151
|
Karlsson HL, Gliga AR, Calléja FMGR, Gonçalves CSAG, Wallinder IO, Vrieling H, Fadeel B, Hendriks G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part Fibre Toxicol 2014; 11:41. [PMID: 25179117 PMCID: PMC4237954 DOI: 10.1186/s12989-014-0041-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). METHODS The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation). RESULTS We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. CONCLUSIONS We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 2014; 98:8083-97. [DOI: 10.1007/s00253-014-5953-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/01/2023]
|
153
|
Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 2014; 75:53-80. [PMID: 24819218 DOI: 10.1016/j.addr.2014.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization.
Collapse
Affiliation(s)
- David Cipolla
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA.
| | - Boris Shekunov
- Shire Corporation, 725 Chesterbrook Blvd, Wayne, PA 19087, USA
| | - Jim Blanchard
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA
| | - Anthony Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
154
|
WU J, ZHANG G, LIU J, GAO H, SONG C, DU H, ZHANG L, GONG Z, LÜ Y. Synthesis, characteristics, and antibacterial activity of a rare-earth samarium/silver/titanium dioxide inorganic nanomaterials. J RARE EARTH 2014. [DOI: 10.1016/s1002-0721(14)60133-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
155
|
Jiao ZH, Li M, Feng YX, Shi JC, Zhang J, Shao B. Hormesis effects of silver nanoparticles at non-cytotoxic doses to human hepatoma cells. PLoS One 2014; 9:e102564. [PMID: 25033410 PMCID: PMC4102499 DOI: 10.1371/journal.pone.0102564] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Silver nanoparticles (AgNPs) have attracted considerable attentions due to their unique properties and diverse applications. Although it has been reported that AgNPs have acute toxic effects on a variety of cultured mammalian cells and animal models, few studies have been conducted to evaluate the associated risk of AgNPs to human health at non-cytotoxic doses. In this paper, HepG2 cells were exposed to 10 nm and 100 nm AgNPs under non-cytotoxic conditions, and cell viability was assessed. At low doses, AgNPs displayed "hormesis" effects by accelerating cell proliferation. Further studies indicated that the activation states of MAPKs were differentially regulated in this process. Specifically, by increasing the expression of downstream genes, p38 MAPK played a central role in non-cytotoxic AgNP-induced hormesis. Moreover, the treatment of HepG2 cells with silver ions (Ag+) at the same dose levels induced distinct biological effects, suggesting that different intrinsic properties exist for AgNPs and Ag+.
Collapse
Affiliation(s)
- Zhi-Hao Jiao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yi-Xing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jia-Chen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
156
|
Wang XZ, Yang Y, Li R, McGuinnes C, Adamson J, Megson IL, Donaldson K. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 2014; 8:465-76. [PMID: 23586395 DOI: 10.3109/17435390.2013.796534] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Structure toxicity relationship analysis was conducted using principal component analysis (PCA) for a panel of nanoparticles that included dry powders of oxides of titanium, zinc, cerium and silicon, dry powders of silvers, suspensions of polystyrene latex beads and dry particles of carbon black, nanotubes and fullerene, as well as diesel exhaust particles. Acute in vitro toxicity was assessed by different measures of cell viability, apoptosis and necrosis, haemolytic effects and the impact on cell morphology, while structural properties were characterised by particle size and size distribution, surface area, morphology, metal content, reactivity, free radical generation and zeta potential. Different acute toxicity measures were processed using PCA that classified the particles and identified four materials with an acute toxicity profile: zinc oxide, polystyrene latex amine, nanotubes and nickel oxide. PCA and contribution plot analysis then focused on identifying the structural properties that could determine the acute cytotoxicity of these four materials. It was found that metal content was an explanatory variable for acute toxicity associated with zinc oxide and nickel oxide, while high aspect ratio appeared the most important feature in nanotubes. Particle charge was considered as a determinant for high toxicity of polystyrene latex amine.
Collapse
Affiliation(s)
- Xue Z Wang
- Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds , Leeds LS2 9JT , UK
| | | | | | | | | | | | | |
Collapse
|
157
|
Melo LG, Martiny A, Pinto AL. Nano characterization of gunshot residues from Brazilian ammunition. Forensic Sci Int 2014; 240:69-79. [DOI: 10.1016/j.forsciint.2014.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
|
158
|
Saber AT, Jacobsen NR, Jackson P, Poulsen SS, Kyjovska ZO, Halappanavar S, Yauk CL, Wallin H, Vogel U. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:517-31. [PMID: 24920450 PMCID: PMC4285160 DOI: 10.1002/wnan.1279] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 01/08/2023]
Abstract
Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction of the acute phase response is intimately linked to risk of cardiovascular disease as shown in both epidemiological and animal studies. Indeed, blood levels of acute phase proteins, such as C-reactive protein and serum amyloid A, are independent predictors of risk of cardiovascular disease in prospective epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk of cardiovascular disease. Increased levels of acute phase mRNA and proteins in lung tissues, bronchoalveolar lavage fluid and plasma clearly indicate pulmonary acute phase response following pulmonary deposition of different kinds of particles including diesel exhaust particles, nanoparticles, and carbon nanotubes. The pulmonary acute phase response is dose-dependent and long lasting. Conversely, the hepatic acute phase response is reduced relative to lung or entirely absent. We also provide evidence that pulmonary inflammation, as measured by neutrophil influx, is a predictor of the acute phase response and that the total surface area of deposited particles correlates with the pulmonary acute phase response. We discuss the implications of these findings in relation to occupational exposure to nanoparticles. How to cite this article: WIREs Nanomed Nanobiotechnol 2014, 6:517–531. doi: 10.1002/wnan.1279
Collapse
Affiliation(s)
- Anne T Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Jones MC, Jones SA, Riffo-Vasquez Y, Spina D, Hoffman E, Morgan A, Patel A, Page C, Forbes B, Dailey LA. Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J Control Release 2014; 183:94-104. [DOI: 10.1016/j.jconrel.2014.03.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 11/24/2022]
|
160
|
Braakhuis HM, Park MVDZ, Gosens I, De Jong WH, Cassee FR. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 2014; 11:18. [PMID: 24725891 PMCID: PMC3996135 DOI: 10.1186/1743-8977-11-18] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/04/2014] [Indexed: 02/02/2023] Open
Abstract
The increasing manufacture and use of products based on nanotechnology raises concerns for both workers and consumers. Various studies report induction of pulmonary inflammation after inhalation exposure to nanoparticles, which can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Each of these aspects can affect their toxicity, although it is largely unknown to what extent. The aim of the current review is to analyse published data on inhalation of nanoparticles to identify and evaluate the contribution of their physicochemical characteristics to the onset and development of pulmonary inflammation. Many physicochemical characteristics of nanoparticles affect their lung deposition, clearance, and pulmonary response that, in combination, ultimately determine whether pulmonary inflammation will occur and to what extent. Lung deposition is mainly determined by the physical properties of the aerosol (size, density, shape, hygroscopicity) in relation to airflow and the anatomy of the respiratory system, whereas clearance and translocation of nanoparticles are mainly determined by their geometry and surface characteristics. Besides size and chemical composition, other physicochemical characteristics influence the induction of pulmonary inflammation after inhalation. As some nanoparticles dissolve, they can release toxic ions that can damage the lung tissue, making dissolution rate an important characteristic that affects lung inflammation. Fibre-shaped materials are more toxic to the lungs compared to spherical shaped nanoparticles of the same chemical composition. In general, cationic nanoparticles are more cytotoxic than neutral or anionic nanoparticles. Finally, surface reactivity correlates well with observed pulmonary inflammation. With all these characteristics affecting different stages of the events leading to pulmonary inflammation, no unifying dose metric could be identified to describe pulmonary inflammation for all nanomaterials, although surface reactivity might be a useful measure. To determine the extent to which the various characteristics influence the induction of pulmonary inflammation, the effect of these characteristics on lung deposition, clearance, and pulmonary response should be systematically evaluated. The results can then be used to facilitate risk assessment by categorizing nanoparticles according to their characteristics.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
