151
|
Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR, Downes DJ, Sivaraman K, Espinoza HM, Hughes JR, Price ND, Perkins TJ, Ranish JA, Brand M. Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis. Mol Cell 2020; 78:960-974.e11. [PMID: 32330456 PMCID: PMC7344268 DOI: 10.1016/j.molcel.2020.03.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.
Collapse
Affiliation(s)
| | - Carmen G Palii
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada
| | - Daniel Sanchez-Taltavull
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada; Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Paul Shannon
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Karthi Sivaraman
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | | | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| | - Jeffrey A Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| |
Collapse
|
152
|
Fritz JL, Collins O, Saxena P, Buensuceso A, Ramos Valdes Y, Francis KE, Brown KR, Larsen B, Colwill K, Gingras AC, Rottapel R, Shepherd TG. A novel role for NUAK1 in promoting ovarian cancer metastasis through regulation of fibronectin production in spheroids. Cancers (Basel) 2020; 12:cancers12051250. [PMID: 32429240 PMCID: PMC7280971 DOI: 10.3390/cancers12051250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is required for EOC spheroid viability and metastasis. We have identified novel (nua) kinase 1 (NUAK1) as a top candidate LKB1 substrate in EOC cells and spheroids using a multiplex inhibitor beads-mass spectrometry approach. We confirmed that LKB1 maintains NUAK1 phosphorylation and promotes its stabilization. We next investigated NUAK1 function in EOC cells. Ectopic NUAK1-overexpressing EOC cell lines had increased adhesion, whereas the reverse was seen in OVCAR8-NUAK1KO cells. In fact, cells with NUAK1 loss generate spheroids with reduced integrity, leading to increased cell death after long-term culture. Following transcriptome analysis, we identified reduced enrichment for cell interaction gene expression pathways in OVCAR8-NUAK1KO spheroids. In fact, the FN1 gene, encoding fibronectin, exhibited a 745-fold decreased expression in NUAK1KO spheroids. Fibronectin expression was induced during native spheroid formation, yet this was completely lost in NUAK1KO spheroids. Co-incubation with soluble fibronectin restored the compact spheroid phenotype to OVCAR8-NUAK1KO cells. In a xenograft model of intraperitoneal metastasis, NUAK1 loss extended survival and reduced fibronectin expression in tumours. Thus, we have identified a new mechanism controlling EOC metastasis, through which LKB1-NUAK1 activity promotes spheroid formation and secondary tumours via fibronectin production.
Collapse
Affiliation(s)
- Jamie Lee Fritz
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Olga Collins
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
| | - Parima Saxena
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Adrian Buensuceso
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Yudith Ramos Valdes
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
| | - Kyle E. Francis
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; (K.E.F.); (R.R.)
| | - Kevin R. Brown
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (B.L.); (K.C.); (A.-C.G.)
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (B.L.); (K.C.); (A.-C.G.)
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (B.L.); (K.C.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada; (K.E.F.); (R.R.)
| | - Trevor G. Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada; (J.L.F.); (O.C.); (P.S.); (A.B.); (Y.R.V.)
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Obstetrics & Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6, Canada
- Department of Oncology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 4L6, Canada
- Correspondence: ; Tel.: +1-519-685-8500 (ext. 56347)
| |
Collapse
|
153
|
Pawliński Ł, Tobór E, Suski M, Biela M, Polus A, Kieć-Wilk B. Proteomic biomarkers in Gaucher disease. J Clin Pathol 2020; 74:25-29. [PMID: 32409598 DOI: 10.1136/jclinpath-2020-206580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
AIMS The research work was conducted to find new biomarkers and potential drug targets in Gaucher disease type 1 (GDt1) by analysing the serum proteins. METHODS This study was an observational, cross-sectional analysis of a group of 12 adult participants: six Gaucher disease (GD) patients and six healthy control. Fasting venous blood underwent proteomics analysis and molecular tests. Over 400 proteins were analysed, and in case of significantly different concentrations between the study and control group, we checked corresponding genes to confirm changes in their expression and consistency with protein alteration. RESULTS We found 31 proteins that significantly differed in concentration between GDt1 patients and a control group. These were mostly proteins involved in the regulation of the inflammatory processes and haemostasis. The levels of proteins such as alpha-1-acid glycoprotein 2, S100-A8/A9, adenyl cyclase-associated protein 1, haptoglobin or translationally controlled tumour protein related to inflammation process were significantly higher in GD patients than in control group, whereas the levels of some proteins such as heavy constant mu and gamma 4 or complement C3/C4 complex involved in humoral response like immunoglobulins were significantly decreased in GD patients. Alteration in two proteins concentration was confirmed in RNA analysis. CONCLUSIONS The work revealed few new targets for further investigation which may be useful in clinical practice for diagnosis, treatment and monitoring GDt1 patients.
Collapse
Affiliation(s)
- Łukasz Pawliński
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Ewa Tobór
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Maria Biela
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Beata Kieć-Wilk
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| |
Collapse
|
154
|
Gomez-Auli A, Hillebrand LE, Christen D, Günther SC, Biniossek ML, Peters C, Schilling O, Reinheckel T. The secreted inhibitor of invasive cell growth CREG1 is negatively regulated by cathepsin proteases. Cell Mol Life Sci 2020; 78:733-755. [PMID: 32385587 PMCID: PMC7873128 DOI: 10.1007/s00018-020-03528-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 01/15/2023]
Abstract
Previous clinical and experimental evidence strongly supports a breast cancer-promoting function of the lysosomal protease cathepsin B. However, the cathepsin B-dependent molecular pathways are not completely understood. Here, we studied the cathepsin-mediated secretome changes in the context of the MMTV-PyMT breast cancer mouse model. Employing the cell-conditioned media from tumor-macrophage co-cultures, as well as tumor interstitial fluid obtained by a novel strategy from PyMT mice with differential cathepsin B expression, we identified an important proteolytic and lysosomal signature, highlighting the importance of this organelle and these enzymes in the tumor micro-environment. The Cellular Repressor of E1A Stimulated Genes 1 (CREG1), a secreted endolysosomal glycoprotein, displayed reduced abundance upon over-expression of cathepsin B as well as increased abundance upon cathepsin B deletion or inhibition. Moreover, it was cleaved by cathepsin B in vitro. CREG1 reportedly could act as tumor suppressor. We show that treatment of PyMT tumor cells with recombinant CREG1 reduced proliferation, migration, and invasion; whereas, the opposite was observed with reduced CREG1 expression. This was further validated in vivo by orthotopic transplantation. Our study highlights CREG1 as a key player in tumor–stroma interaction and suggests that cathepsin B sustains malignant cell behavior by reducing the levels of the growth suppressor CREG1 in the tumor microenvironment.
Collapse
Affiliation(s)
- Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Larissa Elisabeth Hillebrand
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Christen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sira Carolin Günther
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Martin Lothar Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Christoph Peters
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
155
|
Chi Y, Carter JH, Swanger J, Mazin AV, Moritz RL, Clurman BE. A novel landscape of nuclear human CDK2 substrates revealed by in situ phosphorylation. SCIENCE ADVANCES 2020; 6:eaaz9899. [PMID: 32494624 PMCID: PMC7164936 DOI: 10.1126/sciadv.aaz9899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 05/03/2023]
Abstract
Cyclin-dependent kinase 2 (CDK2) controls cell division and is central to oncogenic signaling. We used an "in situ" approach to identify CDK2 substrates within nuclei isolated from cells expressing CDK2 engineered to use adenosine 5'-triphosphate analogs. We identified 117 candidate substrates, ~40% of which are known CDK substrates. Previously unknown candidates were validated to be CDK2 substrates, including LSD1, DOT1L, and Rad54. The identification of many chromatin-associated proteins may have been facilitated by labeling conditions that preserved nuclear architecture and physiologic CDK2 regulation by endogenous cyclins. Candidate substrates include proteins that regulate histone modifications, chromatin, transcription, and RNA/DNA metabolism. Many of these proteins also coexist in multi-protein complexes, including epigenetic regulators, that may provide new links between cell division and other cellular processes mediated by CDK2. In situ phosphorylation thus revealed candidate substrates with a high validation rate and should be readily applicable to other nuclear kinases.
