151
|
Hao C, Lam HHN. Quantitative Proteomics Reveals UGA-Independent Misincorporation of Selenocysteine throughout the Escherichia coli Proteome. J Proteome Res 2020; 20:212-221. [PMID: 33253578 DOI: 10.1021/acs.jproteome.0c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenocysteine is cotranslationally inserted into polypeptide chains by recoding the stop codon UGA. However, selenocysteine has also been found to be misincorporated into a small number of proteins displacing cysteines in previous studies, but such misincorporation has not yet been examined at the proteome level thoroughly. We performed label-free quantitative proteomics analysis on Escherichia coli grown in a high-selenium medium to obtain a fuller picture of selenocysteine misincorporation in its proteome. We found 139 misincorporation sites, including 54 recurred in all biological replicates, suggesting that some cysteine sites are more prone to be misincorporated than others. However, sequence and evolutionary conservation analysis showed no clear pattern among these misincorporation sites. We hypothesize that misincorporations occur randomly throughout the proteome, but the degradation rate of such misincorporated proteins varies depending on the impact of the misincorporation on protein function and stability, leading to the differential detectability of misincorporated sites by proteomics. Our hypothesis is further supported by two observations: (1) cells cultured with severely limited sulfur still retained a substantial proportion of normal cysteine counterparts of all of the found misincorporated proteins and (2) proteins involved in protein folding and proteolysis were highly upregulated in high-selenium culture.
Collapse
Affiliation(s)
- Chunlin Hao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Henry H N Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
152
|
Weerakoon H, Potriquet J, Shah AK, Reed S, Jayakody B, Kapil C, Midha MK, Moritz RL, Lepletier A, Mulvenna J, Miles JJ, Hill MM. A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics. Sci Data 2020; 7:412. [PMID: 33230158 PMCID: PMC7683684 DOI: 10.1038/s41597-020-00744-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022] Open
Abstract
Data independent analysis (DIA) exemplified by sequential window acquisition of all theoretical mass spectra (SWATH-MS) provides robust quantitative proteomics data, but the lack of a public primary human T-cell spectral library is a current resource gap. Here, we report the generation of a high-quality spectral library containing data for 4,833 distinct proteins from human T-cells across genetically unrelated donors, covering ~24% proteins of the UniProt/SwissProt reviewed human proteome. SWATH-MS analysis of 18 primary T-cell samples using the new human T-cell spectral library reliably identified and quantified 2,850 proteins at 1% false discovery rate (FDR). In comparison, the larger Pan-human spectral library identified and quantified 2,794 T-cell proteins in the same dataset. As the libraries identified an overlapping set of proteins, combining the two libraries resulted in quantification of 4,078 human T-cell proteins. Collectively, this large data archive will be a useful public resource for human T-cell proteomic studies. The human T-cell library is available at SWATHAtlas and the data are available via ProteomeXchange (PXD019446 and PXD019542) and PeptideAtlas (PASS01587).
Collapse
Affiliation(s)
- Harshi Weerakoon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, 50000, Sri Lanka
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- SCIEX Australia Pty Ltd, Mt Waverley, VIC, 3149, Australia
| | - Alok K Shah
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- CSL Limited, 45 Poplar Rd, Parkville, VIC, 3052, Australia
| | - Sarah Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Buddhika Jayakody
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Mukul K Midha
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
- Institute for Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia
| | - John J Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia.
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, 4006, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
153
|
Midha MK, Kusebauch U, Shteynberg D, Kapil C, Bader SL, Reddy PJ, Campbell DS, Baliga NS, Moritz RL. A comprehensive spectral assay library to quantify the Escherichia coli proteome by DIA/SWATH-MS. Sci Data 2020; 7:389. [PMID: 33184295 PMCID: PMC7665006 DOI: 10.1038/s41597-020-00724-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Data-Independent Acquisition (DIA) is a method to improve consistent identification and precise quantitation of peptides and proteins by mass spectrometry (MS). The targeted data analysis strategy in DIA relies on spectral assay libraries that are generally derived from a priori measurements of peptides for each species. Although Escherichia coli (E. coli) is among the best studied model organisms, so far there is no spectral assay library for the bacterium publicly available. Here, we generated a spectral assay library for 4,014 of the 4,389 annotated E. coli proteins using one- and two-dimensional fractionated samples, and ion mobility separation enabling deep proteome coverage. We demonstrate the utility of this high-quality library with robustness in quantitation of the E. coli proteome and with rapid-chromatography to enhance throughput by targeted DIA-MS. The spectral assay library supports the detection and quantification of 91.5% of all E. coli proteins at high-confidence with 56,182 proteotypic peptides, making it a valuable resource for the scientific community. Data and spectral libraries are available via ProteomeXchange (PXD020761, PXD020785) and SWATHAtlas (SAL00222-28).
Collapse
Affiliation(s)
- Mukul K Midha
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - David Shteynberg
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Charu Kapil
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Samuel L Bader
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | | | - David S Campbell
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Nitin S Baliga
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
154
|
Hoopmann MR, Kusebauch U, Palmblad M, Bandeira N, Shteynberg DD, He L, Xia B, Stoychev SH, Omenn GS, Weintraub ST, Moritz RL. Insights from the First Phosphopeptide Challenge of the MS Resource Pillar of the HUPO Human Proteome Project. J Proteome Res 2020; 19:4754-4765. [PMID: 33166149 DOI: 10.1021/acs.jproteome.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mass spectrometry has greatly improved the analysis of phosphorylation events in complex biological systems and on a large scale. Despite considerable progress, the correct identification of phosphorylated sites, their quantification, and their interpretation regarding physiological relevance remain challenging. The MS Resource Pillar of the Human Proteome Organization (HUPO) Human Proteome Project (HPP) initiated the Phosphopeptide Challenge as a resource to help the community evaluate methods, learn procedures and data analysis routines, and establish their own workflows by comparing results obtained from a standard set of 94 phosphopeptides (serine, threonine, tyrosine) and their nonphosphorylated counterparts mixed at different ratios in a neat sample and a yeast background. Participants analyzed both samples with their method(s) of choice to report the identification and site localization of these peptides, determine their relative abundances, and enrich for the phosphorylated peptides in the yeast background. We discuss the results from 22 laboratories that used a range of different methods, instruments, and analysis software. We reanalyzed submitted data with a single software pipeline and highlight the successes and challenges in correct phosphosite localization. All of the data from this collaborative endeavor are shared as a resource to encourage the development of even better methods and tools for diverse phosphoproteomic applications. All submitted data and search results were uploaded to MassIVE (https://massive.ucsd.edu/) as data set MSV000085932 with ProteomeXchange identifier PXD020801.
Collapse
Affiliation(s)
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Lingjie He
- Synpeptide Co., Ltd., Shanghai 201204, China
| | - Bin Xia
- Synpeptide Co., Ltd., Shanghai 201204, China
| | | | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine and Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
155
|
Midha MK, Campbell DS, Kapil C, Kusebauch U, Hoopmann MR, Bader SL, Moritz RL. DIALib-QC an assessment tool for spectral libraries in data-independent acquisition proteomics. Nat Commun 2020; 11:5251. [PMID: 33067471 PMCID: PMC7567827 DOI: 10.1038/s41467-020-18901-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/17/2020] [Indexed: 01/24/2023] Open
Abstract
Data-independent acquisition (DIA) mass spectrometry, also known as Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH), is a popular label-free proteomics strategy to comprehensively quantify peptides/proteins utilizing mass spectral libraries to decipher inherently multiplexed spectra collected linearly across a mass range. Although there are many spectral libraries produced worldwide, the quality control of these libraries is lacking. We present the DIALib-QC (DIA library quality control) software tool for the systematic evaluation of a library’s characteristics, completeness and correctness across 62 parameters of compliance, and further provide the option to improve its quality. We demonstrate its utility in assessing and repairing spectral libraries for correctness, accuracy and sensitivity. Most data-independent acquisition (DIA) methods depend on mass spectral libraries for peptide identification but tools to assess library quality are lacking. Here, the authors develop DIALib- QC for the systematic evaluation and correction of spectral libraries.
Collapse
Affiliation(s)
- Mukul K Midha
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | | | | | | |
Collapse
|
156
|
Antonicka H, Lin ZY, Janer A, Aaltonen MJ, Weraarpachai W, Gingras AC, Shoubridge EA. A High-Density Human Mitochondrial Proximity Interaction Network. Cell Metab 2020; 32:479-497.e9. [PMID: 32877691 DOI: 10.1016/j.cmet.2020.07.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
We used BioID, a proximity-dependent biotinylation assay with 100 mitochondrial baits from all mitochondrial sub-compartments, to create a high-resolution human mitochondrial proximity interaction network. We identified 1,465 proteins, producing 15,626 unique high-confidence proximity interactions. Of these, 528 proteins were previously annotated as mitochondrial, nearly half of the mitochondrial proteome defined by Mitocarta 2.0. Bait-bait analysis showed a clear separation of mitochondrial compartments, and correlation analysis among preys across all baits allowed us to identify functional clusters involved in diverse mitochondrial functions and to assign uncharacterized proteins to specific modules. We demonstrate that this analysis can assign isoforms of the same mitochondrial protein to different mitochondrial sub-compartments and show that some proteins may have multiple cellular locations. Outer membrane baits showed specific proximity interactions with cytosolic proteins and proteins in other organellar membranes, suggesting specialization of proteins responsible for contact site formation between mitochondria and individual organelles.
