151
|
Khan H, Ullah H, Castilho PCMF, Gomila AS, D'Onofrio G, Filosa R, Wang F, Nabavi SM, Daglia M, Silva AS, Rengasamy KRR, Ou J, Zou X, Xiao J, Cao H. Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Crit Rev Food Sci Nutr 2019; 60:2790-2800. [PMID: 31512490 DOI: 10.1080/10408398.2019.1661827] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Being a transcription factor, NF-κB regulates gene expressions involving cell survival and proliferation, drug resistance, metastasis, and angiogenesis. The activation of NF-κB plays a central role in the development of inflammation and cancer. Thus, the down-regulation of NF-κB may be an exciting target in prevention and treatment of cancer. NF-κB could act as a tumor activator or tumor suppressant decided by the site of action (organ). Polyphenols are widely distributed in plant species, consumption of which have been documented to negatively regulate the NF-κB signaling pathway. They depress the phosphorylation of kinases, inhibit NF-κB translocate into the nucleus as well as interfere interactions between NF-κB and DNA. Through inhibition of NF-κB, polyphenols downregulate inflammatory cascade, induce apoptosis and decrease cell proliferation and metastasis. This review highlights the anticancer effects of polyphenols on the basis of NF-κB signaling pathway regulation.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Antoni Sureda Gomila
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition, CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Grazia D'Onofrio
- Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Complex Unit of Geriatrics, San Giovanni Rotondo, Italy
| | - Rosanna Filosa
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
- Consorzio Sannio Tech, Apollosa, Italy
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research, Vairão, Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Kannan R R Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, South Korea
| | - Juanying Ou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xiaobo Zou
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang, China
| | - Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
152
|
Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules 2019; 24:E3276. [PMID: 31505752 PMCID: PMC6767026 DOI: 10.3390/molecules24183276] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Snakebite envenomation is a life-threatening disease that was recently re-included as a neglected tropical disease (NTD), affecting millions of people in tropical and subtropical areas of the world. Improvement in the therapeutic approaches to envenomation is required to palliate the morbidity and mortality effects of this NTD. The specific therapeutic treatment for this NTD uses snake antivenom immunoglobulins. Unfortunately, access to these vital drugs is limited, principally due to their cost. Different ethnic groups in the affected regions have achieved notable success in treatment for centuries using natural sources, especially plants, to mitigate the effects of snake envenomation. The ethnopharmacological approach is essential to identify the potential metabolites or derivatives needed to treat this important NTD. Here, the authors describe specific therapeutic snakebite envenomation treatments and conduct a review on different strategies to identify the potential agents that can mitigate the effects of the venoms. The study also covers an increased number of literature reports on the ability of natural sources, particularly plants, to treat snakebites, along with their mechanisms, drawbacks and future perspectives.
Collapse
Affiliation(s)
- Isabel Gómez-Betancur
- Ophidism-Scorpionism Program, Faculty of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Vedanjali Gogineni
- Analytical Department, Cambrex Pharmaceuticals, Charles City, IA 50616, USA.
| | - Andrea Salazar-Ospina
- Research group in Pharmacy Regency Technology, Faculty of Pharmaceutical and Food Sciences University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Francisco León
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
153
|
Dabeek WM, Kovinich N, Walsh C, Ventura Marra M. Characterization and Quantification of Major Flavonol Glycosides in Ramps ( Allium tricoccum). Molecules 2019; 24:E3281. [PMID: 31505821 PMCID: PMC6767245 DOI: 10.3390/molecules24183281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/16/2023] Open
Abstract
The ramp (Allium tricoccum) is a traditional plant in the eastern Appalachian Mountains. Ramps have been used in traditional medicine for their health-promoting roles in lowering blood pressure and cholesterol. Information on the chemical composition of the potentially bioactive components in ramps is limited. Therefore, the aim of this work was to characterize and quantify major flavonols in ramps. Flavonoids were extracted in 50% methanol and 3% acetic acid. Characterization was conducted using UHPLC-PDA-MS and MS/MS, and quantification was performed using UHPLC-PDA detection. The major flavonol glycosides were kaempferol sophoroside glucuronide, quercetin sophoroside glucuronide, kaempferol rutinoside glucuronide, quercetin hexoside glucuronide, quercetin sophoroside, and kaempferol sophoroside. All conjugates were detected in leaves. Quercetin and kaempferol sophoroside glucuronide conjugates were detected in the stem, but no flavonol glycosides were detected in the bulb. The total amounts of the identified quercetin and kaempferol conjugates in whole ramps were 0.5972 ± 0.235 and 0.3792 ± 0.130 mg/g dry weight, respectively. Flavonol conjugates were concentrated in the leaves. To our knowledge, this work is the first to identify and quantify the major flavonol glycosides in ramps. Our findings suggest that specifically the leaves may harbor the potentially bioactive flavonols components of the plant.
