151
|
The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α. Mol Cell Biol 2016; 36:2328-43. [PMID: 27325674 DOI: 10.1128/mcb.00090-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude.
Collapse
|
152
|
In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World J Microbiol Biotechnol 2016; 32:141. [DOI: 10.1007/s11274-016-2109-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
|
153
|
Jones CE, Berliner LJ. Nitroxide Spin-Labelling and Its Role in Elucidating Cuproprotein Structure and Function. Cell Biochem Biophys 2016; 75:195-202. [PMID: 27342129 DOI: 10.1007/s12013-016-0751-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
Copper is one of the most abundant biological metals, and its chemical properties mean that organisms need sophisticated and multilayer mechanisms in place to maintain homoeostasis and avoid deleterious effects. Studying copper proteins requires multiple techniques, but electron paramagnetic resonance (EPR) plays a key role in understanding Cu(II) sites in proteins. When spin-labels such as aminoxyl radicals (commonly referred to as nitroxides) are introduced, then EPR becomes a powerful technique to monitor not only the coordination environment, but also to obtain structural information that is often not readily available from other techniques. This information can contribute to explaining how cuproproteins fold and misfold. The theory and practice of EPR can be daunting to the non-expert; therefore, in this mini review, we explore how nitroxide spin-labelling can be used to help the inorganic biochemist gain greater understanding of cuproprotein structure and function in vitro and how EPR imaging may help improve understanding of copper homoeostasis in vivo.
Collapse
Affiliation(s)
- Christopher E Jones
- The School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2759, Australia.
| | - Lawrence J Berliner
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208-0183, USA
| |
Collapse
|
154
|
Abstract
BACKGROUND Inflammatory bowel disease (IBD) represents a family of diseases including Crohn's disease and ulcerative colitis. IBD has garnered significant attention in recent years due to successes in 2 areas of basic science: complex human genetics and host-microbe interactions. Advances in understanding the genetics of IBD, mainly driven by genome-wide association studies, have identified more than 160 genetic loci that modulate the risk of disease. Notably, several of these genes have pointed to alterations in host-microbe interactions as being critical factors in pathogenesis. Investigations into the microbial communities of the gastrointestinal tract (or the 'gut microbiome') in IBD have yielded important insights into several aspects of interactions between microbiota and the host immune system, including how alterations to microbial community composition and function have important consequences for immune homeostasis. KEY MESSAGES The anatomy of the gastrointestinal tract plays a role in defining not only intestinal function, but also the microbial ecosystem that lives within the gut. Careful investigations into the composition and function of these microbial communities have suggested that patients with IBD have an imbalance in their gut microbiota, termed dysbiosis. These studies, as well as studies using samples from healthy individuals, have begun to uncover mechanisms of crosstalk between particular microbes (and microbial products) and immunomodulatory pathways, alterations which may drive immune diseases such as IBD. CONCLUSIONS Investigations into the role of the microbiome in IBD have provided important clues to potential pathogenic mechanisms. Harnessing this knowledge to develop therapeutics and identify biomarkers is currently a major translational goal, holding great promise for clinically meaningful progress.
Collapse
Affiliation(s)
- Ramnik J Xavier
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, and Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
155
|
Wallace N, Zani A, Abrams E, Sun Y. The Impact of Oxygen on Bacterial Enteric Pathogens. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:179-204. [PMID: 27261784 DOI: 10.1016/bs.aambs.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis.
Collapse
Affiliation(s)
- N Wallace
- University of Dayton, Dayton, OH, United States
| | - A Zani
- University of Dayton, Dayton, OH, United States
| | - E Abrams
- University of Dayton, Dayton, OH, United States
| | - Y Sun
- University of Dayton, Dayton, OH, United States
| |
Collapse
|
156
|
The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr 2016; 3. [PMID: 26185088 DOI: 10.1128/microbiolspec.mbp-0008-2014] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as "outside-in" and "inside-out," respectively (12). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota (13). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as "dysbiosis," is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae, Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis (14). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., "Enterobacterial blooms" (11)) for the evolution of pathogenicity.
Collapse
|
157
|
Benadé E, Stone W, Mouton M, Postma F, Wilsenach J, Botha A. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions. MICROBIAL ECOLOGY 2016; 71:645-659. [PMID: 26566932 DOI: 10.1007/s00248-015-0706-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.
Collapse
Affiliation(s)
- Eliska Benadé
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Wendy Stone
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Marnel Mouton
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ferdinand Postma
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Jac Wilsenach
- Virtual Consulting Engineers (Pty.) Ltd., Groenkloof, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
158
|
Robinson JL, Brynildsen MP. Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:E1757-66. [PMID: 26951670 PMCID: PMC4812703 DOI: 10.1073/pnas.1521354113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The virulence of many pathogens depends upon their ability to cope with immune-generated nitric oxide (NO·). In Escherichia coli, the major NO· detoxification systems are Hmp, an NO· dioxygenase (NOD), and NorV, an NO· reductase (NOR). It is well established that Hmp is the dominant system under aerobic conditions, whereas NorV dominates anaerobic conditions; however, the quantitative contributions of these systems under the physiologically relevant microaerobic regime remain ill defined. Here, we investigated NO· detoxification in environments ranging from 0 to 50 μM O2, and discovered a regime in which E. coli NO· defenses were severely compromised, as well as conditions that exhibited oscillations in the concentration of NO·. Using an integrated computational and experimental approach, E. coli NO· detoxification was found to be extremely impaired at low O2 due to a combination of its inhibitory effects on NorV, Hmp, and translational activities, whereas oscillations were found to result from a kinetic competition for O2 between Hmp and respiratory cytochromes. Because at least 777 different bacterial species contain the genetic requirements of this stress response oscillator, we hypothesize that such oscillatory behavior could be a widespread phenomenon. In support of this hypothesis,Pseudomonas aeruginosa, whose respiratory and NO· response networks differ considerably from those of E. coli, was found to exhibit analogous oscillations in low O2 environments. This work provides insight into how bacterial NO· defenses function under the low O2 conditions that are likely to be encountered within host environments.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
159
|
Sommer F, Bäckhed F. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. Bioessays 2016; 38:455-64. [PMID: 26990415 DOI: 10.1002/bies.201500151] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology.