Collapse
Affiliation(s)
- Hana Antonicka
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Alexandre Janer
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mari J Aaltonen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Woranontee Weraarpachai
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Eric A Shoubridge
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
157
|
Bouchal P, Schubert OT, Faktor J, Capkova L, Imrichova H, Zoufalova K, Paralova V, Hrstka R, Liu Y, Ebhardt HA, Budinska E, Nenutil R, Aebersold R. Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep 2020; 28:832-843.e7. [PMID: 31315058 PMCID: PMC6656695 DOI: 10.1016/j.celrep.2019.06.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 01/10/2023] Open
Abstract
Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotype-based classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of disease-regulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification. Proteotyping of 96 breast tumors by SWATH mass spectrometry Three key proteins for breast tumor classification Varying degrees of heterogeneity within conventional breast cancer subtypes Generally modest correlation between protein and transcript levels in tumor tissue
Collapse
Affiliation(s)
- Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Olga T Schubert
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lenka Capkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Imrichova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Karolina Zoufalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vendula Paralova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Yansheng Liu
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
| | - Holger Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Eva Budinska
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rudolf Nenutil
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
158
|
Bartel J, Varadarajan AR, Sura T, Ahrens CH, Maaß S, Becher D. Optimized Proteomics Workflow for the Detection of Small Proteins. J Proteome Res 2020; 19:4004-4018. [DOI: 10.1021/acs.jproteome.0c00286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Adithi R. Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics & Bioinformatics and SIB Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics & Bioinformatics and SIB Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| |
Collapse
|
159
|
Fernández-Costa C, Martínez-Bartolomé S, McClatchy DB, Saviola AJ, Yu NK, Yates JR. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results. J Proteome Res 2020; 19:3153-3161. [PMID: 32510229 PMCID: PMC7898222 DOI: 10.1021/acs.jproteome.0c00153] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Data-independent acquisition (DIA) is a promising technique for the proteomic analysis of complex protein samples. A number of studies have claimed that DIA experiments are more reproducible than data-dependent acquisition (DDA), but these claims are unsubstantiated since different data analysis methods are used in the two methods. Data analysis in most DIA workflows depends on spectral library searches, whereas DDA typically employs sequence database searches. In this study, we examined the reproducibility of the DIA and DDA results using both sequence database and spectral library search. The comparison was first performed using a cell lysate and then extended to an interactome study. Protein overlap among the technical replicates in both DDA and DIA experiments was 30% higher with library-based identifications than with sequence database identifications. The reproducibility of quantification was also improved with library search compared to database search, with the mean of the coefficient of variation decreasing more than 30% and a reduction in the number of missing values of more than 35%. Our results show that regardless of the acquisition method, higher identification and quantification reproducibility is observed when library search was used.
Collapse
Affiliation(s)
- Carolina Fernández-Costa
- Departments of Molecular Medicine & Neurobiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Daniel B. McClatchy
- Departments of Molecular Medicine & Neurobiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anthony J. Saviola
- Departments of Molecular Medicine & Neurobiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nam-Kyung Yu
- Departments of Molecular Medicine & Neurobiology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R. Yates
- Departments of Molecular Medicine & Neurobiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
160
|
Abu-Thuraia A, Goyette MA, Boulais J, Delliaux C, Apcher C, Schott C, Chidiac R, Bagci H, Thibault MP, Davidson D, Ferron M, Veillette A, Daly RJ, Gingras AC, Gratton JP, Côté JF. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat Commun 2020; 11:3586. [PMID: 32681075 PMCID: PMC7368075 DOI: 10.1038/s41467-020-17415-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant expression of receptor tyrosine kinase AXL is linked to metastasis. AXL can be activated by its ligand GAS6 or by other kinases, but the signaling pathways conferring its metastatic activity are unknown. Here, we define the AXL-regulated phosphoproteome in breast cancer cells. We reveal that AXL stimulates the phosphorylation of a network of focal adhesion (FA) proteins, culminating in faster FA disassembly. Mechanistically, AXL phosphorylates NEDD9, leading to its binding to CRKII which in turn associates with and orchestrates the phosphorylation of the pseudo-kinase PEAK1. We find that PEAK1 is in complex with the tyrosine kinase CSK to mediate the phosphorylation of PAXILLIN. Uncoupling of PEAK1 from AXL signaling decreases metastasis in vivo, but not tumor growth. Our results uncover a contribution of AXL signaling to FA dynamics, reveal a long sought-after mechanism underlying AXL metastatic activity, and identify PEAK1 as a therapeutic target in AXL positive tumors. AXL receptor tyrosine kinase has a role in metastasis but the mechanism is unclear. In this study, the authors show that AXL activation can control focal adhesion dynamics via PEAK1 and that AXL-mediated PEAK1 phosphorylation is required for metastasis of triple negative breast cancer cells in vivo.
Collapse
Affiliation(s)
- Afnan Abu-Thuraia
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Marie-Anne Goyette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Carine Delliaux
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Chloé Apcher
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Céline Schott
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Halil Bagci
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.,Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | | | - Dominique Davidson
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Mathieu Ferron
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.,Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - André Veillette
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada.,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC, H2W 1R7, Canada. .,Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
161
|
Choong WK, Wang JH, Sung TY. MinProtMaxVP: Generating a minimized number of protein variant sequences containing all possible variant peptides for proteogenomic analysis. J Proteomics 2020; 223:103819. [PMID: 32407886 DOI: 10.1016/j.jprot.2020.103819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Identifying single-amino-acid variants (SAVs) from mass spectrometry-based experiments is critical for validating single-nucleotide variants (SNVs) at the protein level to facilitate biomedical research. Currently, two approaches are usually applied to convert SNV annotations into SAV-harboring protein sequences. One approach generates one sequence containing exactly one SAV, and the other all SAVs. However, they may neglect the possibility of SAV combinations, e.g., haplotypes, existing in bio-samples. Therefore, it is necessary to consider all SAV combinations of a protein when generating SAV-harboring protein sequences. In this paper, we propose MinProtMaxVP, a novel approach which selects a minimized number of SAV-harboring protein sequences generated from the exhaustive approach, while still accommodating all possible variant peptides, by solving a classic set covering problem. Our study on known haplotype variations of TAS2R38 justifies the necessity for MinProtMaxVP to consider all combinations of SAVs. The performance of MinProtMaxVP is demonstrated by an in silico study on OR2T27 with five SAVs and real experimental data of the HEK293 cell line. Furthermore, assuming simulated somatic and germline variants of OR2T27 in tumor and normal tissues demonstrates that when adopting the appropriate somatic and germline SAV integration strategy, MinProtMaxVP is adaptable to labeling and label-free mass spectrometry-based experiments. SIGNIFICANCE: We present MinProtMaxVP, a novel approach to generate SAV-harboring protein sequences for constructing a customized protein sequence database, which is used in database searching for variant peptide identification. This approach outperforms the existing approaches in generating all possible variant peptides to be included in protein sequences and possibly leading to identification of more variant peptides in proteogenomic analysis.
Collapse
Affiliation(s)
- Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
162
|
Wigington CP, Roy J, Damle NP, Yadav VK, Blikstad C, Resch E, Wong CJ, Mackay DR, Wang JT, Krystkowiak I, Bradburn DA, Tsekitsidou E, Hong SH, Kaderali MA, Xu SL, Stearns T, Gingras AC, Ullman KS, Ivarsson Y, Davey NE, Cyert MS. Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling. Mol Cell 2020; 79:342-358.e12. [PMID: 32645368 DOI: 10.1016/j.molcel.2020.06.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.
