151
|
Kale VP, Vaidya AA. Molecular Mechanisms Behind the Dose-Dependent Differential Activation of MAPK Pathways Induced by Transforming Growth Factor-β1 in Hematopoietic Cells. Stem Cells Dev 2004; 13:536-47. [PMID: 15588511 DOI: 10.1089/scd.2004.13.536] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) controls a wide range of cellular responses, including cell proliferation, lineage determination, differentiation, and apoptosis, and figures prominently in animal development. It is considered as a pleiotropic factor because it can exert a positive or negative effect on various cellular processes depending on developmental stage of the target cell, its microenvironment, and also its biochemical make up. It has been shown to have a strong inhibitory effect on hematopoietic stem cell proliferation and differentiation. We have earlier shown that TGF-beta1 exerts a bidirectional effect on hematopoietic cell proliferation as a function of its concentration. Although it acted as an inhibitor at high concentrations, at low concentrations it stimulated the stem/progenitor cells. We also provided evidence that the differential activation of mitogen-activated protein kinase pathways was responsible for the observed bidirectional effect. In the present study, we examined the molecular mechanism behind this phenomenon. We observed that the high inhibitory concentrations of TGF-beta1 induced a strong phosphorylation of SMAD 3 and also activated stress kinase-related transcription factors, namely c-Jun and ATF-2. On the other hand, low stimulatory concentrations acted in a SMAD 3-independent pathway and activated STAT proteins. Our results clearly show that differential activation of signal transduction pathways by TGF-beta1 as a function of its concentration underlies its bidirectional effect on hematopoietic cells.
Collapse
Affiliation(s)
- V P Kale
- National Center for Cell Science, Ganeshkhind, Pune 411 007, India
| | | |
Collapse
|
152
|
Liu C, Russell RM, Wang XD. Low dose beta-carotene supplementation of ferrets attenuates smoke-induced lung phosphorylation of JNK, p38 MAPK, and p53 proteins. J Nutr 2004; 134:2705-10. [PMID: 15465770 DOI: 10.1093/jn/134.10.2705] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrated previously that smoke exposure and/or high-dose beta-carotene supplementation decreases levels of retinoic acid and retinoic acid receptor beta (RARbeta) protein, but increase levels of c-Jun and proliferating cellular nuclear antigen protein in the lungs of ferrets. In contrast, low-dose beta-carotene can prevent the decreased lung retinoic acid and the smoke-induced lung lesions. In the present study, we investigated whether smoke exposure and/or beta-carotene supplementation could affect Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and p53 in the lungs of ferrets. Ferrets were subjected to cigarette smoke exposure and either a high or low dose of beta-carotene (2 x 3 factorial design) for 6 mo. There were greater protein levels of phosphorylated JNK, p38, and c-Jun, but lower levels of MAPK phophatase-1 (MKP-1) in groups exposed to smoke and/or high dose beta-carotene. Both phosphorylated-p53 and total p53 were substantially increased in the lungs of these groups. In contrast, low-dose beta-carotene greatly attenuated the smoke-induced phosphorylation of JNK, p38, c-Jun, p53, and total p53, accompanied by upregulated MKP-1. Smoke exposure increased MAPK kinase-4 (MKK4) phosphorylation regardless of beta-carotene supplementation. These data indicate that restoration of retinoic acid and MKP-1 by low-dose beta-carotene in the lungs of ferrets may prevent the smoke-induced activation of the JNK-dependent signaling pathway, p38 MAPK, and the associated phosphorylation of p53, thereby lowering the risk of the smoke-related lung lesions. These data provide supportive evidence that the beneficial vs. detrimental effects of beta-carotene supplementation are related to the dosage of beta-carotene administered.
Collapse
Affiliation(s)
- Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | |
Collapse
|
153
|
Inoue K, Zama T, Kamimoto T, Aoki R, Ikeda Y, Kimura H, Hagiwara M. TNFalpha-induced ATF3 expression is bidirectionally regulated by the JNK and ERK pathways in vascular endothelial cells. Genes Cells 2004; 9:59-70. [PMID: 14723708 DOI: 10.1111/j.1356-9597.2004.00707.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ATF3 (Activating transcription factor 3), a member of the CREB/ATF family, can be induced by stress and growth factors in mammalian cells, and is thought to play an important role in the cardiovascular system. However, little is currently known about how the induction of ATF3 is regulated, except that the JNK pathway is involved. Here, we investigated the differential roles of the MAPK pathways involved in TNFalpha (tumour necrosis factor alpha)-induced ATF3 expression in vascular endothelial cells. In human umbilical vein endothelial cells, the expression of constitutively active MKK7 (MAPK kinase 7) increased the number of ATF3-positive cells, and dominant negative MKK7 suppressed the TNFalpha-induced expression of ATF3, indicating a requirement for the JNK pathway. In contrast, the expression of constitutively active or dominant negative MEK1/2 (MAPK/ERK kinase 1/2) suppressed or enhanced TNFalpha-mediated induction of ATF3, respectively. In support of this, the MEK1/2 specific inhibitor U0126 enhanced the expression of ATF3 induced by TNFalpha. Furthermore, the ERK pathway inhibits the TNFalpha-mediated induction of ATF3 mRNA, but not its stability, suggesting the involvement of ERK activity in the transcriptional regulation of the ATF3 gene. Our results suggest that TNFalpha-induced ATF3 gene expression is bidirectionally regulated by the JNK and ERK pathways in vascular endothelial cells.
Collapse
Affiliation(s)
- Koichi Inoue
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
154
|
Kim DH, Liberati NT, Mizuno T, Inoue H, Hisamoto N, Matsumoto K, Ausubel FM. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci U S A 2004; 101:10990-4. [PMID: 15256594 PMCID: PMC503731 DOI: 10.1073/pnas.0403546101] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p38 and JNK classes of mitogen-activated protein kinases (MAPKs) have evolutionarily conserved roles in the control of cellular responses to microbial and abiotic stresses. The mechanisms by which crosstalk between distinct p38 and c-Jun N-terminal kinase (JNK) MAPK pathways occurs with resultant integration of signaling information have been difficult to establish, particularly in the context of whole organism physiology. In Caenorhabditis elegans a PMK-1 p38 MAPK pathway is required for resistance to bacterial infection, and a KGB-1 JNK-like MAPK pathway has recently been shown to mediate resistance to heavy metal stress. Here, we show that two components of the KGB-1 pathway, MEK-1 MAPK kinase (MAPKK), a homolog of mammalian MKK7, and VHP-1 MAPK phosphatase (MKP), a homolog of mammalian MKP7, also regulate pathogen resistance through the modulation of PMK-1 activity. The regulation of p38 and JNK-like MAPK pathways mediating immunity and heavy metal stress by common MAPKK and MKP signaling components suggests pivotal roles for MEK-1 and VHP-1 in the integration of diverse stress signals contributing to pathogen resistance in C. elegans. In addition, these data point to mechanisms in multicellular organisms by which signals transduced by distinct MAPK pathways may be subject to physiological integration at the level of regulation of MAPK activity by MAPKKs and MKPs.
Collapse
Affiliation(s)
- Dennis H Kim
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Viallet J, Garcia A, Weydert A. Protein phosphatase 2A as a new target for morphogenetic studies in the chick limb. Biochimie 2004; 85:753-62. [PMID: 14585542 DOI: 10.1016/j.biochi.2003.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The family of ser/thr protein phosphatases 2A (PP2A) is a major regulator of cell proliferation and cell death and is critically involved in the maintenance of homeostasis. In order to analyse the importance of PP2A proteins in apoptotic and developmental processes, this review focuses on previous studies concerning the role of PP2A in morphogenesis. We first analyse wing formation in Drosophila, a model for invertebrates, then chick limb bud, a model for vertebrates. We also present a pioneer experiment to illustrate the potential relevance of PP2A studies in BMP signalling during chicken development and we finally discuss the BMP downstream signalling pathways.
Collapse
Affiliation(s)
- Jean Viallet
- Faculté de Médecine, LEDAC UMR 5538 Institut Albert Bonniot, Rond Point de la Chantourne, 38706 La Tronche cedex, France
| | | | | |
Collapse
|
156
|
Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J. Smads as intracellular mediators of airway inflammation. Exp Lung Res 2004; 30:223-50. [PMID: 15195555 DOI: 10.1080/01902140490276320] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of allergic asthma and other airway diseases. Signals from the activated TGF-beta receptor complex are transduced to the nucleus of airway cells by Smad proteins, which represent a family of transcription factors that have recently been implicated to play a major role as intracellular mediators of inflammation. The Smad family consists of the receptor-regulated Smads, a common pathway Smad, and inhibitory Smads. Receptor-regulated Smads (R-Smads) are phosphorylated by the TGF-beta type Ireceptor. They include Smad2 and Smad3, which are recognized by TGF-beta and activin receptors, and Smads 1, 5, 8, and 9, which are recognized by bone morphogenetic protein (BMP) receptors. Smad4 is a common pathway Smad, which is also defined as cooperating Smad (co-Smad) and is not phosphorylated by the TGF-beta type I receptor. Inhibitory Smads(anti-Smads) include Smad6 and Smad7, which down-regulate TGF-beta signaling. To date, the Smads are the only TGF-beta receptor substrates with a demonstrated ability to propagate signals and with regard to the growing number of investigations of Smad-mediated effects in the airways, Smads may prove to be an important target for future development of new therapeutic strategies for asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- David A Groneberg
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Charité Campus-Virchow, Humboldt-University, Berlin, Germany.
| | | | | | | | | |
Collapse
|
157
|
Silva AM, Whitmore M, Xu Z, Jiang Z, Li X, Williams BRG. Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. J Biol Chem 2004; 279:37670-6. [PMID: 15229216 DOI: 10.1074/jbc.m406554200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase R (PKR) has been invoked in different signaling pathways. In cells pre-exposed to the PKR inhibitor 2-aminopurine or in PKR-null cells, the activation of p38 mitogen-activated protein kinase (MAPK) following dsRNA stimulation is attenuated. We found that the p38 MAPK activator MKK6, but not its close relatives MKK3 or MKK4, exhibited an increased affinity for PKR following the exposure of cells to poly(rI:rC), a dsRNA analog. In vitro kinase assays revealed that MKK6 was efficiently phosphorylated by PKR, and this could be inhibited by 2-aminopurine. Expression of kinase-inactive PKR (K296R) in cells inhibited the poly(IC)-induced phosphorylation of MKK3/6 detected by phosphospecific antiserum but did not affect the poly(IC)-induced gel migration retardation of MKK3. This suggests that poly(IC)-mediated in vivo activation of MKK6, but not MKK3, is through PKR. Consistent with this observation, PKR was capable of activating MKK6 as assessed in a coupled kinase assay containing the components of the p38 MAPK pathway. Our results indicate that the interaction of MKK6 and PKR provides a mechanism for regulating p38 MAPK activation in response to dsRNA stimulation.