Collapse
Affiliation(s)
- Wijdan M Dabeek
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - Nik Kovinich
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - Callee Walsh
- Shared Research Facilities, West Virginia University, Morgantown, WV 26506, USA.
| | - Melissa Ventura Marra
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
154
|
Zhao H, Chen L, Yang T, Feng YL, Vaziri ND, Liu BL, Liu QQ, Guo Y, Zhao YY. Aryl hydrocarbon receptor activation mediates kidney disease and renal cell carcinoma. J Transl Med 2019; 17:302. [PMID: 31488157 PMCID: PMC6727512 DOI: 10.1186/s12967-019-2054-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a well-known ligand-activated cytoplasmic transcription factor that contributes to cellular responses against environmental toxins and carcinogens. AhR is activated by a range of structurally diverse compounds from the environment, microbiome, natural products, and host metabolism, suggesting that AhR possesses a rather promiscuous ligand binding site. Increasing studies have indicated that AhR can be activated by a variety of endogenous ligands and induce the expression of a battery of genes. AhR regulates a variety of physiopathological events, including cell proliferation, differentiation, apoptosis, adhesion and migration. These new roles have expanded our understanding of the AhR signalling pathways and endogenous metabolites interacting with AhR under homeostatic and pathological conditions. Recent studies have demonstrated that AhR is linked to cardiovascular disease (CVD), chronic kidney disease (CKD) and renal cell carcinoma (RCC). In this review, we summarize gut microbiota-derived ligands inducing AhR activity in patients with CKD, CVD, diabetic nephropathy and RCC that may provide a new diagnostic and prognostic approach for complex renal damage. We further highlight polyphenols from natural products as AhR agonists or antagonists that regulate AhR activity. A better understanding of structurally diverse polyphenols and AhR biological activities would allow us to illuminate their molecular mechanism and discover potential therapeutic strategies targeting AhR activation.
Collapse
Affiliation(s)
- Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Tian Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Bao-Li Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, 87131, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
155
|
Xie L, Zhang L, Bai J, Yue Q, Zhang M, Li J, Wang C, Xu Y. Methylglucosylation of Phenolic Compounds by Fungal Glycosyltransferase-Methyltransferase Functional Modules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8573-8580. [PMID: 31293156 DOI: 10.1021/acs.jafc.9b02819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycosylation endows both natural and synthetic small molecules with modulated physicochemical and biological properties. Plant and bacterial glycosyltransferases capable of decorating various privileged scaffolds have been extensively studied, but those from kingdom Fungi still remain underexploited. Here, we use a combination of genome mining and heterologous expression techniques to identify four novel glycosyltransferase-methyltransferase (GT-MT) functional modules from Hypocreales fungi. These GT-MT modules display decent substrate promiscuity and regiospecificity, methylglucosylating a panel of natural products such as flavonoids, stilbenoids, anthraquinones, and benzenediol lactones. Native GT-MT modules can be split up and regrouped into hybrid modules with similar or even improved efficacy as compared with native pairs. Methylglucosylation of kaempferol considerably improves its insecticidal activity against the larvae of oriental armyworm Mythimna separata (Walker). Our work provides a set of efficient biocatalysts for the combinatorial biosynthesis of small molecule glycosides that may have significant importance to the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Liwen Zhang
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Jing Bai
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Qun Yue
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Min Zhang
- School of Agricultural Sciences , Zhengzhou University , Kexue Avenue 100 , Zhengzhou 450001 , P. R. China
| | - Jiancheng Li
- Institute of Plant Protection , Hebei Academy of Agriculture and Forestry Sciences , 437 Dongguan Street , Baoding 071000 , P. R. China
| | - Chen Wang
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , 12 Zhongguancun South Street , Beijing 100081 , P. R. China
- Agricultural Genomics Institute at Shenzhen , Chinese Academy of Agricultural Sciences , 7 Pengfei Road , Shenzhen 518124 , P. R. China
| |
Collapse
|
156
|
