151
|
Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 2017. [PMID: 28262094 DOI: 10.7554/elife.25114.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.
Collapse
Affiliation(s)
| | - Iris K Jarsch
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Christian Schudoma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Cécile Segonzac
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Malick Mbengue
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Daniel MacLean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Thomas Ott
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
152
|
Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 2017; 6. [PMID: 28262094 PMCID: PMC5383397 DOI: 10.7554/elife.25114] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/04/2017] [Indexed: 12/23/2022] Open
Abstract
Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains. DOI:http://dx.doi.org/10.7554/eLife.25114.001 Unlike most animals, plants cannot move away if their environment changes for the worse. Instead, a plant must sense these changes and respond appropriately, for example by changing how much it grows. Disease-causing microbes in the immediate environment represent another potential threat to plants. To detect these microbes, plant cells have proteins called “pattern recognition receptors” in their surface membranes that sense certain molecules from the microbes (similar receptors are found in animals too). When a receptor protein recognises one such microbial molecule, it becomes activated and forms a complex with other proteins referred to as co-receptors. The protein complex then sends a signal into the cell to trigger an immune response. Plants also use similar receptor proteins to sense their own signalling molecules and regulate their growth and development. These growth-related receptors rely on many of the same co-receptors and signalling components as the immunity-related receptors. This posed the question: how can plant cells use the same proteins to trigger different responses to different signals? Bücherl et al. have now used high-resolution microscopy and the model plant Arabidopsis thaliana to show that the plant’s immune receptors and growth receptors are found in separate clusters at the plant cell’s surface membrane. These clusters are only a few hundred nanometres wide, and they also contained other signalling components that are needed to quickly relay the signals into the plant cell. Bücherl et al. suggest that, by organizing their receptors into these physically distinct clusters, plant cells can use similar proteins to sense different signals and respond in then different ways. This idea will need to be tested in future studies. Further work is also needed to understand how these clusters of signalling proteins are assembled and inserted at specific locations within the surface membrane of a plant cell. DOI:http://dx.doi.org/10.7554/eLife.25114.002
Collapse
Affiliation(s)
| | - Iris K Jarsch
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Christian Schudoma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Cécile Segonzac
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Malick Mbengue
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Daniel MacLean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Thomas Ott
- Ludwig-Maximilians-Universität München, Institute of Genetics, Martinsried, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
153
|
Zhang R, Qi H, Sun Y, Xiao S, Lim BL. Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae. PLoS One 2017; 12:e0171040. [PMID: 28152090 PMCID: PMC5289510 DOI: 10.1371/journal.pone.0171040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/13/2017] [Indexed: 12/01/2022] Open
Abstract
Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections.
Collapse
Affiliation(s)
- Renshan Zhang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hua Qi
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuzhe Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- * E-mail:
| |
Collapse
|
154
|
H. Wegner L. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
155
|
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 2016; 11:192-204. [PMID: 27984790 PMCID: PMC5157795 DOI: 10.1016/j.redox.2016.12.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only can ROS induce MAPK activation, but also that disturbing MAPK cascades can modulate ROS production and responses. This review will discuss the potential mechanisms by which ROS may activate and/or regulate MAPK cascades in plants. The role of MAPK cascades and ROS signaling in regulating gene expression, stomatal function, and programmed cell death (PCD) is also discussed. In addition, the relationship between Rboh-dependent ROS production and MAPK activation in PAMP-triggered immunity will be reviewed.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China
| |
Collapse
|
156
|
Schneider R, Hanak T, Persson S, Voigt CA. Cellulose and callose synthesis and organization in focus, what's new? CURRENT OPINION IN PLANT BIOLOGY 2016; 34:9-16. [PMID: 27479608 DOI: 10.1016/j.pbi.2016.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 05/02/2023]
Abstract
Plant growth and development are supported by plastic but strong cell walls. These walls consist largely of polysaccharides that vary in content and structure. Most of the polysaccharides are produced in the Golgi apparatus and are then secreted to the apoplast and built into the growing walls. However, the two glucan polymers cellulose and callose are synthesized at the plasma membrane by cellulose or callose synthase complexes, respectively. Cellulose is the most common cell wall polymer in land plants and provides strength to the walls to support directed cell expansion. In contrast, callose is integral to specialized cell walls, such as the cell plate that separates dividing cells and growing pollen tube walls, and maintains important functions during abiotic and biotic stress responses. The last years have seen a dramatic increase in our understanding of how cellulose and callose are manufactured, and new factors that regulate the synthases have been identified. Much of this knowledge has been amassed via various microscopy-based techniques, including various confocal techniques and super-resolution imaging. Here, we summarize and synthesize recent findings in the fields of cellulose and callose synthesis in plant biology.
Collapse
Affiliation(s)
- René Schneider
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia
| | - Tobias Hanak
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Staffan Persson
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia.
| | - Christian A Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
157
|
Vu LD, Stes E, Van Bel M, Nelissen H, Maddelein D, Inzé D, Coppens F, Martens L, Gevaert K, De Smet I. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. J Proteome Res 2016; 15:4304-4317. [DOI: 10.1021/acs.jproteome.6b00348] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lam Dai Vu
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Elisabeth Stes
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Michiel Van Bel
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Davy Maddelein
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Dirk Inzé
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lennart Martens
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Medical
Biotechnology Center, VIB, 9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Ive De Smet
- Department
of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department
of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
158
|
Jia W, Li B, Li S, Liang Y, Wu X, Ma M, Wang J, Gao J, Cai Y, Zhang Y, Wang Y, Li J, Wang Y. Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis. PLoS Biol 2016; 14:e1002550. [PMID: 27618482 PMCID: PMC5019414 DOI: 10.1371/journal.pbio.1002550] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022] Open
Abstract
Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development.
Collapse
Affiliation(s)
- Weiyan Jia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baohua Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shujia Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiyao Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yueyue Cai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JL); (YW)
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JL); (YW)
| |
Collapse
|
159
|
Lung SC, Chye ML. Deciphering the roles of acyl-CoA-binding proteins in plant cells. PROTOPLASMA 2016; 253:1177-95. [PMID: 26340904 DOI: 10.1007/s00709-015-0882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
160
|
Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochem Soc Trans 2016; 43:966-74. [PMID: 26517911 DOI: 10.1042/bst20150128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ABC (ATP-binding cassette) transporter family in higher plants is highly expanded compared with those of mammalians. Moreover, some members of the plant ABC subfamily B (ABCB) display very high substrate specificity compared with their mammalian counterparts that are often associated with multi-drug resistance phenomena. In this review, we highlight prominent functions of plant and mammalian ABC transporters and summarize our knowledge on their post-transcriptional regulation with a focus on protein phosphorylation. A deeper comparison of regulatory events of human cystic fibrosis transmembrane conductance regulator (CFTR) and ABCB1 from the model plant Arabidopsis reveals a surprisingly high degree of similarity. Both physically interact with orthologues of the FK506-binding proteins that chaperon both transporters to the plasma membrane in an action that seems to involve heat shock protein (Hsp)90. Further, both transporters are phosphorylated at regulatory domains that connect both nt-binding folds. Taken together, it appears that ABC transporters exhibit an evolutionary conserved but complex regulation by protein phosphorylation, which apparently is, at least in some cases, tightly connected with protein-protein interactions (PPI).