Collapse
Affiliation(s)
- Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
- Institute for Systems Biology, 401 Terry Avenue, N. Seattle, WA 98109, USA
| | - John H. Carter
- Division of Hematology/Medical Oncology, Oregon Health & Science University School of Medicine, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239-3098, USA
| | - Jherek Swanger
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
| | - Alexander V. Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102-1192, USA
| | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Avenue, N. Seattle, WA 98109, USA
| | - Bruce E. Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. Seattle, WA 98109, USA
- Corresponding author.
| |
Collapse
|
156
|
Zhong CQ, Wu J, Qiu X, Chen X, Xie C, Han J. Generation of a murine SWATH-MS spectral library to quantify more than 11,000 proteins. Sci Data 2020; 7:104. [PMID: 32218446 PMCID: PMC7099061 DOI: 10.1038/s41597-020-0449-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Targeted SWATH-MS data analysis is critically dependent on the spectral library. Comprehensive spectral libraries of human or several other organisms have been published, but the extensive spectral library for mouse, a widely used model organism is not available. Here, we present a large murine spectral library covering more than 11,000 proteins and 240,000 proteotypic peptides, which included proteins derived from 9 murine tissue samples and one murine L929 cell line. This resource supports the quantification of 67% of all murine proteins annotated by UniProtKB/Swiss-Prot. Furthermore, we applied the spectral library to SWATH-MS data from murine tissue samples. Data are available via SWATHAtlas (PASS01441). Measurement(s) | Mouse Protein • mass spectrum • spectral library | Technology Type(s) | mass spectrometry • combined ms-ms + spectral library search | Sample Characteristic - Organism | Mus musculus |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11968230
Collapse
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Xi Chen
- Medical Research Institute, Wuhan University, Wuhan, China.,SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
157
|
Cho KC, Clark DJ, Schnaubelt M, Teo GC, Leprevost FDV, Bocik W, Boja ES, Hiltke T, Nesvizhskii AI, Zhang H. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry. Anal Chem 2020; 92:4217-4225. [PMID: 32058701 PMCID: PMC7255061 DOI: 10.1021/acs.analchem.9b04418] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methodologies that facilitate high-throughput proteomic analysis are a key step toward moving proteome investigations into clinical translation. Data independent acquisition (DIA) has potential as a high-throughput analytical method due to the reduced time needed for sample analysis, as well as its highly quantitative accuracy. However, a limiting feature of DIA methods is the sensitivity of detection of low abundant proteins and depth of coverage, which other mass spectrometry approaches address by two-dimensional fractionation (2D) to reduce sample complexity during data acquisition. In this study, we developed a 2D-DIA method intended for rapid- and deeper-proteome analysis compared to conventional 1D-DIA analysis. First, we characterized 96 individual fractions obtained from the protein standard, NCI-7, using a data-dependent approach (DDA), identifying a total of 151,366 unique peptides from 11,273 protein groups. We observed that the majority of the proteins can be identified from just a few selected fractions. By performing an optimization analysis, we identified six fractions with high peptide number and uniqueness that can account for 80% of the proteins identified in the entire experiment. These selected fractions were combined into a single sample which was then subjected to DIA (referred to as 2D-DIA) quantitative analysis. Furthermore, improved DIA quantification was achieved using a hybrid spectral library, obtained by combining peptides identified from DDA data with peptides identified directly from the DIA runs with the help of DIA-Umpire. The optimized 2D-DIA method allowed for improved identification and quantification of low abundant proteins compared to conventional unfractionated DIA analysis (1D-DIA). We then applied the 2D-DIA method to profile the proteomes of two breast cancer patient-derived xenograft (PDX) models, quantifying 6,217 and 6,167 unique proteins in basal- and luminal- tumors, respectively. Overall, this study demonstrates the potential of high-throughput quantitative proteomics using a novel 2D-DIA method.
Collapse
Affiliation(s)
- Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David J Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - William Bocik
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
158
|
Herrmann M, Babler A, Moshkova I, Gremse F, Kiessling F, Kusebauch U, Nelea V, Kramann R, Moritz RL, McKee MD, Jahnen-Dechent W. Lumenal calcification and microvasculopathy in fetuin-A-deficient mice lead to multiple organ morbidity. PLoS One 2020; 15:e0228503. [PMID: 32074120 PMCID: PMC7029858 DOI: 10.1371/journal.pone.0228503] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
The plasma protein fetuin-A mediates the formation of protein-mineral colloids known as calciprotein particles (CPP)-rapid clearance of these CPP by the reticuloendothelial system prevents errant mineral precipitation and therefore pathological mineralization (calcification). The mutant mouse strain D2,Ahsg-/- combines fetuin-A deficiency with the calcification-prone DBA/2 genetic background, having a particularly severe compound phenotype of microvascular and soft tissue calcification. Here we studied mechanisms leading to soft tissue calcification, organ damage and death in these mice. We analyzed mice longitudinally by echocardiography, X-ray-computed tomography, analytical electron microscopy, histology, mass spectrometry proteomics, and genome-wide microarray-based expression analyses of D2 wildtype and Ahsg-/- mice. Fetuin-A-deficient mice had calcified lesions in myocardium, lung, brown adipose tissue, reproductive organs, spleen, pancreas, kidney and the skin, associated with reduced growth, cardiac output and premature death. Importantly, early-stage calcified lesions presented in the lumen of the microvasculature suggesting precipitation of mineral containing complexes from the fluid phase of blood. Genome-wide expression analysis of calcified lesions and surrounding (not calcified) tissue, together with morphological observations, indicated that the calcification was not associated with osteochondrogenic cell differentiation, but rather with thrombosis and fibrosis. Collectively, these results demonstrate that soft tissue calcification can start by intravascular mineral deposition causing microvasculopathy, which impacts on growth, organ function and survival. Our study underscores the importance of fetuin-A and related systemic regulators of calcified matrix metabolism to prevent cardiovascular disease, especially in dysregulated mineral homeostasis.
Collapse
Affiliation(s)
- Marietta Herrmann
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Babler
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Irina Moshkova
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix Gremse
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabian Kiessling
- Helmholtz Institute for Biomedical Engineering, Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Ulrike Kusebauch
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Valentin Nelea
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marc D. McKee
- Faculty of Dentistry, Faculty of Medicine (Dept. of Anatomy and Cell Biology), McGill University, Montreal, Quebec, Canada
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
159
|
Moosa JM, Guan S, Moran MF, Ma B. Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identification. J Proteome Res 2020; 19:1029-1036. [DOI: 10.1021/acs.jproteome.9b00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Johra Muhammad Moosa
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Shenheng Guan
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
- Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
| | - Michael F. Moran
- Program in Cell Biology and SPARC BioCentre, Hospital for Sick Children, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 686 Bay St, Toronto, Ontario M5G 0A4, Canada
| | - Bin Ma
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
160
|
Gonatopoulos-Pournatzis T, Niibori R, Salter EW, Weatheritt RJ, Tsang B, Farhangmehr S, Liang X, Braunschweig U, Roth J, Zhang S, Henderson T, Sharma E, Quesnel-Vallières M, Permanyer J, Maier S, Georgiou J, Irimia M, Sonenberg N, Forman-Kay JD, Gingras AC, Collingridge GL, Woodin MA, Cordes SP, Blencowe BJ. Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Mol Cell 2020; 77:1176-1192.e16. [PMID: 31999954 DOI: 10.1016/j.molcel.2020.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/15/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.
Collapse
Affiliation(s)
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brian Tsang
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tyler Henderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eesha Sharma
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona 08003, Spain
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Barcelona 08010, Spain
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
161
|
Klingauf-Nerurkar P, Gillet LC, Portugal-Calisto D, Oborská-Oplová M, Jäger M, Schubert OT, Pisano A, Peña C, Rao S, Altvater M, Chang Y, Aebersold R, Panse VG. The GTPase Nog1 co-ordinates the assembly, maturation and quality control of distant ribosomal functional centers. eLife 2020; 9:e52474. [PMID: 31909713 PMCID: PMC6968927 DOI: 10.7554/elife.52474] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the pre-60S, these steps include removal of placeholders Rlp24, Arx1 and Mrt4 that prevent premature loading of the ribosomal protein eL24, the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 to trigger Arx1 and Mrt4 removal. Drg1-ATPase activity removes Rlp24 from the GTPase Nog1 on the pre-60S; consequently, the C-terminal tail of Nog1 is extracted from the PET. These events enable Rei1 to probe PET integrity and catalyze Arx1 release. Concomitantly, Nog1 eviction from the pre-60S permits peptidyl transferase center maturation, and allows Yvh1 to mediate Mrt4 release for stalk assembly. Thus, Nog1 co-ordinates the assembly, maturation and quality control of distant functional centers during ribosome formation.