Collapse
Affiliation(s)
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Nikhil P Damle
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Vikash K Yadav
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Cecilia Blikstad
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer T Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Su Hyun Hong
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Malika Amyn Kaderali
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, M5S 3H7 ON, Canada
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fullham Road, London SW3 6JB, UK
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
163
|
Fages J, Chailleux C, Humbert J, Jang SM, Loehr J, Lambert JP, Côté J, Trouche D, Canitrot Y. JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage. PLoS Genet 2020; 16:e1008511. [PMID: 32598339 PMCID: PMC7351224 DOI: 10.1371/journal.pgen.1008511] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 07/10/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023] Open
Abstract
Ribosomal DNA (rDNA) is the most transcribed genomic region and contains hundreds of tandem repeats. Maintaining these rDNA repeats as well as the level of rDNA transcription is essential for cellular homeostasis. DNA damages generated in rDNA need to be efficiently and accurately repaired and rDNA repeats instability has been reported in cancer, aging and neurological diseases. Here, we describe that the histone demethylase JMJD6 is rapidly recruited to nucleolar DNA damage and is crucial for the relocalisation of rDNA in nucleolar caps. Yet, JMJD6 is dispensable for rDNA transcription inhibition. Mass spectrometry analysis revealed that JMJD6 interacts with the nucleolar protein Treacle and modulates its interaction with NBS1. Moreover, cells deficient for JMJD6 show increased sensitivity to nucleolar DNA damage as well as loss and rearrangements of rDNA repeats upon irradiation. Altogether our data reveal that rDNA transcription inhibition is uncoupled from rDNA relocalisation into nucleolar caps and that JMJD6 is required for rDNA stability through its role in nucleolar caps formation. Ribosomal DNA is composed of repeated sequences and is the most transcribed genomic region. Transcription of rDNA is essential for cellular homeostasis and cell proliferation. Numerous pathologies such as cancer and neurological disorders are associated with defective rDNA repeats maintenance. The mechanisms involved in the control of rDNA integrity involve major DNA repair pathways such as Non-Homologous End Joining and Homologous Recombination. However, how they are controlled and orchestrated is poorly understood. Here, we identified JMJD6 as a new member of the maintenance of rDNA integrity. We observed that JMJD6 controls the recruitment of NBS1 in the nucleolus in order to lead to the proper management of rDNA damages
Collapse
Affiliation(s)
- Jérémie Fages
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Catherine Chailleux
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jonathan Humbert
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Suk-Min Jang
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jérémy Loehr
- Centre de Recherche sur le Cancer de l'Université Laval, axe Endocrinologie et néphrologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jean-Philippe Lambert
- Centre de Recherche sur le Cancer de l'Université Laval, axe Endocrinologie et néphrologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Jacques Côté
- Centre de Recherche sur le Cancer de l'Université Laval, axe Oncologie du Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Didier Trouche
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yvan Canitrot
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
164
|
Kothari C, Osseni MA, Agbo L, Ouellette G, Déraspe M, Laviolette F, Corbeil J, Lambert JP, Diorio C, Durocher F. Machine learning analysis identifies genes differentiating triple negative breast cancers. Sci Rep 2020; 10:10464. [PMID: 32591639 PMCID: PMC7320018 DOI: 10.1038/s41598-020-67525-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive form of breast cancer (BC) with the highest mortality due to high rate of relapse, resistance, and lack of an effective treatment. Various molecular approaches have been used to target TNBC but with little success. Here, using machine learning algorithms, we analyzed the available BC data from the Cancer Genome Atlas Network (TCGA) and have identified two potential genes, TBC1D9 (TBC1 domain family member 9) and MFGE8 (Milk Fat Globule-EGF Factor 8 Protein), that could successfully differentiate TNBC from non-TNBC, irrespective of their heterogeneity. TBC1D9 is under-expressed in TNBC as compared to non-TNBC patients, while MFGE8 is over-expressed. Overexpression of TBC1D9 has a better prognosis whereas overexpression of MFGE8 correlates with a poor prognosis. Protein-protein interaction analysis by affinity purification mass spectrometry (AP-MS) and proximity biotinylation (BioID) experiments identified a role for TBC1D9 in maintaining cellular integrity, whereas MFGE8 would be involved in various tumor survival processes. These promising genes could serve as biomarkers for TNBC and deserve further investigation as they have the potential to be developed as therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Charu Kothari
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Mazid Abiodoun Osseni
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Lynda Agbo
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Geneviève Ouellette
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Maxime Déraspe
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - François Laviolette
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
- Département D'informatique Et de génie Logiciel, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada
| | - Jacques Corbeil
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Big Data Research Centre, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
| | - Caroline Diorio
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada
- Département de Médecine Sociale Et Préventive, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada.
- Centre de Recherche Sur Le Cancer, Centre de Recherche du CHU de Québec-Université Laval, 2705 Laurier Blvd, Bloc R4778, Québec, G1V4G2, Canada.
| |
Collapse
|
165
|
Gallo V, Srivastava V, Bulone V, Zappettini A, Villani M, Marmiroli N, Marmiroli M. Proteomic Analysis Identifies Markers of Exposure to Cadmium Sulphide Quantum Dots (CdS QDs). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1214. [PMID: 32580447 PMCID: PMC7353101 DOI: 10.3390/nano10061214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
The use of cadmium sulphide quantum dot (CdS QD)-enabled products has become increasingly widespread. The prospect of their release in the environment is raising concerns. Here we have used the yeast model Saccharomyces cerevisiae to determine the potential impact of CdS QD nanoparticles on living organisms. Proteomic analyses and cell viability assays performed after 9 h exposure revealed expression of proteins involved in oxidative stress and reduced lethality, respectively, whereas oxidative stress declined, and lethality increased after 24 h incubation in the presence of CdS QDs. Quantitative proteomics using the iTRAQ approach (isobaric tags for relative and absolute quantitation) revealed that key proteins involved in essential biological pathways were differentially regulated over the time course of the experiment. At 9 h, most of the glycolytic functions increased, and the abundance of the number of heat shock proteins increased. This contrasts with the situation at 24 h where glycolytic functions, some heat shock proteins as well as oxidative phosphorylation and ATP synthesis were down-regulated. It can be concluded from our data that cell exposure to CdS QDs provokes a metabolic shift from respiration to fermentation, comparable to the situation reported in some cancer cell lines.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| | - Vaibhav Srivastava
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
| | - Vincent Bulone
- Royal Institute of Technology (KTH), Department of Chemistry, Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, SE-106 91 Stockholm, Sweden; (V.S.); (V.B.)
- ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Urbrae, SA 5064, Australia
| | - Andrea Zappettini
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Marco Villani
- Department of Nanomaterials, Institute of Materials for Electronics and Magnetism (IMEM)Department of Nanomaterials, National Research Council (CNR), 43124 Parma, Italy; (A.Z.); (M.V.)
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43123 Parma, Italy; (V.G.); (N.M.)
| |
Collapse
|
166
|
Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR, Downes DJ, Sivaraman K, Espinoza HM, Hughes JR, Price ND, Perkins TJ, Ranish JA, Brand M. Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis. Mol Cell 2020; 78:960-974.e11. [PMID: 32330456 PMCID: PMC7344268 DOI: 10.1016/j.molcel.2020.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.
Collapse
Affiliation(s)
| | - Carmen G Palii
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada
| | - Daniel Sanchez-Taltavull
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada; Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Paul Shannon
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Karthi Sivaraman
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | | | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| | - Jeffrey A Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| |
Collapse
|
167
|
Fritz JL, Collins O, Saxena P, Buensuceso A, Ramos Valdes Y, Francis KE, Brown KR, Larsen B, Colwill K, Gingras AC, Rottapel R, Shepherd TG. A novel role for NUAK1 in promoting ovarian cancer metastasis through regulation of fibronectin production in spheroids. Cancers (Basel) 2020; 12:cancers12051250. [PMID: 32429240 PMCID: PMC7280971 DOI: 10.3390/cancers12051250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is required for EOC spheroid viability and metastasis. We have identified novel (nua) kinase 1 (NUAK1) as a top candidate LKB1 substrate in EOC cells and spheroids using a multiplex inhibitor beads-mass spectrometry approach. We confirmed that LKB1 maintains NUAK1 phosphorylation and promotes its stabilization. We next investigated NUAK1 function in EOC cells. Ectopic NUAK1-overexpressing EOC cell lines had increased adhesion, whereas the reverse was seen in OVCAR8-NUAK1KO cells. In fact, cells with NUAK1 loss generate spheroids with reduced integrity, leading to increased cell death after long-term culture. Following transcriptome analysis, we identified reduced enrichment for cell interaction gene expression pathways in OVCAR8-NUAK1KO spheroids. In fact, the FN1 gene, encoding fibronectin, exhibited a 745-fold decreased expression in NUAK1KO spheroids. Fibronectin expression was induced during native spheroid formation, yet this was completely lost in NUAK1KO spheroids. Co-incubation with soluble fibronectin restored the compact spheroid phenotype to OVCAR8-NUAK1KO cells. In a xenograft model of intraperitoneal metastasis, NUAK1 loss extended survival and reduced fibronectin expression in tumours. Thus, we have identified a new mechanism controlling EOC metastasis, through which LKB1-NUAK1 activity promotes spheroid formation and secondary tumours via fibronectin production.
Collapse
Affiliation(s)
- Jamie Lee Fritz
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Olga Collins
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
| | - Parima Saxena
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Adrian Buensuceso
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Yudith Ramos Valdes
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
| | - Kyle E. Francis
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; (K.E.F.); (R.R.)
| | - Kevin R. Brown
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (B.L.); (K.C.); (A.-C.G.)
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (B.L.); (K.C.); (A.-C.G.)