Collapse
|
161
|
Shao W, Dong J. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation. Dev Biol 2016; 419:121-131. [PMID: 27475487 DOI: 10.1016/j.ydbio.2016.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
Abstract
Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants.
Collapse
Affiliation(s)
- Wanchen Shao
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA
| | - Juan Dong
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA; Waksman Institute of Microbiology, Rutgers the State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
162
|
Reimer-Michalski EM, Conrath U. Innate immune memory in plants. Semin Immunol 2016; 28:319-27. [PMID: 27264335 DOI: 10.1016/j.smim.2016.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.
Collapse
Affiliation(s)
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany.
| |
Collapse
|
163
|
Wang YJ, Wei XY, Jing XQ, Chang YL, Hu CH, Wang X, Chen KM. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation. Int J Mol Sci 2016; 17:ijms17060805. [PMID: 27240354 PMCID: PMC4926339 DOI: 10.3390/ijms17060805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), are the major source of reactive oxygen species (ROS), and are involved in many important processes in plants such as regulation of acclimatory signaling and programmed cell death (PCD). Increasing evidence shows that NOXs play crucial roles in plant immunity and their functions in plant immune responses are not as separate individuals but with other signal molecules such as kinases, Rac/Rop small GTPases and hormones, mediating a series of signal transmissions. In a similar way, NOX-mediated signaling also participates in abiotic stress response of plants. We summarized here the complex role and regulation mechanism of NOXs in mediating plant immune response, and the viewpoint that abiotic stress response of plants may be a kind of special plant immunity is also proposed.
Collapse
Affiliation(s)
- Ya-Jing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiao-Yong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Yan-Li Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
164
|
Trusov Y, Botella JR. Plant G-Proteins Come of Age: Breaking the Bond with Animal Models. Front Chem 2016; 4:24. [PMID: 27252940 PMCID: PMC4877378 DOI: 10.3389/fchem.2016.00024] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022] Open
Abstract
G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs from the accepted animal paradigm.
Collapse
Affiliation(s)
- Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland Brisbane, QLD, Australia
| | - José R Botella
- School of Agriculture and Food Sciences, University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
165
|
Perazzolli M, Palmieri MC, Matafora V, Bachi A, Pertot I. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine. JOURNAL OF PLANT PHYSIOLOGY 2016; 195:59-72. [PMID: 27010348 DOI: 10.1016/j.jplph.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
Protein phosphorylation regulates several key processes of the plant immune system. Protein kinases and phosphatases are pivotal regulators of defense mechanisms elicited by resistance inducers. However, the phosphorylation cascades that trigger the induced resistance mechanisms in plants have not yet been deeply investigated. The beneficial fungus Trichoderma harzianum T39 (T39) induces resistance against grapevine downy mildew (Plasmopara viticola), but its efficacy could be further improved by a better understanding of the cellular regulations involved. We investigated quantitative changes in the grapevine phosphoproteome during T39-induced resistance to get an overview of regulatory mechanisms of downy mildew resistance. Immunodetection experiments revealed activation of the 45 and 49kDa kinases by T39 treatment both before and after pathogen inoculation, and the phosphoproteomic analysis identified 103 phosphopeptides that were significantly affected by the phosphorylation cascades during T39-induced resistance. Peptides affected by T39 treatment showed comparable phosphorylation levels after P. viticola inoculation, indicating activation of the microbial recognition machinery before pathogen infection. Phosphorylation profiles of proteins related to photosynthetic processes and protein ubiquitination indicated a partial overlap of cellular responses in T39-treated and control plants. However, phosphorylation changes of proteins involved in response to stimuli, signal transduction, hormone signaling, gene expression regulation, and RNA metabolism were exclusively elicited by P. viticola inoculation in T39-treated plants. These results highlighted the relevance of phosphorylation changes during T39-induced resistance and identified key regulator candidates of the grapevine defense against downy mildew.
Collapse
Affiliation(s)
- Michele Perazzolli
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy.
| | - Maria Cristina Palmieri
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Vittoria Matafora
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- Biological Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
166
|
Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. PLANT CELL REPORTS 2016; 35:995-1007. [PMID: 26883222 DOI: 10.1007/s00299-016-1950-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China
| |
Collapse
|
167
|
Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire. J Proteomics 2016; 143:199-208. [PMID: 27109347 DOI: 10.1016/j.jprot.2016.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Plasma membrane (PM) encompasses total cellular contents, serving as semi-porous barrier to cell exterior. This living barrier regulates all cellular exchanges in a spatio-temporal fashion. Most of the essential tasks of PMs including molecular transport, cell-cell interaction and signal transduction are carried out by their proteinaceous components, which make the PM protein repertoire to be diverse and dynamic. Here, we report the systematic analysis of PM proteome of a food legume, chickpea and develop a PM proteome reference map. Proteins were extracted from highly enriched PM fraction of four-week-old seedlings using aqueous two-phase partitioning. To address a population of PM proteins that is as comprehensive as possible, both gel-based and gel-free approaches were employed, which led to the identification of a set of 2732 non-redundant proteins. These included both integral proteins having bilayer spanning domains as well as peripheral proteins associated with PMs through posttranslational modifications or protein-protein interactions. Further, the proteins were subjected to various in-silico analyses and functionally classified based on their gene ontology. Finally an inventory of the complete set of PM proteins, identified in several monocot and dicot species, was created for comparative study with the generated PM protein dataset of chickpea. BIOLOGICAL SIGNIFICANCE Chickpea, a rich source of dietary proteins, is the second most cultivated legume, which is grown over 10 million hectares of land worldwide. The annual global production of chickpea hovers around 8.5 million metric tons. Recent chickpea genome sequencing effort has provided a broad genetic basis for highlighting the important traits that may fortify other crop legumes. Improvement in chickpea varieties can further strengthen the world food security, which includes food availability, access and utilization. It is known that the phenotypic trait of a cultivar is the manifestation of the orchestrated functions of its proteins. Study of the PM proteome offers insights into the mechanism of communication between the cell and its environment by identification of receptors, signalling proteins and membrane transporters. Knowledge of the PM protein repertoire of a relatively dehydration tolerant chickpea variety, JG-62, can contribute in development of strategies for metabolic reprograming of crop species and breeding applications.