Collapse
Affiliation(s)
- Aristóbolo M Silva
- Departments of Cancer Biology and Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
158
|
Wu X, Zimmerman GA, Prescott SM, Stafforini DM. The p38 MAPK pathway mediates transcriptional activation of the plasma platelet-activating factor acetylhydrolase gene in macrophages stimulated with lipopolysaccharide. J Biol Chem 2004; 279:36158-65. [PMID: 15215249 DOI: 10.1074/jbc.m402454200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Administration of lipopolysaccharide (LPS) to experimental animals results in the up-regulation of expression of the plasma form of platelet-activating factor acetylhydrolase (PAF AH) in tissue macrophages. To investigate the mechanism underlying induction of PAF AH by LPS we used murine RAW264.7 and human THP-1 macrophages as model systems. We found that the p38 mitogen-activated protein kinase (p38 MAPK) pathway mediates transcriptional activation of the PAF AH gene through the participation of nucleotides -68/-316 relative to the transcriptional initiation site. This promoter region spans two Sp1/Sp3 binding sites (SP-A and SP-B) and is necessary and sufficient for the observed effect. Disruption of these Sp binding sites significantly reduces promoter activity in LPS-stimulated cells. The ability of LPS to induce transcriptional activation of PAF AH is not due to enhanced Sp1/Sp3 binding to the promoter but involves enhanced transactivation function of Sp1 via p38 MAPK activation. These studies characterize the mechanism by which LPS modulates expression of PAF AH at the transcriptional level, and they have important implications for our understanding of responses that occur during the development of LPS-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Huntsman Cancer Institute and the Department of Oncological Sciences , University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
159
|
Undevia NS, Dorscheid DR, Marroquin BA, Gugliotta WL, Tse R, White SR. Smad and p38-MAPK signaling mediates apoptotic effects of transforming growth factor-beta1 in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L515-24. [PMID: 15132952 DOI: 10.1152/ajplung.00044.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) belongs to a family of multifunctional cytokines that regulate a variety of biological processes, including cell differentiation, proliferation, and apoptosis. The effects of TGF-beta1 are cell context and cell cycle specific and may be signaled through several pathways. We examined the effect of TGF-beta1 on apoptosis of primary human central airway epithelial cells and cell lines. TGF-beta1 protected human airway epithelial cells from apoptosis induced by either activation of the Fas death receptor (CD95) or by corticosteroids. This protective effect was blocked by inhibition of the Smad pathway via overexpression of inhibitory Smad7. The protective effect is associated with an increase in the cyclin-dependent kinase inhibitor p21 and was blocked by the overexpression of key gatekeeper cyclins for the G1/S interface, cyclins D1 and E. Blockade of the Smad pathway by overexpression of the inhibitory Smad7 permitted demonstration of a TGF-beta-mediated proapoptotic pathway. This proapoptotic effect was blocked by inhibition of the p38 MAPK kinase signaling with the inhibitor SB-203580 and was associated with an increase in p38 activity as measured by a kinase assay. Here we demonstrate dual signaling pathways involving TGF-beta1, an antiapoptotic pathway mediated by the Smad pathway involving p21, and an apoptosis-permissive pathway mediated in part by p38 MAPK.
Collapse
Affiliation(s)
- Nidhi S Undevia
- Univ. of Chicago, Sect. of Pulmonary and Critical Care Medicine, 5841 S. Maryland Ave., MC 6076, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
160
|
Chabaud-Riou M, Firestein GS. Expression and activation of mitogen-activated protein kinase kinases-3 and -6 in rheumatoid arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:177-84. [PMID: 14695331 PMCID: PMC1602215 DOI: 10.1016/s0002-9440(10)63108-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The p38 mitogen-activated protein (MAP) kinase signal transduction pathway regulates the production of interleukin-1 and tumor necrosis factor-alpha. p38 kinase inhibitors are effective in animal models of arthritis and are currently being developed in rheumatoid arthritis (RA). However, little is known about the upstream kinases that control the activation of p38 in RA synovium. In vitro studies previously identified the MAP kinase kinases (MAPKKs) MKK3 and MKK6 as the primary regulators of p38 phosphorylation and activation. To investigate a potential role for MKK3 and MKK6 in RA, we evaluated their expression and regulation in RA synovium and cultured fibroblast-like synoviocytes (FLS). Immunohistochemistry demonstrated that MKK3 and MKK6 are expressed in RA and osteoarthritis (OA) synovium. Digital image analysis showed no significant differences between OA and RA with regard to expression or distribution. However, phosphorylated MKK3/6 expression was significantly higher in RA synovium and was localized to the sublining mononuclear cells and the intimal lining. Actin-normalized Western blot analysis of synovial tissue lysates confirmed the increased expression of phosphorylated MKK3/6 in RA. Western blot analysis demonstrated constitutive expression of MKK3 and MKK6 in RA and OA FLS. Phospho-MKK3 levels were low in medium-treated FLS, but were rapidly increased by interleukin-1 and tumor necrosis factor-alpha, although phospho-MKK6 levels only modestly increased. p38 co-immunoprecipitated with MKK3 and MKK6 from cytokine-stimulated FLS and the complex phosphorylated activating transcription factor-2 in an in vitro kinase assay. These data are the first documentation of MKK3 and MKK6 activation in human inflammatory disease. By forming a complex with p38 in synovial tissue and FLS, these kinases can potentially be targeted to regulate the production of proinflammatory cytokine production in inflamed synovium.
Collapse
Affiliation(s)
- Martine Chabaud-Riou
- Division of Rheumatology, Allergy, and Immunology, University of California at San Diego School of Medicine, La Jolla, California 92093, USA
| | | |
Collapse
|
161
|
Hammaker DR, Boyle DL, Chabaud-Riou M, Firestein GS. Regulation of c-Jun N-Terminal Kinase by MEKK-2 and Mitogen-Activated Protein Kinase Kinase Kinases in Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2004; 172:1612-8. [PMID: 14734742 DOI: 10.4049/jimmunol.172.3.1612] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.