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (B.L.); (K.C.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; (K.E.F.); (R.R.)
| | - Trevor G. Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Obstetrics & Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6, Canada
- Department of Oncology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 4L6, Canada
- Correspondence: ; Tel.: +1-519-685-8500 (ext. 56347)
| |
Collapse
|
168
|
Pawliński Ł, Tobór E, Suski M, Biela M, Polus A, Kieć-Wilk B. Proteomic biomarkers in Gaucher disease. J Clin Pathol 2020; 74:25-29. [PMID: 32409598 DOI: 10.1136/jclinpath-2020-206580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
AIMS The research work was conducted to find new biomarkers and potential drug targets in Gaucher disease type 1 (GDt1) by analysing the serum proteins. METHODS This study was an observational, cross-sectional analysis of a group of 12 adult participants: six Gaucher disease (GD) patients and six healthy control. Fasting venous blood underwent proteomics analysis and molecular tests. Over 400 proteins were analysed, and in case of significantly different concentrations between the study and control group, we checked corresponding genes to confirm changes in their expression and consistency with protein alteration. RESULTS We found 31 proteins that significantly differed in concentration between GDt1 patients and a control group. These were mostly proteins involved in the regulation of the inflammatory processes and haemostasis. The levels of proteins such as alpha-1-acid glycoprotein 2, S100-A8/A9, adenyl cyclase-associated protein 1, haptoglobin or translationally controlled tumour protein related to inflammation process were significantly higher in GD patients than in control group, whereas the levels of some proteins such as heavy constant mu and gamma 4 or complement C3/C4 complex involved in humoral response like immunoglobulins were significantly decreased in GD patients. Alteration in two proteins concentration was confirmed in RNA analysis. CONCLUSIONS The work revealed few new targets for further investigation which may be useful in clinical practice for diagnosis, treatment and monitoring GDt1 patients.
Collapse
Affiliation(s)
- Łukasz Pawliński
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Ewa Tobór
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Maria Biela
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Beata Kieć-Wilk
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| |
Collapse
|
169
|
Gomez-Auli A, Hillebrand LE, Christen D, Günther SC, Biniossek ML, Peters C, Schilling O, Reinheckel T. The secreted inhibitor of invasive cell growth CREG1 is negatively regulated by cathepsin proteases. Cell Mol Life Sci 2020; 78:733-755. [PMID: 32385587 PMCID: PMC7873128 DOI: 10.1007/s00018-020-03528-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 01/15/2023]
Abstract
Previous clinical and experimental evidence strongly supports a breast cancer-promoting function of the lysosomal protease cathepsin B. However, the cathepsin B-dependent molecular pathways are not completely understood. Here, we studied the cathepsin-mediated secretome changes in the context of the MMTV-PyMT breast cancer mouse model. Employing the cell-conditioned media from tumor-macrophage co-cultures, as well as tumor interstitial fluid obtained by a novel strategy from PyMT mice with differential cathepsin B expression, we identified an important proteolytic and lysosomal signature, highlighting the importance of this organelle and these enzymes in the tumor micro-environment. The Cellular Repressor of E1A Stimulated Genes 1 (CREG1), a secreted endolysosomal glycoprotein, displayed reduced abundance upon over-expression of cathepsin B as well as increased abundance upon cathepsin B deletion or inhibition. Moreover, it was cleaved by cathepsin B in vitro. CREG1 reportedly could act as tumor suppressor. We show that treatment of PyMT tumor cells with recombinant CREG1 reduced proliferation, migration, and invasion; whereas, the opposite was observed with reduced CREG1 expression. This was further validated in vivo by orthotopic transplantation. Our study highlights CREG1 as a key player in tumor–stroma interaction and suggests that cathepsin B sustains malignant cell behavior by reducing the levels of the growth suppressor CREG1 in the tumor microenvironment.
Collapse
Affiliation(s)
- Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Larissa Elisabeth Hillebrand
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sira Carolin Günther
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Lothar Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Christoph Peters
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
170
|
Chi Y, Carter JH, Swanger J, Mazin AV, Moritz RL, Clurman BE. A novel landscape of nuclear human CDK2 substrates revealed by in situ phosphorylation. SCIENCE ADVANCES 2020; 6:eaaz9899. [PMID: 32494624 PMCID: PMC7164936 DOI: 10.1126/sciadv.aaz9899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 05/03/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) controls cell division and is central to oncogenic signaling. We used an "in situ" approach to identify CDK2 substrates within nuclei isolated from cells expressing CDK2 engineered to use adenosine 5'-triphosphate analogs. We identified 117 candidate substrates, ~40% of which are known CDK substrates. Previously unknown candidates were validated to be CDK2 substrates, including LSD1, DOT1L, and Rad54. The identification of many chromatin-associated proteins may have been facilitated by labeling conditions that preserved nuclear architecture and physiologic CDK2 regulation by endogenous cyclins. Candidate substrates include proteins that regulate histone modifications, chromatin, transcription, and RNA/DNA metabolism. Many of these proteins also coexist in multi-protein complexes, including epigenetic regulators, that may provide new links between cell division and other cellular processes mediated by CDK2. In situ phosphorylation thus revealed candidate substrates with a high validation rate and should be readily applicable to other nuclear kinases.
Collapse
Affiliation(s)
- Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
- Institute for Systems Biology, 401 Terry Avenue, N. Seattle, WA 98109, USA
| | - John H. Carter
- Division of Hematology/Medical Oncology, Oregon Health & Science University School of Medicine, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239-3098, USA
| | - Jherek Swanger
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
| | - Alexander V. Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1192, USA
| | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Avenue, N. Seattle, WA 98109, USA
| | - Bruce E. Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
- Corresponding author.
| |
Collapse
|
171
|
Zhong CQ, Wu J, Qiu X, Chen X, Xie C, Han J. Generation of a murine SWATH-MS spectral library to quantify more than 11,000 proteins. Sci Data 2020; 7:104. [PMID: 32218446 PMCID: PMC7099061 DOI: 10.1038/s41597-020-0449-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Targeted SWATH-MS data analysis is critically dependent on the spectral library. Comprehensive spectral libraries of human or several other organisms have been published, but the extensive spectral library for mouse, a widely used model organism is not available. Here, we present a large murine spectral library covering more than 11,000 proteins and 240,000 proteotypic peptides, which included proteins derived from 9 murine tissue samples and one murine L929 cell line. This resource supports the quantification of 67% of all murine proteins annotated by UniProtKB/Swiss-Prot. Furthermore, we applied the spectral library to SWATH-MS data from murine tissue samples. Data are available via SWATHAtlas (PASS01441). Measurement(s) | Mouse Protein • mass spectrum • spectral library | Technology Type(s) | mass spectrometry • combined ms-ms + spectral library search | Sample Characteristic - Organism | Mus musculus |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11968230
Collapse
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Xi Chen
- Medical Research Institute, Wuhan University, Wuhan, China.,SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
172
|
Cho KC, Clark DJ, Schnaubelt M, Teo GC, Leprevost FDV, Bocik W, Boja ES, Hiltke T, Nesvizhskii AI, Zhang H. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry. Anal Chem 2020; 92:4217-4225. [PMID: 32058701 PMCID: PMC7255061 DOI: 10.1021/acs.analchem.9b04418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methodologies that facilitate high-throughput proteomic analysis are a key step toward moving proteome investigations into clinical translation. Data independent acquisition (DIA) has potential as a high-throughput analytical method due to the reduced time needed for sample analysis, as well as its highly quantitative accuracy. However, a limiting feature of DIA methods is the sensitivity of detection of low abundant proteins and depth of coverage, which other mass spectrometry approaches address by two-dimensional fractionation (2D) to reduce sample complexity during data acquisition. In this study, we developed a 2D-DIA method intended for rapid- and deeper-proteome analysis compared to conventional 1D-DIA analysis. First, we characterized 96 individual fractions obtained from the protein standard, NCI-7, using a data-dependent approach (DDA), identifying a total of 151,366 unique peptides from 11,273 protein groups. We observed that the majority of the proteins can be identified from just a few selected fractions. By performing an optimization analysis, we identified six fractions with high peptide number and uniqueness that can account for 80% of the proteins identified in the entire experiment. These selected fractions were combined into a single sample which was then subjected to DIA (referred to as 2D-DIA) quantitative analysis. Furthermore, improved DIA quantification was achieved using a hybrid spectral library, obtained by combining peptides identified from DDA data with peptides identified directly from the DIA runs with the help of DIA-Umpire. The optimized 2D-DIA method allowed for improved identification and quantification of low abundant proteins compared to conventional unfractionated DIA analysis (1D-DIA). We then applied the 2D-DIA method to profile the proteomes of two breast cancer patient-derived xenograft (PDX) models, quantifying 6,217 and 6,167 unique proteins in basal- and luminal- tumors, respectively. Overall, this study demonstrates the potential of high-throughput quantitative proteomics using a novel 2D-DIA method.