Collapse
|
168
|
Correction: Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Biochem Soc Trans 2016; 44:663-73. [DOI: 10.1042/bst20150128_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/31/2022]
Abstract
The ABC (ATP-binding cassette) transporter family in higher plants is highly expanded compared with those of mammalians. Moreover, some members of the plant ABCB subfamily display very high substrate specificity compared with their mammalian counterparts that are often associated with multidrug resistance (MDR) phenomena. In this review we highlight prominent functions of plant and mammalian ABC transporters and summarize our knowledge on their post-transcriptional regulation with a focus on protein phosphorylation. A deeper comparison of regulatory events of human cystic fibrosis transmembrane conductance regulator (CFTR) and ABCB1 from the model plant Arabidopsis reveals a surprisingly high degree of similarity. Both physically interact with orthologues of the FK506-binding proteins (FKBPs) that chaperon both transporters to the plasma membrane in an action that seems to involve Hsp90. Further both transporters are phosphorylated at regulatory domains that connect both nucleotide-binding folds. Taken together it appears that ABC transporters exhibit an evolutionary conserved but complex regulation by protein phosphorylation, which apparently is, at least in some cases, tightly connected with protein–protein interactions (PPI).
Collapse
|
169
|
Fíla J, Radau S, Matros A, Hartmann A, Scholz U, Feciková J, Mock HP, Čapková V, Zahedi RP, Honys D. Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro. Mol Cell Proteomics 2016; 15:1338-50. [PMID: 26792808 PMCID: PMC4824859 DOI: 10.1074/mcp.m115.051672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved.
Collapse
Affiliation(s)
- Jan Fíla
- From the ‡Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, v.v.i., Rozvojova 263, 165 00 Praha 6, Czech Republic
| | - Sonja Radau
- §Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Straβe 6b, 44227 Dortmund, Germany
| | - Andrea Matros
- ¶Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetic and Crop Plant Research, Corrensstraβe 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- ¶Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetic and Crop Plant Research, Corrensstraβe 3, 06466 Gatersleben, Germany
| | - Uwe Scholz
- ‖Department of Breeding Research, Leibniz Institute of Plant Genetic and Crop Plant Research, Corrensstraβe 3, 06466 Gatersleben, Germany
| | - Jana Feciková
- From the ‡Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, v.v.i., Rozvojova 263, 165 00 Praha 6, Czech Republic
| | - Hans-Peter Mock
- ¶Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetic and Crop Plant Research, Corrensstraβe 3, 06466 Gatersleben, Germany
| | - Věra Čapková
- From the ‡Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, v.v.i., Rozvojova 263, 165 00 Praha 6, Czech Republic
| | - René Peiman Zahedi
- §Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Straβe 6b, 44227 Dortmund, Germany
| | - David Honys
- From the ‡Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, v.v.i., Rozvojova 263, 165 00 Praha 6, Czech Republic;
| |
Collapse
|
170
|
Identification of Dw1, a Regulator of Sorghum Stem Internode Length. PLoS One 2016; 11:e0151271. [PMID: 26963094 PMCID: PMC4786228 DOI: 10.1371/journal.pone.0151271] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/25/2016] [Indexed: 01/07/2023] Open
Abstract
Sorghum is an important C4 grain and grass crop used for food, feed, forage, sugar, and biofuels. In its native Africa, sorghum landraces often grow to approximately 3–4 meters in height. Following introduction into the U.S., shorter, early flowering varieties were identified and used for production of grain. Quinby and Karper identified allelic variation at four loci designated Dw1-Dw4 that regulated plant height by altering the length of stem internodes. The current study used a map-based cloning strategy to identify the gene corresponding to Dw1. Hegari (Dw1dw2Dw3dw4) and 80M (dw1dw2Dw3dw4) were crossed and F2 and HIF derived populations used for QTL mapping. Genetic analysis identified four QTL for internode length in this population, Dw1 on SBI-09, Dw2 on SBI-06, and QTL located on SBI-01 and SBI-07. The QTL on SBI-07 was ~3 Mbp upstream of Dw3 and interacted with Dw1. Dw1 was also found to contribute to the variation in stem weight in the population. Dw1 was fine mapped to an interval of ~33 kbp using HIFs segregating only for Dw1. A polymorphism in an exon of Sobic.009G229800 created a stop codon that truncated the encoded protein in 80M (dw1). This polymorphism was not present in Hegari (Dw1) and no other polymorphisms in the delimited Dw1 locus altered coding regions. The recessive dw1 allele found in 80M was traced to Dwarf Yellow Milo, the progenitor of grain sorghum genotypes identified as dw1. Dw1 encodes a putative membrane protein of unknown function that is highly conserved in plants.
Collapse
|
171
|
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology. MOLECULAR PLANT 2016; 9:323-337. [PMID: 26584714 DOI: 10.1016/j.molp.2015.11.002] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 05/21/2023]
Abstract
The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase.
Collapse
Affiliation(s)
- Janus Falhof
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark.
| |
Collapse
|
172
|
Kataya ARA, Schei E, Lillo C. Towards understanding peroxisomal phosphoregulation in Arabidopsis thaliana. PLANTA 2016; 243:699-717. [PMID: 26649560 DOI: 10.1007/s00425-015-2439-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/25/2015] [Indexed: 05/26/2023]
Abstract
This work identifies new protein phosphatases and phosphatase-related proteins targeting peroxisomes, and raises the question of a novel protein import pathway from ER to peroxisomes involving peroxisomal targeting signal type 1 (PTS1) Plant peroxisomes are essential for several processes, for example lipid metabolism, free radical detoxification, development, and stress-related functions. Although research on peroxisomes has been intensified, reversible phosphorylation as a control mechanism in peroxisomes is barely studied. Therefore, it is crucial to identify all peroxisomal proteins involved in phosphoregulation. We here started with protein phosphatases, and searched the Arabidopsis thaliana genome for phosphatase-related proteins with putative peroxisomal targeting signals (PTS). Five potential peroxisomal candidates were detected, from which four were confirmed to target peroxisomes or have a functional PTS. The highly conserved Ser-Ser-Met> was validated for two protein phosphatase 2C (PP2C) family members (POL like phosphatases, PLL2 and PLL3) as a functional peroxisomal targeting signal type 1 (PTS1). Full-length PLL2 and PLL3 fused with a reporter protein targeted peroxisomes in two plant expression systems. A putative protein phosphatase, purple acid phosphatase 7 (PAP7), was found to be dually targeted to ER and peroxisomes and experiments indicated a possible trafficking to peroxisomes via the ER depending on peroxisomal PTS1. In addition, a protein phosphatase 2A regulator (TIP41) was validated to harbor a functional PTS1 (Ser-Lys-Val>), but the full-length protein targeted cytosol and nucleus. Reverse genetics indicated a role for TIP41 in senescence signaling. Mass spectrometry of whole seedlings and isolated peroxisomes was employed, and identified new putative phosphorylated peroxisomal proteins. Previously, only one protein phosphatase, belonging to the phospho-protein phosphatase (PPP) family, was identified as a peroxisomal protein. The present work implies that members of two other main protein phosphatase families, i.e. PP2C and PAP, are also targeting peroxisomes.