Collapse
Affiliation(s)
- Felix Sommer
- Department of Molecular and Clinical Medicine, The Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Institute for Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Center of Molecular Life Sciences, University of Kiel, Kiel, Germany
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, The Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Faculty of Health Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
160
|
Antioxidant defence systems in the protozoan pathogen Giardia intestinalis. Mol Biochem Parasitol 2016; 206:56-66. [DOI: 10.1016/j.molbiopara.2015.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/03/2023]
|
161
|
Schwerdtfeger LA, Ryan EP, Tobet SA. An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine. Am J Physiol Gastrointest Liver Physiol 2016; 310:G240-8. [PMID: 26680736 PMCID: PMC4754739 DOI: 10.1152/ajpgi.00299.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/07/2015] [Indexed: 01/31/2023]
Abstract
Organotypic tissue slices provide seminatural, three-dimensional microenvironments for use in ex vivo study of specific organs and have advanced investigative capabilities compared with isolated cell cultures. Several characteristics of the gastrointestinal tract have made in vitro models for studying the intestine challenging, such as maintaining the intricate structure of microvilli, the intrinsic enteric nervous system, Peyer's patches, the microbiome, and the active contraction of gut muscles. In the present study, an organotypic intestinal slice model was developed that allows for functional investigation across regions of the intestine. Intestinal tissue slices were maintained ex vivo for several days in a physiologically relevant environment that preserved normal enterocyte structure, intact and proliferating crypt cells, submucosal organization, and muscle wall composure. Cell death was measured by a membrane-impermeable DNA binding indicator, ethidium homodimer, and less than 5% of cells were labeled in all regions of the villi and crypt epithelia at 24 h ex vivo. This tissue slice model demonstrated intact myenteric and submucosal neuronal plexuses and functional interstitial cells of Cajal to the extent that nonstimulated, segmental contractions occurred for up to 48 h ex vivo. To detect changes in physiological responses, slices were also assessed for segmental contractions in the presence and absence of antibiotic treatment, which resulted in slices with lesser or greater amounts of commensal bacteria, respectively. Segmental contractions were significantly greater in slices without antibiotics and increased native microbiota. This model renders mechanisms of neuroimmune-microbiome interactions in a complex gut environment available to direct observation and controlled perturbation.
Collapse
Affiliation(s)
- Luke A. Schwerdtfeger
- 1Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado;
| | - Elizabeth P. Ryan
- 3Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Stuart A. Tobet
- 1Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; ,2School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado; and
| |
Collapse
|
162
|
Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine. mSphere 2016; 1:mSphere00045-15. [PMID: 27239562 PMCID: PMC4863611 DOI: 10.1128/msphere.00045-15] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
It is hypothesized that the depletion of microbial members responsible for converting primary bile acids into secondary bile acids reduces resistance to Clostridium difficile colonization. To date, inhibition of C. difficile growth by secondary bile acids has only been shown in vitro. Using targeted bile acid metabolomics, we sought to define the physiologically relevant concentrations of primary and secondary bile acids present in the murine small and large intestinal tracts and how these impact C. difficile dynamics. We treated mice with a variety of antibiotics to create distinct microbial and metabolic (bile acid) environments and directly tested their ability to support or inhibit C. difficile spore germination and outgrowth ex vivo. Susceptibility to C. difficile in the large intestine was observed only after specific broad-spectrum antibiotic treatment (cefoperazone, clindamycin, and vancomycin) and was accompanied by a significant loss of secondary bile acids (deoxycholate, lithocholate, ursodeoxycholate, hyodeoxycholate, and ω-muricholate). These changes were correlated to the loss of specific microbiota community members, the Lachnospiraceae and Ruminococcaceae families. Additionally, physiological concentrations of secondary bile acids present during C. difficile resistance were able to inhibit spore germination and outgrowth in vitro. Interestingly, we observed that C. difficile spore germination and outgrowth were supported constantly in murine small intestinal content regardless of antibiotic perturbation, suggesting that targeting growth of C. difficile will prove most important for future therapeutics and that antibiotic-related changes are organ specific. Understanding how the gut microbiota regulates bile acids throughout the intestine will aid the development of future therapies for C. difficile infection and other metabolically relevant disorders such as obesity and diabetes. IMPORTANCE Antibiotics alter the gastrointestinal microbiota, allowing for Clostridium difficile infection, which is a significant public health problem. Changes in the structure of the gut microbiota alter the metabolome, specifically the production of secondary bile acids. Specific bile acids are able to initiate C. difficile spore germination and also inhibit C. difficile growth in vitro, although no study to date has defined physiologically relevant bile acids in the gastrointestinal tract. In this study, we define the bile acids C. difficile spores encounter in the small and large intestines before and after various antibiotic treatments. Antibiotics that alter the gut microbiota and deplete secondary bile acid production allow C. difficile colonization, representing a mechanism of colonization resistance. Multiple secondary bile acids in the large intestine were able to inhibit C. difficile spore germination and growth at physiological concentrations and represent new targets to combat C. difficile in the large intestine.
Collapse
|
163
|
Olson KR, Straub KD. The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling. Physiology (Bethesda) 2016; 31:60-72. [DOI: 10.1152/physiol.00024.2015] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The chemical versatility of sulfur and its abundance in the prebiotic Earth as reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion years ago and also as a major source of energy in the first seven-eighths of evolution. The tremendous increase in ambient oxygen ∼600 million years ago brought an end to H2S as an energy source, and H2S-dependent animals either became extinct, retreated to isolated sulfide niches, or adapted. The first 3 billion years of molecular tinkering were not lost, however, and much of this biochemical armamentarium easily adapted to an oxic environment where it contributes to metabolism and signaling even in humans. This review examines the role of H2S in evolution and the evolution of H2S metabolism and signaling.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Indiana University School of Medicine, South Bend, South Bend, Indiana; and
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
164
|
Desmet CM, Lafosse A, Vériter S, Porporato PE, Sonveaux P, Dufrane D, Levêque P, Gallez B. Application of Electron Paramagnetic Resonance (EPR) Oximetry to Monitor Oxygen in Wounds in Diabetic Models. PLoS One 2015; 10:e0144914. [PMID: 26659378 PMCID: PMC4679295 DOI: 10.1371/journal.pone.0144914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/26/2015] [Indexed: 11/18/2022] Open
Abstract
A lack of oxygen is classically described as a major cause of impaired wound healing in diabetic patients. Even if the role of oxygen in the wound healing process is well recognized, measurement of oxygen levels in a wound remains challenging. The purpose of the present study was to assess the value of electron paramagnetic resonance (EPR) oximetry to monitor pO2 in wounds during the healing process in diabetic mouse models. Kinetics of wound closure were carried out in streptozotocin (STZ)-treated and db/db mice. The pO2 was followed repeatedly during the healing process by 1 GHz EPR spectroscopy with lithium phthalocyanine (LiPc) crystals used as oxygen sensor in two different wound models: a full-thickness excisional skin wound and a pedicled skin flap. Wound closure kinetics were dramatically slower in 12-week-old db/db compared to control (db/+) mice, whereas kinetics were not statistically different in STZ-treated compared to control mice. At the center of excisional wounds, measurements were highly influenced by atmospheric oxygen early in the healing process. In pedicled flaps, hypoxia was observed early after wounding. While reoxygenation occurred over time in db/+ mice, hypoxia was prolonged in the diabetic db/db model. This observation was consistent with impaired healing and microangiopathies observed using intravital microscopy. In conclusion, EPR oximetry using LiPc crystals as the oxygen sensor is an appropriate technique to follow wound oxygenation in acute and chronic wounds, in normal and diabetic animals. Nevertheless, the technique is limited for measurements in pedicled skin flaps and cannot be applied to excisional wounds in which diffusion of atmospheric oxygen significantly affects the measurements.