Collapse
Affiliation(s)
- Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David J Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - William Bocik
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
173
|
Herrmann M, Babler A, Moshkova I, Gremse F, Kiessling F, Kusebauch U, Nelea V, Kramann R, Moritz RL, McKee MD, Jahnen-Dechent W. Lumenal calcification and microvasculopathy in fetuin-A-deficient mice lead to multiple organ morbidity. PLoS One 2020; 15:e0228503. [PMID: 32074120 PMCID: PMC7029858 DOI: 10.1371/journal.pone.0228503] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
The plasma protein fetuin-A mediates the formation of protein-mineral colloids known as calciprotein particles (CPP)-rapid clearance of these CPP by the reticuloendothelial system prevents errant mineral precipitation and therefore pathological mineralization (calcification). The mutant mouse strain D2,Ahsg-/- combines fetuin-A deficiency with the calcification-prone DBA/2 genetic background, having a particularly severe compound phenotype of microvascular and soft tissue calcification. Here we studied mechanisms leading to soft tissue calcification, organ damage and death in these mice. We analyzed mice longitudinally by echocardiography, X-ray-computed tomography, analytical electron microscopy, histology, mass spectrometry proteomics, and genome-wide microarray-based expression analyses of D2 wildtype and Ahsg-/- mice. Fetuin-A-deficient mice had calcified lesions in myocardium, lung, brown adipose tissue, reproductive organs, spleen, pancreas, kidney and the skin, associated with reduced growth, cardiac output and premature death. Importantly, early-stage calcified lesions presented in the lumen of the microvasculature suggesting precipitation of mineral containing complexes from the fluid phase of blood. Genome-wide expression analysis of calcified lesions and surrounding (not calcified) tissue, together with morphological observations, indicated that the calcification was not associated with osteochondrogenic cell differentiation, but rather with thrombosis and fibrosis. Collectively, these results demonstrate that soft tissue calcification can start by intravascular mineral deposition causing microvasculopathy, which impacts on growth, organ function and survival. Our study underscores the importance of fetuin-A and related systemic regulators of calcified matrix metabolism to prevent cardiovascular disease, especially in dysregulated mineral homeostasis.
Collapse
Affiliation(s)
- Marietta Herrmann
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Babler
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Irina Moshkova
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix Gremse
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Valentin Nelea
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marc D. McKee
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
174
|
Moosa JM, Guan S, Moran MF, Ma B. Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identification. J Proteome Res 2020; 19:1029-1036. [DOI: 10.1021/acs.jproteome.9b00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Johra Muhammad Moosa
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Shenheng Guan
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
- Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
| | - Michael F. Moran
- Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
| | - Bin Ma
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
175
|
Gonatopoulos-Pournatzis T, Niibori R, Salter EW, Weatheritt RJ, Tsang B, Farhangmehr S, Liang X, Braunschweig U, Roth J, Zhang S, Henderson T, Sharma E, Quesnel-Vallières M, Permanyer J, Maier S, Georgiou J, Irimia M, Sonenberg N, Forman-Kay JD, Gingras AC, Collingridge GL, Woodin MA, Cordes SP, Blencowe BJ. Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Mol Cell 2020; 77:1176-1192.e16. [PMID: 31999954 DOI: 10.1016/j.molcel.2020.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/15/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.
Collapse
Affiliation(s)
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brian Tsang
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tyler Henderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eesha Sharma
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona 08003, Spain
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Barcelona 08010, Spain
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
176
|
Klingauf-Nerurkar P, Gillet LC, Portugal-Calisto D, Oborská-Oplová M, Jäger M, Schubert OT, Pisano A, Peña C, Rao S, Altvater M, Chang Y, Aebersold R, Panse VG. The GTPase Nog1 co-ordinates the assembly, maturation and quality control of distant ribosomal functional centers. eLife 2020; 9:e52474. [PMID: 31909713 PMCID: PMC6968927 DOI: 10.7554/elife.52474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the pre-60S, these steps include removal of placeholders Rlp24, Arx1 and Mrt4 that prevent premature loading of the ribosomal protein eL24, the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 to trigger Arx1 and Mrt4 removal. Drg1-ATPase activity removes Rlp24 from the GTPase Nog1 on the pre-60S; consequently, the C-terminal tail of Nog1 is extracted from the PET. These events enable Rei1 to probe PET integrity and catalyze Arx1 release. Concomitantly, Nog1 eviction from the pre-60S permits peptidyl transferase center maturation, and allows Yvh1 to mediate Mrt4 release for stalk assembly. Thus, Nog1 co-ordinates the assembly, maturation and quality control of distant functional centers during ribosome formation.
Collapse
Affiliation(s)
| | - Ludovic C Gillet
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | | | - Michaela Oborská-Oplová
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Martin Jäger
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Olga T Schubert
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Agnese Pisano
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | - Cohue Peña
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | - Sanjana Rao
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | | | - Yiming Chang
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Vikram G Panse
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
177
|
Abstract
Mass spectrometry is extremely efficient for sequencing small peptides generated by, for example, a trypsin digestion of a complex mixture. Current instruments have the capacity to generate 50-100 K MSMS spectra from a single run. Of these ~30-50% is typically assigned to peptide matches on a 1% FDR threshold. The remaining spectra need more research to explain. We address here whether the 30-50% matched spectra provide consensus matches when using different database-dependent search pipelines. Although the majority of the spectra peptide assignments concur across search engines, our conclusion is that database-dependent search engines still require improvements.
Collapse
Affiliation(s)
- Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Gorka Prieto
- Department of Communications Engineering, Faculty of Engineering of Bilbao, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| |
Collapse
|
178
|
Méant A, Gao B, Lavoie G, Nourreddine S, Jung F, Aubert L, Tcherkezian J, Gingras AC, Roux PP. Proteomic Analysis Reveals a Role for RSK in p120-catenin Phosphorylation and Melanoma Cell-Cell Adhesion. Mol Cell Proteomics 2020; 19:50-64. [PMID: 31678930 PMCID: PMC6944238 DOI: 10.1074/mcp.ra119.001811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 01/15/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling pathway regulates various biological functions, including cell survival, proliferation and migration. This pathway is frequently deregulated in cancer, including melanoma, which is the most aggressive form of skin cancer. RSK (p90 ribosomal S6 kinase) is a MAPK-activated protein kinase required for melanoma growth and proliferation, but relatively little is known about its function and the nature of its cellular partners. In this study, we used a proximity-based labeling approach to identify RSK proximity partners in cells. We identified many potential RSK-interacting proteins, including p120ctn (p120-catenin), which is an essential component of adherens junction (AJ). We found that RSK phosphorylates p120ctn on Ser320, which appears to be constitutively phosphorylated in melanoma cells. We also found that RSK inhibition increases melanoma cell-cell adhesion, suggesting that constitutive RAS/MAPK signaling negatively regulates AJ integrity. Together, our results indicate that RSK plays an important role in the regulation of melanoma cell-cell adhesion.
Collapse
Affiliation(s)
- Antoine Méant
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Beichen Gao
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Sami Nourreddine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Flora Jung
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Joseph Tcherkezian
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
179
|
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Mol Cell Proteomics 2020; 19:31-49. [PMID: 31744855 PMCID: PMC6944237 DOI: 10.1074/mcp.r119.001743] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Qing Ma
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Ian Mongrain
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
180
|
Barkovits K, Pacharra S, Pfeiffer K, Steinbach S, Eisenacher M, Marcus K, Uszkoreit J. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Mol Cell Proteomics 2020; 19:181-197. [PMID: 31699904 PMCID: PMC6944235 DOI: 10.1074/mcp.ra119.001714] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Currently data-dependent acquisition (DDA) is the method of choice for mass spectrometry-based proteomics discovery experiments, but data-independent acquisition (DIA) is steadily becoming more important. One of the most important requirements to perform a DIA analysis is the availability of suitable spectral libraries for peptide identification and quantification. Several studies were performed addressing the evaluation of spectral library performance for protein identification in DIA measurements. But so far only few experiments estimate the effect of these libraries on the quantitative level.In this work we created a gold standard spike-in sample set with known contents and ratios of proteins in a complex protein matrix that allowed a detailed comparison of DIA quantification data obtained with different spectral library approaches. We used in-house generated sample-specific spectral libraries created using varying sample preparation approaches and repeated DDA measurement. In addition, two different search engines were tested for protein identification from DDA data and subsequent library generation. In total, eight different spectral libraries were generated, and the quantification results compared with a library free method, as well as a default DDA analysis. Not only the number of identifications on peptide and protein level in the spectral libraries and the corresponding DIA analysis results was inspected, but also the number of expected and identified differentially abundant protein groups and their ratios.We found, that while libraries of prefractionated samples were generally larger, there was no significant increase in DIA identifications compared with repetitive non-fractionated measurements. Furthermore, we show that the accuracy of the quantification is strongly dependent on the applied spectral library and whether the quantification is based on peptide or protein level. Overall, the reproducibility and accuracy of DIA quantification is superior to DDA in all applied approaches.Data has been deposited to the ProteomeXchange repository with identifiers PXD012986, PXD012987, PXD012988 and PXD014956.