- Department of Toxicogenomics, Maastricht University, PO Box 616, Maastricht 6200MD, The Netherlands
| | - Margriet VDZ Park
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Wim H De Jong
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, Utrecht 3508TD, The Netherlands
| |
Collapse
|
161
|
Onoda A, Umezawa M, Takeda K, Ihara T, Sugamata M. Effects of maternal exposure to ultrafine carbon black on brain perivascular macrophages and surrounding astrocytes in offspring mice. PLoS One 2014; 9:e94336. [PMID: 24722459 PMCID: PMC3983141 DOI: 10.1371/journal.pone.0094336] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 11/18/2022] Open
Abstract
Perivascular macrophages (PVMs) constitute a subpopulation of resident macrophages in the central nervous system (CNS). They are located at the blood-brain barrier and can contribute to maintenance of brain functions in both health and disease conditions. PVMs have been shown to respond to particle substances administered during the prenatal period, which may alter their phenotype over a long period. We aimed to investigate the effects of maternal exposure to ultrafine carbon black (UfCB) on PVMs and astrocytes close to the blood vessels in offspring mice. Pregnant mice were exposed to UfCB suspension by intranasal instillation on gestational days 5 and 9. Brains were collected from their offspring at 6 and 12 weeks after birth. PVM and astrocyte phenotypes were examined by Periodic Acid Schiff (PAS) staining, transmission electron microscopy and PAS-glial fibrillary acidic protein (GFAP) double staining. PVM granules were found to be enlarged and the number of PAS-positive PVMs was decreased in UfCB-exposed offspring. These results suggested that in offspring, “normal” PVMs decreased in a wide area of the CNS through maternal UfCB exposure. The increase in astrocytic GFAP expression level was closely related to the enlargement of granules in the attached PVMs in offspring. Honeycomb-like structures in some PVM granules and swelling of astrocytic end-foot were observed under electron microscopy in the UfCB group. The phenotypic changes in PVMs and astrocytes indicate that maternal UfCB exposure may result in changes to brain blood vessels and be associated with increased risk of dysfunction and disorder in the offspring brain.
Collapse
Affiliation(s)
- Atsuto Onoda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Department of Pathology, Tochigi Institute of Clinical Pathology, Nogi, Tochigi, Japan
- * E-mail:
| | - Masakazu Umezawa
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Ken Takeda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Tomomi Ihara
- Department of Pathology, Tochigi Institute of Clinical Pathology, Nogi, Tochigi, Japan
| | - Masao Sugamata
- Department of Pathology, Tochigi Institute of Clinical Pathology, Nogi, Tochigi, Japan
| |
Collapse
|
162
|
Sauer UG, Vogel S, Aumann A, Hess A, Kolle SN, Ma-Hock L, Wohlleben W, Dammann M, Strauss V, Treumann S, Gröters S, Wiench K, van Ravenzwaay B, Landsiedel R. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation. Toxicol Appl Pharmacol 2014; 276:1-20. [PMID: 24382512 DOI: 10.1016/j.taap.2013.12.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/04/2013] [Accepted: 12/19/2013] [Indexed: 01/22/2023]
Abstract
The applicability of rat precision-cut lung slices (PCLuS) in detecting nanomaterial (NM) toxicity to the respiratory tract was investigated evaluating sixteen OECD reference NMs (TiO₂, ZnO, CeO₂, SiO₂, Ag, multi-walled carbon nanotubes (MWCNTs)). Upon 24-hour test substance exposure, the PCLuS system was able to detect early events of NM toxicity: total protein, reduction in mitochondrial activity, caspase-3/-7 activation, glutathione depletion/increase, cytokine induction, and histopathological evaluation. Ion shedding NMS (ZnO and Ag) induced severe tissue destruction detected by the loss of total protein. Two anatase TiO₂ NMs, CeO₂ NMs, and two MWCNT caused significant (determined by trend analysis) cytotoxicity in the WST-1 assay. At non-cytotoxic concentrations, different TiO₂ NMs and one MWCNT increased GSH levels, presumably a defense response to reactive oxygen species, and these substances further induced a variety of cytokines. One of the SiO₂ NMs increased caspase-3/-7 activities at non-cytotoxic levels, and one rutile TiO₂ only induced cytokines. Investigating these effects is, however, not sufficient to predict apical effects found in vivo. Reproducibility of test substance measurements was not fully satisfactory, especially in the GSH and cytokine assays. Effects were frequently observed in negative controls pointing to tissue slice vulnerability even though prepared and handled with utmost care. Comparisons of the effects observed in the PCLuS to in vivo effects reveal some concordances for the metal oxide NMs, but less so for the MWCNT. The highest effective dosages, however, exceeded those reported for rat short-term inhalation studies. To become applicable for NM testing, the PCLuS system requires test protocol optimization.
Collapse
Affiliation(s)
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | - Sandra Vogel
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany; Product Stewardship Water Solutions, BASF SE, Ludwigshafen, Germany
| | - Alexandra Aumann
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Annemarie Hess
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Susanne N Kolle
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany; Material Physics, BASF SE, Ludwigshafen, Germany
| | - Martina Dammann
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Silke Treumann
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Sibylle Gröters
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | - Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany.
| |
Collapse
|
163
|
Sarhan OMM, Hussein RM. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine 2014; 9:1505-17. [PMID: 24711700 PMCID: PMC3969345 DOI: 10.2147/ijn.s56729] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effect of acute dosing with silver nanoparticles (AgNPs) and identify potential ultrastructural alterations in the liver and kidney and their effect on blood parameters in the albino rat. METHODS Twenty rats were used to assess the acute effects of AgNPs. Rats in the treatment group were injected intraperitoneally with 0.5 mL of distilled water containing AgNPs at a dose of 2,000 mg/kg body weight followed by a second injection after 48 hours. Control rats received two 0.5 mL doses of distilled water only. After 3 days, blood samples were collected, and the rat kidneys and livers were extracted and processed for electron microscopy to investigate for hematologic and histopathologic alterations. RESULTS Renal tubules showed swollen epithelium with cytoplasmic vacuolization, thickening of the basement membrane, and destruction of some mitochondrial cristae. Podocytes showed elongation and swelling of their primary and secondary processes. The basement membrane of the capillary tufts became thicker. The hepatic tissue showed narrowing of the sinusoids, swollen hepatocytes with hypertrophied nucleoli, and accumulation of fat globules in the nucleoplasm and cytoplasm. The hepatic sinusoids showed hypertrophied endothelial and Kupffer. Destructed cristae of some mitochondria, endosomes, and larger lysosomes filled with Ag-NPs were also observed in the Kupffer cells. Significant increases were observed in white blood cell count, lymphocyte count, granulocytes, and hemoglobin. There was a significant increase in serum creatinine, urea, and aspartate and alanine aminotransferases. CONCLUSION To the best of the authors' knowledge, the ultrastructural changes in renal and liver tissue observed in this study have not been described before. Our results suggest that injection of AgNPs could have severe cytotoxic effects on the structure and function of these organs.