Collapse
Affiliation(s)
| | - Ludovic C Gillet
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | | | - Michaela Oborská-Oplová
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Martin Jäger
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Olga T Schubert
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Agnese Pisano
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | - Cohue Peña
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | - Sanjana Rao
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | | | - Yiming Chang
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Vikram G Panse
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
162
|
Abstract
Mass spectrometry is extremely efficient for sequencing small peptides generated by, for example, a trypsin digestion of a complex mixture. Current instruments have the capacity to generate 50-100 K MSMS spectra from a single run. Of these ~30-50% is typically assigned to peptide matches on a 1% FDR threshold. The remaining spectra need more research to explain. We address here whether the 30-50% matched spectra provide consensus matches when using different database-dependent search pipelines. Although the majority of the spectra peptide assignments concur across search engines, our conclusion is that database-dependent search engines still require improvements.
Collapse
Affiliation(s)
- Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Gorka Prieto
- Department of Communications Engineering, Faculty of Engineering of Bilbao, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Hans Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| |
Collapse
|
163
|
Méant A, Gao B, Lavoie G, Nourreddine S, Jung F, Aubert L, Tcherkezian J, Gingras AC, Roux PP. Proteomic Analysis Reveals a Role for RSK in p120-catenin Phosphorylation and Melanoma Cell-Cell Adhesion. Mol Cell Proteomics 2020; 19:50-64. [PMID: 31678930 PMCID: PMC6944238 DOI: 10.1074/mcp.ra119.001811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 01/15/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling pathway regulates various biological functions, including cell survival, proliferation and migration. This pathway is frequently deregulated in cancer, including melanoma, which is the most aggressive form of skin cancer. RSK (p90 ribosomal S6 kinase) is a MAPK-activated protein kinase required for melanoma growth and proliferation, but relatively little is known about its function and the nature of its cellular partners. In this study, we used a proximity-based labeling approach to identify RSK proximity partners in cells. We identified many potential RSK-interacting proteins, including p120ctn (p120-catenin), which is an essential component of adherens junction (AJ). We found that RSK phosphorylates p120ctn on Ser320, which appears to be constitutively phosphorylated in melanoma cells. We also found that RSK inhibition increases melanoma cell-cell adhesion, suggesting that constitutive RAS/MAPK signaling negatively regulates AJ integrity. Together, our results indicate that RSK plays an important role in the regulation of melanoma cell-cell adhesion.
Collapse
Affiliation(s)
- Antoine Méant
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Beichen Gao
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Sami Nourreddine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Flora Jung
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Léo Aubert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Joseph Tcherkezian
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
164
|
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Mol Cell Proteomics 2020; 19:31-49. [PMID: 31744855 PMCID: PMC6944237 DOI: 10.1074/mcp.r119.001743] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Qing Ma
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Ian Mongrain
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
165
|
Barkovits K, Pacharra S, Pfeiffer K, Steinbach S, Eisenacher M, Marcus K, Uszkoreit J. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Mol Cell Proteomics 2020; 19:181-197. [PMID: 31699904 PMCID: PMC6944235 DOI: 10.1074/mcp.ra119.001714] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Currently data-dependent acquisition (DDA) is the method of choice for mass spectrometry-based proteomics discovery experiments, but data-independent acquisition (DIA) is steadily becoming more important. One of the most important requirements to perform a DIA analysis is the availability of suitable spectral libraries for peptide identification and quantification. Several studies were performed addressing the evaluation of spectral library performance for protein identification in DIA measurements. But so far only few experiments estimate the effect of these libraries on the quantitative level.In this work we created a gold standard spike-in sample set with known contents and ratios of proteins in a complex protein matrix that allowed a detailed comparison of DIA quantification data obtained with different spectral library approaches. We used in-house generated sample-specific spectral libraries created using varying sample preparation approaches and repeated DDA measurement. In addition, two different search engines were tested for protein identification from DDA data and subsequent library generation. In total, eight different spectral libraries were generated, and the quantification results compared with a library free method, as well as a default DDA analysis. Not only the number of identifications on peptide and protein level in the spectral libraries and the corresponding DIA analysis results was inspected, but also the number of expected and identified differentially abundant protein groups and their ratios.We found, that while libraries of prefractionated samples were generally larger, there was no significant increase in DIA identifications compared with repetitive non-fractionated measurements. Furthermore, we show that the accuracy of the quantification is strongly dependent on the applied spectral library and whether the quantification is based on peptide or protein level. Overall, the reproducibility and accuracy of DIA quantification is superior to DDA in all applied approaches.Data has been deposited to the ProteomeXchange repository with identifiers PXD012986, PXD012987, PXD012988 and PXD014956.
Collapse
Affiliation(s)
- Katalin Barkovits
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Sandra Pacharra
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Kathy Pfeiffer
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Simone Steinbach
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Martin Eisenacher
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany
| | - Katrin Marcus
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany.
| | - Julian Uszkoreit
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Bochum, Germany.
| |
Collapse
|
166
|
Shao W, Caron E, Pedrioli P, Aebersold R. The SysteMHC Atlas: a Computational Pipeline, a Website, and a Data Repository for Immunopeptidomic Analyses. Methods Mol Biol 2020; 2120:173-181. [PMID: 32124319 DOI: 10.1007/978-1-0716-0327-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry has emerged as the method of choice for the exploration of the immunopeptidome. Insights from the immunopeptidome promise novel cancer therapeutic approaches and a better understanding of the basic mechanisms of our immune system. To meet the computational demands from the steady gain in popularity and reach of mass spectrometry-based immunopeptidomics analysis, we created the SysteMHC Atlas project, a first-of-its-kind computational pipeline and resource repository dedicated to standardizing data analysis and public dissemination of immunopeptidomic datasets.
Collapse
Affiliation(s)
- Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC, Canada. .,Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Patrick Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
167
|
Keller A, Chavez JD, Bruce JE. Increased sensitivity with automated validation of XL-MS cleavable peptide crosslinks. Bioinformatics 2019; 35:895-897. [PMID: 30137231 DOI: 10.1093/bioinformatics/bty720] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION Peptides crosslinked with cleavable chemical crosslinkers are identified with mass spectrometry by independent database search of spectra associated with the two linked peptides. A major challenge is to combine together the evidence of the two peptides into an overall assessment of the two-peptide crosslink. RESULTS Here, we describe software that models crosslink specific information to automatically validate XL-MS cleavable peptide crosslinks. Using a dataset of crosslinked protein mixtures, we demonstrate that it computes accurate and highly discriminating probabilities, enabling as many as 75% more identifications than was previously possible using only search scores and a predictable false discovery rate. AVAILABILITY AND IMPLEMENTATION XLinkProphet software is freely available on the web at http://brucelab.gs.washington.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
168
|
Razi A, Davis JH, Hao Y, Jahagirdar D, Thurlow B, Basu K, Jain N, Gomez-Blanco J, Britton RA, Vargas J, Guarné A, Woodson SA, Williamson JR, Ortega J. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res 2019; 47:8301-8317. [PMID: 31265110 PMCID: PMC6736133 DOI: 10.1093/nar/gkz571] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023] Open
Abstract
Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era’s role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.
Collapse
Affiliation(s)
- Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Joseph H Davis
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Brett Thurlow
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | - Kaustuv Basu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josue Gomez-Blanco
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine,Houston, TX 77030, USA.,Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javier Vargas
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1 Canada
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James R Williamson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
169
|
Shteynberg DD, Deutsch EW, Campbell DS, Hoopmann MR, Kusebauch U, Lee D, Mendoza L, Midha MK, Sun Z, Whetton AD, Moritz RL. PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline. J Proteome Res 2019; 18:4262-4272. [PMID: 31290668 PMCID: PMC6898736 DOI: 10.1021/acs.jproteome.9b00205] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spectral matching sequence database search engines commonly used on mass spectrometry-based proteomics experiments excel at identifying peptide sequence ions, and in addition, possible sequence ions carrying post-translational modifications (PTMs), but most do not provide confidence metrics for the exact localization of those PTMs when several possible sites are available. Localization is absolutely required for downstream molecular cell biology analysis of PTM function in vitro and in vivo. Therefore, we developed PTMProphet, a free and open-source software tool integrated into the Trans-Proteomic Pipeline, which reanalyzes identified spectra from any search engine for which pepXML output is available to provide localization confidence to enable appropriate further characterization of biologic events. Localization of any type of mass modification (e.g., phosphorylation) is supported. PTMProphet applies Bayesian mixture models to compute probabilities for each site/peptide spectrum match where a PTM has been identified. These probabilities can be combined to compute a global false localization rate at any threshold to guide downstream analysis. We describe the PTMProphet tool, its underlying algorithms, and demonstrate its performance on ground-truth synthetic peptide reference data sets, one previously published small data set, one new larger data set, and also on a previously published phosphoenriched data set where the correct sites of modification are unknown. Data have been deposited to ProteomeXchange with identifier PXD013210.
