in the event of an unregulated reaction, where the immune response persists, inappropriate chronic neuroinflammation can ensue. Uncontrolled neuroinflammatory activity can induce cellular dysfunction and demise, and lead to a self-propagating cascade of harmful pathogenic events. Such chronic neuroinflammation is a typical feature across a range of debilitating common neurodegenerative diseases, epitomized by Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, in which TNF-α expression appears to be upregulated and may represent a valuable target for intervention. Elaboration of the protective homeostasis signaling cascades from the harmful pathogenic ones that likely drive disease onset and progression could aid in the clinical translation of approaches to lower brain and peripheral nervous system TNF-α levels, and amelioration of inappropriate neuroinflammation.
Collapse
Affiliation(s)
- Kathryn A. Frankola
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Weiming Luo
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
190
|
Uribe-Herranz M, Casinghino SR, Bosch-Presegué L, Fodor WL, Costa C. Identification of soluble and membrane-bound isoforms of porcine tumor necrosis factor receptor 2. Xenotransplantation 2011; 18:131-46. [DOI: 10.1111/j.1399-3089.2011.00634.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
191
|
Petermann F, Korn T. Cytokines and effector T cell subsets causing autoimmune CNS disease. FEBS Lett 2011; 585:3747-57. [PMID: 21477588 DOI: 10.1016/j.febslet.2011.03.064] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/21/2022]
Abstract
Although experimental autoimmune encephalomyelitis (EAE) is limited in its potency to reproduce the entirety of clinical and histopathologic features of multiple sclerosis (MS), this model has been successfully used to prove that MS like autoimmunity in the CNS is orchestrated by autoantigen specific T cells. EAE was also very useful to refute the idea that IFN-γ producing T helper type 1 (Th1) cells were the sole players within the pathogenic T cell response. Rather, "new" T cell lineages such as IL-17 producing Th17 cells or IL-9 producing Th9 cells have been first discovered in the context of EAE. Here, we will summarize new concepts of early and late T cell plasticity and the cytokine network that shapes T helper cell responses and lesion development in CNS specific autoimmunity.
Collapse
Affiliation(s)
- Franziska Petermann
- Klinikum Rechts der Isar, Department of Neurology, Technical University Munich, Munich, Germany
| | | |
Collapse
|
192
|
Arlett J, Myers E, Roukes M. Comparative advantages of mechanical biosensors. NATURE NANOTECHNOLOGY 2011; 6:203-15. [PMID: 21441911 PMCID: PMC3839312 DOI: 10.1038/nnano.2011.44] [Citation(s) in RCA: 444] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mechanical interactions are fundamental to biology. Mechanical forces of chemical origin determine motility and adhesion on the cellular scale, and govern transport and affinity on the molecular scale. Biological sensing in the mechanical domain provides unique opportunities to measure forces, displacements and mass changes from cellular and subcellular processes. Nanomechanical systems are particularly well matched in size with molecular interactions, and provide a basis for biological probes with single-molecule sensitivity. Here we review micro- and nanoscale biosensors, with a particular focus on fast mechanical biosensing in fluid by mass- and force-based methods, and the challenges presented by non-specific interactions. We explain the general issues that will be critical to the success of any type of next-generation mechanical biosensor, such as the need to improve intrinsic device performance, fabrication reproducibility and system integration. We also discuss the need for a greater understanding of analyte-sensor interactions on the nanoscale and of stochastic processes in the sensing environment.
Collapse
Affiliation(s)
| | | | - M.L. Roukes
- Kavli Nanoscience Institute and Departments of Physics, Applied Physics, and Bioengineering, California Institute of Technology, MC 149-33 Pasadena, California 91125, USA.