Collapse
Affiliation(s)
- Osama Mohamed M Sarhan
- Department of Zoology, Faculty of Sciences, Fayoum University, Al Fayoum, Egypt ; Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia
| | - Rehab M Hussein
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
164
|
Dailey LA, Hernández-Prieto R, Casas-Ferreira AM, Jones MC, Riffo-Vasquez Y, Rodríguez-Gonzalo E, Spina D, Jones SA, Smith NW, Forbes B, Page C, Legido-Quigley C. Adenosine monophosphate is elevated in the bronchoalveolar lavage fluid of mice with acute respiratory toxicity induced by nanoparticles with high surface hydrophobicity. Nanotoxicology 2014; 9:106-15. [PMID: 24621376 DOI: 10.3109/17435390.2014.894150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inhaled nanomaterials present a challenge to traditional methods and understanding of respiratory toxicology. In this study, a non-targeted metabolomics approach was used to investigate relationships between nanoparticle hydrophobicity, inflammatory outcomes and the metabolic fingerprint in bronchoalveolar fluid. Measures of acute lung toxicity were assessed following single-dose intratracheal administration of nanoparticles with varying surface hydrophobicity (i.e. pegylated lipid nanocapsules, polyvinyl acetate nanoparticles and polystyrene beads; listed in order of increasing hydrophobicity). Broncho-alveolar lavage (BAL) fluid was collected from mice exposed to nanoparticles at a surface area dose of 220 cm(2) and metabolite fingerprints were acquired via ultra pressure liquid chromatography-mass spectrometry-based metabolomics. Particles with high surface hydrophobicity were pro-inflammatory. Multivariate analysis of the resultant small molecule fingerprints revealed clear discrimination between the vehicle control and polystyrene beads (p < 0.05), as well as between nanoparticles of different surface hydrophobicity (p < 0.0001). Further investigation of the metabolic fingerprints revealed that adenosine monophosphate (AMP) concentration in BAL correlated with neutrophilia (p < 0.01), CXCL1 levels (p < 0.05) and nanoparticle surface hydrophobicity (p < 0.001). Our results suggest that extracellular AMP is an intermediary metabolite involved in adenine nucleotide-regulated neutrophilic inflammation as well as tissue damage, and could potentially be used to monitor nanoparticle-induced responses in the lung following pulmonary administration.
Collapse
Affiliation(s)
- Lea Ann Dailey
- Institute of Pharmaceutical Science, King's College London , London , UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Hristozov D, MacCalman L, Jensen K, Stone V, Scott-Fordsmand J, Nowack B, Fernandes T, Marcomini A. Risk Assessment of Engineered Nanomaterials. Nanotoxicology 2014. [DOI: 10.1201/b16562-32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
166
|
Menzel M, Fittschen UEA. Total Reflection X-ray Fluorescence Analysis of Airborne Silver Nanoparticles from Fabrics. Anal Chem 2014; 86:3053-9. [DOI: 10.1021/ac404017u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Magnus Menzel
- Institut für Anorganische
und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz
6, Hamburg 20146, Germany
| | | |
Collapse
|
167
|
Durán N, Seabra AB, de Lima R. Cytotoxicity and Genotoxicity of Biogenically Synthesized Silver Nanoparticles. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
168
|
Brown DM, Kanase N, Gaiser B, Johnston H, Stone V. Inflammation and gene expression in the rat lung after instillation of silica nanoparticles: Effect of size, dispersion medium and particle surface charge. Toxicol Lett 2014. [DOI: 10.1016/j.toxlet.2013.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
169
|
Zhang Y, Nguyen KC, Lefebvre DE, Shwed PS, Crosthwait J, Bondy GS, Tayabali AF. Critical experimental parameters related to the cytotoxicity of zinc oxide nanoparticles. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2014; 16:2440. [PMID: 24944520 PMCID: PMC4053596 DOI: 10.1007/s11051-014-2440-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/25/2014] [Indexed: 05/14/2023]
Abstract
The increasing use of zinc oxide nanoparticles (ZnO-NPs) has raised concerns about their potential hazards to human and environmental health. In this study, the characterization and cytotoxicity of two ZnO-NPs products (Z-COTE and Z-COTE HP1) were investigated. The zinc content of Z-COTE and Z-COTE HP1 was 82.5 ± 7.3 and 80.1 ± 3.5 %, respectively. Both ZnO-NP samples contained sub-cytotoxic levels of iron and copper, and silicon was detected from the surface coating of Z-COTE HP1. All samples were highly agglomerated, and the primary particles appeared as variable polyhedral structures. There was no significant difference in size distribution or average diameter of Z-COTE (53 ± 23 nm) and Z-COTE HP1 (54 ± 26 nm). A dose-dependent cytotoxicity was observed 24 h after exposure to ZnO-NPs, and monocytes were more sensitive than lung epithelial cells or lymphoblasts in both human and mouse cells. There was a significant difference in cytotoxicity between nano- and fine-forms, but only at the threshold cytotoxic dose with cellular metabolism assays. Compared to uncoated ZnO-NPs, the surface coating with triethoxycaprylylsilane marginally attenuated cellular oxidative stress and protected cellular metabolic activity. These results demonstrate the importance of model cell type, dose selection, and cytotoxicity assessment methodology to accurately evaluate the potential toxicity of various nanoparticles in vitro.
Collapse
Affiliation(s)
- Yan Zhang
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9 Canada
| | - Kathy C. Nguyen
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9 Canada
| | - David E. Lefebvre
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9 Canada
| | - Phillip S. Shwed
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9 Canada
| | - Jennifer Crosthwait
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9 Canada
| | - Genevieve S. Bondy
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9 Canada
| | - Azam F. Tayabali
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|
170
|
Singh KP, Gupta S. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Adv 2014. [DOI: 10.1039/c4ra01274g] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Case study-1 (diverse metal core NPs); case study-2 (similar metal core NPs); case study-3 (metal oxide NPs); case study-4 (surface modified multi-walled CNTs); case study-5 (fullerene derivatives).