Collapse
Affiliation(s)
- Deepa R Hammaker
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
162
|
Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XFS. Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 2004; 22:6045-56. [PMID: 14609951 PMCID: PMC275436 DOI: 10.1093/emboj/cdg578] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The target of rapamycin (TOR) protein is a conserved regulator of ribosome biogenesis, an important process for cell growth and proliferation. However, how TOR is involved remains poorly understood. In this study, we find that rapamycin and nutrient starvation, conditions inhibiting TOR, lead to significant nucleolar size reduction in both yeast and mammalian cells. In yeast, this morphological change is accompanied by release of RNA polymerase I (Pol I) from the nucleolus and inhibition of ribosomal DNA (rDNA) transcription. We also present evidence that TOR regulates association of Rpd3-Sin3 histone deacetylase (HDAC) with rDNA chromatin, leading to site-specific deacetylation of histone H4. Moreover, histone H4 hypoacetylation mutations cause nucleolar size reduction and Pol I delocalization, while rpd3Delta and histone H4 hyperacetylation mutations block the nucleolar changes as a result of TOR inhibition. Taken together, our results suggest a chromatin-mediated mechanism by which TOR modulates nucleolar structure, RNA Pol I localization and rRNA gene expression in response to nutrient availability.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
163
|
Wang X, Wu H, Miller AH. Interleukin 1alpha (IL-1alpha) induced activation of p38 mitogen-activated protein kinase inhibits glucocorticoid receptor function. Mol Psychiatry 2004; 9:65-75. [PMID: 14699442 DOI: 10.1038/sj.mp.4001339] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have demonstrated that interleukinalpha (IL-1alpha) inhibits glucocorticoid receptor (GR) nuclear translocation and dexamethasone (Dex)-induced gene transcription. Given that IL-1alpha is a potent activator of the p38 mitogen-activated protein kinase (MAPK) signal transduction pathway and p38 MAPK has been associated with reduced GR function, we examined the role of p38 MAPK in IL-1alpha-mediated inhibition of GR function in mouse fibroblast cells stably transfected with a GR-mediated reporter gene construct (LMCAT cells). Treatment of LMCAT cells with IL-1alpha (1000 U/ml) for 24 h inhibited Dex (50 nM)-induced GRE-CAT activity by approximately 35%. When cells were cotreated for 24 h with IL-1alpha plus SB-203580 (0.5-1 microM), a selective p38 inhibitor, IL-1alpha's inhibitory effect on GR function as determined by Dex-induced GRE-CAT activity was reversed. Using gel mobility shift assay, SB-203580 was also found to reverse IL-1alpha inhibition of GR-GRE binding. Further confirming the role of p38 pathways, pretreatment of LMCAT cells with antisense oligonucleotides targeted to p38 MAPK completely abrogated IL-1alpha inhibition of Dex-induced GRE-CAT activity. Taken together, these results demonstrate that activation of p38 MAPK pathways are involved in IL-1alpha-mediated inhibition of GR function. In addition, these findings extend the intracellular targets of p38 to include the GR and indicate that p38 inhibitors may have special utility in immunologic and/or neuropsychiatric disorders associated with impaired GR-mediated feedback inhibition.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Activating Transcription Factor 2
- Animals
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dexamethasone/pharmacology
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Fibroblasts/cytology
- Fibroblasts/physiology
- Genes, Reporter
- Glucocorticoids/pharmacology
- Imidazoles/pharmacology
- Interleukin-1/pharmacology
- Intracellular Signaling Peptides and Proteins
- Mice
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Oligonucleotides, Antisense
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases/metabolism
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- X Wang
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
164
|
Nöth U, Tuli R, Seghatoleslami R, Howard M, Shah A, Hall DJ, Hickok NJ, Tuan RS. Activation of p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp Cell Res 2003; 291:201-11. [PMID: 14597420 DOI: 10.1016/s0014-4827(03)00386-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bone morphogenetic proteins (BMPs) are potent osteoinductive factors that accelerate osteoblast maturation, accompanied by increased cell-substrate adhesion. BMP-2 treatment of osteoblastic cells increases phosphorylation of the cytoplasmic BMP-2 signaling molecules, Smad1 and Smad5. We have previously reported that BMP-2 treatment increase cytoskeletal organization of human trabecular bone-derived osteoblast-like cells (osteoblasts), which is also accompanied by an activation of the focal adhesion kinase p125(FAK). We report here that activation of p125(FAK) occurs with the same kinetics as the phosphorylation of Smad1, suggesting that BMP-2 initiates cross-talk between Smad signaling and the adhesion-mediated signaling pathway. As an adjunct to these effects, we examined activation of mitogen-activated protein (MAP) kinase family members in response to focal adhesion contact formation. Although phosphorylated forms of all three kinases were apparent, only SAPK2alpha/p38 (p38) was activated in response to BMP-2 treatment. Inhibition of p38 kinase activity suppressed BMP-2 induced Smad1 phosphorylation, as well as its translocation to the nucleus, suggesting the integration of p38 activation with Smad1 signaling. Finally, inhibition of p38 in osteoblasts also led to the complete abrogation of BMP-2 induced osteocalcin gene expression and matrix mineralization. These findings suggest that BMP-2 must activate p38 in order to mediate osteogenic differentiation and maturation.
Collapse
Affiliation(s)
- Ulrich Nöth
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Kim JY, Kim H, Lee SG, Choi BH, Kim YH, Huh PW, Lee KH, Han H, Rha HK. Amyloid beta peptide (Abeta42) activates PLC-delta1 promoter through the NF-kappaB binding site. Biochem Biophys Res Commun 2003; 310:904-9. [PMID: 14550290 DOI: 10.1016/j.bbrc.2003.09.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The abnormal deposition of amyloid beta peptide (Abeta) is a hallmark of Alzheimer's disease (AD). Phospholipase C-delta1 (PLC-delta1) is also known to abnormally accumulate in the brains of AD patients, but no report has addressed the relationship between these two events. This study investigated the effect of Abeta42 on the PLC-delta1 expression in human neuroblastoma cell lines. The PLC-delta1 mRNA level was increased by treatment with Abeta42 in a RT-PCR analysis. In the reporter assay, Abeta42 was found to activate the PLC-delta1 promoter activity in a dose-dependent manner. A novel NF-kappaB binding site in the PLC-delta1 promoter appeared to be responsible for the Abeta42 activity. First, the dominant negative forms of the NF-kappaB activating molecules, dominant negative TGF-beta activated kinase 1 (dnTAK1) and dnNIK (dominant negative NF-kappaB-inducing kinase), abolished the Abeta42 activity in the reporter assay. Second, the Abeta42 augmented a factor binding on the NF-kappaB site in the electrophoretic mobility shift assay (EMSA), which was abolished by a molar excess of the unlabeled consensus NF-kappaB oligonucleotide. These results suggest that the PLC-delta1 promoter is under the control of NF-kappaB, which mediates the expression of PLC-delta due to the Abeta42 treatment.
Collapse
Affiliation(s)
- Jin Young Kim
- Department of Microbiology, The Catholic University of Korea, Socho-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Dowdy SC, Mariani A, Janknecht R. HER2/Neu- and TAK1-mediated up-regulation of the transforming growth factor beta inhibitor Smad7 via the ETS protein ER81. J Biol Chem 2003; 278:44377-84. [PMID: 12947087 DOI: 10.1074/jbc.m307202200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytokine transforming growth factor beta (TGF-beta) plays an important role in preventing tumor formation by blocking cell cycle progression. Accordingly, many cancers demonstrate mutations in TGF-beta signaling components or enhanced expression of inhibitors of the TGF-beta pathway such as Smad7. In this report we show that the oncoprotein HER2/Neu is able to collaborate with the ETS transcription factor ER81 to activate Smad7 transcription in breast, endometrial, and ovarian cancer cell lines. ER81 binds to two ETS sites within the Smad7 promoter, and mutation of one of these ETS sites greatly decreases Smad7 induction by HER2/Neu and ER81. Furthermore, we show that Smad7 activation involves the processing of signals from HER2/Neu to ER81 via the ERK mitogen-activated protein kinase pathway. Thus, we have uncovered a novel mechanism by which oncogenic HER2/Neu, in collaboration with ER81, can induce carcinogenesis through Smad7 up-regulation. Moreover, we show that TAK1, a TGF-beta-activated protein kinase, stimulates ER81 via the p38 mitogen-activated protein kinase pathway and thereby induces the Smad7 promoter. This suggests that attenuation of TGF-beta signaling by activating Smad7 transcription may proceed not only through TGF-beta receptor-regulated Smad proteins but also through an independent pathway involving ER81 and TAK1.
Collapse
Affiliation(s)
- Sean C Dowdy
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
167
|
Fu Y, O'Connor LM, Shepherd TG, Nachtigal MW. The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor β-induced Smad signaling in human ovarian cancer cells. Biochem Biophys Res Commun 2003; 310:391-7. [PMID: 14521923 DOI: 10.1016/j.bbrc.2003.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transforming growth factor beta (TGFbeta) can signal through a variety of Smad-independent pathways, including the p38 MAPK pathway. Recent work has shown that inhibitors of p38 MAPK, such as SB203580 and SB202190, can inhibit signaling induced by TGFbeta. Here we show that another p38 MAPK inhibitor, PD169316, abrogates signaling initiated by both TGFbeta and Activin A, but not bone morphogenetic protein (BMP) 4. Inhibition of TGFbeta signaling is dose dependent and results in reduced Smad2 and Smad3 phosphorylation, nuclear translocation, and up-regulation of the TGFbeta target gene Smad7. Reduced TGFbeta signaling is not due to abrogation of p38 MAPK activity, since blocking p38 MAPK activity with a dominant negative form of p38 MAPK has no effect on TGFbeta/Smad signaling. Our results show that use of PD169316 at 5 MICROM or higher can block TGFbeta signaling activity and thus caution must be used when attributing cellular activities exclusively to p38 MAPK signaling when these inhibitors are used experimentally.
Collapse
Affiliation(s)
- Yangxin Fu
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 1X5
| | | | | | | |
Collapse
|
168
|
Trindade M, Messenger N, Papin C, Grimmer D, Fairclough L, Tada M, Smith JC. Regulation of apoptosis in theXenopus embryo by Bix3. Development 2003; 130:4611-22. [PMID: 12925588 DOI: 10.1242/dev.00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Bix family of homeobox-containing genes are expressed in the vegetal hemisphere of the Xenopus embryo at the early gastrula stage. Misexpression of at least some of the family members causes activation of mesoderm- and endoderm-specific genes and it is known that some of the proteins, including Bix2 and Bix3, interact with Smad proteins via a motif that is also present in the related protein Mixer. In this paper we study the function of Bix3. Misexpression of Bix3, similar to misexpression of other members of the Bix family, causes the activation of a range of mesendodermal genes, but the spectrum of genes induced by Bix3 differs from that induced by Bix1. More significantly, we find that overexpression of Bix3 also causes apoptosis, as does depletion of Bix3 by use of antisense morpholino oligonucleotides. The ability of Bix3 to causes apoptosis is not associated with its ability to activate transcription and nor with its possession of a Smad interaction motif. Rather, Bix3 lacks a C-terminal motif, which, in Bix1, acts in cis to inhibit apoptosis. Mutation of this sequence in Bix1 causes the protein to acquire apoptosis-inducing activity.