Collapse
Affiliation(s)
- Katalin Barkovits
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Sandra Pacharra
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Kathy Pfeiffer
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Simone Steinbach
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Martin Eisenacher
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Katrin Marcus
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany.
| | - Julian Uszkoreit
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany.
| |
Collapse
|
181
|
Shao W, Caron E, Pedrioli P, Aebersold R. The SysteMHC Atlas: a Computational Pipeline, a Website, and a Data Repository for Immunopeptidomic Analyses. Methods Mol Biol 2020; 2120:173-181. [PMID: 32124319 DOI: 10.1007/978-1-0716-0327-7_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry has emerged as the method of choice for the exploration of the immunopeptidome. Insights from the immunopeptidome promise novel cancer therapeutic approaches and a better understanding of the basic mechanisms of our immune system. To meet the computational demands from the steady gain in popularity and reach of mass spectrometry-based immunopeptidomics analysis, we created the SysteMHC Atlas project, a first-of-its-kind computational pipeline and resource repository dedicated to standardizing data analysis and public dissemination of immunopeptidomic datasets.
Collapse
Affiliation(s)
- Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC, Canada. .,Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Patrick Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
182
|
Keller A, Chavez JD, Bruce JE. Increased sensitivity with automated validation of XL-MS cleavable peptide crosslinks. Bioinformatics 2019; 35:895-897. [PMID: 30137231 DOI: 10.1093/bioinformatics/bty720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION Peptides crosslinked with cleavable chemical crosslinkers are identified with mass spectrometry by independent database search of spectra associated with the two linked peptides. A major challenge is to combine together the evidence of the two peptides into an overall assessment of the two-peptide crosslink. RESULTS Here, we describe software that models crosslink specific information to automatically validate XL-MS cleavable peptide crosslinks. Using a dataset of crosslinked protein mixtures, we demonstrate that it computes accurate and highly discriminating probabilities, enabling as many as 75% more identifications than was previously possible using only search scores and a predictable false discovery rate. AVAILABILITY AND IMPLEMENTATION XLinkProphet software is freely available on the web at http://brucelab.gs.washington.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
183
|
Razi A, Davis JH, Hao Y, Jahagirdar D, Thurlow B, Basu K, Jain N, Gomez-Blanco J, Britton RA, Vargas J, Guarné A, Woodson SA, Williamson JR, Ortega J. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res 2019; 47:8301-8317. [PMID: 31265110 PMCID: PMC6736133 DOI: 10.1093/nar/gkz571] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023] Open
Abstract
Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era’s role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.
Collapse
Affiliation(s)
- Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Joseph H Davis
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Brett Thurlow
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josue Gomez-Blanco
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javier Vargas
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1 Canada
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James R Williamson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
184
|
Shteynberg DD, Deutsch EW, Campbell DS, Hoopmann MR, Kusebauch U, Lee D, Mendoza L, Midha MK, Sun Z, Whetton AD, Moritz RL. PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline. J Proteome Res 2019; 18:4262-4272. [PMID: 31290668 PMCID: PMC6898736 DOI: 10.1021/acs.jproteome.9b00205] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spectral matching sequence database search engines commonly used on mass spectrometry-based proteomics experiments excel at identifying peptide sequence ions, and in addition, possible sequence ions carrying post-translational modifications (PTMs), but most do not provide confidence metrics for the exact localization of those PTMs when several possible sites are available. Localization is absolutely required for downstream molecular cell biology analysis of PTM function in vitro and in vivo. Therefore, we developed PTMProphet, a free and open-source software tool integrated into the Trans-Proteomic Pipeline, which reanalyzes identified spectra from any search engine for which pepXML output is available to provide localization confidence to enable appropriate further characterization of biologic events. Localization of any type of mass modification (e.g., phosphorylation) is supported. PTMProphet applies Bayesian mixture models to compute probabilities for each site/peptide spectrum match where a PTM has been identified. These probabilities can be combined to compute a global false localization rate at any threshold to guide downstream analysis. We describe the PTMProphet tool, its underlying algorithms, and demonstrate its performance on ground-truth synthetic peptide reference data sets, one previously published small data set, one new larger data set, and also on a previously published phosphoenriched data set where the correct sites of modification are unknown. Data have been deposited to ProteomeXchange with identifier PXD013210.
Collapse
Affiliation(s)
| | | | | | | | | | - Dave Lee
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Luis Mendoza
- Institute for Systems Biology, Seattle, WA, 98008, USA
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, 98008, USA
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, M13 9PL, UK
| | | |
Collapse
|
185
|
Sajic T, Liu Y, Arvaniti E, Surinova S, Williams EG, Schiess R, Hüttenhain R, Sethi A, Pan S, Brentnall TA, Chen R, Blattmann P, Friedrich B, Niméus E, Malander S, Omlin A, Gillessen S, Claassen M, Aebersold R. Similarities and Differences of Blood N-Glycoproteins in Five Solid Carcinomas at Localized Clinical Stage Analyzed by SWATH-MS. Cell Rep 2019; 23:2819-2831.e5. [PMID: 29847809 DOI: 10.1016/j.celrep.2018.04.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is mostly incurable when diagnosed at a metastatic stage, making its early detection via blood proteins of immense clinical interest. Proteomic changes in tumor tissue may lead to changes detectable in the protein composition of circulating blood plasma. Using a proteomic workflow combining N-glycosite enrichment and SWATH mass spectrometry, we generate a data resource of 284 blood samples derived from patients with different types of localized-stage carcinomas and from matched controls. We observe whether the changes in the patient's plasma are specific to a particular carcinoma or represent a generic signature of proteins modified uniformly in a common, systemic response to many cancers. A quantitative comparison of the resulting N-glycosite profiles discovers that proteins related to blood platelets are common to several cancers (e.g., THBS1), whereas others are highly cancer-type specific. Available proteomics data, including a SWATH library to study N-glycoproteins, will facilitate follow-up biomarker research into early cancer detection.
Collapse
Affiliation(s)
- Tatjana Sajic
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Yansheng Liu
- Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eirini Arvaniti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul Sethi
- Department of Biomedicine, University of Basel/University Hospital Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler, Houston, TX 77030, USA
| | - Teresa A Brentnall
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Betty Friedrich
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Emma Niméus
- Department of Clinical Sciences Lund, Surgery, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Surgery, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Oncology, Lund, Sweden
| | - Aurelius Omlin
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Silke Gillessen
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Manfred Claassen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
186
|
Zhong CQ, Wu R, Chen X, Wu S, Shuai J, Han J. Systematic Assessment of the Effect of Internal Library in Targeted Analysis of SWATH-MS. J Proteome Res 2019; 19:477-492. [DOI: 10.1021/acs.jproteome.9b00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rui Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Chen
- Medical Research Institute, Wuhan University, Wuhan 430072, China
- SpecAlly Life Technology Co., Ltd., Wuhan 430072, China
| | - Suqin Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianwei Shuai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
187
|
Canzani D, Rusnac DV, Zheng N, Bush MF. Degronomics: Mapping the Interacting Peptidome of a Ubiquitin Ligase Using an Integrative Mass Spectrometry Strategy. Anal Chem 2019; 91:12775-12783. [PMID: 31525912 PMCID: PMC6959985 DOI: 10.1021/acs.analchem.9b02331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human cells make use of hundreds of unique ubiquitin E3 ligases to ensure proteome fidelity and control cellular functions by promoting protein degradation. These processes require exquisite selectivity, but the individual roles of most E3s remain poorly characterized in part due to the challenges associated with identifying, quantifying, and validating substrates for each E3. We report an integrative mass spectrometry (MS) strategy for characterizing protein fragments that interact with KLHDC2, a human E3 that recognizes the extreme C-terminus of substrates. Using a combination of native MS, native top-down MS, MS of destabilized samples, and liquid chromatography MS, we identified and quantified a near complete fraction of the KLHDC2-binding peptidome in E. coli cells. This degronome includes peptides that originate from a variety of proteins. Although all identified protein fragments are terminated by diglycine or glycylalanine, the preceding amino acids are diverse. These results significantly expand our understanding of the sequences that can be recognized by KLHDC2, which provides insight into the potential substrates of this E3 in humans. We anticipate that this integrative MS strategy could be leveraged more broadly to characterize the degronomes of other E3 ligase substrate receptors, including those that adhere to the more common N-end rule for substrate recognition. Therefore, this work advances "degronomics," i.e., identifying, quantifying, and validating functional E3:peptide interactions in order to determine the individual roles of each E3.