Collapse
Affiliation(s)
- Kunwar P. Singh
- Academy of Scientific and Innovative Research
- New Delhi-110 001, India
- Environmental Chemistry Division
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226 001, India
| | - Shikha Gupta
- Academy of Scientific and Innovative Research
- New Delhi-110 001, India
- Environmental Chemistry Division
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226 001, India
| |
Collapse
|
171
|
Nel AE. Implementation of alternative test strategies for the safety assessment of engineered nanomaterials. J Intern Med 2013; 274:561-77. [PMID: 23879741 PMCID: PMC4096910 DOI: 10.1111/joim.12109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nanotechnology introduces a new field that requires novel approaches and methods for hazard and risk assessment. For an appropriate scientific platform for safety assessment, nanoscale properties and functions of engineered nanomaterials (ENMs), including how the physicochemical properties of the materials relate to mechanisms of injury at the nano-bio interface, must be considered. Moreover, this rapidly advancing new field requires novel test strategies that allow multiple toxicants to be screened in robust, mechanism-based assays in which the bulk of the investigation can be carried out at the cellular and biomolecular level whilst maintaining limited animal use and is based on the contribution of toxicological pathways to the pathophysiology of disease. First, a predictive toxicological approach for the safety assessment of ENMs will be discussed against the background of a '21st-century vision' for using alternative test strategies (ATSs) to perform toxicological assessment of large numbers of untested chemicals, thereby reducing a backlog that could otherwise become a problem for nanotechnology. An ATS is defined here as an alternative to animal experiments or refinement/reduction alternative to traditional animal testing. Secondly, the approach of selecting pathways of toxicity to screen for the pulmonary hazard potential of carbon nanotubes and metal oxides will be discussed, as well as how to use these pathways to perform high-content or high-throughput testing and how the data can be used for hazard ranking, risk assessment, regulatory decision-making and 'safer-by-design' strategies. Finally, the utility and disadvantages of this predictive toxicological approach to ENM safety assessment, and how it can assist the 21st-century vision, will be addressed.
Collapse
Affiliation(s)
- A E Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, CA, USA; UCLA Center for Nano Biology and Predictive Toxicology, Los Angeles, CA, USA
| |
Collapse
|
172
|
An Occupational Exposure Assessment for Engineered Nanoparticles Used in Semiconductor Fabrication. THE ANNALS OF OCCUPATIONAL HYGIENE 2013; 58:251-65. [DOI: 10.1093/annhyg/met064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
173
|
Zhang J, Nazarenko Y, Zhang L, Calderon L, Lee KB, Garfunkel E, Schwander S, Tetley TD, Chung KF, Porter AE, Ryan M, Kipen H, Lioy PJ, Mainelis G. Impacts of a nanosized ceria additive on diesel engine emissions of particulate and gaseous pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13077-85. [PMID: 24144266 PMCID: PMC4066369 DOI: 10.1021/es402140u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NO(x) (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NO(x), our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 North Soto Street, Los Angeles, California 90089, United States
- Corresponding Authors: Phone: 919-681-7782. . Phone: 848-932-5712.
| | - Yevgen Nazarenko
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08904, United States
| | - Lin Zhang
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08901, United States
| | - Leonardo Calderon
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08904, United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| | - Eric Garfunkel
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, United States
| | - Stephan Schwander
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08901, United States
| | - Teresa D. Tetley
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, U.K
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London SW7 2AZ, U.K
| | - Alexandra E. Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, U.K
| | - Mary Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, U.K
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08901, United States
| | - Paul J. Lioy
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08901, United States
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08904, United States
- Corresponding Authors: Phone: 919-681-7782. . Phone: 848-932-5712.
| |
Collapse
|
174
|
Skuland T, Ovrevik J, Låg M, Refsnes M. Role of size and surface area for pro-inflammatory responses to silica nanoparticles in epithelial lung cells: importance of exposure conditions. Toxicol In Vitro 2013; 28:146-55. [PMID: 24211531 DOI: 10.1016/j.tiv.2013.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/16/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
The present study compared non-crystalline silica particles of nano (50nm)- and submicro (500nm)-size (Si50 and Si500) for the potential to induce cytokine responses in bronchial epithelial lung cells (BEAS-2B). The cell cultures were exposed to equal mass and surface area concentrations of the two particles in different exposure media; LHC-9 and DMEM:F12. The state of agglomeration was different in the two media; with marked agglomeration in LHC-9 and nearly no agglomeration in DMEM:F12. On a mass basis, Si50 was more potent than Si500 in inducing cytokine responses in both exposure media. In contrast, upon exposure to similar surface area concentrations, Si500 was more potent than Si50 in DMEM:F12. This might be due to different agglomeration/sedimentation properties of Si50 versus Si500 in the two media. However, influence of differences in particle reactivity or particle uptake cannot be excluded. The data indicated no qualitative changes in the cytokine gene-expression patterns induced by the two particles, suggesting effects through similar mechanisms. These aspects might be of importance for interpretation of in vitro studies of nanomaterials.
Collapse
Affiliation(s)
- T Skuland
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway.
| | - J Ovrevik
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway
| | - M Låg
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway
| | - M Refsnes
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway
| |
Collapse
|
175
|
Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 2013; 10:55. [PMID: 24156363 PMCID: PMC4016420 DOI: 10.1186/1743-8977-10-55] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Hazard identification for risk assessment of nanoparticles (NPs) is mainly composed of in vitro cell-based assays and in vivo animal experimentation. The rapidly increasing number and functionalizations of NPs makes in vivo toxicity tests undesirable on both ethical and financial grounds, creating an urgent need for development of in vitro cell-based assays that accurately predict in vivo toxicity and facilitate safe nanotechnology. Methods In this study, we used 9 different NPs (CeO2, TiO2, carbon black, SiO2, NiO, Co3O4, Cr2O3, CuO, and ZnO). As an in vivo toxicity endpoint, the acute lung inflammogenicity in a rat instillation model was compared with the in vitro toxicity endpoints comprising cytotoxicity, pro-inflammatory cytokine expression, or haemolytic potential. For in vitro assays, 8 different cell-based assays were used including epithelial cells, monocytic/macrophage cells, human erythrocytes, and combined culture. Results ZnO and CuO NPs acting via soluble toxic ions showed positive results in most of assays and were consistent with the lung inflammation data. When compared in in vitro assays at the same surface area dose (30 cm2/mL), NPs that were low solubility and therefore acting via surface reactivity had no convincing activity, except for CeO2 NP. Cytotoxicity in differentiated peripheral blood mononuclear cells was the most accurate showing 89% accuracy and 11% false negativity in predicting acute lung inflammogenicity. However, the haemolysis assay showed 100% consistency with the lung inflammation if any dose, having statistical significance was considered positivity. Other cell-based in vitro assays showed a poorer correlation with in vivo inflammogenicity. Conclusions Based on the toxicity mechanisms of NPs, two different approaches can be applied for prediction of in vivo lung inflammogenicity. Most in vitro assays were good at detecting NPs that act via soluble ions (i.e., ZnO and CuO NP). However, in vitro assays were limited in detecting NPs acting via surface reactivity as their mechanism of toxicity, except for the haemolysis assay.