Collapse
Affiliation(s)
- Céline M. Desmet
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Aurore Lafosse
- Endocrine Cell Therapy Unit, Center of Tissue/Cell Therapy, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
- Plastic and Reconstructive Surgery Unit, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Sophie Vériter
- Endocrine Cell Therapy Unit, Center of Tissue/Cell Therapy, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Paolo E. Porporato
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Denis Dufrane
- Endocrine Cell Therapy Unit, Center of Tissue/Cell Therapy, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Philippe Levêque
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
165
|
Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int J Parasitol 2015; 45:925-38. [DOI: 10.1016/j.ijpara.2015.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
|
166
|
Abstract
The intestine is supported by a complex vascular system that undergoes dynamic and transient daily shifts in blood perfusion, depending on the metabolic state. Moreover, the intestinal villi have a steep oxygen gradient from the hypoxic epithelium adjacent to the anoxic lumen to the relative higher tissue oxygenation at the base of villi. Due to the daily changes in tissue oxygen levels in the intestine, the hypoxic transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. HIF-2α is essential in maintaining proper micronutrient balance, the inflammatory response, and the regenerative and proliferative capacity of the intestine following an acute injury. However, chronic activation of HIF-2α leads to enhanced proinflammatory response, intestinal injury, and colorectal cancer. In this review, we detail the major mechanisms by which HIF-2α contributes to health and disease of the intestine and the therapeutic implications of targeting HIF-2α in intestinal diseases.
Collapse
Affiliation(s)
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and.,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
167
|
Response of Vibrio cholerae to the Catecholamine Hormones Epinephrine and Norepinephrine. J Bacteriol 2015; 197:3769-78. [PMID: 26416829 DOI: 10.1128/jb.00345-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED In Escherichia coli or Salmonella enterica, the stress-associated mammalian hormones epinephrine (E) and norepinephrine (NE) trigger a signaling cascade by interacting with the QseC sensor protein. Here we show that Vibrio cholerae, the causative agent of cholera, exhibits a specific response to E and NE. These catecholates (0.1 mM) enhanced the growth and swimming motility of V. cholerae strain O395 on soft agar in a medium containing calf serum, which simulated the environment within the host. During growth, the hormones were converted to degradation products, including adrenochrome formed by autooxidation with O2 or superoxide. In E. coli, the QseC sensor kinase, which detects the autoinducer AI-3, also senses E or NE. The genome of V. cholerae O395 comprises an open reading frame coding for a putative protein with 29% identity to E. coli QseC. Quantitative reverse transcriptase PCR (qRT-PCR) experiments revealed increased transcript levels of the qseC-like gene and of pomB, a gene encoding a structural component of the flagellar motor complex, under the influence of E or NE. Phentolamine blocks the response of E. coli QseC to E or NE. A V. cholerae mutant devoid of the qseC-like gene retained the phentolamine-sensitive motility in the presence of E, whereas NE-stimulated motility was no longer inhibited by phentolamine. Our study demonstrates that V. cholerae senses the stress hormones E and NE. A sensor related to the histidine kinase QseC from E. coli is identified and is proposed to participate in the sensing of NE. IMPORTANCE Vibrio cholerae is a Gram-negative bacterium that may cause cholera, a severe illness with high mortality due to acute dehydration caused by diarrhea and vomiting. Pathogenic V. cholerae strains possess virulence factors like the cholera toxin (CTX) and the toxin-coregulated pilus (TCP) produced in response to signals provided by the host. In pathogenic enterobacteria, the stress-associated hormones epinephrine (E) and norepinephrine (NE) of the human host act as signal molecules for the production of virulence factors and promote bacterial growth by the sequestration of iron from the host. Here we show that V. cholerae, like some enterobacteria, benefits from these stress hormones and possesses a sensor to recognize them.
Collapse
|
168
|
Epel B, Halpern HJ. In Vivo pO2 Imaging of Tumors: Oxymetry with Very Low-Frequency Electron Paramagnetic Resonance. Methods Enzymol 2015; 564:501-27. [PMID: 26477263 DOI: 10.1016/bs.mie.2015.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For over a century, it has been known that tumor hypoxia, regions of a tumor with low levels of oxygenation, are important contributors to tumor resistance to radiation therapy and failure of radiation treatment of cancer. Recently, using novel pulse electron paramagnetic resonance (EPR) oxygen imaging, near absolute images of the partial pressure of oxygen (pO2) in tumors of living animals have been obtained. We discuss here the means by which EPR signals can be obtained in living tissues and tumors. We review development of EPR methods to image the pO2 in tumors and the potential for the pO2 image acquisition in human subjects.
Collapse
Affiliation(s)
- Boris Epel
- Center for Electron Paramagnetic Resonance Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | - Howard J Halpern
- Center for Electron Paramagnetic Resonance Imaging In Vivo Physiology, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
169
|
Robust bioengineered 3D functional human intestinal epithelium. Sci Rep 2015; 5:13708. [PMID: 26374193 PMCID: PMC4571649 DOI: 10.1038/srep13708] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022] Open
Abstract
Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments.
Collapse
|
170
|
White SJ, McClung DM, Wilson JG, Roberts BN, Donaldson JR. Influence of pH on bile sensitivity amongst various strains of Listeria monocytogenes under aerobic and anaerobic conditions. J Med Microbiol 2015; 64:1287-1296. [PMID: 26307079 PMCID: PMC4755106 DOI: 10.1099/jmm.0.000160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Listeria monocytogenes is a dangerous bacterium that causes the food-borne disease listeriosis and accounts for nearly 20 % of food-borne deaths. This organism can survive the body's natural defences within the digestive tract, including acidic conditions and bile. Although the bile response has been analysed, limited information is available concerning the ability of L. monocytogenes to resist bile under anaerobic conditions, especially at acidic pH, which mimics conditions within the duodenum. Additionally, it is not known how the bile response varies between serotypes. In this study, the survival of strains representing six serotypes was analysed under aerobic and anaerobic conditions following exposure to bile. Exposure to bile salts at acidic pH increased toxicity of bile, resulting in a significant reduction in survival for all strains tested. However, following this initial reduction, no significant reduction was observed for an additional 2 h except for strain 10403S (P = 0.002). Anaerobic cultivation increased bile resistance, but a significant increase was only observed in virulent strains when exposed to bile at pH 5.5. Exposure to pH 3.0 prior to bile decreased viability amongst avirulent strains in bile in acidic conditions; oxygen availability did not influence viability. Together, the data suggested that being able to sense and respond to oxygen availability may influence the expression of stress response mechanisms, and this response may correspond to disease outcome. Further research is needed on additional strains to determine how L. monocytogenes senses and responds to oxygen and how this varies between invasive and non-invasive strains.