Collapse
Affiliation(s)
- Amr R A Kataya
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway.
| | - Edit Schei
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway
| | - Cathrine Lillo
- Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, N-4036, Stavanger, Norway.
| |
Collapse
|
173
|
de Michele R, McFarlane HE, Parsons HT, Meents MJ, Lao J, González Fernández-Niño SM, Petzold CJ, Frommer WB, Samuels AL, Heazlewood JL. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings. J Proteome Res 2016; 15:900-13. [PMID: 26781341 DOI: 10.1021/acs.jproteome.5b00876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.
Collapse
Affiliation(s)
- Roberto de Michele
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States.,Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy , Palermo 90129, Italy
| | - Heather E McFarlane
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada.,Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany
| | - Harriet T Parsons
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Plant and Environmental Sciences, University of Copenhagen , Copenhagen C-1871, Denmark
| | - Miranda J Meents
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Jeemeng Lao
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Susana M González Fernández-Niño
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States
| | - A Lacey Samuels
- Department of Botany, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne , Melbourne, Victoria 3010, Australia
| |
Collapse
|
174
|
Kohorn BD, Hoon D, Minkoff BB, Sussman MR, Kohorn SL. Rapid Oligo-Galacturonide Induced Changes in Protein Phosphorylation in Arabidopsis. Mol Cell Proteomics 2016; 15:1351-9. [PMID: 26811356 DOI: 10.1074/mcp.m115.055368] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/06/2022] Open
Abstract
The wall-associated kinases (WAKs)(1)are receptor protein kinases that bind to long polymers of cross-linked pectin in the cell wall. These plasma-membrane-associated protein kinases also bind soluble pectin fragments called oligo-galacturonides (OGs) released from the wall after pathogen attack and damage. WAKs are required for cell expansion during development but bind water soluble OGs generated from walls with a higher affinity than the wall-associated polysaccharides. OGs activate a WAK-dependent, distinct stress-like response pathway to help plants resist pathogen attack. In this report, a quantitative mass-spectrometric-based phosphoproteomic analysis was used to identify Arabidopsis cellular events rapidly induced by OGsin planta Using N(14/)N(15)isotopicin vivometabolic labeling, we screened 1,000 phosphoproteins for rapid OG-induced changes and found 50 proteins with increased phosphorylation, while there were none that decreased significantly. Seven of the phosphosites within these proteins overlap with those altered by another signaling molecule plants use to indicate the presence of pathogens (the bacterial "elicitor" peptide Flg22), indicating distinct but overlapping pathways activated by these two types of chemicals. Genetic analysis of genes encoding 10 OG-specific and two Flg22/OG-induced phosphoproteins reveals that null mutations in eight proteins compromise the OG response. These phosphorylated proteins with genetic evidence supporting their role in the OG response include two cytoplasmic kinases, two membrane-associated scaffold proteins, a phospholipase C, a CDPK, an unknown cadmium response protein, and a motor protein. Null mutants in two proteins, the putative scaffold protein REM1.3, and a cytoplasmic receptor like kinase ROG2, enhance and suppress, respectively, a dominantWAKallele. Altogether, the results of these chemical and genetic experiments reveal the identity of several phosphorylated proteins involved in the kinase/phosphatase-mediated signaling pathway initiated by cell wall changes.
Collapse
Affiliation(s)
- Bruce D Kohorn
- From the ‡Biology Department, Bowdoin College, Brunswick, ME, 04011;
| | - Divya Hoon
- From the ‡Biology Department, Bowdoin College, Brunswick, ME, 04011
| | | | - Michael R Sussman
- §Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Susan L Kohorn
- From the ‡Biology Department, Bowdoin College, Brunswick, ME, 04011
| |
Collapse
|
175
|
Mithoe SC, Ludwig C, Pel MJC, Cucinotta M, Casartelli A, Mbengue M, Sklenar J, Derbyshire P, Robatzek S, Pieterse CMJ, Aebersold R, Menke FLH. Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep 2016; 17:441-54. [PMID: 26769563 DOI: 10.15252/embr.201540806] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/02/2015] [Indexed: 01/19/2023] Open
Abstract
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN-SENSITIVE 2 (FLS2) induces the activation of mitogen-activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin-triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7-mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.
Collapse
Affiliation(s)
- Sharon C Mithoe
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Christina Ludwig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Michiel J C Pel
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mara Cucinotta
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alberto Casartelli
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Malick Mbengue
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Corné M J Pieterse
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Frank L H Menke
- Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| |
Collapse
|
176
|
Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. THE NEW PHYTOLOGIST 2016; 209:294-306. [PMID: 26315018 DOI: 10.1111/nph.13582] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/30/2015] [Indexed: 05/20/2023]
Abstract
Nonhost resistance (NHR) is the most prevalent form of plant immunity. In Arabidopsis, NHR requires membrane-localized ATP-binding cassette (ABC) transporter PENETRATION (PEN) 3. Upon perception of pathogen-associated molecular patterns, PEN3 becomes phosphorylated, suggestive of PEN3 regulation by post-translational modification. Here, we investigated the PEN3 protein interaction network. We probed the Arabidopsis protein microarray AtPMA-5000 with the N-terminal cytoplasmic domain of PEN3. Several of the proteins identified to interact with PEN3 in vitro represent cellular Ca(2+) sensors, including calmodulin (CaM) 3, CaM7 and several CaM-like proteins, pointing to the importance of Ca(2+) sensing to PEN3-mediated NHR. We demonstrated co-localization of PEN3 and CaM7, and we confirmed PEN3-CaM interaction in vitro and in vivo by PEN3 pull-down with CaM Sepharose, CaM overlay assay and bimolecular fluorescence complementation. We also show that just like in pen3, NHR to the nonadapted fungal pathogens Phakopsora pachyrhizi and Blumeria graminis f.sp. hordei is compromised in the Arabidopsis cam7 and pen3 cam7 mutants. Our study discloses CaM7 as a PEN3-interacting protein crucial to Arabidopsis NHR and emphasizes the importance of Ca(2+) sensing to plant immunity.