Collapse
Affiliation(s)
| | | | | | | | | | - Dave Lee
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Luis Mendoza
- Institute for Systems Biology, Seattle, WA, 98008, USA
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, 98008, USA
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester, M13 9PL, UK
| | | |
Collapse
|
170
|
Sajic T, Liu Y, Arvaniti E, Surinova S, Williams EG, Schiess R, Hüttenhain R, Sethi A, Pan S, Brentnall TA, Chen R, Blattmann P, Friedrich B, Niméus E, Malander S, Omlin A, Gillessen S, Claassen M, Aebersold R. Similarities and Differences of Blood N-Glycoproteins in Five Solid Carcinomas at Localized Clinical Stage Analyzed by SWATH-MS. Cell Rep 2019; 23:2819-2831.e5. [PMID: 29847809 DOI: 10.1016/j.celrep.2018.04.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is mostly incurable when diagnosed at a metastatic stage, making its early detection via blood proteins of immense clinical interest. Proteomic changes in tumor tissue may lead to changes detectable in the protein composition of circulating blood plasma. Using a proteomic workflow combining N-glycosite enrichment and SWATH mass spectrometry, we generate a data resource of 284 blood samples derived from patients with different types of localized-stage carcinomas and from matched controls. We observe whether the changes in the patient's plasma are specific to a particular carcinoma or represent a generic signature of proteins modified uniformly in a common, systemic response to many cancers. A quantitative comparison of the resulting N-glycosite profiles discovers that proteins related to blood platelets are common to several cancers (e.g., THBS1), whereas others are highly cancer-type specific. Available proteomics data, including a SWATH library to study N-glycoproteins, will facilitate follow-up biomarker research into early cancer detection.
Collapse
Affiliation(s)
- Tatjana Sajic
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Yansheng Liu
- Department of Pharmacology, Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eirini Arvaniti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atul Sethi
- Department of Biomedicine, University of Basel/University Hospital Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler, Houston, TX 77030, USA
| | - Teresa A Brentnall
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ru Chen
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Betty Friedrich
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Emma Niméus
- Department of Clinical Sciences Lund, Surgery, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Surgery, Lund, Sweden
| | - Susanne Malander
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, and Skåne University Hospital, Department of Oncology, Lund, Sweden
| | - Aurelius Omlin
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Silke Gillessen
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Manfred Claassen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
171
|
Zhong CQ, Wu R, Chen X, Wu S, Shuai J, Han J. Systematic Assessment of the Effect of Internal Library in Targeted Analysis of SWATH-MS. J Proteome Res 2019; 19:477-492. [DOI: 10.1021/acs.jproteome.9b00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rui Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Chen
- Medical Research Institute, Wuhan University, Wuhan 430072, China
- SpecAlly Life Technology Co., Ltd., Wuhan 430072, China
| | - Suqin Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianwei Shuai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
172
|
Canzani D, Rusnac DV, Zheng N, Bush MF. Degronomics: Mapping the Interacting Peptidome of a Ubiquitin Ligase Using an Integrative Mass Spectrometry Strategy. Anal Chem 2019; 91:12775-12783. [PMID: 31525912 PMCID: PMC6959985 DOI: 10.1021/acs.analchem.9b02331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human cells make use of hundreds of unique ubiquitin E3 ligases to ensure proteome fidelity and control cellular functions by promoting protein degradation. These processes require exquisite selectivity, but the individual roles of most E3s remain poorly characterized in part due to the challenges associated with identifying, quantifying, and validating substrates for each E3. We report an integrative mass spectrometry (MS) strategy for characterizing protein fragments that interact with KLHDC2, a human E3 that recognizes the extreme C-terminus of substrates. Using a combination of native MS, native top-down MS, MS of destabilized samples, and liquid chromatography MS, we identified and quantified a near complete fraction of the KLHDC2-binding peptidome in E. coli cells. This degronome includes peptides that originate from a variety of proteins. Although all identified protein fragments are terminated by diglycine or glycylalanine, the preceding amino acids are diverse. These results significantly expand our understanding of the sequences that can be recognized by KLHDC2, which provides insight into the potential substrates of this E3 in humans. We anticipate that this integrative MS strategy could be leveraged more broadly to characterize the degronomes of other E3 ligase substrate receptors, including those that adhere to the more common N-end rule for substrate recognition. Therefore, this work advances "degronomics," i.e., identifying, quantifying, and validating functional E3:peptide interactions in order to determine the individual roles of each E3.
Collapse
Affiliation(s)
- Daniele Canzani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Domnița-Valeria Rusnac
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
173
|
BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nat Microbiol 2019; 4:2511-2522. [PMID: 31611645 DOI: 10.1038/s41564-019-0580-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
Many bacterial pathogens express virulence proteins that are translocated into host cells (herein referred to as effectors), where they can interact with target proteins to manipulate host cell processes. These effector-host protein interactions are often dynamic and transient in nature, making them difficult to identify using traditional interaction-based methods. Here, we performed a systematic comparison between proximity-dependent biotin labelling (BioID) and immunoprecipitation coupled with mass spectrometry to investigate a series of Salmonella type 3 secreted effectors that manipulate host intracellular trafficking (SifA, PipB2, SseF, SseG and SopD2). Using BioID, we identified 632 candidate interactions with 381 unique human proteins, collectively enriched for roles in vesicular trafficking, cytoskeleton components and transport activities. From the subset of proteins exclusively identified by BioID, we report that SifA interacts with BLOC-2, a protein complex that regulates dynein motor activity. We demonstrate that the BLOC-2 complex is necessary for SifA-mediated positioning of Salmonella-containing vacuoles, and affects stability of the vacuoles during infection. Our study provides insight into the coordinated activities of Salmonella type 3 secreted effectors and demonstrates the utility of BioID as a powerful, complementary tool to characterize effector-host protein interactions.
Collapse
|
174
|
Bell PA, Solis N, Kizhakkedathu JN, Matthew I, Overall CM. Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extraction Methodology and LysargiNase Digestion Strategies Increase Proteome Coverage and Missing Protein Identification. J Proteome Res 2019; 18:4167-4179. [DOI: 10.1021/acs.jproteome.9b00445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
175
|
Miller RM, Millikin RJ, Hoffmann CV, Solntsev SK, Sheynkman GM, Shortreed MR, Smith LM. Improved Protein Inference from Multiple Protease Bottom-Up Mass Spectrometry Data. J Proteome Res 2019; 18:3429-3438. [PMID: 31378069 PMCID: PMC6733628 DOI: 10.1021/acs.jproteome.9b00330] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peptides detected by tandem mass spectrometry (MS/MS) in bottom-up proteomics serve as proxies for the proteins expressed in the sample. Protein inference is a process routinely applied to these peptides to generate a plausible list of candidate protein identifications. The use of multiple proteases for parallel protein digestions expands sequence coverage, provides additional peptide identifications, and increases the probability of identifying peptides that are unique to a single protein, which are all valuable for protein inference. We have developed and implemented a multi-protease protein inference algorithm in MetaMorpheus, a bottom-up search software program, which incorporates the calculation of protease-specific q-values and preserves the association of peptide sequences and their protease of origin. This integrated multi-protease protein inference algorithm provides more accurate results than either the aggregation of results from the separate analysis of the peptide identifications produced by each protease (separate approach) in MetaMorpheus, or results that are obtained using Fido, ProteinProphet, or DTASelect2. MetaMorpheus' integrated multi-protease data analysis decreases the ambiguity of the protein group list, reduces the frequency of erroneous identifications, and increases the number of post-translational modifications identified, while combining multi-protease search and protein inference into a single software program.