Osonga F, Akgul A, Miller RM, Eshun GB, Yazgan I, Akgul A, Sadik OA. Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids. ACS OMEGA 2019; 4:12865-12871. [PMID: 31460413 PMCID: PMC6681995 DOI: 10.1021/acsomega.9b00077] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/03/2019] [Indexed: 06/01/2023]
Abstract
The surge of resistant food pathogens is a major threat worldwide. Previous research conducted on phytochemicals has shown their antibacterial activity against pathogenic bacteria. The design of antimicrobial agents to curb pathogenic disease remains a challenge demanding critical attention. Flavonoids such as apigenin and quercetin were evaluated against Gram-positive and Gram-negative bacteria. The results indicated that the antibacterial activity of each flavonoid occurred at a different minimum inhibitory concentration. However, the antimicrobial activity results of the modified flavonoids were also reported, and it was observed that the Gram-positive bacteria were more susceptible in comparison to the Gram-negative bacteria. The cell wall structure of the Gram-positive and Gram-negative bacteria could be the main reason for the bacteria susceptibility. Modified flavonoids could be used as a suitable alternative antimicrobial agent for the treatment of infectious diseases. Our results indicated 100% inhibition of Listeria monocytogenes, Pseudomonas aeruginosa, and Aeromonas hydrophila with modified flavonoids.
Collapse
Affiliation(s)
- Francis
J. Osonga
- Department
of Chemistry, Center for Research
in Advanced Sensing Technologies & Environmental Sustainability
(CREATES), State University of New York
at Binghamton, PO Box 6000, Binghamton, New York 13902, United States
| | - Ali Akgul
- Department of Basic
Sciences, College of Veterinary Medicine and Department of Sustainable
Bioproducts, College of Forest Resources, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Roland M. Miller
- Department
of Chemistry, Center for Research
in Advanced Sensing Technologies & Environmental Sustainability
(CREATES), State University of New York
at Binghamton, PO Box 6000, Binghamton, New York 13902, United States
| | - Gaddi B. Eshun
- Department
of Chemistry, Center for Research
in Advanced Sensing Technologies & Environmental Sustainability
(CREATES), State University of New York
at Binghamton, PO Box 6000, Binghamton, New York 13902, United States
| | - Idris Yazgan
- Department
of Chemistry, Center for Research
in Advanced Sensing Technologies & Environmental Sustainability
(CREATES), State University of New York
at Binghamton, PO Box 6000, Binghamton, New York 13902, United States
| | - Ayfer Akgul
- Department of Basic
Sciences, College of Veterinary Medicine and Department of Sustainable
Bioproducts, College of Forest Resources, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Omowunmi A. Sadik
- Department
of Chemistry, Center for Research
in Advanced Sensing Technologies & Environmental Sustainability
(CREATES), State University of New York
at Binghamton, PO Box 6000, Binghamton, New York 13902, United States
| |
Collapse
|
157
|
Velutin, an Aglycone Extracted from Korean Mistletoe, with Improved Inhibitory Activity against Melanin Biosynthesis. Molecules 2019; 24:molecules24142549. [PMID: 31336931 PMCID: PMC6681098 DOI: 10.3390/molecules24142549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
The abnormal regulation of melanin synthesis leads to a wide range of pigmentary disorders. Although various melanin biosynthesis inhibitors have been developed, their efficacy and long-term safety needs to be further improved, and thus the goal of this study is to develop promising natural compound inhibitors of melanin biosynthesis. Here, we obtained aglycone flavonoid extract through the microwave-assisted hydrolysis of glycoside extract from Korean mistletoe in acidic condition. The aglycone extract inhibited tyrosinase activity more efficiently with better antioxidant activity than glycoside extract in vitro. The microwave-assisted aglycone extract of mistletoe was further analyzed for in vivo activity, and the results showed the aglycone extract inhibited both early melanocyte development and melanin synthesis more efficiently in zebrafish embryo in a dose-dependent manner. Our in vivo toxicity assay quantitatively measured cell death in zebrafish embryos and showed that the microwave-assisted aglycone extract of mistletoe had no significant effect on cell death (p < 0.001), indicating that aglycone extract is more biocompatible than glycoside extract. Furthermore, our in vitro and in vivo analyses successfully identified and characterized velutin, an aglycone of a homoflavoyadorinin B glycoside, as a major inhibitory component in the microwave-assisted mistletoe extract. Ultimately, this study showed that the novel natural compound inhibitor velutin, which was generated through microwave-assisted extraction from mistletoe, improved the efficacy of melanin biosynthesis inhibition with little toxicity.