Collapse
Affiliation(s)
- Margarida Trindade
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
169
|
Yustein JT, Xia L, Kahlenburg JM, Robinson D, Templeton D, Kung HJ. Comparative studies of a new subfamily of human Ste20-like kinases: homodimerization, subcellular localization, and selective activation of MKK3 and p38. Oncogene 2003; 22:6129-41. [PMID: 13679851 DOI: 10.1038/sj.onc.1206605] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Sterile-20 or Ste20 family of serine/threonine kinases is a group of signaling molecules whose physiological roles within mammalian cells are just starting to be elucidated. Here, in this report we present the characterization of three human Ste20-like kinases with greater than 90% similarity within their catalytic domains that define a novel subfamily of Ste20s. Members of this kinase family include rat thousand and one (TAO1) and chicken KFC (kinase from chicken). For the lack of a consensus nomenclature in the literature, in this report, we shall call this family hKFC (for their homology to chicken KFC) and the three members hKFC-A, hKFC-B, and hKFC-C, respectively. These kinases have many similarities including an aminoterminal kinase domain, a serine-rich region, and a coiled-coil configuration within the C-terminus. All three kinases are able to activate the p38 MAP kinase pathway through the specific activation of the upstream MKK3 kinase. We also offer evidence, both theoretical and biochemical, showing that these kinases can undergo self-association. Despite these similarities, these kinases differ in tissue distribution, apparent subcellular localization, and feature structural differences largely within the carboxyl-terminal sequence.
Collapse
Affiliation(s)
- Jason T Yustein
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | | | | | |
Collapse
|
170
|
Kim SJ, Letterio J. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia 2003; 17:1731-7. [PMID: 12970772 DOI: 10.1038/sj.leu.2403069] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is perhaps the most potent endogenous negative regulator of hematopoiesis. The intracellular signaling events mediating the effects of TGF-beta are multiple, involving extensive crosstalk between Smad-dependent and MAP-kinase-dependent pathways. We are only beginning to understand the importance of the balance between these cascades as a determinant of the response to TGF-beta, and have yet to determine the roles that disruption in TGF-beta signaling pathways might play in leukemogenesis. This review summarizes current knowledge regarding the function of TGF-beta in normal and malignant hematopoiesis. The principal observations made by gene targeting studies in mice are reviewed, with an emphasis on how a disruption of this pathway in vivo can affect blood cell development and immune homeostasis. We overview genetic alterations that lead to impaired TGF-beta signaling in hematopoietic neoplasms, including the suppression of Smad-dependent transcriptional responses by oncoproteins such as Tax and Evi-1, and fusion proteins such as AML1/ETO. We also consider mutations in genes encoding components of the core cell cycle machinery, such as p27(Kip1) and p15(INK4A), and emphasize their impact on the ability of TGF-beta to induce G1 arrest. The implications of these observations are discussed, and opinions regarding important directions for future research on TGF-beta in hematopoiesis are provided.
Collapse
Affiliation(s)
- S-J Kim
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
171
|
Xu Q, Karouji Y, Kobayashi M, Ihara S, Konishi H, Fukui Y. The PI 3-kinase-Rac-p38 MAP kinase pathway is involved in the formation of signet-ring cell carcinoma. Oncogene 2003; 22:5537-44. [PMID: 12944900 DOI: 10.1038/sj.onc.1206796] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Signet-ring cell carcinoma is classified in poorly differentiated adenocarcinoma with an aggressive nature and a poor prognosis. We have shown that the activation of PI 3-kinase in highly differentiated adenocarcinomas induces loss of cell-cell contact and formation of vacuoles, giving phenotypes similar to those of signet-ring cell lines. SB203580, a potent p38 MAP kinase inhibitor, blocked this transition, and expression of an active form of MKK6 (MKK6DA), an activator of p38 MAP kinase, gave effects similar to those induced by expression of the active form of PI 3-kinase (BD110), although formation of large vacuoles was not induced. Activation of MKK3, another activator of p38 MAP kinase, was activated in native signet-ring carcinoma cell lines. Anchorage-independent growth of signet-ring cell lines was inhibited by LY294002 or SB203580. These results suggest that p38 MAP kinase is functioning downstream of PI 3-kinase in signaling of the malignant phenotype. Secretion of mucins was enhanced in BD110-expressing cells, but not in MKK6DA-expressing cells, suggesting that secretion of mucins is independent of the MKK6-p38 MAP kinase cascade. Thus, there may be at least two pathways, p38 MAP kinase-dependent and -independent, which are involved in regulation of cell-cell contact and the protein secretion system, respectively.
Collapse
Affiliation(s)
- Qingyun Xu
- Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, Faculty of Agricultural and Life Science, Graduate School of Agricultural and Life Science, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
172
|
Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M, Mihara M, Tsuchiya M, Matsumoto K. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 2003; 278:18485-90. [PMID: 12624112 DOI: 10.1074/jbc.m207453200] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAK1, a member of the mitogen-activated kinase kinase kinase (MAPKKK) family, participates in proinflammatory cellular signaling pathways by activating JNK/p38 MAPKs and NF-kappaB. To identify drugs that prevent inflammation, we screened inhibitors of TAK1 catalytic activity. We identified a natural resorcylic lactone of fungal origin, 5Z-7-oxozeaenol, as a highly potent inhibitor of TAK1. This compound did not effectively inhibit the catalytic activities of the MEKK1 or ASK1 MAPKKKs, suggesting that 5Z-7-oxozeaenol is a selective inhibitor of TAK1. In cell culture, 5Z-7-oxozeaenol blocked interleukin-1-induced activation of TAK1, JNK/p38 MAPK, IkappaB kinases, and NF-kappaB, resulting in inhibition of cyclooxgenase-2 production. Furthermore, in vivo 5Z-7-oxozeaenol was able to inhibit picryl chloride-induced ear swelling. Thus, 5Z-7-oxozeaenol blocks proinflammatory signaling by selectively inhibiting TAK1 MAPKKK.
Collapse
Affiliation(s)
- Jun Ninomiya-Tsuji
- Department of Molecular Biology, Graduate School of Science, Nagoya University, and CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Shinoda S, Skradski SL, Araki T, Schindler CK, Meller R, Lan JQ, Taki W, Simon RP, Henshall DC. Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizure-induced neuronal death. Eur J Neurosci 2003; 17:2065-76. [PMID: 12786973 DOI: 10.1046/j.1460-9568.2003.02655.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The consequences of activation of tumour necrosis factor receptor 1 (TNFR1) during neuronal injury remain controversial. The apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, can mediate cell death downstream of TNFR1. Presently, we examined the formation of the TNFR1 signalling cascade and response of ASK1 during seizure-induced neuronal death. Brief (40 min) seizures were induced in rats by intra-amygdala microinjection of kainic acid, which elicited unilateral hippocampal CA3 neuronal death. Seizures caused a rapid decline in the expression of the silencer of death domains protein within injured CA3. Co-immunoprecipitation analysis revealed a commensurate assembly of a TNFR1 scaffold complex containing TNFR-associated death domain protein, receptor interacting protein and TNFR-activating factor 2. In addition, recruitment of TNFR-activating factor 2 was likely promoted by Bcl10-mediated sequestering of cellular inhibitor of apoptosis protein 2. Apoptosis signal-regulating kinase 1 was sequestered in a complex that contained the molecular chaperone 14-3-3beta and protein phosphatase 5. Seizures triggered its dissociation, and the phosphorylation of the ASK1 substrates, mitogen-activated protein kinase kinase 3/6 and 4. Subsequently, protein phosphatase 5 translocated into the nuclei of degenerating CA3 neurons, while ASK1 colocalized with the adaptor proteins Daxx and TNFR-activating factor 2 at the outer membrane of injured CA3 neurons. Neutralizing antibodies to TNFalpha reduced the numbers of DNA damaged cells within the injured hippocampus. These data suggest ASK1 may be involved in the mechanism of seizure-induced neuronal death downstream of a TNFR1 death-signalling complex.
Collapse
Affiliation(s)
- Sachiko Shinoda
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Interferons (IFNs) are pleiotropic cytokines that exhibit multiple biological effects on cells and tissues. IFN receptors are expressed widely in mammalian cells and virtually all different cell types express them on their surface. The Type I IFN receptor has a multichain structure, composed of at least two distinct receptor subunits, IFNalphaR1 and IFNalphaR2. Two Jak-kinases, Tyk-2 and Jak-1, associate with the different receptor subunits and are activated in response to IFNalpha or IFNbeta to regulate engagement of multiple downstream signaling cascades. These include the Stat-pathway, whose function is essential for transcriptional activation of IFN-sensitive genes, and the insulin receptor substrate pathway, which regulates downstream activation of the phosphatidyl-inositol-3' kinase. Members of the Map family of kinases are also activated by the Type I IFN receptor and participate in the generation of IFN signals. The p38 Map kinase pathway appears to play a very important role in the induction of IFN responses. p38 is rapidly activated during engagement of the Type I IFN receptor, and such an activation is regulated by the small G-protein Rac1, which functions as its upstream effector in a tyrosine kinase-dependent manner. The activated form of p38 regulates downstream activation of other serine kinases, notably MapKapK-2 and MapKapK-3, indicating the existence of Type I IFN-dependent signaling cascades activated downstream of p38. Extensive studies have shown that p38 plays a critical role in Type I IFN-dependent transcriptional regulation, without modifying activation of the Stat-pathway. It is now well established that the function of p38 is essential for gene transcription via ISRE or GAS elements, but has no effects on the phosphorylation of Stat-proteins, the formation of Stat-complexes, and their binding to the promoters of IFN-sensitive genes. As Type I IFNs regulate gene expression for proteins with antiviral properties, it is not surprising that pharmacological inhibition of the p38 pathway blocks induction of IFNalpha-antiviral responses. In addition, pharmacological inhibition of p38 abrogates the suppressive effects of Type I IFNs on normal human hematopoietic progenitors, indicating a critical role for this signaling cascade in the induction of the regulatory effects of Type I IFNs on hematopoiesis. p38 is also activated during IFNalpha-treatment of primary leukemia cells from patients with chronic myelogenous leukemia. Such activation is required for IFNalpha-dependent suppression of leukemic cell progenitor growth, indicating that this pathway plays a critical role in the induction of the antileukemic effects of IFNalpha.