Collapse
Affiliation(s)
- Sally J White
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel M McClung
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jessica G Wilson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Brandy N Roberts
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Janet R Donaldson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
171
|
Desai PR, van Wijlick L, Kurtz D, Juchimiuk M, Ernst JF. Hypoxia and Temperature Regulated Morphogenesis in Candida albicans. PLoS Genet 2015; 11:e1005447. [PMID: 26274602 PMCID: PMC4537295 DOI: 10.1371/journal.pgen.1005447] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023] Open
Abstract
Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.
Collapse
Affiliation(s)
- Prashant R. Desai
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Dagmar Kurtz
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mateusz Juchimiuk
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Joachim F. Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
172
|
Jennewein J, Matuszak J, Walter S, Felmy B, Gendera K, Schatz V, Nowottny M, Liebsch G, Hensel M, Hardt WD, Gerlach RG, Jantsch J. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence. Cell Microbiol 2015; 17:1833-47. [PMID: 26104016 DOI: 10.1111/cmi.12476] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/17/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022]
Abstract
In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that hypoxia-induced impairment of antimicrobial activity and Salmonella virulence cooperate to allow for enhanced Salmonella replication in MΦ.
Collapse
Affiliation(s)
- Jonas Jennewein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg und Universität Regensburg, Regensburg, Germany
| | - Jasmin Matuszak
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Steffi Walter
- Robert Koch-Institut, Bereich Wernigerode, Wernigerode, Germany
| | - Boas Felmy
- Institut für Mikrobiologie, ETH Zürich, Zürich, Switzerland
| | - Kathrin Gendera
- Robert Koch-Institut, Bereich Wernigerode, Wernigerode, Germany
| | - Valentin Schatz
- Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg und Universität Regensburg, Regensburg, Germany
| | - Monika Nowottny
- Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg und Universität Regensburg, Regensburg, Germany
| | | | - Michael Hensel
- Abteilung Mikrobiologie, Fachbereich Biologie / Chemie, Universität Osnabrück, Osnabrück, Germany
| | | | - Roman G Gerlach
- Robert Koch-Institut, Bereich Wernigerode, Wernigerode, Germany
| | - Jonathan Jantsch
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg und Universität Regensburg, Regensburg, Germany
| |
Collapse
|
173
|
Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol 2015; 309:C350-60. [PMID: 26179603 DOI: 10.1152/ajpcell.00191.2015] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, the intestinal mucosa has proven to be an intriguing organ to study tissue oxygenation. The highly vascularized lamina propria juxtaposed to an anaerobic lumen containing trillions of metabolically active microbes results in one of the most austere tissue microenvironments in the body. Studies to date have determined that a healthy mucosa contains a steep oxygen gradient along the length of the intestine and from the lumen to the serosa. Advances in technology have allowed multiple independent measures and indicate that, in the healthy mucosa of the small and large intestine, the lumen-apposed epithelia experience Po2 conditions of <10 mmHg, so-called physiologic hypoxia. This unique physiology results from a combination of factors, including countercurrent exchange blood flow, fluctuating oxygen demands, epithelial metabolism, and oxygen diffusion into the lumen. Such conditions result in the activation of a number of hypoxia-related signaling processes, including stabilization of the transcription factor hypoxia-inducible factor. Here, we review the principles of mucosal oxygen delivery, metabolism, and end-point functional responses that result from this unique oxygenation profile.
Collapse
Affiliation(s)
- Leon Zheng
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Caleb J Kelly
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean P Colgan
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
174
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Sauerstoffmessung in der Biomedizin - von der Makro- zur Mikroebene. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
175
|
Roussakis E, Li Z, Nichols AJ, Evans CL. Oxygen-Sensing Methods in Biomedicine from the Macroscale to the Microscale. Angew Chem Int Ed Engl 2015; 54:8340-62. [DOI: 10.1002/anie.201410646] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/05/2015] [Indexed: 12/15/2022]
|
176
|
Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 2015; 21:808-14. [PMID: 26053625 PMCID: PMC4496259 DOI: 10.1038/nm.3871] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
Candida albicans colonization is required for invasive disease1-3. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization2,4. But the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria – specifically Clostridial Firmicutes (Clusters IV and XIVa) and Bacteroidetes – are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that HIF-1α, a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL37-CRAMP are key determinants of C. albicans colonization resistance. While antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Cramp are required for B. thetaiotamicron-induced protection against CA colonization of the gut. Thus, C. albicans GI colonization modulation by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans.
Collapse
|
177
|
Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015; 17:577-91. [PMID: 25974300 PMCID: PMC4498258 DOI: 10.1016/j.chom.2015.04.008] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota, which is composed of bacteria, viruses, and micro-eukaryotes, acts as an accessory organ system with distinct functions along the intestinal tract that are critical for health. This review focuses on how the microbiota drives intestinal disease through alterations in microbial community architecture, disruption of the mucosal barrier, modulation of innate and adaptive immunity, and dysfunction of the enteric nervous system. Inflammatory bowel disease is used as a model system to understand these microbial-driven pathologies, but the knowledge gained in this space is extended to less-well-studied intestinal diseases that may also have an important microbial component, including environmental enteropathy and chronic colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Marta Wlodarska
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Aleksandar D Kostic
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
178
|
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015; 17:662-71. [PMID: 25865369 DOI: 10.1016/j.chom.2015.03.005] [Citation(s) in RCA: 1165] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
Interactions between the microbiota and distal gut are fundamental determinants of human health. Such interactions are concentrated at the colonic mucosa and provide energy for the host epithelium through the production of the short-chain fatty acid butyrate. We sought to determine the role of epithelial butyrate metabolism in establishing the austere oxygenation profile of the distal gut. Bacteria-derived butyrate affects epithelial O2 consumption and results in stabilization of hypoxia-inducible factor (HIF), a transcription factor coordinating barrier protection. Antibiotic-mediated depletion of the microbiota reduces colonic butyrate and HIF expression, both of which are restored by butyrate supplementation. Additionally, germ-free mice exhibit diminished retention of O2-sensitive dyes and decreased stabilized HIF. Furthermore, the influences of butyrate are lost in cells lacking HIF, thus linking butyrate metabolism to stabilized HIF and barrier function. This work highlights a mechanism where host-microbe interactions augment barrier function in the distal gut.