Collapse
|
158
|
Rollán GC, Gerez CL, LeBlanc JG. Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Front Nutr 2019; 6:98. [PMID: 31334241 PMCID: PMC6617224 DOI: 10.3389/fnut.2019.00098] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
One of the greatest challenges is to reduce malnutrition worldwide while promoting sustainable agricultural and food systems. This is a daunting task due to the constant growth of the population and the increasing demands by consumers for functional foods with higher nutritional values. Cereal grains are the most important dietary energy source globally; wheat, rice, and maize currently provide about half of the dietary energy source of humankind. In addition, the increase of celiac patients worldwide has motivated the development of gluten-free foods using alternative flour types to wheat such as rice, corn, cassava, soybean, and pseudocereals (amaranth, quinoa, and buckwheat). Amaranth and quinoa have been cultivated since ancient times and were two of the major crops of the Pre-Colombian cultures in Latin- America. In recent years and due to their well-known high nutritional value and potential health benefits, these pseudocereals have received much attention as ideal candidates for gluten-free products. The importance of exploiting these grains for the elaboration of healthy and nutritious foods has forced food producers to develop novel adequate strategies for their processing. Fermentation is one of the most antique and economical methods of producing and preserving foods and can be easily employed for cereal processing. The nutritional and functional quality of pseudocereals can be improved by fermentation using Lactic Acid Bacteria (LAB). This review provides an overview on pseudocereal fermentation by LAB emphasizing the capacity of these bacteria to decrease antinutritional factors such as phytic acid, increase the functional value of phytochemicals such as phenolic compounds, and produce nutritional ingredients such as B-group vitamins. The numerous beneficial effects of lactic fermentation of pseudocereals can be exploited to design novel and healthier foods or grain ingredients destined to general population and especially to patients with coeliac disease.
Collapse
Affiliation(s)
- Graciela C. Rollán
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, San Miguel de Tucumán, Argentina
| | | | | |
Collapse
|
159
|
Theoretical study of the antioxidant capacity of the flavonoids present in the Annona muricata (Soursop) leaves. J Mol Model 2019; 25:200. [PMID: 31240483 DOI: 10.1007/s00894-019-4083-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
A theoretical approach was used to evaluate the antioxidant capacity of 20 flavonoids reported in Annona muricata leaves. The theoretical study was at the GGA level using the wB97XD functional and the cc-pvtz basis set. The calculations were performed in gas phase and implicit solvent phase. The flavonol robinetin (03c) and the flavanol gallocatechin (01c) are species that exhibited the best antioxidant capacity in the HAT, SEPT, and SPLET mechanisms. On the other hand, in the SET I mechanism, flavonol quercetin (03b) was the best, and in the SET II mechanism, the most favored species is the flavanol catechin (01a). However, these species do not achieve to overcome the antioxidant capacity presented by the Trolox.