Collapse
Affiliation(s)
- Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, 303 East Chicago Avenue, Olson Pavilion, Room 8250, Chicago, IL 60611, USA.
| |
Collapse
|
175
|
Fox SW, Haque SJ, Lovibond AC, Chambers TJ. The possible role of TGF-beta-induced suppressors of cytokine signaling expression in osteoclast/macrophage lineage commitment in vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3679-87. [PMID: 12646633 DOI: 10.4049/jimmunol.170.7.3679] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoclast formation is dependent on the ability of TGF-beta to enable receptor activator of NF-kappaB ligand (RANKL)-induced commitment of hemopoietic precursors to the osteoclastic lineage. The mechanism by which TGF-beta enables formation is unknown. One possibility is that TGF-beta opposes Janus kinase (JAK)/STAT signals generated by inhibitory cytokines such as IFN-beta. The JAK/STAT pathway is activated by cytokines that induce resistance to osteoclast formation, such as IFN-gamma and M-CSF, and the effect of these is opposed by TGF-beta. Recently, a group of STAT-induced factors, termed suppressors of cytokine signaling (SOCS), has been identified that inhibit JAK/STAT signals. Therefore, we tested the ability of TGF-beta to induce SOCS expression in osteoclast precursors and examined the effect of SOCS expression on osteoclast/macrophage lineage commitment. We found that while SOCS mRNA is undetectable in macrophages, osteoclasts express SOCS-3, and TGF-beta up-regulates this expression. Furthermore, TGF-beta rapidly induces sustained SOCS-3 expression in macrophage/osteoclast precursors. To determine whether SOCS-3 plays a role in osteoclast differentiation we expressed SOCS-3 in precursors using a retroviral system. We found that osteoclast differentiation was significantly enhanced in SOCS-3-infected precursors, and SOCS-3 expression enables formation in the presence of anti-TGF-beta Ab. On the other hand, antisense knockdown of SOCS-3 strongly suppressed osteoclast formation and significantly blunted the response to TGF-beta. Moreover, like TGF-beta, SOCS-3 expression opposed the inhibitory effect of IFN-beta. These data suggest that TGF-beta-induced expression of SOCS-3 may represent a mechanism by which TGF-beta suppresses inhibitory cytokine signaling, priming precursors for a role in bone resorption.
Collapse
Affiliation(s)
- Simon W Fox
- Department of Cellular Pathology, St. George's Hospital Medical School, London, United Kingdom.
| | | | | | | |
Collapse
|
176
|
Hsu SC, Wu CC, Han J, Lai MZ. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood 2003; 101:970-6. [PMID: 12393706 DOI: 10.1182/blood-2002-03-0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive selection of thymocytes during T-cell development is mediated by T-cell receptor (TCR)-activated signals. For different mitogen-activated protein kinases (MAPKs) activated by TCR complex, a selective involvement of extracellular signal-regulated kinase, but not p38 MAPK, in positive selection has been suggested. Using transgenic mice with dominant-negative mutation of both MAP kinase kinase 3 (MMK3) and MKK6, we obtained mice with different extents of inhibition of p38 MAPK activation. Partial inhibition of p38 MAPK impaired CD4(-)CD8(-) thymocyte development and T-cell proliferation, but not positive selection. Interference with thymocyte positive selection was observed in mice with effective suppression of p38 MAPK. Our results suggest that, in addition to early thymocyte development, p38 is involved in positive selection.
Collapse
Affiliation(s)
- Shu-Ching Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
177
|
MacLeod RJ, Chattopadhyay N, Brown EM. PTHrP stimulated by the calcium-sensing receptor requires MAP kinase activation. Am J Physiol Endocrinol Metab 2003; 284:E435-42. [PMID: 12388158 DOI: 10.1152/ajpendo.00143.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increases in extracellular calcium concentration ([Ca(2+)](o)) stimulate from normal and malignant cells secretion of parathroid hormone-related protein (PTHrP), a major mediator of humoral hypercalcemia of malignancy. Because the calcium-sensing receptor (CaR) is a determinant of calcium-regulated hormone secretion, we examined whether HEK cells stably transfected with human CaR secreted PTHrP in response to CaR stimulation. Increases in [Ca(2+)](o) or neomycin and Gd(3+) all substantially increased PTHrP secretion in CaR-HEK cells but had no effect on nontransfected cells. CaR activation likewise increased PTHrP transcripts. PD-098059 and U-0126, inhibitors of the mitogen-activated protein kinase kinase MEK1/2, abolished CaR-stimulated secretion but had no effect on basal secretion. An inhibitor of p38 MAP kinase, SB-203580, also attenuated CaR-stimulated secretion. Western analysis revealed that CaR activation caused a robust increase in MEK1/2 and p38 MAP kinase phosphorylation. A Src family kinase inhibitor, PP2, blocked both basal and CaR-stimulated secretion. We conclude that CaR specifically mediates the effect of increasing [Ca(2+)](o) on PTHrP synthesis and secretion and that activated MEK1/2 and p38 MAP kinases are determinants of the CaR's stimulation of PTHrP secretion.
Collapse
Affiliation(s)
- R John MacLeod
- Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115,USA.
| | | | | |
Collapse
|
178
|
Arsura M, Panta GR, Bilyeu JD, Cavin LG, Sovak MA, Oliver AA, Factor V, Heuchel R, Mercurio F, Thorgeirsson SS, Sonenshein GE. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 2003; 22:412-25. [PMID: 12545162 DOI: 10.1038/sj.onc.1206132] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
NF-kappaB has been implicated in the regulation of apoptosis, a key mechanism of normal and malignant growth control. Previously, we demonstrated that inhibition of NF-kappaB activity by TGF-beta1 leads directly to induction of apoptosis of murine B-cell lymphomas and hepatocytes. Thus, we were surprised to determine that NF-kappaB is transiently activated in response to TGF-beta1 treatment. Here we elucidate the mechanism of TGF-beta1-mediated regulation of NF-kappaB and induction of apoptosis in epithelial cells. We report that TGF-beta1 activates IKK kinase, which mediates IkappaB-alpha phosphorylation. In turn, the activation of IKK following TGF-beta1 treatment is mediated by the TAK1 kinase. As a result of NF-kappaB activation, IkappaB-alpha mRNA and protein levels are increased leading to postrepression of NF-kappaB and induction of cell death. Inhibition of NF-kappaB following TGF-beta1 treatment increased AP-1 complex transcriptional activity through sustained c-Jun phosphorylation, thereby potentiating AP-1/SMADs-mediated cell killing. Furthermore, TGF-beta1-mediated upregulation of Smad7 appeared independent of NF-kappaB. In hepatocellular carcinomas of TGF-beta1 or TGF-alpha/c-myc transgenic mice, we observed constitutive activation of NF-kappaB that led to inhibition of JNK signaling. Overall, our data illustrate an autocrine mechanism based on the ability of IKK/NF-kappaB/IkappaB-alpha signaling to negatively regulate NF-kappaB levels thereby permitting TGF-beta1-induced apoptosis through AP-1 activity.
Collapse
Affiliation(s)
- Marcello Arsura
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis 38163, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003; 5:32-45. [PMID: 12716446 PMCID: PMC154434 DOI: 10.1186/ar614] [Citation(s) in RCA: 519] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 11/01/2002] [Indexed: 12/12/2022] Open
Abstract
The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions.
Collapse
Affiliation(s)
- Rocky S Tuan
- National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
180
|
Jeohn GH, Cooper CL, Jang KJ, Liu B, Lee DS, Kim HC, Hong JS. Gö6976 inhibits LPS-induced microglial TNFalpha release by suppressing p38 MAP kinase activation. Neuroscience 2002; 114:689-97. [PMID: 12220570 DOI: 10.1016/s0306-4522(02)00356-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microglial responses to endotoxin, including the synthesis of inflammatory factors, contribute to gliosis and neuron degeneration in cultured brain tissue. We have previously shown that Gö6976, a protein kinase C (PKC) inhibitor, suppressed the lipopolysaccharide (LPS)-induced production of inflammatory factors in microglia and afforded marked protection of neurons from glia-mediated cytotoxicity. The purpose of this study was to identify the signal transduction pathway underlying the neuroprotective effect of Gö6976. Gö6976 suppressed the LPS-induced release of tumor necrosis factor alpha (TNFalpha) in the microglial cell line, BV2. We show in this study the inhibitory effect of Gö6976 on TNFalpha release occurring through suppression of p38 mitogen-activated protein kinase (MAPK) phosphorylation and not through a PKC mechanism. While Gö6976 did not inhibit the activity of p38 MAPK directly, it did suppress its activation by phosphorylation, indicating the target of action of Gö6976 is a signaling event upstream of p38 MAPK. Although Gö6976 is considered a selective inhibitor of certain PKC isozymes, suppression of TNFalpha production was not mediated through inhibition of PKC activity. Gö6976 appears to play a novel role in neuroprotection by suppressing the release of pro-inflammatory factors by inhibiting the activation of p38 MAPK in microglia, rather than a PKC isoform.