Collapse
|
176
|
Nel AE, Nasser E, Godwin H, Avery D, Bahadori T, Bergeson L, Beryt E, Bonner JC, Boverhof D, Carter J, Castranova V, Deshazo JR, Hussain SM, Kane AB, Klaessig F, Kuempel E, Lafranconi M, Landsiedel R, Malloy T, Miller MB, Morris J, Moss K, Oberdorster G, Pinkerton K, Pleus RC, Shatkin JA, Thomas R, Tolaymat T, Wang A, Wong J. A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS NANO 2013; 7:6422-33. [PMID: 23924032 PMCID: PMC4004078 DOI: 10.1021/nn4037927] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There has been a conceptual shift in toxicological studies from describing what happens to explaining how the adverse outcome occurs, thereby enabling a deeper and improved understanding of how biomolecular and mechanistic profiling can inform hazard identification and improve risk assessment. Compared to traditional toxicology methods, which have a heavy reliance on animals, new approaches to generate toxicological data are becoming available for the safety assessment of chemicals, including high-throughput and high-content screening (HTS, HCS). With the emergence of nanotechnology, the exponential increase in the total number of engineered nanomaterials (ENMs) in research, development, and commercialization requires a robust scientific approach to screen ENM safety in humans and the environment rapidly and efficiently. Spurred by the developments in chemical testing, a promising new toxicological paradigm for ENMs is to use alternative test strategies (ATS), which reduce reliance on animal testing through the use of in vitro and in silico methods such as HTS, HCS, and computational modeling. Furthermore, this allows for the comparative analysis of large numbers of ENMs simultaneously and for hazard assessment at various stages of the product development process and overall life cycle. Using carbon nanotubes as a case study, a workshop bringing together national and international leaders from government, industry, and academia was convened at the University of California, Los Angeles, to discuss the utility of ATS for decision-making analyses of ENMs. After lively discussions, a short list of generally shared viewpoints on this topic was generated, including a general view that ATS approaches for ENMs can significantly benefit chemical safety analysis.
Collapse
Affiliation(s)
- Andre E Nel
- Department of Medicine, Division of NanoMedicine, University of California Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Donaldson K, Poland CA. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol 2013; 24:724-34. [DOI: 10.1016/j.copbio.2013.05.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/24/2022]
|
178
|
Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G, Hougaard KS, Nyendi AN, Wahlberg P, Madsen AM, Jackson P, Wallin H, Vogel U. Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS One 2013; 8:e69020. [PMID: 23894396 PMCID: PMC3722244 DOI: 10.1371/journal.pone.0069020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/02/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Particulate air pollution is associated with cardiovascular disease. Acute phase response is causally linked to cardiovascular disease. Here, we propose that particle-induced pulmonary acute phase response provides an underlying mechanism for particle-induced cardiovascular risk. METHODS We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. RESULTS Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma, whereas hepatic Saa3 levels were much less affected. Pulmonary Saa3 expression correlated with the number of neutrophils in BAL across different dosing regimens, doses and time points. CONCLUSIONS Pulmonary acute phase response may constitute a direct link between particle inhalation and risk of cardiovascular disease. We propose that the particle-induced pulmonary acute phase response may predict risk for cardiovascular disease.
Collapse
|
179
|
Gosens I, Mathijssen LEAM, Bokkers BGH, Muijser H, Cassee FR. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 2013; 8:643-53. [PMID: 23768316 DOI: 10.3109/17435390.2013.815814] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There are many uncertainties regarding the hazard of nanosized particles compared to the bulk material of the parent chemical. Here, the authors assess the comparative hazard of two nanoscale (NM-211 and NM-212) and one microscale (NM-213) cerium oxide materials in 28-day inhalation toxicity studies in rats (according to Organisation for Economic Co-operation and Development technical guidelines). All three materials gave rise to a dose-dependent pulmonary inflammation and lung cell damage but without gross pathological changes immediately after exposure. Following NM-211 and NM-212 exposure, epithelial cell injury was observed in the recovery groups. There was no evidence of systemic inflammation or other haematological changes following exposure of any of the three particle types. The comparative hazard was quantified by application of the benchmark concentration approach. The relative toxicity was explored in terms of three exposure metrics. When exposure levels were expressed as mass concentration, nanosized NM-211 was the most potent material, whereas when expression levels were based on surface area concentration, micro-sized NM-213 material induced the greatest extent of pulmonary inflammation/damage. Particles were equipotent based on particle number concentrations. In conclusion, similar pulmonary toxicity profiles including inflammation are observed for all three materials with little quantitative differences. Systemic effects were virtually absent. There is little evidence for a dominant predicting exposure metric for the observed effects.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute of Public Health and the Environment , Bilthoven , The Netherlands
| | | | | | | | | |
Collapse
|
180
|
Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol 2013; 43:96-118. [PMID: 23346980 DOI: 10.3109/10408444.2012.756456] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues. Publications based on non-optimal assays of 8-oxo-7,8-dihydroguanine by antibodies and/or unrealistically high levels of 8-oxo-7,8-dihydroguanine (suggesting experimental problems due to spurious oxidation of DNA) reported more induction of DNA damage after exposure to particles than did the publications based on optimal methods. The majority of studies have used single intracavitary administration or inhalation with dose rates exceeding the pulmonary overload threshold, resulting in cytotoxicity and inflammation. It is unclear whether this is relevant for the much lower human exposure levels. Still, there was linear dose-response relationship for 8-oxo-7,8-dihydroguanine in lung tissue without obvious signs of a threshold. The dose-response function was also dependent on chemical composition and other characteristics of the administered particles, whereas dependence on species and strain could not be equivocally determined. Roles of cytotoxicity or inflammation for oxidatively induced DNA damage could not be documented or refuted. Studies on exposure to particles in the gastrointestinal tract showed consistently increased levels of 8-oxo-7,8-dihydroguanine in the liver. Collectively, there is evidence from animal experimental models that both pulmonary and gastrointestinal tract exposure to particles are associated with elevated levels of oxidatively damaged DNA in the lung and internal organs. However, there is a paucity of studies on pulmonary exposure to low doses of particles that are relevant for hazard/risk assessment.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
181
|
Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Gold nanoparticles - the theranostic challenge for PPPM: nanocardiology application. EPMA J 2013; 4:18. [PMID: 23800174 PMCID: PMC3702527 DOI: 10.1186/1878-5085-4-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/13/2013] [Indexed: 12/18/2022]
Abstract
The article overviews the potential biomedical applications of nanoscale gold particles for predictive, preventive and personalised nanomedicine in cardiology. The review demonstrates the wide opportunities for gold nanoparticles due to their unique biological properties. The use of gold nanoparticles in cardiology is promising to develop fundamentally new methods of diagnosis and treatment. The nanotheranostics in cardiovascular diseases allows the non-invasive imaging associated with simultaneous therapeutic intervention and predicting treatment outcomes. Imaging may reflect the effectiveness of treatment and has become a fundamental optimisation setting for therapeutic protocol. Combining the application of biomolecular and cellular therapies with nanotechnologies foresees the development of complex integrated nanodevices. Nanocardiology may challenge existing healthcare system and economic benefits as cardiovascular diseases are the leading cause of morbidity and mortality at present.