Collapse
Affiliation(s)
- Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Leon Zheng
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Eric L Campbell
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Bejan Saeedi
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Carsten C Scholz
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Ireland
| | - Amanda J Bayless
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Kelly E Wilson
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Anesthesiology, University of Colorado, Aurora, CO 80045, USA
| | - Aaron Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Stefan F Ehrentraut
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA; Department of Anesthesiology, University of Bonn, Bonn 53113, Germany
| | - Christina Pickel
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Ireland
| | - Kristine A Kuhn
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Jordi M Lanis
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Vu Nguyen
- Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Cormac T Taylor
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Ireland
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
179
|
Bahadur V, Mastronicola D, Singh AK, Tiwari HK, Pucillo LP, Sarti P, Singh BK, Giuffrè A. Antigiardial activity of novel triazolyl-quinolone-based chalcone derivatives: when oxygen makes the difference. Front Microbiol 2015; 6:256. [PMID: 25904901 PMCID: PMC4389562 DOI: 10.3389/fmicb.2015.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 01/25/2023] Open
Abstract
Giardiasis is a common diarrheal disease worldwide caused by the protozoan parasite Giardia intestinalis. It is urgent to develop novel drugs to treat giardiasis, due to increasing clinical resistance to the gold standard drug metronidazole (MTZ). New potential antiparasitic compounds are usually tested for their killing efficacy against G. intestinalis under anaerobic conditions, in which MTZ is maximally effective. On the other hand, though commonly regarded as an ‘anaerobic pathogen,’ G. intestinalis is exposed to relatively high O2 levels in vivo, living attached to the mucosa of the proximal small intestine. It is thus important to test the effect of O2 when searching for novel potential antigiardial agents, as outlined in a previous study [Bahadur et al. (2014) Antimicrob. Agents Chemother. 58, 543]. Here, 45 novel chalcone derivatives with triazolyl-quinolone scaffold were synthesized, purified, and characterized by high resolution mass spectrometry, 1H and 13C nuclear magnetic resonance and infrared spectroscopy. Efficacy of the compounds against G. intestinalis trophozoites was tested under both anaerobic and microaerobic conditions, and selectivity was assessed in a counter-screen on human epithelial colorectal adenocarcinoma cells. MTZ was used as a positive control in the assays. All the tested compounds proved to be more effective against the parasite in the presence of O2, with the exception of MTZ that was less effective. Under anaerobiosis eighteen compounds were found to be as effective as MTZ or more (up to three to fourfold); the same compounds proved to be up to >100-fold more effective than MTZ under microaerobic conditions. Four of them represent potential candidates for the design of novel antigiardial drugs, being highly selective against Giardia trophozoites. This study further underlines the importance of taking O2 into account when testing novel potential antigiardial compounds.
Collapse
Affiliation(s)
- Vijay Bahadur
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Daniela Mastronicola
- CNR Institute of Molecular Biology and Pathology Rome, Italy ; Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Amit K Singh
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Hemandra K Tiwari
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | - Leopoldo P Pucillo
- L. Spallanzani National Institute for Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Rome, Italy
| | - Paolo Sarti
- CNR Institute of Molecular Biology and Pathology Rome, Italy ; Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | - Brajendra K Singh
- Bio-Organic Laboratory, Department of Chemistry, University of Delhi Delhi, India
| | | |
Collapse
|
180
|
Anoxic Conditions Promote Species-Specific Mutualism between Gut Microbes In Silico. Appl Environ Microbiol 2015; 81:4049-61. [PMID: 25841013 DOI: 10.1128/aem.00101-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
The human gut is inhabited by thousands of microbial species, most of which are still uncharacterized. Gut microbes have adapted to each other's presence as well as to the host and engage in complex cross feeding. Constraint-based modeling has been successfully applied to predicting microbe-microbe interactions, such as commensalism, mutualism, and competition. Here, we apply a constraint-based approach to model pairwise interactions between 11 representative gut microbes. Microbe-microbe interactions were computationally modeled in conjunction with human small intestinal enterocytes, and the microbe pairs were subjected to three diets with various levels of carbohydrate, fat, and protein in normoxic or anoxic environments. Each microbe engaged in species-specific commensal, parasitic, mutualistic, or competitive interactions. For instance, Streptococcus thermophilus efficiently outcompeted microbes with which it was paired, in agreement with the domination of streptococci in the small intestinal microbiota. Under anoxic conditions, the probiotic organism Lactobacillus plantarum displayed mutualistic behavior toward six other species, which, surprisingly, were almost entirely abolished under normoxic conditions. This finding suggests that the anoxic conditions in the large intestine drive mutualistic cross feeding, leading to the evolvement of an ecosystem more complex than that of the small intestinal microbiota. Moreover, we predict that the presence of the small intestinal enterocyte induces competition over host-derived nutrients. The presented framework can readily be expanded to a larger gut microbial community. This modeling approach will be of great value for subsequent studies aiming to predict conditions favoring desirable microbes or suppressing pathogens.
Collapse
|
181
|
Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One 2015; 10:e0119712. [PMID: 25803049 PMCID: PMC4372352 DOI: 10.1371/journal.pone.0119712] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.
Collapse
|
182
|
Pritchard RE, Balish MF. Mycoplasma iowae: relationships among oxygen, virulence, and protection from oxidative stress. Vet Res 2015; 46:36. [PMID: 25880161 PMCID: PMC4367981 DOI: 10.1186/s13567-015-0170-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
The poultry-associated bacterium Mycoplasma iowae colonizes multiple sites in embryos, with disease or death resulting. Although M. iowae accumulates in the intestinal tract, it does not cause disease at that site, but rather only in tissues that are exposed to atmospheric O2. The activity of M. iowae catalase, encoded by katE, is capable of rapid removal of damaging H2O2 from solution, and katE confers a substantial reduction in the amount of H2O2 produced by Mycoplasma gallisepticum katE transformants in the presence of glycerol. As catalase-producing bacteria are often beneficial to hosts with inflammatory bowel disease, we explored whether M. iowae was exclusively protective against H2O2-producing bacteria in a Caenorhabditis elegans model, whether its protectiveness changed in response to O2 levels, and whether expression of genes involved in H2O2 metabolism and virulence changed in response to O2 levels. We observed that M. iowae was in fact protective against H2O2-producing Streptococcus pneumoniae, but not HCN-producing Pseudomonas aeruginosa, and that M. iowae cells grown in 1% O2 promoted survival of C. elegans to a greater extent than M. iowae cells grown in atmospheric O2. Transcript levels of an M. iowae gene encoding a homolog of Mycoplasma pneumoniae CARDS toxin were 5-fold lower in cells grown in low O2. These data suggest that reduced O2, representing the intestinal environment, triggers M. iowae to reduce its virulence capabilities, effecting a change from a pathogenic mode to a potentially beneficial one.
Collapse
Affiliation(s)
- Rachel E Pritchard
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA. .,Present address: Division of Natural Sciences and Mathematics, Kentucky Wesleyan College, Owensboro, KY, 42301, USA.
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
183
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
184
|
Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 2015; 520:99-103. [PMID: 25600271 DOI: 10.1038/nature14027] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.