Collapse
Affiliation(s)
- G-H Jeohn
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Cheng J, Grande JP. Transforming growth factor-beta signal transduction and progressive renal disease. Exp Biol Med (Maywood) 2002; 227:943-56. [PMID: 12486204 DOI: 10.1177/153537020222701102] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members are multifunctional growth factors that play pivotal roles in development and tissue homeostasis. Recent studies have underscored the importance of TGF-beta in regulation of cell proliferation and extracellular matrix synthesis and deposition. TGF-beta signaling is initiated by ligand binding to a membrane-associated receptor complex that has serine/threonine kinase activity. This receptor complex phosphorylates specific Smad proteins, which then transduce the ligand-activated signal to the nucleus. Smad complexes regulate target gene transcription either by directly binding DNA sequences, or by complexing with other transcription factors or co-activators. There is extensive crosstalk between the TGF-beta signaling pathway and other signaling systems, including the mitogen-activated protein kinase pathways. The importance of TGF-beta in regulation of cell growth has been emphasized by recent observations that mutations of critical elements of the TGF-beta signaling system are associated with tumor progression in patients with many different types of epithelial neoplasms. TGF-beta has emerged as a predominant mediator of extracellular matrix production and deposition in progressive renal disease and in other forms of chronic tissue injury. In this overview, recent advances in our understanding of TGF-beta signaling, cell cycle regulation by TGF-beta, and the role of TGF-beta in progressive renal injury are highlighted.
Collapse
Affiliation(s)
- Jingfei Cheng
- Renal Pathophysiology Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
182
|
Komatsu Y, Shibuya H, Takeda N, Ninomiya-Tsuji J, Yasui T, Miyado K, Sekimoto T, Ueno N, Matsumoto K, Yamada G. Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech Dev 2002; 119:239-49. [PMID: 12464436 DOI: 10.1016/s0925-4773(02)00391-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily consists of a group of secreted signaling molecules that perform important roles in the regulation of cell growth and differentiation. TGF-beta activated kinase-1 binding protein-1 (TAB1) was identified as a molecule that activates TGF-beta activated kinase-1 (TAK1). Recent studies have revealed that the TAB1-TAK1 interaction plays an important role in signal transduction in vitro, but little is known about the role of these molecules in vivo. To investigate the role of TAB1 during development, we cloned the murine Tab1 gene and disrupted it by homologous recombination. Homozygous Tab1 mutant mice died, exhibiting a bloated appearance with extensive edema and hemorrhage at the late stages of gestation. By histological examinations, it was revealed that mutant embryos exhibited cardiovascular and lung dysmorphogenesis. Tab1 mutant embryonic fibroblast cells displayed drastically reduced TAK1 kinase activities and decreased sensitivity to TGF-beta stimulation. These results indicate a possibility that TAB1 plays an important role in mammalian embryogenesis and is required for TAK1 activation in TGF-beta signaling.
Collapse
Affiliation(s)
- Yoshihiro Komatsu
- Center for Animal Resources and Development, Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Arai H, Maki K, Waga K, Sasaki K, Nakamura Y, Imai Y, Kurokawa M, Hirai H, Mitani K. Functional regulation of TEL by p38-induced phosphorylation. Biochem Biophys Res Commun 2002; 299:116-25. [PMID: 12435397 DOI: 10.1016/s0006-291x(02)02588-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
TEL is a nuclear phosphoprotein that belongs to a member of the ETS family transcription factors. TEL acts as a tumor suppressor and is essential for establishing hematopoiesis in neonatal bone marrow. Because TEL possesses multiple putative mitogen-activated protein (MAP) kinase phosphorylation sites, we here investigated functional regulation of TEL via stress signaling pathways. We showed that TEL becomes phosphorylated in vivo by activated p38 but not by JNK1. The constitutive and inducible phosphorylation sites were found to be Ser(22) and Ser(257), respectively. TEL bound to p38 and was directly phosphorylated in vitro by p38. In vivo p38-dependent phosphorylation reduced trans-repressional abilities of TEL through ETS-binding consensus site. These data indicate that TEL's functions are potentially regulated by p38 which is activated by various kinds of stresses. TEL could be a constituent downstream of the specific MAP kinase in the signal transduction system.
Collapse
Affiliation(s)
- Honoka Arai
- Department of Hematology, Dokkyo University School of Medicine, 321-0293, Tochigi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Adams DG, Sachs NA, Vaillancourt RR. Phosphorylation of the stress-activated protein kinase, MEKK3, at serine 166. Arch Biochem Biophys 2002; 407:103-16. [PMID: 12392720 DOI: 10.1016/s0003-9861(02)00464-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Much effort has focused on the identification of MAPK cascades that are activated by the MEKK family of protein kinases. However, direct phosphorylation and regulation of the MEKK proteins has not been shown. To address this question, we have expressed recombinant (His)6FLAG.MEKK3 in Sf9 insect cells and tethered the purified protein to Ni-Sepharose so that we could precipitate interacting proteins and then identify such proteins by liquid chromatography and mass spectrometry (LC-MS). We identified 14-3-3 proteins as interacting with MEKK3, which suggested that (His)6FLAG.MEKK3 was phosphorylated on serine since 14-3-3 proteins are known to associate with phosphorylated proteins. We identified two phosphorylated amino acids at Ser166 and Ser337 of tryptic peptides derived from (His)6FLAG.MEKK3 by using LC-MS. Antibodies were developed that recognize the specific phosphorylated amino acid and with these antibodies, we demonstrate that various stimuli (tumor necrosis factor, arsenite, forskolin, and serum) promote phosphorylation of Ser166 and Ser337. However, neither of these phosphorylated amino acids is required for association with 14-3-3 protein or regulation of MEKK3-dependent ERK and JNK activity. Nonetheless, these results suggest that MEKK3 is a convergence point of multiple upstream signaling pathways.
Collapse
Affiliation(s)
- Deanna G Adams
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721-0207, USA
| | | | | |
Collapse
|
185
|
Sakurai H, Nishi A, Sato N, Mizukami J, Miyoshi H, Sugita T. TAK1-TAB1 fusion protein: a novel constitutively active mitogen-activated protein kinase kinase kinase that stimulates AP-1 and NF-kappaB signaling pathways. Biochem Biophys Res Commun 2002; 297:1277-81. [PMID: 12372426 DOI: 10.1016/s0006-291x(02)02379-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
TAK1 mitogen-activated protein kinase kinase kinase (MAP3K) is activated by its specific activator, TAK1-binding protein 1 (TAB1). A constitutively active TAK1 mutant has not yet been generated due to the indispensable requirement of TAB1 for TAK1 kinase activity. In this study, we generated a novel constitutively active TAK1 by fusing its kinase domain to the minimal TAK1-activation domain of TAB1. Co-immunoprecipitation assay demonstrated that these domains interacted intra-molecularly. The TAK1-TAB1 fusion protein showed a significant MAP3K activity in vitro and activated c-Jun N-terminal kinase/p38 MAPKs and IkappaB kinase in vivo, which was followed by increased production of interleukin-6. These results indicate that the fusion protein is useful for characterizing the physiological roles of the TAK1-TAB1 complex.
Collapse
Affiliation(s)
- Hiroaki Sakurai
- Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd., 16-89 Kashima 3-chome, Yodogawa-ku, 532-8505, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
186
|
Tsuchida KI, Cronin B, Sharma K. Novel aspects of transforming growth factor-Beta in diabetic kidney disease. Nephron Clin Pract 2002; 92:7-21. [PMID: 12187079 DOI: 10.1159/000064486] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ken-ichi Tsuchida
- Department of Medicine, Nephrology Division, Dorrance Hamilton Laboratories, Thomas Jefferson University School of Medicine, Philadelphia, Pa. 19107, USA
| | | | | |
Collapse
|
187
|
Dorion S, Lambert H, Landry J. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J Biol Chem 2002; 277:30792-7. [PMID: 12077134 DOI: 10.1074/jbc.m203642200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the importance of the stress-activated protein kinase pathways in cell death and survival, it is unclear how stressful stimuli lead to their activation. In the case of heat shock, the existence of a specific mechanism of activation has been evidenced, but the molecular nature of this pathway is undefined. Here, we found that Ask1 (apoptosis signal-regulating kinase 1), an upstream activator of the stress-activated protein kinase p38 during exposure to oxidative stress and other stressful stimuli, was also activated by heat shock. Ask1 activity was required for p38 activation since overexpression of a kinase dead mutant of Ask1, Ask1(K709M), inhibited heat shock-induced p38 activation. The activation of Ask1 by oxidative stress involves the oxidation of thioredoxin, an endogenous inhibitor of Ask1. A different activation mechanism takes place during heat shock. In contrast to p38 induction by H(2)O(2), induction by heat shock was not antagonized by pretreatment with the antioxidant N-acetyl-l-cysteine or by overexpressing thioredoxin and was not accompanied by the dissociation of thioredoxin from Ask1. Instead, heat shock caused the dissociation of glutathione S-transferase Mu1-1 (GSTM1-1) from Ask1 and overexpression of GSTM1-1-inhibited induction of p38 by heat shock. We concluded that because of an alternative regulation by the two distinct repressors thioredoxin and GSTM1-1, Ask1 constitutes the converging point of the heat shock and oxidative stress-sensing pathways that lead to p38 activation.