Collapse
Affiliation(s)
- Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Franz Leissing
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - George V Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
- National Institute for Laser, Plasma & Radiation Physics, Str. Atomistilor, Nr. 409, Magurele, 077125, Bucharest, Romania
| | - Sorina C Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Gerold J M Beckers
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
177
|
Wilson RS, Swatek KN, Thelen JJ. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins. FRONTIERS IN PLANT SCIENCE 2016; 7:611. [PMID: 27242818 PMCID: PMC4860396 DOI: 10.3389/fpls.2016.00611] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/21/2016] [Indexed: 05/18/2023]
Abstract
14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in eukaryotes. Multiple 14-3-3 isoforms are expressed in most organisms and display redundancy in both sequence and function. Plants contain the largest number of 14-3-3 isoforms. For example, Arabidopsis thaliana contains thirteen 14-3-3 genes, each of which is expressed. Interest in the plant 14-3-3 field has swelled over the past decade, largely due to the vast number of possibilities for 14-3-3 metabolic regulation. As the field progresses, it is essential to understand these proteins' activities at both the spatiotemporal and subcellular levels. This review summarizes current knowledge of 14-3-3 proteins in plants, including 14-3-3 interactions, regulatory functions, isoform specificity, and post-translational modifications. We begin with a historical overview and structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss interactions and regulatory effects of plant 14-3-3 proteins in specific tissues and subcellular compartments. We conclude with a summary of 14-3-3 phosphorylation and current knowledge of the functional effects of this modification in plants.
Collapse
|
178
|
Jørgensen ME, Olsen CE, Halkier BA, Nour-Eldin HH. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1. PLANT SIGNALING & BEHAVIOR 2016; 11:e1071751. [PMID: 26340317 PMCID: PMC4883914 DOI: 10.1080/15592324.2015.1071751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023]
Abstract
Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions.
Collapse
Affiliation(s)
- Morten Egevang Jørgensen
- Center for Dynamic Molecular Interactions (DynaMo); University of Copenhagen; Frederiksberg, Denmark
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| | - Barbara Ann Halkier
- Center for Dynamic Molecular Interactions (DynaMo); University of Copenhagen; Frederiksberg, Denmark
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| | - Hussam Hassan Nour-Eldin
- Center for Dynamic Molecular Interactions (DynaMo); University of Copenhagen; Frederiksberg, Denmark
- Department of Plant and Environmental Sciences; Faculty of Science; University of Copenhagen; Frederiksberg, Denmark
| |
Collapse
|
179
|
Mattei B, Spinelli F, Pontiggia D, De Lorenzo G. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1107. [PMID: 27532006 PMCID: PMC4969306 DOI: 10.3389/fpls.2016.01107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.
Collapse
|
180
|
Jiménez-Quesada MJ, Traverso JÁ, Alché JDD. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:359. [PMID: 27066025 PMCID: PMC4815025 DOI: 10.3389/fpls.2016.00359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/07/2016] [Indexed: 05/02/2023]
Abstract
In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen-pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed.
Collapse
Affiliation(s)
- María J. Jiménez-Quesada
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC)Granada, Spain
| | - José Á. Traverso
- Department of Cell Biology, Faculty of Sciences, University of GranadaGranada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC)Granada, Spain
- *Correspondence: Juan de Dios Alché,
| |
Collapse
|
181
|
Haruta M, Gray WM, Sussman MR. Regulation of the plasma membrane proton pump (H(+)-ATPase) by phosphorylation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:68-75. [PMID: 26476298 PMCID: PMC4679459 DOI: 10.1016/j.pbi.2015.09.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/04/2023]
Abstract
In plants and fungi, energetics at the plasma membrane is provided by a large protonmotive force (PMF) generated by the family of P-type ATPases specialized for proton transport (commonly called PM H(+)-ATPases or, in Arabidopsis, AHAs for Arabidopsis H(+)-ATPases). Studies have demonstrated that this 100-kDa protein is essential for plant growth and development. Posttranslational modifications of the H(+)-ATPase play crucial roles in its regulation. Phosphorylation of several Thr and Ser residues within the carboxy terminal regulatory domain composed of ∼100 amino acids change in response to environmental stimuli, endogenous hormones, and nutrient conditions. Recently developed mass spectrometric technologies provide a means to carefully quantify these changes in H(+)-ATPase phosphorylation at the different sites. These chemical modifications can then be genetically tested in planta by complementing the loss-of-function aha mutants with phosphomimetic mutations. Interestingly, recent data suggest that phosphatase-mediated changes in PM H(+)-ATPase phosphorylation are important in mediating auxin-regulated growth. Thus, as with another hormone (abscisic acid), dephosphorylation by phosphatases, rather than kinase mediated phosphorylation, may be an important focal point for regulation during plant signal transduction. Although interactions with other proteins have also been implicated in ATPase regulation, the very hydrophobic nature and high concentration of this polytopic protein presents special challenges in evaluating the biological significance of these interactions. Only by combining biochemical and genetic experiments can we attempt to meet these challenges to understand the essential molecular details by which this protein functions in planta.
Collapse
Affiliation(s)
- Miyoshi Haruta
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States
| | - William M Gray
- Department of Plant Biology, University of Minnesota, United States
| | - Michael R Sussman
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States.
| |
Collapse
|
182
|
Frescatada-Rosa M, Robatzek S, Kuhn H. Should I stay or should I go? Traffic control for plant pattern recognition receptors. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:23-9. [PMID: 26344487 DOI: 10.1016/j.pbi.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 05/17/2023]
Abstract
Plants employ cell surface-localised receptors to recognise potential invaders via perception of microbe-derived molecules. This is mediated by pattern recognition receptors (PRRs) that bind microbe-associated or damage-associated molecular patterns or perceive apoplastic effector proteins secreted by microorganisms. In either case, effective recognition and initiation of appropriate defence responses rely on a signalling competent pool of receptors at the cell surface. Maintenance of this pool of receptors at the plasma membrane is guaranteed by sorting of properly folded ligand-unbound and ligand-bound receptors via the secretory-endosomal network in an activation-dependent manner. Recent findings highlight that ligand-induced endocytosis is found across members of distinct PRR families suggesting a conserved mechanism by which PRRs and immunity is regulated.
Collapse
Affiliation(s)
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Hannah Kuhn
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
183
|
Zhu XF, Cai WH, Jung JH, Xuan YH. NH4+-mediated Protein Phosphorylation in Rice Roots. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/abcsb-2015-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
NH4+ is an important N-source which regulates plant growth and development. However, the underlying mechanism of NH4+ uptake and its-mediated signaling is poorly understood. Here, we performed phosphoproteomic studies using the titanium dioxide (TiO2)-mediated phosphopeptides collection method together with LC-MS analysis. The results indicated that phosphorylation levels of 23 and 43 peptides/proteins involved in diverse aspects, including metabolism, transport and signaling pathway, were decreased and increased respectively after NH4+ treatment in rice roots. Among 23 proteins detected, IDD10, a key transcription factor in ammonium signaling, was identified to reduce phosphorylation level of S313 residue. Further biochemical analysis using IDD10-GFP transgenic plants and immunoprecipitation assay confirmed that NH4+ supply reduces IDD10 phosphorylation level. Phosphorylation of ammonium transporter 1;1 (AMT1;1) was increased upon NH4+ treatment. Interestingly, phosphorylation of T446, a rice specific residue against Arabidopsis was identified. It was also established that phosphorylation of T452 is conserved with T460 of Arabidopsis AMT1;1. Yeast complementation assay with transformation of phosphomimic forms of AMT1;1 (T446/D and T452/D) into 31019b strain revealed that phosphorylation at T446 and T452 residues abolished AMT1;1 activity, while their plasma membrane localization was not changed. Our analyses show that many proteins were phosphorylated or dephosphorylated by NH4+ that may provide important evidence for studying ammonium uptake and its mediated signaling by which rice growth and development are regulated.