Collapse
Affiliation(s)
- Daniele Canzani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Domnița-Valeria Rusnac
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
188
|
BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nat Microbiol 2019; 4:2511-2522. [PMID: 31611645 DOI: 10.1038/s41564-019-0580-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Many bacterial pathogens express virulence proteins that are translocated into host cells (herein referred to as effectors), where they can interact with target proteins to manipulate host cell processes. These effector-host protein interactions are often dynamic and transient in nature, making them difficult to identify using traditional interaction-based methods. Here, we performed a systematic comparison between proximity-dependent biotin labelling (BioID) and immunoprecipitation coupled with mass spectrometry to investigate a series of Salmonella type 3 secreted effectors that manipulate host intracellular trafficking (SifA, PipB2, SseF, SseG and SopD2). Using BioID, we identified 632 candidate interactions with 381 unique human proteins, collectively enriched for roles in vesicular trafficking, cytoskeleton components and transport activities. From the subset of proteins exclusively identified by BioID, we report that SifA interacts with BLOC-2, a protein complex that regulates dynein motor activity. We demonstrate that the BLOC-2 complex is necessary for SifA-mediated positioning of Salmonella-containing vacuoles, and affects stability of the vacuoles during infection. Our study provides insight into the coordinated activities of Salmonella type 3 secreted effectors and demonstrates the utility of BioID as a powerful, complementary tool to characterize effector-host protein interactions.
Collapse
|
189
|
Bell PA, Solis N, Kizhakkedathu JN, Matthew I, Overall CM. Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extraction Methodology and LysargiNase Digestion Strategies Increase Proteome Coverage and Missing Protein Identification. J Proteome Res 2019; 18:4167-4179. [DOI: 10.1021/acs.jproteome.9b00445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
190
|
Miller RM, Millikin RJ, Hoffmann CV, Solntsev SK, Sheynkman GM, Shortreed MR, Smith LM. Improved Protein Inference from Multiple Protease Bottom-Up Mass Spectrometry Data. J Proteome Res 2019; 18:3429-3438. [PMID: 31378069 PMCID: PMC6733628 DOI: 10.1021/acs.jproteome.9b00330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peptides detected by tandem mass spectrometry (MS/MS) in bottom-up proteomics serve as proxies for the proteins expressed in the sample. Protein inference is a process routinely applied to these peptides to generate a plausible list of candidate protein identifications. The use of multiple proteases for parallel protein digestions expands sequence coverage, provides additional peptide identifications, and increases the probability of identifying peptides that are unique to a single protein, which are all valuable for protein inference. We have developed and implemented a multi-protease protein inference algorithm in MetaMorpheus, a bottom-up search software program, which incorporates the calculation of protease-specific q-values and preserves the association of peptide sequences and their protease of origin. This integrated multi-protease protein inference algorithm provides more accurate results than either the aggregation of results from the separate analysis of the peptide identifications produced by each protease (separate approach) in MetaMorpheus, or results that are obtained using Fido, ProteinProphet, or DTASelect2. MetaMorpheus' integrated multi-protease data analysis decreases the ambiguity of the protein group list, reduces the frequency of erroneous identifications, and increases the number of post-translational modifications identified, while combining multi-protease search and protein inference into a single software program.
Collapse
Affiliation(s)
- Rachel M. Miller
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Robert J. Millikin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Connor V. Hoffmann
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stefan K. Solntsev
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gloria M. Sheynkman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R. Shortreed
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
191
|
Rabe A, Gesell Salazar M, Michalik S, Fuchs S, Welk A, Kocher T, Völker U. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 2019; 11:1654786. [PMID: 31497257 PMCID: PMC6720020 DOI: 10.1080/20002297.2019.1654786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch-Institute, Wernigerode, Germany
| | - Alexander Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
192
|
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Giżycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P. Comparative two time-point proteome analysis of the plasma from preterm infants with and without bronchopulmonary dysplasia. Ital J Pediatr 2019; 45:112. [PMID: 31445514 PMCID: PMC6708124 DOI: 10.1186/s13052-019-0676-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, we aimed to analyze differences in plasma protein abundances between infants with and without bronchopulmonary dysplasia (BPD), to add new insights into a better understanding of the pathogenesis of this disease. METHODS Cord and peripheral blood of neonates (≤ 30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (36 PMA), respectively. Blood samples were retrospectively subdivided into BPD(+) and BPD(-) groups, according to the development of BPD. RESULTS Children with BPD were characterized by decreased afamin, gelsolin and carboxypeptidase N subunit 2 levels in cord blood, and decreased galectin-3 binding protein and hemoglobin subunit gamma-1 levels, as well as an increased serotransferrin abundance in plasma at the 36 PMA. CONCLUSIONS BPD development is associated with the plasma proteome changes in preterm infants, adding further evidence for the possible involvement of disturbances in vitamin E availability and impaired immunological processes in the progression of prematurity pulmonary complications. Moreover, it also points to the differences in proteins related to infection resistance and maintaining an adequate level of hematocrit in infants diagnosed with BPD.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Renata Bokiniec
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | - Monika Szwarc-Duma
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Beata Bujak-Giżycka
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow, Poland
| | - Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Lars O. Baumbusch
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Jacek Józef Pietrzyk
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
193
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
194
|
Shao W, Pedrioli PGA, Wolski W, Scurtescu C, Schmid E, Vizcaíno JA, Courcelles M, Schuster H, Kowalewski D, Marino F, Arlehamn CSL, Vaughan K, Peters B, Sette A, Ottenhoff THM, Meijgaarden KE, Nieuwenhuizen N, Kaufmann SHE, Schlapbach R, Castle JC, Nesvizhskii AI, Nielsen M, Deutsch EW, Campbell DS, Moritz RL, Zubarev RA, Ytterberg AJ, Purcell AW, Marcilla M, Paradela A, Wang Q, Costello CE, Ternette N, van Veelen PA, van Els CACM, Heck AJR, de Souza GA, Sollid LM, Admon A, Stevanovic S, Rammensee HG, Thibault P, Perreault C, Bassani-Sternberg M, Aebersold R, Caron E. The SysteMHC Atlas project. Nucleic Acids Res 2019; 46:D1237-D1247. [PMID: 28985418 PMCID: PMC5753376 DOI: 10.1093/nar/gkx664] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022] Open
Abstract
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts.
Collapse
Affiliation(s)
- Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Patrick G A Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | | | - Emanuel Schmid
- Scientific IT Services (SIS), ETH Zurich, Zurich 8093, Switzerland
| | - Juan A Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Heiko Schuster
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Fabio Marino
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne 1011, Switzerland.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, The Netherlands.,Netherlands Proteomics Centre, Utrecht, 3584 CH, The Netherlands
| | | | - Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Krista E Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Natalie Nieuwenhuizen
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - John C Castle
- Vaccine Research and Translational Medicine, Agenus Switzerland Inc., 4157 Basel, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, BRCF Metabolomics Core, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, 1650, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Anders Jimmy Ytterberg
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Anthony W Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Miguel Marcilla
- Proteomics Unit, Spanish National Biotechnology Centre, Madrid 28049, Spain
| | - Alberto Paradela
- Proteomics Unit, Spanish National Biotechnology Centre, Madrid 28049, Spain
| | - Qi Wang
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, OX3 7FZ, UK
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3720 BA, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, The Netherlands.,Netherlands Proteomics Centre, Utrecht, 3584 CH, The Netherlands
| | - Gustavo A de Souza
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo 0372, Norway.,The Brain Institute, Universidade Federal do Rio Grande do Norte, 59056-450, Natal-RN, Brazil
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo 0372, Norway
| | - Arie Admon
- Department of Biology, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne 1011, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland.,Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | - Etienne Caron
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
195
|
Zelanis A, Oliveira AK, Prudova A, Huesgen PF, Tashima AK, Kizhakkedathu J, Overall CM, Serrano SMT. Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics. J Proteome Res 2019; 18:3419-3428. [PMID: 31337208 DOI: 10.1021/acs.jproteome.9b00325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Snakebite is a major medical concern in many parts of the world with metalloproteases playing important roles in the pathological effects of Viperidae venoms, including local tissue damage, hemorrhage, and coagulopathy. Hemorrhagic Factor 3 (HF3), a metalloprotease from Bothrops jararaca venom, induces local hemorrhage and targets extracellular matrix (ECM) components, including collagens and proteoglycans, and plasma proteins. However, the full substrate repertoire of this metalloprotease is unknown. We report positional proteomic studies identifying >2000 N-termini, including neo-N-termini of HF3 cleavage sites in mouse embryonic fibroblast secretome proteins. Terminal amine isotopic labeling of substrates (TAILS) analysis identified a preference for Leu at the P1' position among candidate HF3 substrates including proteins of the ECM and focal adhesions and the cysteine protease inhibitor cystatin-C. Interestingly, 190 unique peptides matched to annotated cleavage sites in the TopFIND N-termini database, suggesting that these cleavages occurred at a site prone to cleavage or might have been generated by other proteases activated upon incubation with HF3, including caspases-3 and -7, cathepsins D and E, granzyme B, and MMPs 2 and 9. Using Proteomic identification of cleavage site specificity (PICS), a tryptic library derived from THP-1 monocytic cells was used as HF3 substrates for identifying protease cleavage sites and sequence preferences in peptides. A total of 799 unique cleavage sites were detected and, in accordance with TAILS analysis using native secreted protein substrates of MEF cells, revealed a clear preference for Leu at P1'. Taken together, these results greatly expand the known substrate degradome of HF3 and reveal potential new targets, which may serve as a basis to better elucidate the complex pathophysiology of snake envenomation.