Collapse
|
160
|
de Matos AM, Martins A, Man T, Evans D, Walter M, Oliveira MC, López Ó, Fernandez-Bolaños JG, Dätwyler P, Ernst B, Macedo MP, Contino M, Colabufo NA, Rauter AP. Design and Synthesis of CNS-targeted Flavones and Analogues with Neuroprotective Potential Against H 2O 2- and Aβ 1-42-Induced Toxicity in SH-SY5Y Human Neuroblastoma Cells. Pharmaceuticals (Basel) 2019; 12:ph12020098. [PMID: 31234364 PMCID: PMC6630837 DOI: 10.3390/ph12020098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023] Open
Abstract
With the lack of available drugs able to prevent the progression of Alzheimer’s disease (AD), the discovery of new neuroprotective treatments able to rescue neurons from cell injury is presently a matter of extreme importance and urgency. Here, we were inspired by the widely reported potential of natural flavonoids to build a library of novel flavones, chromen-4-ones and their C-glucosyl derivatives, and to explore their ability as neuroprotective agents with suitable pharmacokinetic profiles. All compounds were firstly evaluated in a parallel artificial membrane permeability assay (PAMPA) to assess their effective permeability across biological membranes, namely the blood-brain barrier (BBB). With this test, we aimed not only at assessing if our candidates would be well-distributed, but also at rationalizing the influence of the sugar moiety on the physicochemical properties. To complement our analysis, logD7.4 was determined. From all screened compounds, the p-morpholinyl flavones stood out for their ability to fully rescue SH-SY5Y human neuroblastoma cells against both H2O2- and Aβ1-42-induced cell death. Cholinesterase inhibition was also evaluated, and modest inhibitory activities were found. This work highlights the potential of C-glucosylflavones as neuroprotective agents, and presents the p-morpholinyl C-glucosylflavone 37, which did not show any cytotoxicity towards HepG2 and Caco-2 cells at 100 μM, as a new lead structure for further development against AD.
Collapse
Affiliation(s)
- Ana M de Matos
- Center of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
- MEDIR: Metabolic Disorders, CEDOC Chronic Diseases, Nova Medical School, Campus Sant'Ana, Rua Câmara Pestana, 6, Lab 3.8, 1150-082 Lisboa, Portugal.
| | - Alice Martins
- Center of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Teresa Man
- Department of Chemistry, Erl Wood Manor, Eli Lilly, Windlesham, Surrey GU20 6PH, UK.
| | - David Evans
- Department of Chemistry, Erl Wood Manor, Eli Lilly, Windlesham, Surrey GU20 6PH, UK.
| | - Magnus Walter
- Abbvie Germany, Knollstr. 51, 67061 Ludwigshafen, Germany.
| | - Maria Conceição Oliveira
- Centro de Química Estrutural, Instiuto Superior Técnico, Ulisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain.
| | - José G Fernandez-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain.
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | - M Paula Macedo
- MEDIR: Metabolic Disorders, CEDOC Chronic Diseases, Nova Medical School, Campus Sant'Ana, Rua Câmara Pestana, 6, Lab 3.8, 1150-082 Lisboa, Portugal.
- Department of Medical Sciences, IBIMED, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
- APDP-ERC, APDP-Diabetes Portugal, Rua do Salitre, Nº 118-120, 1250-203 Lisboa, Portugal.
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari/Biofordrug, Via Edoardo Orabona, 4-70125 Bari, Italy.
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari/Biofordrug, Via Edoardo Orabona, 4-70125 Bari, Italy.
| | - Amélia P Rauter
- Center of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
161
|
Epimedium koreanum Extract and Its Flavonoids Reduced Atherosclerotic Risk via Suppressing Modification of Human HDL. Nutrients 2019; 11:nu11051110. [PMID: 31109081 PMCID: PMC6566614 DOI: 10.3390/nu11051110] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is the key factor responsible for cardiovascular events, which is a major cause of morbidities and mortalities worldwide. It is well known that high-density lipoprotein (HDL) oxidation and glycation increases the risk for atherosclerosis. Epimedium koreanum has been used as a traditional oriental medicine for treating erectile dysfunction, kidney diseases, osteoporosis, and breast cancer. However, no reports on the effects of E. koreanum on HDL modification exist. In this study, we investigated the inhibitory effects of E. koreanum extract and its eight flavonoids, which are: (1) anhydroicaritin 3-O-rhamnoside, (2) β-anhydroicaritin, (3–5) epimedins A-C, (6) epimedoside A, (7) icariin, and (8) des-O-methyl-β-anhydroicaritin, against HDL modification. HDLs obtained from pooled human plasma samples were incubated in vitro with E. koreanum extract or each compound in the presence of copper sulfate or fructose. The HDL modifications were evaluated by measuring generation of conjugated dienes, production of thiobarbituric acid reactive substances, change in electrophoretic mobility of apoA-I, advanced glycation end products formation, and apoA-I aggregation. Consequently, E. koreanum extract and compound 8 suppressed HDL modification through inhibition of lipid peroxidation, apoA-I aggregation, negative charge increase, and AGEs formation. In particular, compound 8 showed more potent inhibitory effect on HDL modification than the extracts, suggesting its protective role against atherosclerosis via inhibition of HDL oxidation and glycation.