Collapse
Affiliation(s)
- Sonia Dorion
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Quebec G1R 2J6, Canada
| | | | | |
Collapse
|
188
|
Ohtsuka T, Zhou T. Bisindolylmaleimide VIII enhances DR5-mediated apoptosis through the MKK4/JNK/p38 kinase and the mitochondrial pathways. J Biol Chem 2002; 277:29294-303. [PMID: 12034736 DOI: 10.1074/jbc.m203342200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bisindolylmaleimide VIII (Bis VIII) has been previously shown to enhance Fas-mediated apoptosis through a protein kinase C-independent mechanism. In the present study, we examined the effect of Bis VIII on apoptosis induced by DR5 (TRAIL-R2), using an agonistic anti-human DR5 monoclonal antibody, TRA-8. Our results demonstrated that Bis VIII was able to enhance the apoptosis-inducing activity of TRA-8 both in vitro and in vivo. The combination of TRA-8 and Bis VIII led to a synergistic and sustained activation of the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase, which was mediated by MAPK kinase 4 and was caspase-8-dependent. The mitochondrial pathway is involved in the synergistic induction of apoptosis by Bis VIII and TRA-8. Bis VIII alone induced the loss of mitochondrial membrane potential in a caspase-independent fashion without subsequent release of cytochrome c. However, in the presence of Bis VIII, TRA-8 induced more profound loss of mitochondrial membrane potential and release of cytochrome c. These results suggest that the enhanced and persistent activation of the JNK/p38 and the decreased mitochondrial membrane potential play a crucial role in synergistic induction of the death receptor-mediated apoptosis by Bis VIII. The unique ability of Bis VIII to enhance DR5-mediated apoptosis signal transduction discloses a potential utility of this compound in combination with anti-DR5 antibody in cancer therapy.
Collapse
Affiliation(s)
- Toshiaki Ohtsuka
- Biomedical Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | |
Collapse
|
189
|
Akiyama-Uchida Y, Ashizawa N, Ohtsuru A, Seto S, Tsukazaki T, Kikuchi H, Yamashita S, Yano K. Norepinephrine enhances fibrosis mediated by TGF-beta in cardiac fibroblasts. Hypertension 2002; 40:148-54. [PMID: 12154105 DOI: 10.1161/01.hyp.0000025443.61926.12] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac fibrosis results from proliferation of interstitial fibroblasts and concomitant increased biosynthesis of extracellular matrix (ECM) components and is often complicated by cardiac hypertrophy. This study was conducted to investigate whether norepinephrine (NE) potentiates transforming growth factor-beta (TGF-beta)-induced cardiac fibrosis. The expression of the cardiac ECM proteins, plasminogen activator inhibitor-1 (PAI-1), fibronectin, and collagen type I, was examined by Western blotting using extracts from neonatal rat primary cardiac fibroblasts. In cardiac fibroblasts, treatment with a combination of NE and TGF-beta1 increased cell proliferation and ECM expression. Luciferase assays were conducted to clarify the effect of NE on TGF-beta signaling. TGF-beta1 (1 ng/mL) increased the specific signaling activity 2-fold, whereas the combination of NE (10 micro mol/L) and TGF-beta1 (1 ng/mL) resulted in an approximate 10-fold increase in specific signaling activity. We confirmed that treatment with NE markedly enhances TGF-beta-induced phosphorylation of activating transcription factor 2 (ATF-2). These results indicated that NE has a synergistic effect on TGF-beta signaling. To determine whether this activation by NE was mediated by the TGF-beta1 receptor, we used a dominant negative vector of the TGF-beta1 type II receptor, and the synergistic effects were inhibited. Furthermore, this synergistic effect was attenuated by a specific inhibitor of p38, SB203680. These data indicate that NE enhances cardiac fibrosis through TGF-beta1 post-receptor signaling, predominantly via the p38 MAP kinase pathway.
Collapse
Affiliation(s)
- Yuri Akiyama-Uchida
- Department of Cardiovascular Medicine, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Lee SW, Han SI, Kim HH, Lee ZH. TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB. BMB Rep 2002; 35:371-6. [PMID: 12296995 DOI: 10.5483/bmbrep.2002.35.4.371] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiation, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-kappaB and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is an initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-beta-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-kappaB and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant negative TAK1. The inhibitory effect of the TAK1 mutant on RANK- and TRAF-induced NF-kappaB activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-kappaB pathway that is activated by RANK.
Collapse
Affiliation(s)
- Soo Woong Lee
- National Research Laboratory for Bone Metabolism, Chosun University, Gwangju, Korea
| | | | | | | |
Collapse
|
191
|
Aplin AE, Hogan BP, Tomeu J, Juliano RL. Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J Cell Sci 2002; 115:2781-90. [PMID: 12077368 DOI: 10.1242/jcs.115.13.2781] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cells decide whether to undergo processes, such as proliferation,differentiation and apoptosis, based upon the cues they receive from both circulating factors and integrin-mediated adhesion to the extracellular matrix. Integrins control the activation of the early signaling pathways. For example, growth factor activation of the ERK cascade is enhanced when cells are adherent. In addition, adhesion receptors oversee the cellular localization of critical signaling components. We have recently shown that ERK signaling to the nucleus is regulated by cell adhesion at the level of nucleocytoplasmic trafficking. Since the ERKs are only one class of MAP kinase, we extended these studies to include both JNK and p38 MAP kinases. We have rendered JNK and p38 activation in NIH 3T3 fibroblasts anchorage-independent either by treatment with anisomycin or by expression of upstream activators. Under conditions whereby JNK activation is anchorage-independent, we show that localization of JNK to the nucleus and JNK-mediated phosphorylation of c-Jun and Elk-1 is not altered by loss of adhesion. Likewise, the ability of activated p38 to accumulate in the nucleus was similar in suspended and adherent cells. Finally, we show that expression of a form of ERK, which is activated and resistant to nuclear export, reverses the adhesion-dependency of ERK phosphorylation of Elk-1. Thus, adhesion differentially regulates the nucleocytoplasmic distribution of MAP kinase members; ERK accumulation in the nucleus occurs more efficiently in adherent cells, whereas nuclear accumulation of active p38 and active JNK are unaffected by changes in adhesion.
Collapse
Affiliation(s)
- Andrew E Aplin
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
192
|
Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M. Scaffold role of a mitogen-activated protein kinase phosphatase, SKRP1, for the JNK signaling pathway. J Biol Chem 2002; 277:23919-26. [PMID: 11959862 DOI: 10.1074/jbc.m200838200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress-activated protein kinase (SAPK) pathway-regulating phosphatase 1 (SKRP1) has been identified as a member of the mitogen-activated protein kinase (MAPK) phosphatase (MKP) family that interacts physically with the MAPK kinase (MAPKK) MKK7, a c-Jun N-terminal kinase (JNK) activator, and inactivates the MAPK JNK pathway. Although these findings indicated that SKRP1 contributes to the precise regulation of JNK signaling, it remains to be elucidated how SKRP1 is integrated into this pathway. We report that SKRP1 also plays a scaffold role for the JNK signaling, judged by the following observations. SKRP1 selectively formed the stable complexes with MKK7 but not with MKK4 and biphasically regulated the MKK7 activity and MKK7-induced gene transcription in vivo. Co-precipitation analysis between SKRP1 and MKK7-activating MAPKK kinases (MAPKKKs) revealed that SKRP1 also interacted with the MAPKKK, apoptosis signal-regulating kinase 1 (ASK1), but not with MAP kinase kinase kinase 1 (MEKK1). Consistent with these findings, SKRP1 expression increased the ASK1-MKK7 complexes in a dose-dependent manner and specifically enhanced the activation of MKK7 by ASK1. Thus, our findings are, to our knowledge, the first evidence to show that an MKP also functions as a scaffold protein for the particular MAPK signaling.
Collapse
Affiliation(s)
- Takeru Zama
- Department of Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | | | | | | | | | | |
Collapse
|
193
|
Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M. A novel dual specificity phosphatase SKRP1 interacts with the MAPK kinase MKK7 and inactivates the JNK MAPK pathway. Implication for the precise regulation of the particular MAPK pathway. J Biol Chem 2002; 277:23909-18. [PMID: 11959861 DOI: 10.1074/jbc.m200837200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are activated in response to various extracellular stimuli, and their activities are regulated by upstream activating kinases and protein phosphatases such as MAPK phosphatases (MKPs). We report the identification and characterization of a novel MKP termed SKRP1 (SAPK pathway-regulating phosphatase 1). It contains an extended active site sequence motif conserved in all MKPs but lacks a Cdc25 homology domain. Immunoblotting analysis revealed that SKRP1 is constitutively expressed, and its transcripts of 4.0 and 1.0 kb were detected in almost tissues examined. SKRP1 was highly specific for c-Jun N-terminal kinase (JNK) in vitro and effectively suppressed the JNK activation in response to tumor necrosis factor alpha or thapsigargin. Endogenous SKRP1 was present predominantly in the cytoplasm and co-localized with JNK. However, SKRP1 does not bind directly to its target JNK, but co-precipitation of SKRP1 with the MAPK kinase MKK7, a JNK activator, was found in vitro and in vivo. Furthermore, we found that SKRP1 did not interfere with the co-precipitation of MKK7 with JNK. Together, our findings indicate that SKRP1 interacts with its physiological substrate JNK through MKK7, thereby leading to the precise regulation of JNK activity in vivo.