Collapse
Affiliation(s)
- Rachel M. Miller
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Robert J. Millikin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Connor V. Hoffmann
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stefan K. Solntsev
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gloria M. Sheynkman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael R. Shortreed
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
176
|
Rabe A, Gesell Salazar M, Michalik S, Fuchs S, Welk A, Kocher T, Völker U. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 2019; 11:1654786. [PMID: 31497257 PMCID: PMC6720020 DOI: 10.1080/20002297.2019.1654786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch-Institute, Wernigerode, Germany
| | - Alexander Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
177
|
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Giżycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P. Comparative two time-point proteome analysis of the plasma from preterm infants with and without bronchopulmonary dysplasia. Ital J Pediatr 2019; 45:112. [PMID: 31445514 PMCID: PMC6708124 DOI: 10.1186/s13052-019-0676-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, we aimed to analyze differences in plasma protein abundances between infants with and without bronchopulmonary dysplasia (BPD), to add new insights into a better understanding of the pathogenesis of this disease. METHODS Cord and peripheral blood of neonates (≤ 30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (36 PMA), respectively. Blood samples were retrospectively subdivided into BPD(+) and BPD(-) groups, according to the development of BPD. RESULTS Children with BPD were characterized by decreased afamin, gelsolin and carboxypeptidase N subunit 2 levels in cord blood, and decreased galectin-3 binding protein and hemoglobin subunit gamma-1 levels, as well as an increased serotransferrin abundance in plasma at the 36 PMA. CONCLUSIONS BPD development is associated with the plasma proteome changes in preterm infants, adding further evidence for the possible involvement of disturbances in vitamin E availability and impaired immunological processes in the progression of prematurity pulmonary complications. Moreover, it also points to the differences in proteins related to infection resistance and maintaining an adequate level of hematocrit in infants diagnosed with BPD.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Renata Bokiniec
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | - Monika Szwarc-Duma
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Beata Bujak-Giżycka
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow, Poland
| | - Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Lars O. Baumbusch
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Jacek Józef Pietrzyk
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
178
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
179
|
Shao W, Pedrioli PGA, Wolski W, Scurtescu C, Schmid E, Vizcaíno JA, Courcelles M, Schuster H, Kowalewski D, Marino F, Arlehamn CSL, Vaughan K, Peters B, Sette A, Ottenhoff THM, Meijgaarden KE, Nieuwenhuizen N, Kaufmann SHE, Schlapbach R, Castle JC, Nesvizhskii AI, Nielsen M, Deutsch EW, Campbell DS, Moritz RL, Zubarev RA, Ytterberg AJ, Purcell AW, Marcilla M, Paradela A, Wang Q, Costello CE, Ternette N, van Veelen PA, van Els CACM, Heck AJR, de Souza GA, Sollid LM, Admon A, Stevanovic S, Rammensee HG, Thibault P, Perreault C, Bassani-Sternberg M, Aebersold R, Caron E. The SysteMHC Atlas project. Nucleic Acids Res 2019; 46:D1237-D1247. [PMID: 28985418 PMCID: PMC5753376 DOI: 10.1093/nar/gkx664] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022] Open
Abstract
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts.
Collapse
Affiliation(s)
- Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Patrick G A Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | | | - Emanuel Schmid
- Scientific IT Services (SIS), ETH Zurich, Zurich 8093, Switzerland
| | - Juan A Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Heiko Schuster
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Fabio Marino
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne 1011, Switzerland.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, The Netherlands.,Netherlands Proteomics Centre, Utrecht, 3584 CH, The Netherlands
| | | | - Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Krista E Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Natalie Nieuwenhuizen
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - John C Castle
- Vaccine Research and Translational Medicine, Agenus Switzerland Inc., 4157 Basel, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, BRCF Metabolomics Core, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, 1650, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Anders Jimmy Ytterberg
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden.,Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Anthony W Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Miguel Marcilla
- Proteomics Unit, Spanish National Biotechnology Centre, Madrid 28049, Spain
| | - Alberto Paradela
- Proteomics Unit, Spanish National Biotechnology Centre, Madrid 28049, Spain
| | - Qi Wang
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nicola Ternette
- The Jenner Institute, Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, OX3 7FZ, UK
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3720 BA, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, The Netherlands.,Netherlands Proteomics Centre, Utrecht, 3584 CH, The Netherlands
| | - Gustavo A de Souza
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo 0372, Norway.,The Brain Institute, Universidade Federal do Rio Grande do Norte, 59056-450, Natal-RN, Brazil
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo 0372, Norway
| | - Arie Admon
- Department of Biology, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, 72076, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, 72076, Germany
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne 1011, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland.,Faculty of Science, University of Zurich, 8006 Zurich, Switzerland
| | - Etienne Caron
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
180
|
Zelanis A, Oliveira AK, Prudova A, Huesgen PF, Tashima AK, Kizhakkedathu J, Overall CM, Serrano SMT. Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics. J Proteome Res 2019; 18:3419-3428. [PMID: 31337208 DOI: 10.1021/acs.jproteome.9b00325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Snakebite is a major medical concern in many parts of the world with metalloproteases playing important roles in the pathological effects of Viperidae venoms, including local tissue damage, hemorrhage, and coagulopathy. Hemorrhagic Factor 3 (HF3), a metalloprotease from Bothrops jararaca venom, induces local hemorrhage and targets extracellular matrix (ECM) components, including collagens and proteoglycans, and plasma proteins. However, the full substrate repertoire of this metalloprotease is unknown. We report positional proteomic studies identifying >2000 N-termini, including neo-N-termini of HF3 cleavage sites in mouse embryonic fibroblast secretome proteins. Terminal amine isotopic labeling of substrates (TAILS) analysis identified a preference for Leu at the P1' position among candidate HF3 substrates including proteins of the ECM and focal adhesions and the cysteine protease inhibitor cystatin-C. Interestingly, 190 unique peptides matched to annotated cleavage sites in the TopFIND N-termini database, suggesting that these cleavages occurred at a site prone to cleavage or might have been generated by other proteases activated upon incubation with HF3, including caspases-3 and -7, cathepsins D and E, granzyme B, and MMPs 2 and 9. Using Proteomic identification of cleavage site specificity (PICS), a tryptic library derived from THP-1 monocytic cells was used as HF3 substrates for identifying protease cleavage sites and sequence preferences in peptides. A total of 799 unique cleavage sites were detected and, in accordance with TAILS analysis using native secreted protein substrates of MEF cells, revealed a clear preference for Leu at P1'. Taken together, these results greatly expand the known substrate degradome of HF3 and reveal potential new targets, which may serve as a basis to better elucidate the complex pathophysiology of snake envenomation.
Collapse
Affiliation(s)
- André Zelanis
- Department of Science and Technology , Federal University of São Paulo (ICT-UNIFESP) , São José dos Campos , SP 12231-280 , Brazil.,Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Ana K Oliveira
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Anna Prudova
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Pitter F Huesgen
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Central Institute for Engineering, Electronics and Analytics, ZEA-3 , Forschungszentrum Jülich , Juelich 52425 , Germany
| | - Alexandre K Tashima
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| | - Jayachandran Kizhakkedathu
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Christopher M Overall
- Centre for Blood Research , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry , University of British Columbia , Vancouver , BC V6T 1Z3 , Canada
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS) , Instituto Butantan , São Paulo , SP 05503-000 , Brazil
| |
Collapse
|
181
|
Chen ZL, Meng JM, Cao Y, Yin JL, Fang RQ, Fan SB, Liu C, Zeng WF, Ding YH, Tan D, Wu L, Zhou WJ, Chi H, Sun RX, Dong MQ, He SM. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat Commun 2019; 10:3404. [PMID: 31363125 PMCID: PMC6667459 DOI: 10.1038/s41467-019-11337-z] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/20/2019] [Indexed: 01/05/2023] Open
Abstract
We describe pLink 2, a search engine with higher speed and reliability for proteome-scale identification of cross-linked peptides. With a two-stage open search strategy facilitated by fragment indexing, pLink 2 is ~40 times faster than pLink 1 and 3~10 times faster than Kojak. Furthermore, using simulated datasets, synthetic datasets, 15N metabolically labeled datasets, and entrapment databases, four analysis methods were designed to evaluate the credibility of ten state-of-the-art search engines. This systematic evaluation shows that pLink 2 outperforms these methods in precision and sensitivity, especially at proteome scales. Lastly, re-analysis of four published proteome-scale cross-linking datasets with pLink 2 required only a fraction of the time used by pLink 1, with up to 27% more cross-linked residue pairs identified. pLink 2 is therefore an efficient and reliable tool for cross-linking mass spectrometry analysis, and the systematic evaluation methods described here will be useful for future software development. The identification of cross-linked peptides at a proteome scale for interactome analyses represents a complex challenge. Here the authors report an efficient and reliable search engine pLink 2 for proteome-scale cross-linking mass spectrometry analyses, and demonstrate how to systematically evaluate the credibility of search engines.