Collapse
Affiliation(s)
- Mykola Ya Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
- LCL “DIAPROF”, Svitlycky Str., 35, Kyiv 04123, Ukraine
| | - Rostyslav V Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
- Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny Str., 21, Kyiv 03680, Ukraine
| | - Ilya M Yemets
- Scientific-Practical Centre of Pediatric Cardiology and Cardiac Health of Ukraine, Chornovil Str., 28/1, Kyiv 01135, Ukraine
| | - Liudmyla M Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
| | - Natalia O Tymoshok
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
| | - Zoia R Ulberg
- Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, Acad. Vernadsky Blvd, 42, Kyiv 03142, Ukraine
| |
Collapse
|
182
|
Mizuguchi Y, Myojo T, Oyabu T, Hashiba M, Lee BW, Yamamoto M, Todoroki M, Nishi K, Kadoya C, Ogami A, Morimoto Y, Tanaka I, Shimada M, Uchida K, Endoh S, Nakanishi J. Comparison of dose-response relations between 4-week inhalation and intratracheal instillation of NiO nanoparticles using polimorphonuclear neutrophils in bronchoalveolar lavage fluid as a biomarker of pulmonary inflammation. Inhal Toxicol 2013; 25:29-36. [PMID: 23293971 DOI: 10.3109/08958378.2012.751470] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inhalation studies and intratracheal instillation studies using laboratory animals are commonly conducted for pulmonary toxicity tests of nanomaterials. In our study, male Wister rats were exposed to nickel oxide (NiO) particles including a nano-scale, even for aerosols and suspensions, in a 4-week inhalation and intratracheal instillation. Using polymorphonuclear neutrophils (PMNs) in bronchoalveolar lavage fluid as a biomarker of inflammation, we attempted to quantify the relationship between responses to inhalation and intratracheal instillation of the nanoparticles, based on surface area doses. Four kinds of NiO suspension samples with different specific surface areas were singly injected via the tracheas of the rats. The relationship between the instilled doses and PMN production was examined 3 days and 1 month after the instillation. In parallel, 4-week inhalation studies, using two of the suspensions, were conducted for aerosols generated by a pressurized nebulizer. NiO samples induced PMN responses 3 days after instillation according to the surface area doses, but not the mass doses, as has been reported in many studies. When the same NiO samples were tested in a 4-week inhalation and intratracheal instillation, the amount of pulmonary deposition of the sample after the 4-week inhalation, and an intratracheally instilled dose about ten-times higher, induced similar PMN responses 3 days after termination of inhalation and instillation. Using the relationship between these responses to 4-week inhalation and intratracheal instillation, it may be possible to estimate what aerosol concentrations of other nanomaterials might cause the same responses of PMN production as intratracheal instillation tests.
Collapse
Affiliation(s)
- Yohei Mizuguchi
- Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Wang L, Stueckle TA, Mishra A, Derk R, Meighan T, Castranova V, Rojanasakul Y. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology 2013; 8:485-507. [PMID: 23634900 DOI: 10.3109/17435390.2013.801089] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulating evidence indicates that carbon nanotubes (CNTs) are biopersistent and can cause lung damage. With similar fibrous morphology and mode of exposure to asbestos, a known human carcinogen, growing concern has arisen for elevated risk of CNT-induced lung carcinogenesis; however, relatively little is known about the long-term carcinogenic effect of CNT. Neoplastic transformation is a key early event leading to carcinogenesis. We studied the ability of single- and multi-walled CNTs to induce neoplastic transformation of human lung epithelial cells compared to asbestos. Long-term (6-month) exposure of the cells to occupationally relevant concentrations of CNT in culture caused a neoplastic-like transformation phenotype as demonstrated by increased cell proliferation, anchorage-independent growth, invasion and angiogenesis. Whole-genome expression signature and protein expression analyses showed that single- and multi-walled CNTs shared similar signaling signatures which were distinct from asbestos. These results provide novel toxicogenomic information and suggest distinct particle-associated mechanisms of neoplasia promotion induced by CNTs and asbestos.
Collapse
Affiliation(s)
- Liying Wang
- HELD/PPRB, National Institute for Occupational Safety and Health , Morgantown, WV 26505 , USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Hsieh SF, Bello D, Schmidt DF, Pal AK, Stella A, Isaacs JA, Rogers EJ. Mapping the biological oxidative damage of engineered nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1853-1865. [PMID: 23423873 DOI: 10.1002/smll.201201995] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/28/2012] [Indexed: 06/01/2023]
Abstract
Novel engineered nanomaterials (ENMs) are being introduced into the market rapidly with little understanding of their potential toxicity. Each ENM is a complex combination of diverse sizes, surface chemistries, crystallinity, and metal impurities. Variability in physicochemical properties is poorly understood but is critically important in revealing adverse effects of ENMs. A need also exists for discovering broad relationships between variations in these physicochemical parameters and toxicological endpoints of interest. Biological oxidative damage (BOD) has been recognized as a key mechanism of nanotoxicity. An assortment of 138 ENMs representing major classes are evaluated for BOD elicited (net decrease in the antioxidant capacity of ENM-exposed human blood serum, as compare to unexposed serum) using the 'Ferric Reducing Ability of Serum' (FRAS) assay. This robust and high-throughput approach has the ability to determine the co-effects which multiple physicochemical characteristics impart on oxidative potential, and subsequently to identify and quantify the influence of individual factors. FRAS BOD approach demonstrated the potential for preliminary evaluation of potential toxicity of ENMs, mapping the within- and between-class variability of ENMs, ranking the potential toxicity by material class, and prioritizing the ENMs for further toxicity evaluation and risk assessment.
Collapse
Affiliation(s)
- Shu-Feng Hsieh
- Center for High-rate Nanomanufacturing, Department of Clinical Laboratory and Nutritional Sciences, School of Health and Environment, University of Massachusetts, Lowell, MA 01854, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Immunomodulation and T helper TH₁/TH₂ response polarization by CeO₂ and TiO₂ nanoparticles. PLoS One 2013; 8:e62816. [PMID: 23667525 PMCID: PMC3648566 DOI: 10.1371/journal.pone.0062816] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/26/2013] [Indexed: 01/12/2023] Open
Abstract
Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies.
Collapse
|
186
|
|
187
|
Neubauer N, Seipenbusch M, Kasper G. Functionality based detection of airborne engineered nanoparticles in quasi real time: a new type of detector and a new metric. ACTA ACUST UNITED AC 2013; 57:842-52. [PMID: 23504803 PMCID: PMC3746458 DOI: 10.1093/annhyg/met007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A new type of detector which we call the Catalytic Activity Aerosol Monitor (CAAM) was investigated towards its capability to detect traces of commonly used industrial catalysts in ambient air in quasi real time. Its metric is defined as the catalytic activity concentration (CAC) expressed per volume of sampled workplace air. We thus propose a new metric which expresses the presence of nanoparticles in terms of their functionality - in this case a functionality of potential relevance for damaging effects - rather than their number, surface, or mass concentration in workplace air. The CAAM samples a few micrograms of known or anticipated airborne catalyst material onto a filter first and then initiates a chemical reaction which is specific to that catalyst. The concentration of specific gases is recorded using an IR sensor, thereby giving the desired catalytic activity. Due to a miniaturization effort, the laboratory prototype is compact and portable. Sensitivity and linearity of the CAAM response were investigated with catalytically active palladium and nickel nano-aerosols of known mass concentration and precisely adjustable primary particle size in the range of 3–30nm. With the miniature IR sensor, the smallest detectable particle mass was found to be in the range of a few micrograms, giving estimated sampling times on the order of minutes for workplace aerosol concentrations typically reported in the literature. Tests were also performed in the presence of inert background aerosols of SiO2, TiO2, and Al2O3. It was found that the active material is detectable via its catalytic activity even when the particles are attached to a non-active background aerosol.