| |
Collapse
|
193
|
The duality of TNF signaling outcomes in the brain: potential mechanisms? Exp Neurol 2011; 229:198-200. [PMID: 21377463 DOI: 10.1016/j.expneurol.2011.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/20/2011] [Indexed: 11/20/2022]
|
194
|
Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. THE JOURNAL OF IMMUNOLOGY 2011; 186:3472-83. [PMID: 21321109 DOI: 10.4049/jimmunol.1003299] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple immune factors control host responses to Mycobacterium tuberculosis infection, including the formation of granulomas, which are aggregates of immune cells whose function may reflect success or failure of the host to contain infection. One such factor is TNF-α. TNF-α has been experimentally characterized to have the following activities in M. tuberculosis infection: macrophage activation, apoptosis, and chemokine and cytokine production. Availability of TNF-α within a granuloma has been proposed to play a critical role in immunity to M. tuberculosis. However, in vivo measurement of a TNF-α concentration gradient and activities within a granuloma are not experimentally feasible. Further, processes that control TNF-α concentration and activities in a granuloma remain unknown. We developed a multiscale computational model that includes molecular, cellular, and tissue scale events that occur during granuloma formation and maintenance in lung. We use our model to identify processes that regulate TNF-α concentration and cellular behaviors and thus influence the outcome of infection within a granuloma. Our model predicts that TNF-αR1 internalization kinetics play a critical role in infection control within a granuloma, controlling whether there is clearance of bacteria, excessive inflammation, containment of bacteria within a stable granuloma, or uncontrolled growth of bacteria. Our results suggest that there is an interplay between TNF-α and bacterial levels in a granuloma that is controlled by the combined effects of both molecular and cellular scale processes. Finally, our model elucidates processes involved in immunity to M. tuberculosis that may be new targets for therapy.
Collapse
|
195
|
Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM. Cytokines and epilepsy. Seizure 2011; 20:249-56. [PMID: 21216630 DOI: 10.1016/j.seizure.2010.12.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common chronic neurological disorder affecting approximately 8 out of 1000 people. Its pathophysiology, however, has remained elusive in many regards. Consequently, adequate seizure control is still lacking in about one third of patients. Cytokines are soluble mediators of cell communication that are critical in immune regulation. In recent years, studies have shown that epileptic seizures can induce the production of cytokines, which in turn influence the pathogenesis and course of epilepsies. At the time of this review, the focus is mostly on interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα). In this review, we summarize the current knowledge regarding these cytokines and their potential roles in epilepsy. The focus concentrates on their expression and influence on induced seizures in animal models of epilepsy, as well as findings in human studies. Both proconvulsive and anticonvulsive effects have been reported for each of these molecules. One possible explanation for this phenomenon is that cytokines play dichotomous roles through multiple pathways, each of which is dependent on free concentration and available receptors. Furthermore, the immune-mediated leakage in the blood-brain-barrier also plays an important role in epileptogenesis. Nonetheless, these observations demonstrate the multifarious nature of cytokine networks and the complex relationship between the immune system and epilepsy. Future studies are warranted to further clarify the influence of the immune system on epilepsy and vice versa.
Collapse
Affiliation(s)
- Gang Li
- Department of Neurology, University of Marburg, Rudolf-Bultmann-Str. 8, 35033 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Carvalho-Sousa CE, da Silveira Cruz-Machado S, Tamura EK, Fernandes PACM, Pinato L, Muxel SM, Cecon E, Markus RP. Molecular basis for defining the pineal gland and pinealocytes as targets for tumor necrosis factor. Front Endocrinol (Lausanne) 2011; 2:10. [PMID: 22654792 PMCID: PMC3356111 DOI: 10.3389/fendo.2011.00010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/27/2011] [Indexed: 01/15/2023] Open
Abstract
The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine-N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target of TNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response.
Collapse
Affiliation(s)
- Claudia Emanuele Carvalho-Sousa
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | | | - Eduardo Koji Tamura
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Pedro A. C. M. Fernandes
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Therapy, Universidade Estadual PaulistaMarília, Brazil
| | - Sandra M. Muxel
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Erika Cecon
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São PauloSão Paulo, Brazil
| | - Regina P. Markus
- *Correspondence: Regina P. Markus, Laboratory of Chronopharmacology, Institute of Bioscience, Universidade de São Paulo, Rua do Matão, Travessa 14, 05508-900 São Paulo, Brazil. e-mail:
| |
Collapse
|
197
|
Nepomnyashchikh TS, Antonets DV, Lebedev LR, Gileva IP, Shchelkunov SN. 3D structure modeling of complexes formed by CrmB TNF-binding proteins of Variola and cowpox viruses with murine and human TNFs. Mol Biol 2010. [DOI: 10.1134/s0026893310060117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
198
|
Shenoi S, Wallace CA. Tumor necrosis factor inhibitors in the management of juvenile idiopathic arthritis: an evidence-based review. Paediatr Drugs 2010; 12:367-77. [PMID: 21028916 DOI: 10.2165/11532610-000000000-00000] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Juvenile idiopathic arthritis (JIA) is a chronic inflammatory disorder of unknown origin that is often treated with a variety of disease-modifying agents. Tumor necrosis factor (TNF) inhibitors are a group of genetically engineered biologic agents that target the proinflammatory cytokine TNF. This review focuses on the use of TNF inhibitors in JIA. Etanercept was the first TNF inhibitor approved for use in children with moderate to severe polyarticular-course JIA following encouraging results from a randomized, double-blind, placebo-controlled, multicenter trial in children. Open-label extension studies of the original trial involving 8 years of follow-up demonstrated the long-term safety and efficacy of etanercept in children. Other studies from established registries also corroborate the safety of etanercept in JIA. The second TNF inhibitor to be approved for use in JIA is adalimumab following recent favorable results from another randomized, placebo-controlled, multicenter study in polyarticular-course JIA. While infliximab is not approved by the US FDA for use in JIA, it is frequently used in clinical practice for this indication. However, because the chimeric structure of infliximab incorporates murine components, it has the potential for allergic and infusion reactions. Patient responses to individual TNF inhibitors may vary depending on concomitant medications such as methotrexate, and also on the category of JIA.