Collapse
Affiliation(s)
- Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Ming Meng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ji-Li Yin
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qian Fang
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Bo Fan
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Feng Zeng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-He Ding
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Long Wu
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jing Zhou
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
182
|
Chen CT, Ko CL, Choong WK, Wang JH, Hsu WL, Sung TY. WinProphet: A User-Friendly Pipeline Management System for Proteomics Data Analysis Based on Trans-Proteomic Pipeline. Anal Chem 2019; 91:9403-9406. [DOI: 10.1021/acs.analchem.9b01556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chu-Ling Ko
- Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Lian Hsu
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
183
|
O’Meara TR, O’Meara MJ, Polvi EJ, Pourhaghighi MR, Liston SD, Lin ZY, Veri AO, Emili A, Gingras AC, Cowen LE. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biol 2019; 17:e3000358. [PMID: 31283755 PMCID: PMC6638986 DOI: 10.1371/journal.pbio.3000358] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/18/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
Hsp90 is a conserved molecular chaperone that assists in the folding and function of diverse cellular regulators, with a profound impact on biology, disease, and evolution. As a central hub of protein interaction networks, Hsp90 engages with hundreds of protein-protein interactions within eukaryotic cells. These interactions include client proteins, which physically interact with Hsp90 and depend on the chaperone for stability or function, as well as co-chaperones and partner proteins that modulate chaperone function. Currently, there are no methods to accurately predict Hsp90 interactors and there has been considerable network rewiring over evolutionary time, necessitating experimental approaches to define the Hsp90 network in the species of interest. This is a pressing challenge for fungal pathogens, for which Hsp90 is a key regulator of stress tolerance, drug resistance, and virulence traits. To address this challenge, we applied a novel biochemical fractionation and quantitative proteomic approach to examine alterations to the proteome upon perturbation of Hsp90 in a leading human fungal pathogen, Candida albicans. In parallel, we performed affinity purification coupled to mass spectrometry to define physical interacting partners for Hsp90 and the Hsp90 co-chaperones and identified 164 Hsp90-interacting proteins, including 111 that are specific to the pathogen. We performed the first analysis of the Hsp90 interactome upon antifungal drug stress and demonstrated that Hsp90 stabilizes processing body (P-body) and stress granule proteins that contribute to drug tolerance. We also describe novel roles for Hsp90 in regulating posttranslational modification of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex and the formation of protein aggregates in response to thermal stress. This study provides a global view of the Hsp90 interactome in a fungal pathogen, demonstrates the dynamic role of Hsp90 in response to environmental perturbations, and highlights a novel connection between Hsp90 and the regulation of mRNA-associated protein granules.
Collapse
Affiliation(s)
- Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Matthew J. O’Meara
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - M. Reza Pourhaghighi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Sean D. Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
184
|
Chavez JD, Mohr JP, Mathay M, Zhong X, Keller A, Bruce JE. Systems structural biology measurements by in vivo cross-linking with mass spectrometry. Nat Protoc 2019; 14:2318-2343. [PMID: 31270507 DOI: 10.1038/s41596-019-0181-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
This protocol describes a workflow for utilizing large-scale cross-linking with mass spectrometry (XL-MS) to make systems-level structural biology measurements in complex biological samples, including cells, isolated organelles, and tissue samples. XL-MS is a structural biology technique that provides information on the molecular structure of proteins and protein complexes using chemical probes that report the proximity of probe-reactive amino acids within proteins, typically lysine residues. Information gained through XL-MS studies is often complementary to more traditional methods, such as X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy. The use of MS-cleavable cross-linkers, including protein interaction reporter (PIR) technologies, enables XL-MS studies on protein structures and interactions in extremely complex biological samples, including intact living cells. PIR cross-linkers are designed to contain chemical bonds at specific locations within the cross-linker molecule that can be selectively cleaved by collision-induced dissociation or UV light. When broken, these bonds release the intact peptides that were cross-linked, as well as a reporter ion. Conservation of mass dictates that the sum of the two released peptide masses and the reporter mass equals the measured precursor mass. This relationship is used to identify cross-linked peptide pairs. Release of the individual peptides permits accurate measurement of their masses and independent amino acid sequence determination by tandem MS, allowing the use of standard proteomics search engines such as Comet for peptide sequence assignment, greatly simplifying data analysis of cross-linked peptide pairs. Search results are processed with XLinkProphet for validation and can be uploaded into XlinkDB for interaction network and structural analysis.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jared P Mohr
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Martin Mathay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
185
|
Amon S, Meier-Abt F, Gillet LC, Dimitrieva S, Theocharides APA, Manz MG, Aebersold R. Sensitive Quantitative Proteomics of Human Hematopoietic Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry. Mol Cell Proteomics 2019; 18:1454-1467. [PMID: 30975897 PMCID: PMC6601215 DOI: 10.1074/mcp.tir119.001431] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Physiological processes in multicellular organisms depend on the function and interactions of specialized cell types operating in context. Some of these cell types are rare and thus obtainable only in minute quantities. For example, tissue-specific stem and progenitor cells are numerically scarce, but functionally highly relevant, and fulfill critical roles in development, tissue maintenance, and disease. Whereas low numbers of cells are routinely analyzed by genomics and transcriptomics, corresponding proteomic analyses have so far not been possible due to methodological limitations. Here we describe a sensitive and robust quantitative technique based on data-independent acquisition mass spectrometry. We quantified the proteome of sets of 25,000 human hematopoietic stem/multipotent progenitor cells (HSC/MPP) and three committed progenitor cell subpopulations of the myeloid differentiation pathway (common myeloid progenitors, megakaryocyte-erythrocyte progenitors, and granulocyte-macrophage progenitors), isolated by fluorescence-activated cell sorting from five healthy donors. On average, 5,851 protein groups were identified per sample. A subset of 4,131 stringently filtered protein groups was quantitatively compared across the 20 samples, defining unique signatures for each subpopulation. A comparison of proteomic and transcriptomic profiles indicated HSC/MPP-specific divergent regulation of biochemical functions such as telomerase maintenance and quiescence-inducing enzymes, including isocitrate dehydrogenases. These are essential for maintaining stemness and were detected at proteome, but not transcriptome, level. The method is equally applicable to almost any rare cell type, including healthy and cancer stem cells or physiologically and pathologically infiltrating cell populations. It thus provides essential new information toward the detailed biochemical understanding of cell development and functionality in health and disease.
Collapse
Affiliation(s)
- Sabine Amon
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Fabienne Meier-Abt
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ludovic C Gillet
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Slavica Dimitrieva
- ¶Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | | | - Markus G Manz
- §Hematology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland;; ‖Faculty of Science, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
186
|
Nishimura T, Fakim H, Brandmann T, Youn JY, Gingras AC, Jinek M, Fabian MR. Human MARF1 is an endoribonuclease that interacts with the DCP1:2 decapping complex and degrades target mRNAs. Nucleic Acids Res 2019; 46:12008-12021. [PMID: 30364987 PMCID: PMC6294520 DOI: 10.1093/nar/gky1011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis arrest female 1 (MARF1) is a cytoplasmic RNA binding protein that is essential for meiotic progression of mouse oocytes, in part by limiting retrotransposon expression. MARF1 is also expressed in somatic cells and tissues; however, its mechanism of action has yet to be investigated. Human MARF1 contains a NYN-like domain, two RRMs and eight LOTUS domains. Here we provide evidence that MARF1 post-transcriptionally silences targeted mRNAs. MARF1 physically interacts with the DCP1:DCP2 mRNA decapping complex but not with deadenylation machineries. Importantly, we provide a 1.7 Å resolution crystal structure of the human MARF1 NYN domain, which we demonstrate is a bona fide endoribonuclease, the activity of which is essential for the repression of MARF1-targeted mRNAs. Thus, MARF1 post-transcriptionally represses gene expression by serving as both an endoribonuclease and as a platform that recruits the DCP1:DCP2 decapping complex to targeted mRNAs.