Collapse
|
162
|
Jia Y, Ma Y, Zou P, Cheng G, Zhou J, Cai S. Effects of Different Oligochitosans on Isoflavone Metabolites, Antioxidant Activity, and Isoflavone Biosynthetic Genes in Soybean ( Glycine max) Seeds during Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4652-4661. [PMID: 30933513 DOI: 10.1021/acs.jafc.8b07300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Five oligochitosans with increasing degrees of polymerization (DPs), i.e., from chitotriose to chitoheptaose, were examined to clarify the structure-bioactivity relationship between the DPs of oligochitosans and their effects on the isoflavone metabolites, total phenolic and flavonoid contents (TPC and TFC, respectively), and antioxidant activity of soybean ( Glycine max) seeds during germination. Oligochitosans of different DPs exhibited varying influences on the TPC, TFC, and antioxidant activities of soybean seeds. Chitohexaose exerted a strong effect and significantly increased the aforementioned parameters in soybean seeds 72 h after germination. Genistin, malonylgenistin, and genistein were the main isoflavones found, and the genistin and genistein contents were significantly enhanced by 67.32% and 131.38%, respectively, after chitohexaose treatment. Several critical genes involved in the isoflavone biosynthesis (i.e., PAL, CHS, CHI, IFS) of soybeans treated with and without chitohexaose were analyzed, and results suggested that chitohexaose application could dramatically stimulate the transcription of these genes.
Collapse
Affiliation(s)
- Yijia Jia
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Yanli Ma
- College of Food Science and Technology , Hebei Agricultural University , Baoding , Hebei Province 071001 , People's Republic of China
| | - Ping Zou
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao , Shandong Province 266101 , People's Republic of China
| | - Guiguang Cheng
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Jiexin Zhou
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| | - Shengbao Cai
- Yunnan Institute of Food Safety , Kunming University of Science and Technology , Kunming , Yunnan Province 650500 , People's Republic of China
| |
Collapse
|
163
|
Quecan BXV, Santos JTC, Rivera MLC, Hassimotto NMA, Almeida FA, Pinto UM. Effect of Quercetin Rich Onion Extracts on Bacterial Quorum Sensing. Front Microbiol 2019; 10:867. [PMID: 31105665 PMCID: PMC6492534 DOI: 10.3389/fmicb.2019.00867] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023] Open
Abstract
Quorum sensing (QS) regulates bacterial gene expression and studies suggest quercetin, a flavonol found in onion, as a QS inhibitor. There are no studies showing the anti-QS activity of plants containing quercetin in its native glycosylated forms. This study aimed to evaluate the antimicrobial and anti-QS potential of organic extracts of onion varieties and its representative phenolic compounds quercetin aglycone and quercetin 3-β-D-glucoside in the QS model bacteria Chromobacterium violaceum ATCC 12472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MG1. Three phenolic extracts were obtained: red onion extract in methanol acidified with 2.5% acetic acid (RO-1), white onion extract in methanol (WO-1) and white onion extract in methanol ammonium (WO-2). Quercetin 4-O-glucoside and quercetin 3,4-O-diglucoside were identified as the predominant compounds in both onion varieties using HPLC-DAD and LC-ESI-MS/MS. However, quercetin aglycone, cyanidin 3-O-glucoside and quercetin glycoside were identified only in RO-1. The three extracts showed minimum inhibitory concentration (MIC) values equal to or above 125 μg/ml of dried extract. Violacein production was significantly reduced by RO-1 and quercetin aglycone, but not by quercetin 3-β-D-glucoside. Motility in P. aeruginosa PAO1 was inhibited by RO-1, while WO-2 inhibited S. marcescens MG1 motility only in high concentration. Quercetin aglycone and quercetin 3-β-D-glucoside were effective at inhibiting motility in P. aeruginosa PAO1 and S. marcescens MG1. Surprisingly, biofilm formation was not affected by any extracts or the quercetins tested at sub-MIC concentrations. In silico studies suggested a better interaction and placement of quercetin aglycone in the structures of the CviR protein of C. violaceum ATCC 12472 than the glycosylated compound which corroborates the better inhibitory effect of the former over violacein production. On the other hand, the two quercetins were well placed in the AHLs binding pockets of the LasR protein of P. aeruginosa PAO1. Overall onion extracts and quercetin presented antimicrobial activity, and interference on QS regulated production of violacein and swarming motility.