Collapse
Affiliation(s)
- Susan Shenoi
- University of Washington, Seattle Children's Hospital, Division of Pediatric Rheumatology, Seattle, Washington 98105, USA
| | | |
Collapse
|
199
|
Thévenon AD, Zhou JA, Megnekou R, Ako S, Leke RGF, Taylor DW. Elevated levels of soluble TNF receptors 1 and 2 correlate with Plasmodium falciparum parasitemia in pregnant women: potential markers for malaria-associated inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 185:7115-22. [PMID: 20980627 DOI: 10.4049/jimmunol.1002293] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmodium falciparum-infected erythrocytes (IEs) sequester in the intervillous space (IVS) of the placenta causing placental malaria (PM), a condition that increases a woman's chances of having a low-birth-weight baby. Because IEs sequester, they frequently are not observed in peripheral blood smears, resulting in women with PM being misdiagnosed and thus not treated. Because sequestered IEs induce inflammation in the IVS, detection of inflammatory mediators in the peripheral blood may provide an approach for diagnosing PM. Two counterregulatory molecules, TNF-αR (TNFR) 1 and TNFR2, modulate the pathological effects of TNF-α. Levels of these soluble TNFRs (sTNFRs) are reported to be elevated in children with severe malaria, but it is unclear if they are increased in the peripheral blood of PM-positive women with asymptomatic infections. In this study, sTNFR levels were measured throughout the course of pregnancy, as well as at delivery, in women with asymptomatic infections and those who remained uninfected. Results showed that both sTNFRs were significantly increased in the peripheral blood of women with asymptomatic malaria (p < 0.0001) and were positively correlated with parasitemia (p < 0.0001 for sTNFR1 and p = 0.0046 for sTNFR2). Importantly, levels of sTNFR2 were elevated in the peripheral blood of women who were PM-positive but peripheral blood-smear negative (p = 0.0017). Additionally, sTNFR2 levels were elevated in the blood of malaria-positive women who delivered low-birth-weight babies. In vitro studies demonstrated that syncytiotrophoblasts were not a major source of sTNFR. These data suggest that sTNFR2 may be a valuable biomarker for detection of malaria-associated inflammation.
Collapse
|
200
|
Abstract
TNFα (tumour necrosis factor α) is an extensively studied pleiotropic cytokine associated with the pathogenesis of a variety of inflammatory diseases. It elicits a wide spectrum of cellular responses which mediates and regulates inflammation, immune response, cell survival, proliferation and apoptosis. TNFα initiates its responses by binding to its receptors. TNFα-induced effector responses are mediated by the actions and interactions among the various intracellular signalling mediators in the cell. TNFα induces both survival and apoptotic signal in a TRADD (TNF receptor-associated DD)-dependent and -independent way. The signals are further transduced via a variety of signalling mediators, including caspases, MAPKs (mitogen-activated protein kinases), phospholipid mediators and miRNA/miR (microRNA), whose roles in specific functional responses is not fully understood. Elucidating the complexity and cross talks among signalling mediators involved in the TNFα-mediated responses will certainly aid in the identification of molecular targets, which can potentially lead to the development of novel therapeutics to treat TNFα-associated disorders and in dampening inflammation.
Collapse
|