Collapse
Affiliation(s)
- Tamiko Nishimura
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hana Fakim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Switzerland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
187
|
Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nat Commun 2019; 10:2524. [PMID: 31175306 PMCID: PMC6555818 DOI: 10.1038/s41467-019-10513-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/16/2019] [Indexed: 01/18/2023] Open
Abstract
Deterioration of biomolecules in clinical tissues is an inevitable pre-analytical process, which affects molecular measurements and thus potentially confounds conclusions from cohort analyses. Here, we investigate the degradation of mRNA and protein in 68 pairs of adjacent prostate tissue samples using RNA-Seq and SWATH mass spectrometry, respectively. To objectively quantify the extent of protein degradation, we develop a numerical score, the Proteome Integrity Number (PIN), that faithfully measures the degree of protein degradation. Our results indicate that protein degradation only affects 5.9% of the samples tested and shows negligible correlation with mRNA degradation in the adjacent samples. These findings are confirmed by independent analyses on additional clinical sample cohorts and across different mass spectrometric methods. Overall, the data show that the majority of samples tested are not compromised by protein degradation, and establish the PIN score as a generic and accurate indicator of sample quality for proteomic analyses. Protein degradation in clinical samples is largely unexplored. Here, the authors analyze the transcriptome and proteome of clinical tissue samples and develop an algorithm to assess protein degradation, showing that protein degradation is negligible in most tissue samples and does not correlate with transcript degradation.
Collapse
|
188
|
Wu X, Yang D, Zhao F, Yang ZH, Wang D, Qiao M, Fang Y, Li W, Wu R, He P, Cong Y, Chen C, Hu L, Yan Y, Xie C, Wu Y, Han J, Zhong CQ. Quantification of Dynamic Protein Interactions and Phosphorylation in LPS Signaling Pathway by SWATH-MS. Mol Cell Proteomics 2019; 18:1054-1069. [PMID: 30850422 PMCID: PMC6553925 DOI: 10.1074/mcp.ra119.001380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/04/2019] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced macrophage activation is a prototype of innate immune response. Although key effector proteins in LPS signaling pathway have been revealed, the map of dynamic protein interactions and phosphorylation as well as the stoichiometry of protein complexes are lacking. Here we present a dynamic map of protein interactions and phosphorylation in MyD88, TRAF6 and NEMO complexes obtained by SWATH-MS. The comprehensive MS measurement leads to quantification of up to about 3,000 proteins across about 21-40 IP samples. We detected and quantified almost all known interactors of MyD88, TRAF6 and NEMO. By analyzing these quantitative data, we uncovered differential recruitment of IRAK family proteins to LPS-induced signaling complexes and determined the stoichiometry of the Myddosome complex. In addition, quantitative phosphoproteomics analysis identified a number of unreported high-confidence phosphosites on the key proteins in LPS signaling pathway. Collectively, data of dynamic protein interactions and phosphorylation presented by this study could be a resource for further study of the LPS signaling pathway.
Collapse
Affiliation(s)
- Xiurong Wu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Daowei Yang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Fu Zhao
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Zhang-Hua Yang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Dazheng Wang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Muzhen Qiao
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yuan Fang
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Wanyun Li
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Rui Wu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Peng He
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yu Cong
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Chang'an Chen
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Lichen Hu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yihua Yan
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Changchuan Xie
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Yaying Wu
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Jiahuai Han
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| | - Chuan-Qi Zhong
- From the ‡State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University
| |
Collapse
|
189
|
Zelanis A, Silva DA, Kitano ES, Liberato T, Fukushima I, Serrano SMT, Tashima AK. A first step towards building spectral libraries as complementary tools for snake venom proteome/peptidome studies. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100599. [PMID: 31181499 DOI: 10.1016/j.cbd.2019.100599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/31/2023]
Abstract
Snake venoms are complex mixtures of a large number of distinct proteins and peptides with biological activity. Peptide spectral libraries are compilations of previously identified MS/MS spectra obtained from proteomics experiments. Here we present the generation and use of a Venom Peptidome and a Venom Proteome spectral library for the analysis of venom proteomes and peptidomes from distinct snake species.
Collapse
Affiliation(s)
- André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos, SP, Brazil.
| | - Débora A Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Eduardo S Kitano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil; Laboratório de Imunologia, Hospital de Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Tarcísio Liberato
- Functional Proteomics Laboratory, Department of Science and Technology, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Isabella Fukushima
- Functional Proteomics Laboratory, Department of Science and Technology, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alexandre K Tashima
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil; Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
190
|
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Gizycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P. An iTRAQ-Based Quantitative Proteomic Analysis of Plasma Proteins in Preterm Newborns With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2019; 59:5312-5319. [PMID: 30398622 DOI: 10.1167/iovs.18-24914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is a vision-threatening complication of a premature birth, in which the etiology still remains unclear. Importantly, the molecular processes that govern these effects can be investigated in a perturbed plasma proteome composition. Thus, plasma proteomics may add new insights into a better understanding of the pathogenesis of this disease. Methods The cord and peripheral blood of neonates (≤30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (PMA), respectively. Blood samples were retrospectively subdivided into ROP(+) and ROP(-) groups, according to the development of ROP. Results The quantitative analysis of plasma proteome at both time points revealed 30 protein abundance changes between ROP(+) and ROP(-) groups. After standardization to gestational age, children who developed ROP were characterized by an increased C3 complement component and fibrinogen level at both analyzed time points. Conclusions Higher levels of the complement C3 component and fibrinogen, present in the cord blood and persistent to 36 PMA, may indicate a chronic low-grade systemic inflammation and hypercoagulable state that may play a role in the development of ROP.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Renata Bokiniec
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | - Monika Szwarc-Duma
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Bujak-Gizycka
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Krakow, Poland
| | - Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Lars O Baumbusch
- Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ola D Saugstad
- Department of Pediatric Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jacek Józef Pietrzyk
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
191
|
A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model. Sci Rep 2019; 9:6913. [PMID: 31061415 PMCID: PMC6502816 DOI: 10.1038/s41598-019-43091-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
To-date, most proteomic studies aimed at discovering tissue-based cancer biomarkers have compared the quantity of selected proteins between case and control groups. However, proteins generally function in association with other proteins to form modules localized in particular subcellular compartments in specialized cell types and tissues. Sub-cellular mislocalization of proteins has in fact been detected as a key feature in a variety of cancer cells. Here, we describe a strategy for tissue-biomarker detection based on a mitochondrial fold enrichment (mtFE) score, which is sensitive to protein abundance changes as well as changes in subcellular distribution between mitochondria and cytosol. The mtFE score integrates protein abundance data from total cellular lysates and mitochondria-enriched fractions, and provides novel information for the classification of cancer samples that is not necessarily apparent from conventional abundance measurements alone. We apply this new strategy to a panel of wild-type and mutant mice with a liver-specific gene deletion of Liver receptor homolog 1 (Lrh-1hep−/−), with both lines containing control individuals as well as individuals with liver cancer induced by diethylnitrosamine (DEN). Lrh-1 gene deletion attenuates cancer cell metabolism in hepatocytes through mitochondrial glutamine processing. We show that proteome changes based on mtFE scores outperform protein abundance measurements in discriminating DEN-induced liver cancer from healthy liver tissue, and are uniquely robust against genetic perturbation. We validate the capacity of selected proteins with informative mtFE scores to indicate hepatic malignant changes in two independent mouse models of hepatocellular carcinoma (HCC), thus demonstrating the robustness of this new approach to biomarker research. Overall, the method provides a novel, sensitive approach to cancer biomarker discovery that considers contextual information of tested proteins.
Collapse
|
192
|
Palma Medina LM, Becker AK, Michalik S, Yedavally H, Raineri EJM, Hildebrandt P, Gesell Salazar M, Surmann K, Pförtner H, Mekonnen SA, Salvati A, Kaderali L, van Dijl JM, Völker U. Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection. Mol Cell Proteomics 2019; 18:892-908. [PMID: 30808728 PMCID: PMC6495256 DOI: 10.1074/mcp.ra118.001138] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.
Collapse
Affiliation(s)
- Laura M Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Harita Yedavally
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Henrike Pförtner
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Solomon A Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands;.