Collapse
Affiliation(s)
- Takeru Zama
- Department of Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | | | | | | | | | | |
Collapse
|
194
|
Anguita J, Barthold SW, Persinski R, Hedrick MN, Huy CA, Davis RJ, Flavell RA, Fikrig E. Murine Lyme arthritis development mediated by p38 mitogen-activated protein kinase activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6352-7. [PMID: 12055252 PMCID: PMC4309983 DOI: 10.4049/jimmunol.168.12.6352] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Borrelia burgdorferi, the Lyme disease agent, causes joint inflammation in an experimental murine model. Inflammation occurs, in part, due to the ability of B. burgdorferi to induce the production of proinflammatory cytokines and a strong CD4(+) T helper type 1 response. The mechanisms by which spirochetes induce these responses are not completely known, although transcription factors, such as NF-kappa B in phagocytic cells, initiate the proinflammatory cytokine burst. We show here that the mitogen-activated protein (MAP) kinase of 38 kDa (p38 MAP kinase) is involved in the proinflammatory cytokine production elicited by B. burgdorferi Ags in phagocytic cells and the development of murine Lyme arthritis. B. burgdorferi Ags activated p38 MAP kinase in vitro, and the use of a specific inhibitor repressed the spirochete-induced production of TNF-alpha. The infection of mice that are deficient for a specific upstream activator of the kinase, MAP kinase kinase 3, resulted in diminished proinflammatory cytokine production and the development of arthritis, without compromising the ability of CD4(+) T cells to respond to borrelial Ags or the production of specific Abs. Overall, these data indicated that the p38 MAP kinase pathway plays an important role in B. burgdorferi-elicited inflammation and point to potential new therapeutic approaches to the treatment of inflammation induced by the spirochete.
Collapse
Affiliation(s)
- Juan Anguita
- Department of Biology, University of North Carolina, Charlotte, NC 28223, USA.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Kim G, Jun JB, Elkon KB. Necessary role of phosphatidylinositol 3-kinase in transforming growth factor beta-mediated activation of Akt in normal and rheumatoid arthritis synovial fibroblasts. ARTHRITIS AND RHEUMATISM 2002; 46:1504-11. [PMID: 12115180 DOI: 10.1002/art.10314] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Rheumatoid arthritis is a disease that, pathologically, is characterized by the progressive growth and invasion of the synovial pannus into the surrounding cartilage and bone. Many cytokines, including transforming growth factor beta1 (TGFbeta1), have been implicated in this process, but their mode of action is incompletely understood. The goal of the present study was to better understand the downstream signaling pathways of TGFbeta in fibroblasts. METHODS The role of phosphatidylinositol 3-kinase (PI 3-kinase) was determined by chemical inhibition with LY294002 or wortmannin. Activation of protein kinase B (Akt), c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs) was evaluated by Western blot analysis using phospho-specific antibodies. RESULTS Exposure of fibroblasts to TGFbeta rapidly induced activation of a kinase, Akt, that is known to inhibit apoptosis by a variety of pathways. Activation of Akt was blocked by the specific PI 3-kinase inhibitor, LY294002, indicating that TGFbeta-mediated phosphorylation of Akt was dependent on PI 3-kinase activation. This activation pathway was relatively selective for Akt, since inhibition of PI 3-kinase failed to substantially modify activation of ERKs or JNKs in synovial fibroblasts. Inhibition of the PI 3-kinase/Akt pathway resulted in impaired proliferation of synovial fibroblasts and partial attenuation of the protective effect of TGFbeta on Fas-mediated apoptosis. CONCLUSION TGFbeta exerts its growth and antiapoptotic effects on fibroblasts, at least in part, by activation of the PI 3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Giok Kim
- Division of Rheumatology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
196
|
Hashimoto H, Matsuo Y, Yokoyama Y, Toyohara H, Sakaguchi M. The nuclear export signal (NES) found in the amino-terminal region of carp MEK1 and MKK6 is lacking in carp MKK4. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1575:139-42. [PMID: 12020830 DOI: 10.1016/s0167-4781(02)00238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carp MKK4 (cMKK4) cDNA was isolated from an ovary cDNA library. cMKK4 mRNA was ubiquitously distributed in various tissues of adult carp. Sequence analysis revealed that cMKK4 lacks a nuclear export signal sequence, unlike mammalian and frog MEKs (ERK activator) and cMKK6 (carp p38 activator), where it plays an important role in anchoring these MAP kinase activators to the cytoplasm. cMKK4 protein was found to be diffused throughout the cell, whereas cMEK1 and cMKK6 proteins were seen exclusively in the cytoplasm.
Collapse
Affiliation(s)
- Hisashi Hashimoto
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
197
|
Gross EA, Callow MG, Waldbaum L, Thomas S, Ruggieri R. MRK, a mixed lineage kinase-related molecule that plays a role in gamma-radiation-induced cell cycle arrest. J Biol Chem 2002; 277:13873-82. [PMID: 11836244 DOI: 10.1074/jbc.m111994200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase pathways are three-kinase modules that mediate diverse cellular processes and have been highly conserved among eukaryotes. By using a functional complementation screen in yeast, we have identified a human MAP kinase kinase kinase (MAPKKK) that shares homology with members of the mixed lineage kinase (MLK) family and therefore was called MRK (MLK-related kinase). We report the structure of the MRK gene, from which are generated two splice forms of MRK, MRK-alpha and MRK-beta, encoding for proteins of 800 and 456 amino acids, respectively. By using a combination of solid phase protein kinase assays, transient transfections in cells, and analysis of endogenous proteins in stably transfected Madin-Darby canine kidney cells, we found that MRK-beta preferentially activates ERK6/p38gamma via MKK3/MKK6 and JNK through MKK4/MKK7. We also show that expression of wild type MRK increases the cell population in the G(2)/M phase of the cell cycle, whereas dominant negative MRK attenuates the G(2) arrest caused by gamma-radiation. In addition, exposure of cells to gamma-radiation induces MRK activity. These data suggest that MRK may mediate gamma-radiation signaling leading to cell cycle arrest and that MRK activity is necessary for the cell cycle checkpoint regulation in cells.
Collapse
Affiliation(s)
- Eleanore A Gross
- Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | |
Collapse
|
198
|
Abstract
B-cell development to antibody-producing plasma cells requires the concerted function of a large number of genes and proteins. Genome-level expression profiling during human B-cell maturation was studied in anti-immunoglobulin M-stimulated Ramos cells. cDNA microarrays were used to follow changes in the transcriptome over several days. Close to 1500 genes had significantly altered expression at least at one time point. The genes were organized into clusters based on expression profiles and were further characterized based on the functions of the coded proteins. Several groups of genes important for B cells were analyzed. Here we concentrate on genes involved in signal transduction and cytokines and their receptors. The results provide knowledge on the development of humoral immunity. Several new genes were found to be essential for B-cell development. They can be used as targets for research and possibly for drug development.
Collapse
Affiliation(s)
- Juha Ollila
- Department of Biosciences, Division of Biochemistry, P.O. Box 56, FIN-00014, University of Helsinki, Finland
| | | |
Collapse
|
199
|
IAP Suppression of Apoptosis Involves Distinct Mechanisms: the TAK1/JNK1 Signaling Cascade and Caspase Inhibition. Mol Cell Biol 2002. [DOI: 10.1128/mcb.22.6.1754-1766.2002 pmcid:pmc135597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
The antiapoptotic properties of the inhibitor of apoptosis (IAP) family of proteins have been linked to caspase inhibition. We have previously described an alternative mechanism of XIAP inhibition of apoptosis that depends on the selective activation of JNK1. Here we report that two other members of the IAP family, NAIP and ML-IAP, both activate JNK1. Expression of catalytically inactive JNK1 blocks NAIP and ML-IAP protection against ICE- and TNF-α-induced apoptosis, indicating that JNK1 activation is necessary for the antiapoptotic effect of these proteins. The MAP3 kinase, TAK1, appears to be an essential component of this antiapoptotic pathway since IAP-mediated activation of JNK1, as well as protection against TNF-α- and ICE-induced apoptosis, is inhibited when catalytically inactive TAK1 is expressed. In addition, XIAP, NAIP, and JNK1 bind to TAK1. Importantly, expression of catalytically inactive TAK1 did not affect XIAP inhibition of caspase activity. These data suggest that XIAP's antiapoptotic activity is achieved by two separate mechanisms: one requiring TAK1-dependent JNK1 activation and the second involving caspase inhibition.
Collapse
|
200
|
McDermott EP, O'Neill LAJ. Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. J Biol Chem 2002; 277:7808-15. [PMID: 11744690 DOI: 10.1074/jbc.m108133200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1 (IL-1) activates p38 MAP kinase via the small G protein Ras, and this activity can be down-regulated by another small G protein Rap. Here we have further investigated the role of Ras and Rap in p38 MAPK activation by IL-1. Transient transfection of cells with constitutively active forms of the known IL-1 signaling components MyD88, IRAK, and TRAF-6, or the upstream kinases MKK6 and MKK3, activated p38 MAPK. Dominant negative forms of these were found to inhibit activation of p38 MAPK by IL-1. Dominant negative RasN17 blocked the effect of the active forms of all but MKK3 and MKK6, indicating that Ras lies downstream of TRAF-6 but upstream of MKK3 and MKK6 on the pathway. Furthermore, the activation of p38 MAPK caused by overexpressing active RasVHa could not be inhibited using dominant negative mutants of MyD88, IRAK, or IRAK-2, or TRAF6, but could be inhibited by dominant negative MKK3 or MKK6. In the same manner, the inhibitory effect of Rap on the activation of p38 by IL-1 occurred at a point downstream of MyD88, IRAK, and TRAF6, since the activation of p38 MAPK by these components was inhibited by overexpressing active Rap1AV12, while neither MKK3 nor MKK6 were affected. Active RasVHa associated with IRAK, IRAK2, and TRAF6, but not MyD88. In addition we found a role for TAK-1 in the activation of p38 MAPK by IL-1, with TAK-1 also associating with active Ras. Our study suggests that upon activation Ras becomes associated with IRAK, Traf-6, and TAK-1, possibly aiding the assembly of this multiprotein signaling complex required for p38 MAPK activation by IL-1.
Collapse
Affiliation(s)
- Eva Pålsson McDermott
- Department of Biochemistry and Biotechnology Institute, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|