Collapse
|
184
|
Feldman MJ, Poirier BC, Lange BM. Misexpression of the Niemann-Pick disease type C1 (NPC1)-like protein in Arabidopsis causes sphingolipid accumulation and reproductive defects. PLANTA 2015; 242:921-33. [PMID: 26007685 DOI: 10.1007/s00425-015-2322-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/04/2015] [Indexed: 05/25/2023]
Abstract
Misexpression of the AtNPC1 - 1 and AtNPC1 - 2 genes leads to altered sphingolipid metabolism, growth impairment, and male reproductive defects in a hemizygous Arabidopsis thaliana (L.) double-mutant population. Abolishing the expression of both gene copies has lethal effects. Niemann-Pick disease type C1 is a lysosomal storage disorder caused by mutations in the NPC1 gene. At the cellular level, the disorder is characterized by the accumulation of storage lipids and lipid trafficking defects. The Arabidopsis thaliana genome contains two genes (At1g42470 and At4g38350) with weak homology to mammalian NPC1. The corresponding proteins have 11 predicted membrane-spanning regions and contain a putative sterol-sensing domain. The At1g42470 protein is localized to the plasma membrane, while At4g38350 protein has a dual localization in the plasma and tonoplast membranes. A phenotypic analysis of T-DNA insertion mutants indicated that At1g42470 and At4g38350 (designated AtNPC1-1 and AtNPC1-2, respectively) have partially redundant functions and are essential for plant reproductive viability and development. Homozygous plants impaired in the expression of both genes were not recoverable. Plants of a hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 population were severely dwarfed and exhibited male gametophytic defects. These gene disruptions did not have an effect on sterol concentrations; however, hemizygous AtNPC1-1/atnpc1-1/atnpc1-2/atnpc1-2 mutants had increased fatty acid amounts. Among these, fatty acid α-hydroxytetracosanoic acid (h24:0) occurs in plant sphingolipids. Follow-up analyses confirmed the accumulation of significantly increased levels of sphingolipids (assayed as hydrolyzed sphingoid base component) in the hemizygous double-mutant population. Certain effects of NPC1 misexpression may be common across divergent lineages of eukaryotes (sphingolipid accumulation), while other defects (sterol accumulation) may occur only in certain groups of eukaryotic organisms.
Collapse
Affiliation(s)
- Maximilian J Feldman
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | | | | |
Collapse
|
185
|
EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:12205-10. [PMID: 26371323 DOI: 10.1073/pnas.1511724112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function.
Collapse
|
186
|
Aranda-Sicilia MN, Trusov Y, Maruta N, Chakravorty D, Zhang Y, Botella JR. Heterotrimeric G proteins interact with defense-related receptor-like kinases in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:44-8. [PMID: 26414709 DOI: 10.1016/j.jplph.2015.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 05/05/2023]
Abstract
Heterotrimeric G proteins (G-proteins) are versatile signaling elements conserved in Eukaryotes. In animals G-proteins relay signals from 7-transmembrane spanning G protein-coupled receptors (GPCRs) to intracellular downstream effectors; however, the existence of GPCRs in plants is controversial. Contrastingly, a surplus of receptor-like kinases (RLKs) provides signal recognition at the plant cell surface. It is established that G proteins are involved in plant defense and suggested that they relay signals from defense-related RLKs. However, it is unclear how the signaling is conducted, as physical interaction between the RLKs and G proteins has not been demonstrated. Using yeast split-ubiquitin system and Bimolecular Fluorescence Complementation assays, we demonstrate physical interaction between the Gα, Gγ1 and Gγ2 subunits, and the defense-related RD-type receptor like kinases CERK1, BAK1 and BIR1. At the same time, no interaction was detected with the non-RD RLK FLS2. We hypothesize that G-proteins mediate signal transduction immediately downstream of the pathogenesis-related RLKs.
Collapse
Affiliation(s)
- María Nieves Aranda-Sicilia
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Current address: Department of Plant Biochemistry, Molecular and Cell Biology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Natsumi Maruta
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - David Chakravorty
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Current address: Biology Department, Pennsylvania State University, University Park, PA 16802, USA
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - José Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
187
|
Sreekanta S, Haruta M, Minkoff BB, Glazebrook J. Functional characterization of PCRK1, a putative protein kinase with a role in immunity. PLANT SIGNALING & BEHAVIOR 2015; 10:e1063759. [PMID: 26237268 PMCID: PMC4883834 DOI: 10.1080/15592324.2015.1063759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 05/29/2023]
Abstract
In Arabidopsis, defense signaling is triggered by the perception of conserved molecular patterns by pattern recognition receptors (PRRs). Signal transduction from the PRRs requires members of a family of Receptor-Like Cytoplasmic Kinases (RLCKs). Previously, we described one such RLCK, PTI Compromised Receptor-Like Cytoplasmic Kinase 1 (PCRK1) that is important for immunity induced by Microbe Associated Molecular Patterns (MAMPs) as well as Damage Associated Molecular Patterns (DAMPs). In this study, we measured the growth of Pma ES4326 in double mutants carrying pcrk1 together with the salicylic acid (SA) biosynthesis mutation sid2-2 or the jasmonic acid (JA) receptor mutation coi1-1, showing that the function of PCRK1 is SA independent but may be partially dependent on JA. Mutation of phosphorylated serine residues S232, S233 and S237 compromised the immune signaling function of PCRK1.
Collapse
Affiliation(s)
- Suma Sreekanta
- Department of Plant Biology and Microbial and Plant Genomics Institute; University of Minnesota; Saint Paul, MN USA
| | - Miyoshi Haruta
- Department of Biochemistry; University of Wisconsin-Madison; Madison, WI USA
| | - Benjamin B Minkoff
- Department of Biochemistry; University of Wisconsin-Madison; Madison, WI USA
| | - Jane Glazebrook
- Department of Plant Biology and Microbial and Plant Genomics Institute; University of Minnesota; Saint Paul, MN USA
| |
Collapse
|
188
|
Poulsen LR, López-Marqués RL, Pedas PR, McDowell SC, Brown E, Kunze R, Harper JF, Pomorski TG, Palmgren M. A phospholipid uptake system in the model plant Arabidopsis thaliana. Nat Commun 2015; 6:7649. [PMID: 26212235 DOI: 10.1038/ncomms8649] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/28/2015] [Indexed: 01/11/2023] Open
Abstract
Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control.