Collapse
|
185
|
Lloyd D, Williams CF. Avoid Excessive Oxygen Levels in Experiments with Organisms, Tissues and Cells. Adv Microb Physiol 2015; 67:293-314. [PMID: 26616520 DOI: 10.1016/bs.ampbs.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
O2 levels encountered in vivo in cells and tissues are almost always at least an order of magnitude less than atmospheric pO2 because of sensing, signalling and bioenergetic demand. Although deleterious reactions are minimized by protective mechanisms (residual toxic products scavenged and detoxified) ambient levels should be mimicked in experiments with whole organisms, their isolated organs, tissues or cells and also with cultures of cell lines. These are also important issues for microorganisms inhabiting low O2 niches within higher organisms and their cells. Here, we highlight the importance of optimization of micro-aerobic conditions for experimentation and the deleterious consequences of not doing so.
Collapse
|
186
|
Ravcheev DA, Thiele I. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota. Front Microbiol 2014; 5:674. [PMID: 25538694 PMCID: PMC4257093 DOI: 10.3389/fmicb.2014.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg ; Division 6: Comparative Genomics of Regulation System, A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Esch-sur-Alzette, Luxembourg
| |
Collapse
|
187
|
Role of anaerobiosis in capsule production and biofilm formation in Vibrio vulnificus. Infect Immun 2014; 83:551-9. [PMID: 25404024 DOI: 10.1128/iai.02559-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus, a pervasive human pathogen, can cause potentially fatal septicemia after consumption of undercooked seafood. Biotype 1 strains of V. vulnificus are most commonly associated with human infection and are separated into two genotypes, clinical (C) and environmental (E), based on the virulence-correlated gene. For ingestion-based vibriosis to occur, this bacterium must be able to withstand multiple conditions as it traverses the gastrointestinal tract and ultimately gains entry into the bloodstream. One such condition, anoxia, has yet to be extensively researched in V. vulnificus. We investigated the effect of oxygen availability on capsular polysaccharide (CPS) production and biofilm formation in this bacterium, both of which are thought to be important for disease progression. We found that lack of oxygen elicits a reduction in both CPS and biofilm formation in both genotypes. This is further supported by the finding that pilA, pilD, and mshA genes, all of which encode type IV pilin proteins that aid in attachment to surfaces, were downregulated during anaerobiosis. Surprisingly, E-genotypes exhibited distinct differences in gene expression levels of capsule and attachment genes compared to C-genotypes, both aerobically and anaerobically. The importance of understanding these disparities may give insight into the observed differences in environmental occurrence and virulence potential between these two genotypes of V. vulnificus.
Collapse
|
188
|
Chewning JH, Weaver CT. Development and survival of Th17 cells within the intestines: the influence of microbiome- and diet-derived signals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:4769-77. [PMID: 25381358 PMCID: PMC6007010 DOI: 10.4049/jimmunol.1401835] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Th17 cells have emerged as important mediators of host defense and homeostasis at barrier sites, particularly the intestines, where the greatest number and diversity of the microbiota reside. A critical balance exists between protection of the host from its own microbiota and pathogens and the development of immune-mediated disease. Breaches of local innate immune defenses provide critical stimuli for the induction of Th17 cell development, and additional cues within these tissues promote Th17 cell survival and/or plasticity. Normally, this results in eradication of the microbial threat and restitution of homeostasis. When dysregulated, however, Th17 cells can cause a range of immune-mediated diseases, whether directed against Ags derived from the microbiota, such as in inflammatory bowel disease, or against self-Ags in a range of autoimmune diseases. This review highlights recent discoveries that provide new insights into ways in which environmental signals impact Th17 cell development and function in the intestines.
Collapse
Affiliation(s)
- Joseph H Chewning
- Department of Pediatrics, Pediatric Blood and Marrow Transplantation Program, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
189
|
Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, Thom SR, Bushman FD, Vinogradov SA, Wu GD. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014; 147:1055-63.e8. [PMID: 25046162 PMCID: PMC4252572 DOI: 10.1053/j.gastro.2014.07.020] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The gut microbiota is a complex and densely populated community in a dynamic environment determined by host physiology. We investigated how intestinal oxygen levels affect the composition of the fecal and mucosally adherent microbiota. METHODS We used the phosphorescence quenching method and a specially designed intraluminal oxygen probe to dynamically quantify gut luminal oxygen levels in mice. 16S ribosomal RNA gene sequencing was used to characterize the microbiota in intestines of mice exposed to hyperbaric oxygen, human rectal biopsy and mucosal swab samples, and paired human stool samples. RESULTS Average Po2 values in the lumen of the cecum were extremely low (<1 mm Hg). In altering oxygenation of mouse intestines, we observed that oxygen diffused from intestinal tissue and established a radial gradient that extended from the tissue interface into the lumen. Increasing tissue oxygenation with hyperbaric oxygen altered the composition of the gut microbiota in mice. In human beings, 16S ribosomal RNA gene analyses showed an increased proportion of oxygen-tolerant organisms of the Proteobacteria and Actinobacteria phyla associated with rectal mucosa, compared with feces. A consortium of asaccharolytic bacteria of the Firmicute and Bacteroidetes phyla, which primarily metabolize peptones and amino acids, was associated primarily with mucus. This could be owing to the presence of proteinaceous substrates provided by mucus and the shedding of the intestinal epithelium. CONCLUSIONS In an analysis of intestinal microbiota of mice and human beings, we observed a radial gradient of microbes linked to the distribution of oxygen and nutrients provided by host tissue.
Collapse
Affiliation(s)
- Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Colleen P Judge
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kyle Bittinger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jun Chen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alice Laughlin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie Grunberg
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert N Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James D Lewis
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Gary D Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
190
|
Hofreuter D. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol 2014; 4:137. [PMID: 25325018 PMCID: PMC4178425 DOI: 10.3389/fcimb.2014.00137] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 01/27/2023] Open
Abstract
During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.