Collapse
Affiliation(s)
- Nicole Neubauer
- Institut für Mechanische Verfahrenstechnik und Mechanik, Karlsruhe Institute of Technology, Germany.
| | | | | |
Collapse
|
188
|
Golovina NB, Kustov LM. Toxicity of metal nanoparticles with a focus on silver. MENDELEEV COMMUNICATIONS 2013. [DOI: 10.1016/j.mencom.2013.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
189
|
Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. BIOMED RESEARCH INTERNATIONAL 2013; 2013:652632. [PMID: 23484138 PMCID: PMC3581099 DOI: 10.1155/2013/652632] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022]
Abstract
The biological effects of inhalable nanoparticles have been widely studied in vitro with pulmonary cells cultured under submerged and air-liquid interface (ALI) conditions. Submerged exposures are experimentally simpler, but ALI exposures are physiologically more realistic and hence potentially biologically more meaningful. In this study, we investigated the cellular response of human alveolar epithelial-like cells (A549) to airborne agglomerates of zinc oxide (ZnO) nanoparticles at the ALI, compared it to the response under submerged culture conditions, and provided a quantitative comparison with the literature data on different types of particles and cells. For ZnO nanoparticle doses of 0.7 and 2.5 μg ZnO/cm2 (or 0.09 and 0.33 cm2 ZnO/cm2), cell viability was not mitigated and no significant effects on the transcript levels of oxidative stress markers (HMOX1, SOD-2 and GCS) were observed. However, the transcript levels of proinflammatory markers (IL-8, IL-6, and GM-CSF) were induced to higher levels under ALI conditions. This is consistent with the literature data and it suggests that in vitro toxicity screening of nanoparticles with ALI cell culture systems may produce less false negative results than screening with submerged cell cultures. However, the database is currently too scarce to draw a definite conclusion on this issue.
Collapse
|
190
|
Schulte PA, Geraci CL, Hodson LL, Zumwalde RD, Kuempel ED, Murashov V, Martinez KF, Heidel DS. Overview of Risk Management for Engineered Nanomaterials. JOURNAL OF PHYSICS. CONFERENCE SERIES 2013; 429:012062. [PMID: 26339275 PMCID: PMC4556602 DOI: 10.1088/1742-6596/429/1/012062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.
Collapse
Affiliation(s)
- PA Schulte
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| | - CL Geraci
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| | - LL Hodson
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| | - RD Zumwalde
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| | - ED Kuempel
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| | - V Murashov
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| | - KF Martinez
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| | - DS Heidel
- National Institute for Occupational Safety and Heath, 4676 Columbia Parkway, MS-C14, Cincinnati, OH 45226
| |
Collapse
|
191
|
Thach CT, Finkelstein JN. Cationic nanoparticles disrupt cellular signaling in a cholesterol dependent manner. Toxicol In Vitro 2013; 27:1277-86. [PMID: 23274767 DOI: 10.1016/j.tiv.2012.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023]
Abstract
In this study, we investigate the interaction of charged polystyrene particles with respiratory epithelial cells. Experiments were designed to reveal the effect of cellular interaction with particles of varying size and charge and how such interactions could alter cytokine induced cellular processes. A549 cells, containing a stably transfected Interleukin-8 (IL-8) Luciferase promoter construct, were cultured in the presence of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) and polystyrene particles for 4.5h. Several endpoints were measured: IL-8 gene expression, IL-6 protein, IL-8 protein, and NF-кB translocation. At 4.5h, cellular viability was maintained for the particle exposed cells. Interestingly, we found that only the cationic nanoparticles have the ability to disrupt the TNF-α stimulated cellular signaling by reducing the IL-8 promoter activity, IL-6 and IL-8 protein. Cationic nanoparticles reduce these processes through interfering with NF-κB translocation. However, the activity of the cationic nanoparticles on the IL-8 promoter and NF-κB translocation is lost when cholesterol is depleted from A549 cells before particle exposure, which suggests that cationic nanoparticles rely on membrane cholesterol integrity to disrupt cellular signaling.
Collapse
Affiliation(s)
- Chia T Thach
- University of Rochester, NY 14642, United States
| | | |
Collapse
|
192
|
Lamberti F, Giulitti S, Giomo M, Elvassore N. Biosensing with electroconductive biomimetic soft materials. J Mater Chem B 2013; 1:5083-5091. [DOI: 10.1039/c3tb20666a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
193
|
Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev 2013; 42:8339-59. [DOI: 10.1039/c3cs60145e] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
194
|
Clift MJD, Rothen-Rutishauser B. Studying the oxidative stress paradigm in vitro: a theoretical and practical perspective. Methods Mol Biol 2013; 1028:115-133. [PMID: 23740116 DOI: 10.1007/978-1-62703-475-3_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Since the early 1990s, interest into the biological interaction of nanosized particles of various compositions has increased. Following the initial findings that nanoscaled particles can elicit an adverse biological response when compared to their larger (micron-scale) material counterparts, interest into how nanosized materials may elicit potentially adverse effects upon any biological system has been intensively investigated. Over the past 20 years, hundreds to thousands of research studies have been published highlighting the biological effects and interaction of the plethora of nanoparticles (NPs) that are being either accidentally or intentionally (engineered) produced. While a definitive knowledge of many aspects is required prior to investigating the biological interaction of NPs, such as the relevant exposure route to the biological system, the specific characteristics of the NPs being studied, and the realistic dose (concentration) that would interact with the biological system, understanding how the NPs affect the biological system is not based upon any defined theory. In fact, there is no specific understanding as to why particles show different effects when occurring within a certain nanosize range compared to their larger counterpart (micron size range). Despite this, certain paradigms and theories have been proposed and are studied, such as the fiber paradigm and theory of genotoxicity, in order to try and understand such nanoscale effects. The most studied and widely accepted paradigm, however, is the oxidative stress paradigm. This chapter will provide an insight into this paradigm, how it is perceived, how it is studied, why investigating this paradigm in vitro is advantageous, and how the findings associated with this paradigm can provide an insight into the (potentially adverse) biological interaction of nanoscale objects.
Collapse
Affiliation(s)
- Martin J D Clift
- Adolphe Merkle Institute and Fribourg Center for Nanomaterials, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
195
|
Gajewicz A, Rasulev B, Dinadayalane TC, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J. Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 2012; 64:1663-93. [PMID: 22664229 DOI: 10.1016/j.addr.2012.05.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/20/2012] [Accepted: 05/25/2012] [Indexed: 02/06/2023]
Abstract
Nanotechnology that develops novel materials at size of 100nm or less has become one of the most promising areas of human endeavor. Because of their intrinsic properties, nanoparticles are commonly employed in electronics, photovoltaic, catalysis, environmental and space engineering, cosmetic industry and - finally - in medicine and pharmacy. In that sense, nanotechnology creates great opportunities for the progress of modern medicine. However, recent studies have shown evident toxicity of some nanoparticles to living organisms (toxicity), and their potentially negative impact on environmental ecosystems (ecotoxicity). Lack of available data and low adequacy of experimental protocols prevent comprehensive risk assessment. The purpose of this review is to present the current state of knowledge related to the risks of the engineered nanoparticles and to assess the potential of efficient expansion and development of new approaches, which are offered by application of theoretical and computational methods, applicable for evaluation of nanomaterials.