Collapse
Affiliation(s)
- Lisbeth R Poulsen
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Pai R Pedas
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Stephen C McDowell
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia Street-MS330, Reno, Nevada 89557, USA
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia Street-MS330, Reno, Nevada 89557, USA
| | - Reinhard Kunze
- Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Institut für Biologie - Angewandte Genetik, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia Street-MS330, Reno, Nevada 89557, USA
| | - Thomas G Pomorski
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, Centre for Membrane Pumps in Cells and Disease-PUMPKIN, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
189
|
Hurley B, Subramaniam R, Guttman DS, Desveaux D. Proteomics of effector-triggered immunity (ETI) in plants. Virulence 2015; 5:752-60. [PMID: 25513776 PMCID: PMC4189881 DOI: 10.4161/viru.36329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Effector-triggered immunity (ETI) was originally termed gene-for-gene resistance and dates back to fundamental observations of flax resistance to rust fungi by Harold Henry Flor in the 1940s. Since then, genetic and biochemical approaches have defined our current understanding of how plant “resistance” proteins recognize microbial effectors. More recently, proteomic approaches have expanded our view of the protein landscape during ETI and contributed significant advances to our mechanistic understanding of ETI signaling. Here we provide an overview of proteomic techniques that have been used to study plant ETI including both global and targeted approaches. We discuss the challenges associated with ETI proteomics and highlight specific examples from the literature, which demonstrate how proteomics is advancing the ETI research field.
Collapse
Affiliation(s)
- Brenden Hurley
- a Department of Cell & Systems Biology; University of Toronto; Toronto, ON Canada
| | | | | | | |
Collapse
|
190
|
Aryal UK, Ross ARS, Krochko JE. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings. PLoS One 2015; 10:e0130763. [PMID: 26158488 PMCID: PMC4497735 DOI: 10.1371/journal.pone.0130763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/23/2015] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation regulates diverse cellular functions and plays a key role in the early development of plants. To complement and expand upon previous investigations of protein phosphorylation in Arabidopsis seedlings we used an alternative approach that combines protein extraction under non-denaturing conditions with immobilized metal-ion affinity chromatography (IMAC) enrichment of intact phosphoproteins in Rubisco-depleted extracts, followed by identification using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-gel trypsin digestion and analysis of selected gel spots identified 144 phosphorylated peptides and residues, of which only18 phosphopeptides and 8 phosphosites were found in the PhosPhAt 4.0 and P3DB Arabidopsis thaliana phosphorylation site databases. More than half of the 82 identified phosphoproteins were involved in carbohydrate metabolism, photosynthesis/respiration or oxidative stress response mechanisms. Enrichment of intact phosphoproteins prior to 2-DE and LC-MS/MS appears to enhance detection of phosphorylated threonine and tyrosine residues compared with methods that utilize peptide-level enrichment, suggesting that the two approaches are somewhat complementary in terms of phosphorylation site coverage. Comparing results for young seedlings with those obtained previously for mature Arabidopsis leaves identified five proteins that are differentially phosphorylated in these tissues, demonstrating the potential of this technique for investigating the dynamics of protein phosphorylation during plant development.
Collapse
Affiliation(s)
- Uma K. Aryal
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Andrew R. S. Ross
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
- * E-mail:
| | - Joan E. Krochko
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
191
|
Mauriat M, Leplé JC, Claverol S, Bartholomé J, Negroni L, Richet N, Lalanne C, Bonneu M, Coutand C, Plomion C. Quantitative Proteomic and Phosphoproteomic Approaches for Deciphering the Signaling Pathway for Tension Wood Formation in Poplar. J Proteome Res 2015; 14:3188-203. [PMID: 26112267 DOI: 10.1021/acs.jproteome.5b00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood.
Collapse
Affiliation(s)
- Mélanie Mauriat
- †INRA, UMR 1202 BIOGECO, F-33610 Cestas, France.,‡Univ. Bordeaux, BIOGECO, UMR1202, F-33615 Pessac, France
| | - Jean-Charles Leplé
- §INRA, UR0588 AGPF, 2163 Avenue de la Pomme de Pin, CS 40001 Ardon, F-45075 Orléans Cedex 2, France
| | - Stéphane Claverol
- ⊥Plateforme Protéome, CGFB, Université Bordeaux Segalen, F-33076 Bordeaux, France
| | - Jérôme Bartholomé
- †INRA, UMR 1202 BIOGECO, F-33610 Cestas, France.,‡Univ. Bordeaux, BIOGECO, UMR1202, F-33615 Pessac, France
| | - Luc Negroni
- ⊥Plateforme Protéome, CGFB, Université Bordeaux Segalen, F-33076 Bordeaux, France
| | - Nicolas Richet
- §INRA, UR0588 AGPF, 2163 Avenue de la Pomme de Pin, CS 40001 Ardon, F-45075 Orléans Cedex 2, France
| | - Céline Lalanne
- †INRA, UMR 1202 BIOGECO, F-33610 Cestas, France.,‡Univ. Bordeaux, BIOGECO, UMR1202, F-33615 Pessac, France
| | - Marc Bonneu
- ⊥Plateforme Protéome, CGFB, Université Bordeaux Segalen, F-33076 Bordeaux, France
| | - Catherine Coutand
- ¶INRA, UMR 547 PIAF, 234 Avenue du Brézet, F-63100 Clermont-Ferrand, France.,∥Clermont Université, Université Blaise Pascal, UMR 547 PIAF, F-63100 Clermont-Ferrand, France
| | - Christophe Plomion
- †INRA, UMR 1202 BIOGECO, F-33610 Cestas, France.,‡Univ. Bordeaux, BIOGECO, UMR1202, F-33615 Pessac, France
| |
Collapse
|
192
|
Sreekanta S, Bethke G, Hatsugai N, Tsuda K, Thao A, Wang L, Katagiri F, Glazebrook J. The receptor-like cytoplasmic kinase PCRK1 contributes to pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:78-90. [PMID: 25711411 DOI: 10.1111/nph.13345] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
In this paper we describe PATTERN-TRIGGERED IMMUNITY (PTI) COMPROMISED RECEPTOR-LIKE CYTOPLASMIC KINASE 1 (PCRK1) of Arabidopsis thaliana, an RLCK that is important for defense against the pathogen Pseudomonas syringae pv. maculicola ES4326 (Pma ES4326). We examined defense responses such as bacterial growth, production of reactive oxygen species (ROS) and callose deposition in pcrk1 mutant plants to determine the role of PCRK1 during pathogen infection. Expression of PCRK1 was induced following pathogen infection. Pathogen growth was significantly higher in pcrk1 mutant lines than in wild-type Col-0. Mutant pcrk1 plants showed reduced pattern-triggered immunity (PTI) against Pma ES4326 after pretreatment with peptides derived from flagellin (flg22), elongation factor-Tu (elf18), or an endogenous protein (pep1). Deposition of callose was reduced in pcrk1 plants, indicating a role of PCRK1 in activation of early immune responses. A PCRK1 transgene containing a mutation in a conserved lysine residue important for phosphorylation activity of kinases (K118E) failed to complement a pcrk1 mutant for the Pma ES4326 growth phenotype. Our study shows that PCRK1 plays an important role during PTI and that a conserved lysine residue in the putative kinase domain is important for PCRK1 function.