Collapse
Affiliation(s)
- B. X. V. Quecan
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - J. T. C. Santos
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. L. C. Rivera
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - N. M. A. Hassimotto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F. A. Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - U. M. Pinto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
164
|
Microbial Transformation of Flavonoids by Isaria fumosorosea ACCC 37814. Molecules 2019; 24:molecules24061028. [PMID: 30875913 PMCID: PMC6471136 DOI: 10.3390/molecules24061028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is an efficient strategy to modulate the solubility, stability, bioavailability and bioactivity of drug-like natural products. Biological methods, such as whole-cell biocatalyst, promise a simple but highly effective approach to glycosylate biologically active small molecules with remarkable regio- and stereo-selectivity. Herein, we use the entomopathogenic filamentous fungus Isaria fumosorosea ACCC 37814 to biotransform a panel of phenolic natural products, including flavonoids and anthraquinone, into their glycosides. Six new flavonoid (4-O-methyl)glucopyranosides are obtained and structurally characterized using high resolution mass and nuclear magnetic resonance spectroscopic techniques. These compounds further expand the structural diversity of flavonoid glycosides and may be used in biological study.
Collapse
|
165
|
Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5484138. [PMID: 30962863 PMCID: PMC6431442 DOI: 10.1155/2019/5484138] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
The prevalence of cardiovascular disease (CVD) is increasing over time. CVD is a comorbidity in diabetes and contributes to premature death. Citrus flavonoids possess several biological activities and have emerged as efficient therapeutics for the treatment of CVD. Citrus flavonoids scavenge free radicals, improve glucose tolerance and insulin sensitivity, modulate lipid metabolism and adipocyte differentiation, suppress inflammation and apoptosis, and improve endothelial dysfunction. The intake of citrus flavonoids has been associated with improved cardiovascular outcomes. Although citrus flavonoids exerted multiple beneficial effects, their mechanisms of action are not completely established. In this review, we summarized recent findings and advances in understanding the mechanisms underlying the protective effects of citrus flavonoids against oxidative stress, inflammation, diabetes, dyslipidemia, endothelial dysfunction, and atherosclerosis. Further studies and clinical trials to assess the efficacy and to explore the underlying mechanism(s) of action of citrus flavonoids are recommended.
Collapse
|
166
|
Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, Siddiqui R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep 2019; 9:3122. [PMID: 30816269 PMCID: PMC6395601 DOI: 10.1038/s41598-019-39528-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023] Open
Abstract
Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| | - Abdulkader Masri
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Komal Rao
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kavitha Rajendran
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| |
Collapse
|
167
|
Biazotto KR, de Souza Mesquita LM, Neves BV, Braga ARC, Tangerina MMP, Vilegas W, Mercadante AZ, De Rosso VV. Brazilian Biodiversity Fruits: Discovering Bioactive Compounds from Underexplored Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1860-1876. [PMID: 30707576 DOI: 10.1021/acs.jafc.8b05815] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large segments of the Brazilian population still suffer from malnutrition and diet-related illnesses. In contrast, many native fruits have biodiversity and are underexploited sources of bioactive compounds and unknown to consumers. The phytochemical composition of nine underexplored Brazilian fruits was determined. Carotenoids and anthocyanins were identified and quantified by high performance liquid chromatography-photodiode array-tandem mass spectrometry (HPLC-PDA-MS/MS), and phenolic compounds and iridoids were identified by flow injection analysis-electrospray-ion trap-tandem mass spectrometry (FIA-ESI-IT-MS/MS); in total, 84 compounds were identified. In addition, the chemical structure and pathway mass fragmentation of new iridoids from jenipapo ( Genipa americana) and jatoba ( Hymenae coubaril) are proposed. The highest level of carotenoids was registered in pequi ( Caryocar brasiliense; 10156.21 μg/100 g edible fraction), while the major total phenolic content was found in cambuci ( Campomanesia coubaril; 221.70 mg GAE/100 g). Anthocyanins were quantified in jabuticaba ( Plinia cauliflora; 45.5 mg/100 g) and pitanga ( Eugenia uniflora; 81.0 mg/100 g). Our study illustrates the chemical biodiversity of underexplored fruits from Brazil, supporting the identification of new compounds and encouraging the study of more food matrixes not yet investigated.