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;.
| |
Collapse
|
193
|
Spietz RL, Lundeen RA, Zhao X, Nicastro D, Ingalls AE, Morris RM. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ Microbiol 2019; 21:2391-2401. [PMID: 30951247 DOI: 10.1111/1462-2920.14623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/30/2022]
Abstract
A hallmark of the SUP05 clade of marine Gammaproteobacteria is the ability to use energy obtained from reduced inorganic sulfur to fuel autotrophic fixation of carbon using RuBisCo. However, some SUP05 also have the genetic potential for heterotrophic growth, raising questions about the roles of SUP05 in the marine carbon cycle. We used genomic reconstructions, physiological growth experiments and proteomics to characterize central carbon and energy metabolism in Candidatus Thioglobus singularis strain PS1, a representative from the SUP05 clade that has the genetic potential for autotrophy and heterotrophy. Here, we show that the addition of individual organic compounds and 0.2 μm filtered diatom lysate significantly enhanced the growth of this bacterium. This positive growth response to organic substrates, combined with expression of a complete TCA cycle, heterotrophic pathways for carbon assimilation, and methylotrophic pathways for energy conversion demonstrate strain PS1's capacity for heterotrophic growth. Further, our inability to verify the expression of RuBisCO suggests that carbon fixation was not critical for growth. These results highlight the metabolic diversity of the SUP05 clade that harbours both primary producers and consumers of organic carbon in the oceans and expand our understanding of specific pathways of organic matter oxidation by the heterotrophic SUP05.
Collapse
Affiliation(s)
- Rachel L Spietz
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rachel A Lundeen
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Xiaowei Zhao
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniela Nicastro
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
194
|
Fert-Bober J, Venkatraman V, Hunter CL, Liu R, Crowgey EL, Pandey R, Holewinski RJ, Stotland A, Berman BP, Van Eyk JE. Mapping Citrullinated Sites in Multiple Organs of Mice Using Hypercitrullinated Library. J Proteome Res 2019; 18:2270-2278. [PMID: 30990720 PMCID: PMC10363406 DOI: 10.1021/acs.jproteome.9b00118] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein citrullination (or deimination), an irreversible post-translational modification, has been implicated in several physiological and pathological processes, including gene expression regulation, apoptosis, rheumatoid arthritis, and Alzheimer's disease. Several research studies have been carried out on citrullination under many conditions. However, until now, challenges in sample preparation and data analysis have made it difficult to confidently identify a citrullinated protein and assign the citrullinated site. To overcome these limitations, we generated a mouse hyper-citrullinated spectral library and set up coordinates to confidently identify and validate citrullinated sites. Using this workflow, we detect a four-fold increase in citrullinated proteome coverage across six mouse organs compared with the current state-of-the art techniques. Our data reveal that the subcellular distribution of citrullinated proteins is tissue-type-dependent and that citrullinated targets are involved in fundamental physiological processes, including the metabolic process. These data represent the first report of a hyper-citrullinated library for the mouse and serve as a central resource for exploring the role of citrullination in this organism.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Vidya Venkatraman
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | | | - Ruining Liu
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Erin L. Crowgey
- Nemours Biomedical Research, Nemours - Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, United States
| | - Rakhi Pandey
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ronald J. Holewinski
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandr Stotland
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Benjamin P. Berman
- Bioinformatics and Computational Biology Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E. Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
195
|
Applications and challenges of forensic proteomics. Forensic Sci Int 2019; 297:350-363. [DOI: 10.1016/j.forsciint.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
|
196
|
Gfi1b regulates the level of Wnt/β-catenin signaling in hematopoietic stem cells and megakaryocytes. Nat Commun 2019; 10:1270. [PMID: 30894540 PMCID: PMC6426870 DOI: 10.1038/s41467-019-09273-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Gfi1b is a transcriptional repressor expressed in hematopoietic stem cells (HSCs) and megakaryocytes (MKs). Gfi1b deficiency leads to expansion of both cell types and abrogates the ability of MKs to respond to integrin. Here we show that Gfi1b forms complexes with β-catenin, its co-factors Pontin52, CHD8, TLE3 and CtBP1 and regulates Wnt/β-catenin-dependent gene expression. In reporter assays, Gfi1b can activate TCF-dependent transcription and Wnt3a treatment enhances this activation. This requires interaction between Gfi1b and LSD1 and suggests that a tripartite β-catenin/Gfi1b/LSD1 complex exists, which regulates Wnt/β-catenin target genes. Consistently, numerous canonical Wnt/β-catenin target genes, co-occupied by Gfi1b, β-catenin and LSD1, have their expression deregulated in Gfi1b-deficient cells. When Gfi1b-deficient cells are treated with Wnt3a, their normal cellularity is restored and Gfi1b-deficient MKs regained their ability to spread on integrin substrates. This indicates that Gfi1b controls both the cellularity and functional integrity of HSCs and MKs by regulating Wnt/β-catenin signaling pathway. Gfi1b regulates cellularity of haematopoietic stem cells (HSCs) and megakaryocytes (MKs) as well as spreading of MKs on matrix. Here the authors show that Gfi1b regulates this behaviour by recruiting LSD1 and β-catenin to Wnt/β-catenin signalling targets.
Collapse
|
197
|
The Dual Prey-Inactivation Strategy of Spiders-In-Depth Venomic Analysis of Cupiennius salei. Toxins (Basel) 2019; 11:toxins11030167. [PMID: 30893800 PMCID: PMC6468893 DOI: 10.3390/toxins11030167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Most knowledge of spider venom concerns neurotoxins acting on ion channels, whereas proteins and their significance for the envenomation process are neglected. The here presented comprehensive analysis of the venom gland transcriptome and proteome of Cupiennius salei focusses on proteins and cysteine-containing peptides and offers new insight into the structure and function of spider venom, here described as the dual prey-inactivation strategy. After venom injection, many enzymes and proteins, dominated by α-amylase, angiotensin-converting enzyme, and cysteine-rich secretory proteins, interact with main metabolic pathways, leading to a major disturbance of the cellular homeostasis. Hyaluronidase and cytolytic peptides destroy tissue and membranes, thus supporting the spread of other venom compounds. We detected 81 transcripts of neurotoxins from 13 peptide families, whereof two families comprise 93.7% of all cysteine-containing peptides. This raises the question of the importance of the other low-expressed peptide families. The identification of a venom gland-specific defensin-like peptide and an aga-toxin-like peptide in the hemocytes offers an important clue on the recruitment and neofunctionalization of body proteins and peptides as the origin of toxins.
Collapse
|
198
|
Degner EC, Ahmed-Braimah YH, Borziak K, Wolfner MF, Harrington LC, Dorus S. Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Mol Cell Proteomics 2019; 18:S6-S22. [PMID: 30552291 PMCID: PMC6427228 DOI: 10.1074/mcp.ra118.001067] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.
Collapse
Affiliation(s)
- Ethan C Degner
- From the ‡Department of Entomology, Cornell University, Ithaca, New York
| | | | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York;.
| | - Laura C Harrington
- From the ‡Department of Entomology, Cornell University, Ithaca, New York;.
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York.
| |
Collapse
|
199
|
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecol Evol 2019; 3:691-701. [DOI: 10.1038/s41559-019-0813-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
|
200
|
Herbert K, Binet R, Lambert JP, Louphrasitthiphol P, Kalkavan H, Sesma-Sanz L, Robles-Espinoza CD, Sarkar S, Suer E, Andrews S, Chauhan J, Roberts ND, Middleton MR, Gingras AC, Masson JY, Larue L, Falletta P, Goding CR. BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma. Genes Dev 2019; 33:310-332. [PMID: 30804224 PMCID: PMC6411009 DOI: 10.1101/gad.314633.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023]
Abstract
Herbert et al. show that BRN2 is associated with DNA damage response proteins and suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy-, and vemurafenib-induced apoptosis. Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.
Collapse
Affiliation(s)
- Katharine Herbert
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Medicine, Cancer Research Centre, Université Laval, Quebec G1V 0A6, Canada; CHU de Québec Research Center, CHUL, Quebec G1V 4G2, Canada
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Halime Kalkavan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Quebec G1V 0A6, Canada
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro 76230, Mexico.,Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Sovan Sarkar
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Eda Suer
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Sarah Andrews
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Nicola D Roberts
- The Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Quebec G1V 0A6, Canada
| | - Lionel Larue
- Institut Curie, PSL Research University, Normal and Pathological Development of Melanocytes, U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), 91405 Orsay, France.,University Paris-Sud, University Paris-Saclay, UMR 3347, Centre National de la Recherche Scientifique (CNRS), 91505 Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, 91405 Orsay, France
| | - Paola Falletta
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.,Università Vita-Salute San Raffaele, Milano, 20132 Milano MI, Italy
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|