Collapse
Affiliation(s)
- Dirk Hofreuter
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology Hannover, Germany
| |
Collapse
|
191
|
Shakhsheer B, Alverdy J. Surgery for fulminant Clostridium difficile infection. SEMINARS IN COLON AND RECTAL SURGERY 2014. [DOI: 10.1053/j.scrs.2014.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
192
|
Krzykawska-Serda M, Dąbrowski JM, Arnaut LG, Szczygieł M, Urbańska K, Stochel G, Elas M. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy. Free Radic Biol Med 2014; 73:239-51. [PMID: 24835769 DOI: 10.1016/j.freeradbiomed.2014.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022]
Abstract
Blood flow and pO2 changes after vascular-targeted photodynamic therapy (V-PDT) or cellular-targeted PDT (C-PDT) using 5,10,15,20-tetrakis(2,6-difluoro-3-N-methylsulfamoylphenyl) bacteriochlorin (F2BMet) as photosensitizer were investigated in DBA/2 mice with S91 Cloudman mouse melanoma, and correlated with long-term tumor responses. F2BMet generates both singlet oxygen and hydroxyl radicals under near-infrared radiation, which consume oxygen. Partial oxygen pressure was lowered in PDT-treated tumors and this was ascribed both to oxygen consumption during PDT and to fluctuations in oxygen transport after PDT. Similarly, microcirculatory blood flow changed as a result of the disruption of blood vessels by the treatment. A novel noninvasive approach combining electron paramagnetic resonance oximetry and laser Doppler blood perfusion measurements allowed longitudinal monitoring of hypoxia and vascular function changes in the same animals, after PDT. C-PDT induced parallel changes in tumor pO2 and blood flow, i.e., an initial decrease immediately after treatment, followed by a slow increase. In contrast, V-PDT led to a strong and persistent depletion of pO2, although the microcirculatory blood flow increased. Strong hypoxia after V-PDT led to a slight increase in VEGF level 24h after treatment. C-PDT caused a ca. 5-day delay in tumor growth, whereas V-PDT was much more efficient and led to tumor growth inhibition in 90% of animals. The tumors of 44% of mice treated with V-PDT regressed completely and did not reappear for over 1 year. In conclusion, mild and transient hypoxia after C-PDT led to intense pO2 compensatory effects and modest tumor inhibition, but strong and persistent local hypoxia after V-PDT caused tumor growth inhibition.
Collapse
Affiliation(s)
- Martyna Krzykawska-Serda
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | | | - Luis G Arnaut
- Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal; Luzitin SA, 3045-016 Coimbra, Portugal.
| | - Małgorzata Szczygieł
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Krystyna Urbańska
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
193
|
Failla ML, Chitchumroonchokchai C, Aoki F. Increased bioavailability of ubiquinol compared to that of ubiquinone is due to more efficient micellarization during digestion and greater GSH-dependent uptake and basolateral secretion by Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7174-7182. [PMID: 24979483 DOI: 10.1021/jf5017829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The oral bioavailability of ubiquinol recently has been reported to be greater than that of ubiquinone in healthy adults. The basis for this influence of redox state of coenzyme Q (CoQ) on bioavailability has been investigated using the coupled in vitro digestion/Caco-2 cell model. Solubilized ubiquinol and ubiquinone were added to yogurt and subjected to simulated gastric and small intestinal digestion. Partitioning of CoQ in mixed micelles during small intestinal digestion was significantly greater during digestion of yogurt enriched with ubiquinol. Similarly, apical uptake from mixed micelles and transepithelial transport of CoQ by Caco-2 cells were significantly greater after digestion of the ubiquinol-rich yogurt compared to digested ubiquinone-rich yogurt. Reduction of cellular GSH significantly decreased cell uptake and basolateral secretion of both ubiquinol and ubiquinone, although the adverse impact was much greater for ubiquinol. These data suggest that the enhanced bioaccessibility and bioavailability of ubiquinol compared to ubiquinone results from reduced coenzyme being more efficiently incorporated into mixed micelles during digestion and its greater uptake and basolateral secretion in a glutathione-dependent mechanism.
Collapse
Affiliation(s)
- Mark L Failla
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
194
|
Alminger M, Aura AM, Bohn T, Dufour C, El S, Gomes A, Karakaya S, Martínez-Cuesta M, McDougall G, Requena T, Santos C. In VitroModels for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr Rev Food Sci Food Saf 2014; 13:413-436. [DOI: 10.1111/1541-4337.12081] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- M. Alminger
- Dept. of Chemical and Biological Engineering; Chalmers Univ. of Technology; SE 412 96 Gothenburg Sweden
| | - A.-M. Aura
- VTT Technical Research Centre of Finland; P.O.Box 1000 Tietotie 2 Espoo FI-02044 VTT Finland
| | - T. Bohn
- Environment and Agro-biotechnologies Dept; Centre de Recherche Public - Gabriel Lippmann; 4422 Belvaux Luxembourg
| | - C. Dufour
- INRA, UMR408 Safety and Quality of Plant Products F-84000 Avignon; France
- Univ. of Avignon; UMR408 Safety and Quality of Plant Products F-84000 Avignon; France
| | - S.N. El
- Engineering Faculty Dept. of Food Engineering; Ege Univ. 35100 Izmir Turkey
| | - A. Gomes
- Inst. de Biologia Experimental e Tecnológica; Apartado 12, 2781-901 Oeiras Portugal
- Inst. de Tecnologia Química e Biológica; Univ. Nova de Lisboa; Av. da República, EAN, 2781-901 Oeiras Portugal
| | - S. Karakaya
- Engineering Faculty Dept. of Food Engineering; Ege Univ. 35100 Izmir Turkey
| | - M.C. Martínez-Cuesta
- Inst. de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM); Nicolás Cabrera 9, 28049 Madrid Spain
| | - G.J. McDougall
- The James Hutton Inst., Invergowrie; DD2 5DA; Dundee United Kingdom
| | - T. Requena
- Inst. de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM); Nicolás Cabrera 9, 28049 Madrid Spain
| | - C.N. Santos
- Inst. de Biologia Experimental e Tecnológica; Apartado 12, 2781-901 Oeiras Portugal
- Inst. de Tecnologia Química e Biológica; Univ. Nova de Lisboa; Av. da República, EAN, 2781-901 Oeiras Portugal
| |
Collapse
|
195
|
Potential probiotic Escherichia coli 16 harboring the Vitreoscilla hemoglobin gene improves gastrointestinal tract colonization and ameliorates carbon tetrachloride induced hepatotoxicity in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:213574. [PMID: 25050329 PMCID: PMC4090500 DOI: 10.1155/2014/213574] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/02/2014] [Indexed: 01/24/2023]
Abstract
The present study describes the beneficial effects of potential probiotic E. coli 16 (pUC8:16gfp) expressing Vitreoscilla hemoglobin (vgb) gene, associated with bacterial respiration under microaerobic condition, on gastrointestinal (GI) colonization and its antioxidant activity on carbon tetrachloride (CCl4) induced toxicity in Charles Foster rats. In vitro, catalase activity in E. coli 16 (pUC8:16gfp) was 1.8 times higher compared to E. coli 16 (pUC-gfp) control. In vivo, E. coli 16 (pUC8:16gfp) not only was recovered in the fecal matter after 70 days of oral administration but also retained antibacterial activities, whereas E. coli 16 (pUC-gfp) was not detected. Oral administration of 200 and 500 μL/kg body weight of CCl4 to rats at weekly interval resulted in elevated serum glutamyl pyruvate transaminase (SGPT) and serum glutamyl oxalacetate transaminase (SGOT) levels compared to controls. Rats prefed with E. coli 16 (pUC8:16gfp) demonstrated near to normal levels for SGPT and SGOT, whereas the liver homogenate catalase activity was significantly increased compared to CCl4 treated rats. Thus, pUC8:16gfp plasmid encoding vgb improved the growth and GI tract colonization of E. coli 16. In addition, it also enhanced catalase activity in rats harboring E. coli 16 (pUC8:16gfp), thereby preventing the absorption of CCl4 to GI tract.