Collapse
Affiliation(s)
- André Zelanis
- Department of Science and Technology , Federal University of São Paulo (ICT-UNIFESP) , São José dos Campos , SP 12231-280 , Brazil.,Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Ana K Oliveira
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Anna Prudova
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Pitter F Huesgen
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , Juelich 52425 , Germany
| | - Alexandre K Tashima
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Jayachandran Kizhakkedathu
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Christopher M Overall
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| |
Collapse
|
196
|
Chen ZL, Meng JM, Cao Y, Yin JL, Fang RQ, Fan SB, Liu C, Zeng WF, Ding YH, Tan D, Wu L, Zhou WJ, Chi H, Sun RX, Dong MQ, He SM. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat Commun 2019; 10:3404. [PMID: 31363125 PMCID: PMC6667459 DOI: 10.1038/s41467-019-11337-z] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/20/2019] [Indexed: 01/05/2023] Open
Abstract
We describe pLink 2, a search engine with higher speed and reliability for proteome-scale identification of cross-linked peptides. With a two-stage open search strategy facilitated by fragment indexing, pLink 2 is ~40 times faster than pLink 1 and 3~10 times faster than Kojak. Furthermore, using simulated datasets, synthetic datasets, 15N metabolically labeled datasets, and entrapment databases, four analysis methods were designed to evaluate the credibility of ten state-of-the-art search engines. This systematic evaluation shows that pLink 2 outperforms these methods in precision and sensitivity, especially at proteome scales. Lastly, re-analysis of four published proteome-scale cross-linking datasets with pLink 2 required only a fraction of the time used by pLink 1, with up to 27% more cross-linked residue pairs identified. pLink 2 is therefore an efficient and reliable tool for cross-linking mass spectrometry analysis, and the systematic evaluation methods described here will be useful for future software development. The identification of cross-linked peptides at a proteome scale for interactome analyses represents a complex challenge. Here the authors report an efficient and reliable search engine pLink 2 for proteome-scale cross-linking mass spectrometry analyses, and demonstrate how to systematically evaluate the credibility of search engines.
Collapse
Affiliation(s)
- Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Ming Meng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ji-Li Yin
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qian Fang
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Bo Fan
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Feng Zeng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-He Ding
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Long Wu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jing Zhou
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
197
|
Chen CT, Ko CL, Choong WK, Wang JH, Hsu WL, Sung TY. WinProphet: A User-Friendly Pipeline Management System for Proteomics Data Analysis Based on Trans-Proteomic Pipeline. Anal Chem 2019; 91:9403-9406. [DOI: 10.1021/acs.analchem.9b01556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chu-Ling Ko
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Lian Hsu
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
198
|
O’Meara TR, O’Meara MJ, Polvi EJ, Pourhaghighi MR, Liston SD, Lin ZY, Veri AO, Emili A, Gingras AC, Cowen LE. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biol 2019; 17:e3000358. [PMID: 31283755 PMCID: PMC6638986 DOI: 10.1371/journal.pbio.3000358] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/18/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
Hsp90 is a conserved molecular chaperone that assists in the folding and function of diverse cellular regulators, with a profound impact on biology, disease, and evolution. As a central hub of protein interaction networks, Hsp90 engages with hundreds of protein-protein interactions within eukaryotic cells. These interactions include client proteins, which physically interact with Hsp90 and depend on the chaperone for stability or function, as well as co-chaperones and partner proteins that modulate chaperone function. Currently, there are no methods to accurately predict Hsp90 interactors and there has been considerable network rewiring over evolutionary time, necessitating experimental approaches to define the Hsp90 network in the species of interest. This is a pressing challenge for fungal pathogens, for which Hsp90 is a key regulator of stress tolerance, drug resistance, and virulence traits. To address this challenge, we applied a novel biochemical fractionation and quantitative proteomic approach to examine alterations to the proteome upon perturbation of Hsp90 in a leading human fungal pathogen, Candida albicans. In parallel, we performed affinity purification coupled to mass spectrometry to define physical interacting partners for Hsp90 and the Hsp90 co-chaperones and identified 164 Hsp90-interacting proteins, including 111 that are specific to the pathogen. We performed the first analysis of the Hsp90 interactome upon antifungal drug stress and demonstrated that Hsp90 stabilizes processing body (P-body) and stress granule proteins that contribute to drug tolerance. We also describe novel roles for Hsp90 in regulating posttranslational modification of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex and the formation of protein aggregates in response to thermal stress. This study provides a global view of the Hsp90 interactome in a fungal pathogen, demonstrates the dynamic role of Hsp90 in response to environmental perturbations, and highlights a novel connection between Hsp90 and the regulation of mRNA-associated protein granules.
Collapse
Affiliation(s)
- Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Matthew J. O’Meara
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - M. Reza Pourhaghighi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Sean D. Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
199
|
Chavez JD, Mohr JP, Mathay M, Zhong X, Keller A, Bruce JE. Systems structural biology measurements by in vivo cross-linking with mass spectrometry. Nat Protoc 2019; 14:2318-2343. [PMID: 31270507 DOI: 10.1038/s41596-019-0181-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
This protocol describes a workflow for utilizing large-scale cross-linking with mass spectrometry (XL-MS) to make systems-level structural biology measurements in complex biological samples, including cells, isolated organelles, and tissue samples. XL-MS is a structural biology technique that provides information on the molecular structure of proteins and protein complexes using chemical probes that report the proximity of probe-reactive amino acids within proteins, typically lysine residues. Information gained through XL-MS studies is often complementary to more traditional methods, such as X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy. The use of MS-cleavable cross-linkers, including protein interaction reporter (PIR) technologies, enables XL-MS studies on protein structures and interactions in extremely complex biological samples, including intact living cells. PIR cross-linkers are designed to contain chemical bonds at specific locations within the cross-linker molecule that can be selectively cleaved by collision-induced dissociation or UV light. When broken, these bonds release the intact peptides that were cross-linked, as well as a reporter ion. Conservation of mass dictates that the sum of the two released peptide masses and the reporter mass equals the measured precursor mass. This relationship is used to identify cross-linked peptide pairs. Release of the individual peptides permits accurate measurement of their masses and independent amino acid sequence determination by tandem MS, allowing the use of standard proteomics search engines such as Comet for peptide sequence assignment, greatly simplifying data analysis of cross-linked peptide pairs. Search results are processed with XLinkProphet for validation and can be uploaded into XlinkDB for interaction network and structural analysis.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jared P Mohr
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Martin Mathay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
200
|
Amon S, Meier-Abt F, Gillet LC, Dimitrieva S, Theocharides APA, Manz MG, Aebersold R. Sensitive Quantitative Proteomics of Human Hematopoietic Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry. Mol Cell Proteomics 2019; 18:1454-1467. [PMID: 30975897 PMCID: PMC6601215 DOI: 10.1074/mcp.tir119.001431] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Physiological processes in multicellular organisms depend on the function and interactions of specialized cell types operating in context. Some of these cell types are rare and thus obtainable only in minute quantities. For example, tissue-specific stem and progenitor cells are numerically scarce, but functionally highly relevant, and fulfill critical roles in development, tissue maintenance, and disease. Whereas low numbers of cells are routinely analyzed by genomics and transcriptomics, corresponding proteomic analyses have so far not been possible due to methodological limitations. Here we describe a sensitive and robust quantitative technique based on data-independent acquisition mass spectrometry. We quantified the proteome of sets of 25,000 human hematopoietic stem/multipotent progenitor cells (HSC/MPP) and three committed progenitor cell subpopulations of the myeloid differentiation pathway (common myeloid progenitors, megakaryocyte-erythrocyte progenitors, and granulocyte-macrophage progenitors), isolated by fluorescence-activated cell sorting from five healthy donors. On average, 5,851 protein groups were identified per sample. A subset of 4,131 stringently filtered protein groups was quantitatively compared across the 20 samples, defining unique signatures for each subpopulation. A comparison of proteomic and transcriptomic profiles indicated HSC/MPP-specific divergent regulation of biochemical functions such as telomerase maintenance and quiescence-inducing enzymes, including isocitrate dehydrogenases. These are essential for maintaining stemness and were detected at proteome, but not transcriptome, level. The method is equally applicable to almost any rare cell type, including healthy and cancer stem cells or physiologically and pathologically infiltrating cell populations. It thus provides essential new information toward the detailed biochemical understanding of cell development and functionality in health and disease.
Collapse
Affiliation(s)
- Sabine Amon
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Fabienne Meier-Abt
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ludovic C Gillet
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Slavica Dimitrieva
- ¶Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | | | - Markus G Manz
- §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; ‖Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|