Collapse
Affiliation(s)
- Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
196
|
Rittinghausen S, Bellmann B, Creutzenberg O, Ernst H, Kolling A, Mangelsdorf I, Kellner R, Beneke S, Ziemann C. Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology 2012. [PMID: 23178243 DOI: 10.1016/j.tox.2012.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Data on local genotoxicity after particle exposure are crucial to resolve mechanistic aspects such as the impact of chronic inflammation, types of DNA damage, and their role in lung carcinogenesis. We established immunohistochemical methods to quantify the DNA damage markers poly(ADP-ribose) (PAR), phosphorylated H2AX (γ-H2AX), 8-hydroxyguanosine (8-OH-dG), and 8-oxoguanine DNA glycosylase (OGG1) in paraffin-embedded tissue from particle-exposed rats. The study was based on lungs from a subchronic study that was part of an already published carcinogenicity study where rats had been intratracheally instilled with saline, quartz DQ12, amorphous silica (Aerosil(®) 150), or carbon black (Printex(®) 90) at monthly intervals for 3 months. Lung sections were stained immunohistochemically and markers were quantified in alveolar lining cells. Local genotoxicity was then correlated with already defined endpoints, i.e. mean inflammation score, bronchoalveolar lavage parameters, and carcinogenicity. Genotoxicity was most pronounced in quartz DQ12-treated rats, where all genotoxicity markers gave statistically significant positive results, indicating considerable genotoxic stress such as occurrence of DNA double-strand breaks (DSB), and oxidative damage with subsequent repair activity. Genotoxicity was less pronounced for Printex(®) 90, but significant increases in γ-H2AX- and 8-OH-dG-positive nuclei and OGG1-positive cytoplasm were nevertheless detected. In contrast, Aerosil(®) 150 significantly enhanced only 8-OH-dG-positive nuclei and oxidative damage-related repair activity (OGG1) in cytoplasm. In the present study, γ-H2AX was the most sensitive genotoxicity marker, differentiating best between the three types of particles. The mean number of 8-OH-dG-positive nuclei, however, correlated best with the mean inflammation score at the same time point. This methodological approach enables integration of local genotoxicity testing in subchronic inhalation studies and makes immunohistochemical detection, in particular of γ-H2AX and 8-hydroxyguanine, a very promising approach for local genotoxicity testing in lungs, with prognostic value for the long-term outcome of particle exposure.
Collapse
Affiliation(s)
- Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, Semmler-Behnke M, McGuiness C, Balharry D, Marcomini A, Wallin H, Kreyling W, Donaldson K, Tran L, Stone V. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 2012; 43:1-20. [DOI: 10.3109/10408444.2012.738187] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
198
|
Nazarenko Y, Zhen H, Han T, Lioy PJ, Mainelis G. Nanomaterial inhalation exposure from nanotechnology-based cosmetic powders: a quantitative assessment. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2012; 14:1229. [PMID: 23175627 PMCID: PMC3500971 DOI: 10.1007/s11051-012-1229-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study we quantified exposures to airborne particles ranging from 14 nm to 20 µm due to the use of nanotechnology-based cosmetic powders. Three nanotechnology-based and three regular cosmetic powders were realistically applied to a mannequin's face while measuring the concentration and size distribution of inhaled aerosol particles. Using these data we calculated that the highest inhaled particle mass was in the coarse aerosol fraction (2.5-10 µm), while particles <100 nm made minimal contribution to the inhaled particle mass. For all powders, 85-93 % of aerosol deposition occurred in the head airways, while <10 % deposited in the alveolar and <5 % in the tracheobronchial regions. Electron microscopy data suggest that nanomaterials were likely distributed as agglomerates across the entire investigated aerosol size range (14 nm-20 µm). Thus, investigation of nanoparticle health effects should consider not only the alveolar region, but also other respiratory system regions where substantial nanomaterial deposition during the actual nanotechnology-based product use would occur.
Collapse
Affiliation(s)
- Yevgen Nazarenko
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Huajun Zhen
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Taewon Han
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Paul J. Lioy
- RWJMS-UMDNJ, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ, USA
| |
Collapse
|
199
|
McKinney W, Jackson M, Sager TM, Reynolds JS, Chen BT, Afshari A, Krajnak K, Waugh S, Johnson C, Mercer RR, Frazer DG, Thomas TA, Castranova V. Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles. Inhal Toxicol 2012; 24:447-57. [PMID: 22642294 DOI: 10.3109/08958378.2012.685111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our laboratory has previously demonstrated that application of an antimicrobial spray product containing titanium dioxide (TiO(2)) generates an aerosol of titanium dioxide in the breathing zone of the applicator. The present report describes the design of an automated spray system and the characterization of the aerosol delivered to a whole body inhalation chamber. This system produced stable airborne levels of TiO(2) particles with a median count size diameter of 110 nm. Rats were exposed to 314 mg/m(3) min (low dose), 826 mg/m(3) min (medium dose), and 3638 mg/m(3) min (high dose) of TiO(2) under the following conditions: 2.62 mg/m(3) for 2 h, 1.72 mg/m(3) 4 h/day for 2 days, and 3.79 mg/m(3) 4 h/day for 4 days, respectively. Pulmonary (breathing rate, specific airway resistance, inflammation, and lung damage) and cardiovascular (the responsiveness of the tail artery to constrictor or dilatory agents) endpoints were monitored 24 h post-exposure. No significant pulmonary or cardiovascular changes were noted at low and middle dose levels. However, the high dose caused significant increases in breathing rate, pulmonary inflammation, and lung cell injury. Results suggest that occasional consumer use of this antimicrobial spray product should not be a hazard. However, extended exposure of workers routinely applying this product to surfaces should be avoided. During application, care should be taken to minimize exposure by working under well ventilated conditions and by employing respiratory protection as needed. It would be prudent to avoid exposure to children or those with pre-existing respiratory disease.
Collapse
Affiliation(s)
- W McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Kuempel ED, Castranova V, Geraci CL, Schulte PA. Development of risk-based nanomaterial groups for occupational exposure control. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2012; 14:1029. [PMID: 26504427 PMCID: PMC4618785 DOI: 10.1007/s11051-012-1029-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.
Collapse
Affiliation(s)
- E. D. Kuempel
- Education and Information Division, Nanotechnology Research Center (NTRC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - V. Castranova
- Health Effects Laboratory Division and NTRC, NIOSH, Morgantown, WV, USA
| | - C. L. Geraci
- Education and Information Division, NTRC, NIOSH, Cincinnati, OH, USA
| | - P. A. Schulte
- Education and Information Division, NTRC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|