Collapse
|
196
|
Tran SL, Billoud L, Lewis SB, Phillips AD, Schüller S. Shiga toxin production and translocation during microaerobic human colonic infection with Shiga toxin-producing E. coli O157:H7 and O104:H4. Cell Microbiol 2014; 16:1255-66. [PMID: 24612002 PMCID: PMC4231982 DOI: 10.1111/cmi.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 12/30/2022]
Abstract
Haemolytic uraemic syndrome caused by Shiga toxin-producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx-related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human colon carcinoma cells to simulate the microaerobic (MA) environment in the human intestine and investigate its influence on Stx release and translocation during STEC O157:H7 and O104:H4 infection. Stx2 was the major toxin type released during infection. Whereas microaerobiosis significantly reduced bacterial growth as well as Stx production and release into the medium, Stx translocation across the epithelial monolayer was enhanced under MA versus aerobic conditions. Increased Stx transport was dependent on STEC infection and occurred via a transcellular pathway other than macropinocytosis. While MA conditions had a similar general effect on Stx release and absorption during infection with STEC O157:H7 and O104:H4, both serotypes showed considerable differences in colonization, Stx production, and Stx translocation which suggest alternative virulence strategies. Taken together, our study suggests that the MA environment in the human colon may modulate Stx-related events and enhance Stx absorption during STEC infection.
Collapse
Affiliation(s)
- Seav-Ly Tran
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK; Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | | | | | | | | |
Collapse
|
197
|
H(2)O(2) production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-dependent flavin reductase. Appl Environ Microbiol 2014; 80:2229-39. [PMID: 24487531 DOI: 10.1128/aem.04272-13] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H(2)O(2), inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H(2)O(2) production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H(2)O(2) production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H(2)O(2) production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H(2)O(2) production in L. johnsonii.
Collapse
|
198
|
Mastronicola D, Falabella M, Testa F, Pucillo LP, Teixeira M, Sarti P, Saraiva LM, Giuffrè A. Functional characterization of peroxiredoxins from the human protozoan parasite Giardia intestinalis. PLoS Negl Trop Dis 2014; 8:e2631. [PMID: 24416465 PMCID: PMC3886907 DOI: 10.1371/journal.pntd.0002631] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/26/2013] [Indexed: 01/03/2023] Open
Abstract
The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2−•) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO−). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO− rapidly (k = 4×105 M−1 s−1 and 2×105 M−1 s−1 at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis. Giardia intestinalis causes one of the most common human intestinal diseases worldwide, called giardiasis. This microorganism infects the small intestine where it has to cope with O2, nitric oxide (NO) and related reactive species that are toxic for Giardia as it lacks most of the conventional antioxidant enzymes. Understanding how this pathogen survives oxidative stress is thus important because it may help to identify novel drug targets to combat giardiasis. Some enzymes playing a role in the antioxidant defense of Giardia have been recently reported, but it is yet unknown how the parasite copes with two well-known oxidants, hydrogen peroxide (H2O2) and peroxynitrite (ONOO−). In this study, the Authors show that Giardia expresses two enzymes (called peroxiredoxins), yet uncharacterized, that are able not only to degrade both H2O2 and ONOO−, but also to repair damaged molecules (called hydroperoxides) that accumulate in the cell under oxidative stress conditions. These results are totally unprecedented because no enzymes with these types of functions have been reported for Giardia to date. If these two enzymes will prove to be essential for Giardia virulence in future studies, a new way will be paved towards the discovery of novel drugs to treat giardiasis.
Collapse
Affiliation(s)
| | - Micol Falabella
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Fabrizio Testa
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | | | - Miguel Teixeira
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paolo Sarti
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Biochemical Sciences and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Lígia M. Saraiva
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
199
|
Golub F, Potter LC, Ash JN, Blank A, Ahmad R. Estimation of spin-echo relaxation time. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:17-22. [PMID: 24125956 DOI: 10.1016/j.jmr.2013.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 06/02/2023]
Abstract
In spin-echo-based EPR oximetry, traditional methods to estimate the T2 relaxation time, which encodes the oxygen concentration of the sample, include fitting an exponential to the peaks or the integrated areas of multiple noisy echoes. These methods are suboptimal and result in a loss of estimation precision for a given acquisition time. Here, we present the maximum likelihood estimate (MLE) of T2 from spin-echo data. The MLE provides, for the data considered, approximately 3-fold time savings over echo-integration and more than 40-fold time savings over peak-picking. A one-dimensional line search results in simple computation of the MLE. It is observed that, perhaps counter-intuitively, prior knowledge of the lineshape does not yield additional reduction of estimation error variance at practical noise levels. The result also illuminates the near optimal performance of T2 estimation via principal components calculated by a singular value decomposition. The proposed method is illustrated by application to simulated and experimental EPR data.
Collapse
Affiliation(s)
- F Golub
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - L C Potter
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - J N Ash
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - A Blank
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - R Ahmad
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
200
|
O(2)-dependent efficacy of novel piperidine- and piperazine-based chalcones against the human parasite Giardia intestinalis. Antimicrob Agents Chemother 2013; 58:543-9. [PMID: 24217695 DOI: 10.1128/aac.00990-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Giardia intestinalis is the most frequent protozoan agent of intestinal diseases worldwide. Though commonly regarded as an anaerobic pathogen, it preferentially colonizes the fairly oxygen-rich mucosa of the proximal small intestine. Therefore, when testing new potential antigiardial drugs, O2 should be taken into account, since it also reduces the efficacy of metronidazole, the gold standard drug against giardiasis. In this study, 46 novel chalcones were synthesized by microwave-assisted Claisen-Schmidt condensation, purified, characterized by high-resolution mass spectrometry, (1)H and (13)C nuclear magnetic resonance, and infrared spectroscopy, and tested for their toxicity against G. intestinalis under standard anaerobic conditions. As a novel approach, compounds showing antigiardial activity under anaerobiosis were also assayed under microaerobic conditions, and their selectivity against parasitic cells was assessed in a counterscreen on human epithelial colorectal adenocarcinoma cells. Among the tested compounds, three [30(a), 31(e), and 33] were more effective in the presence of O2 than under anaerobic conditions and killed the parasite 2 to 4 times more efficiently than metronidazole under anaerobiosis. Two of them [30(a) and 31(e)] proved to be selective against parasitic cells, thus representing potential candidates for the design of novel antigiardial drugs. This study highlights the importance of testing new potential antigiardial agents not only under anaerobic conditions but also at low, more physiological O2 concentrations.
Collapse
|