Collapse
Affiliation(s)
- Suma Sreekanta
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Gerit Bethke
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Noriyuki Hatsugai
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Kenichi Tsuda
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Amanda Thao
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Lin Wang
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Fumiaki Katagiri
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Jane Glazebrook
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN, 55108, USA
| |
Collapse
|
193
|
Hou Y, Qiu J, Tong X, Wei X, Nallamilli BR, Wu W, Huang S, Zhang J. A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight. BMC PLANT BIOLOGY 2015; 15:163. [PMID: 26112675 PMCID: PMC4482044 DOI: 10.1186/s12870-015-0541-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/05/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rice is a major crop worldwide. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice. It has been clear that phosphorylation plays essential roles in plant disease resistance. However, the role of phosphorylation is poorly understood in rice-Xoo system. Here, we report the first study on large scale enrichment of phosphopeptides and identification of phosphosites in rice before and 24 h after Xoo infection. RESULTS We have successfully identified 2367 and 2223 phosphosites on 1334 and 1297 representative proteins in 0 h and 24 h after Xoo infection, respectively. A total of 762 differentially phosphorylated proteins, including transcription factors, kinases, epi-genetic controlling factors and many well-known disease resistant proteins, are identified after Xoo infection suggesting that they may be functionally relevant to Xoo resistance. In particular, we found that phosphorylation/dephosphorylation might be a key switch turning on/off many epi-genetic controlling factors, including HDT701, in response to Xoo infection, suggesting that phosphorylation switch overriding the epi-genetic regulation may be a very universal model in the plant disease resistance pathway. CONCLUSIONS The phosphosites identified in this study would be a big complementation to our current knowledge in the phosphorylation status and sites of rice proteins. This research represents a substantial advance in understanding the rice phosphoproteome as well as the mechanism of rice bacterial blight resistance.
Collapse
Affiliation(s)
- Yuxuan Hou
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jiehua Qiu
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiangjin Wei
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, U.S.A..
| | - Weihuai Wu
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Shiwen Huang
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jian Zhang
- China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
194
|
Mithoe SC, Menke FLH. Phosphopeptide immuno-affinity enrichment to enhance detection of tyrosine phosphorylation in plants. Methods Mol Biol 2015; 1306:135-46. [PMID: 25930699 DOI: 10.1007/978-1-4939-2648-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Tyrosine (Tyr) phosphorylation plays an essential role in signaling in animal systems, but the relative contribution of Tyr phosphorylation to plant signal transduction has, until recently, remained an open question. One of the major issues hampering the analysis is the low abundance of Tyr phosphorylation and therefore underrepresentation in most mass spec-based proteomic studies. Here, we describe a working approach to selectively enrich Tyr-phosphorylated peptides from complex plant tissue samples. We describe a detailed protocol that is based on immuno-affinity enrichment step using an anti-phospho-tyrosine (pTyr)-specific antibody. This single enrichment strategy effectively enriches pTyr-containing peptides from complex total plant cell extracts, which can be measured by LC-MS/MS without further fractionation or enrichment.
Collapse
|
195
|
Proteomics profiling of ethylene-induced tomato flower pedicel abscission. J Proteomics 2015; 121:67-87. [DOI: 10.1016/j.jprot.2015.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 11/18/2022]
|
196
|
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). MOLECULAR PLANT 2015; 8:521-39. [PMID: 25744358 DOI: 10.1016/j.molp.2014.12.022] [Citation(s) in RCA: 560] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 12/30/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants constantly have to face pathogen attacks. However, plant disease rarely occurs due to efficient immune systems possessed by the host plants. Pathogens are perceived by two different recognition systems that initiate the so-called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), both of which are accompanied by a set of induced defenses that usually repel pathogen attacks. Here we discuss the complex network of signaling pathways occurring during PTI, focusing on the involvement of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Heribert Hirt
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
197
|
Adachi H, Yoshioka H. Kinase-mediated orchestration of NADPH oxidase in plant immunity. Brief Funct Genomics 2015; 14:253-9. [PMID: 25740095 DOI: 10.1093/bfgp/elv004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are important signalling molecules, which participate in multiple physiological processes including immune response, development, cell elongation and hormonal signalling in plants. Plant NADPH oxidase, termed respiratory burst oxidase homologue (RBOH), is frequently studied as a main player for pathogen-responsive ROS burst. Our understanding of the activation mechanism of RBOH after pathogen recognition has increased in recent years. In this review, we focus on kinase-mediated regulatory mechanisms of RBOHs. Calcium-dependent protein kinases (CDPKs) are well known to activate RBOHs by direct phosphorylation. In addition to functions of CDPKs in plants, we also describe the involvement of receptor-like cytoplasmic kinases (RLCKs) and mitogen-activated protein kinases (MAPKs) in fine-tuning RBOH activity at the post-translational and transcriptional levels, respectively.
Collapse
|
198
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
199
|
Li J, Silva-Sanchez C, Zhang T, Chen S, Li H. Phosphoproteomics technologies and applications in plant biology research. FRONTIERS IN PLANT SCIENCE 2015; 6:430. [PMID: 26136758 PMCID: PMC4468387 DOI: 10.3389/fpls.2015.00430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation has long been recognized as an essential mechanism to regulate many important processes of plant life. However, studies on phosphorylation mediated signaling events in plants are challenged with low stoichiometry and dynamic nature of phosphorylated proteins. Significant advances in mass spectrometry based phosphoproteomics have taken place in recent decade, including phosphoprotein/phosphopeptide enrichment, detection and quantification, and phosphorylation site localization. This review describes a variety of separation and enrichment methods for phosphoproteins and phosphopeptides, the applications of technological innovations in plant phosphoproteomics, and highlights significant achievement of phosphoproteomics in the areas of plant signal transduction, growth and development.
Collapse
Affiliation(s)
- Jinna Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
| | - Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Haiying Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- *Correspondence: Haiying Li, College of Life Sciences, Heilongjiang University, 74 Xuefu Rd, Harbin 150080, China
| |
Collapse
|
200
|
Abstract
Cereals are the most important crop plant supplying staple food throughout the world. The economic importance and continued breeding of crop plants such as rice, maize, wheat, or barley require a detailed scientific understanding of adaptive and developmental processes. Protein phosphorylation is one of the most important regulatory posttranslational modifications and its analysis allows deriving functional and regulatory principles in plants. This minireview summarizes the current knowledge of phosphoproteomic studies in cereals.
Collapse
Affiliation(s)
- Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuchang Moshan, Wuhan, 430074, China,
| |
Collapse
|