Collapse
Affiliation(s)
- Katia Regina Biazotto
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Leonardo Mendes de Souza Mesquita
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Bruna Vitória Neves
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | | | - Wagner Vilegas
- Laboratory of Bioprospection of Natural Products (LBPN) , UNESP - São Paulo State University/Coastal Campus of São Vicente , São Vicente , São Paulo 11015-020 , Brazil
| | - Adriana Zerlotti Mercadante
- Department of Food Science, Faculty of Food Engineering , University of Campinas (UNICAMP) , Campinas , São Paulo CEP 13083-862 , Brazil
| | - Veridiana Vera De Rosso
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| |
Collapse
|
168
|
Influence of Bovine Serum Albumin-Flavonoid Interaction on the Antioxidant Activity of Dietary Flavonoids: New Evidence from Electrochemical Quantification. Molecules 2018; 24:molecules24010070. [PMID: 30585235 PMCID: PMC6337117 DOI: 10.3390/molecules24010070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Interaction between dietary flavonoids and albumins plays an important role in the bioavailability and bioactivity of flavonoids. Therefore, the influence of this interaction on the antioxidant activity of flavonoid has attracted much interest. In this study, a ceric reducing/antioxidant capacity assay (CRAC) was employed to investigate the effects of albumin-flavonoid interaction on the antioxidant activity of seven common flavonoids. The results obtained from the CRAC assay were also compared separately with the results from the spectrophotometric methods including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. All the flavonoids show a decreasing in the antioxidant activity detected by CRAC assay, indicting a "masking effect" of bovine serum albumin (BSA)-flavonoid interaction. However, the results from DPPH and FRAP assays were conflicting, which may be attributed to the influence of solvent systems.
Collapse
|
169
|
Moine L, Rivoira M, Díaz de Barboza G, Pérez A, Tolosa de Talamoni N. Glutathione depleting drugs, antioxidants and intestinal calcium absorption. World J Gastroenterol 2018; 24:4979-4988. [PMID: 30510373 PMCID: PMC6262252 DOI: 10.3748/wjg.v24.i44.4979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Glutathione (GSH) is a tripeptide that constitutes one of the main intracellular reducing compounds. The normal content of GSH in the intestine is essential to optimize the intestinal Ca2+ absorption. The use of GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione or vitamin K3, sodium deoxycholate or diets enriched in fructose, which induce several features of the metabolic syndrome, produce inhibition of the intestinal Ca2+ absorption. The GSH depleting drugs switch the redox state towards an oxidant condition provoking oxidative/nitrosative stress and inflammation, which lead to apoptosis and/or autophagy of the enterocytes. Either the transcellular Ca2+ transport or the paracellular Ca2+ route are altered by GSH depleting drugs. The gene and/or protein expression of transporters involved in the transcellular Ca2+ pathway are decreased. The flavonoids quercetin and naringin highly abrogate the inhibition of intestinal Ca2+ absorption, not only by restoration of the GSH levels in the intestine but also by their anti-apoptotic properties. Ursodeoxycholic acid, melatonin and glutamine also block the inhibition of Ca2+ transport caused by GSH depleting drugs. The use of any of these antioxidants to ameliorate the intestinal Ca2+ absorption under oxidant conditions associated with different pathologies in humans requires more investigation with regards to the safety, pharmacokinetics and pharmacodynamics of them.
Collapse
Affiliation(s)
- Luciana Moine
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - María Rivoira
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Adriana Pérez
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio “Dr. Fernando Cañas”, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
170
|
Marrelli M, Morrone F, Argentieri MP, Gambacorta L, Conforti F, Avato P. Phytochemical and Biological Profile of Moricandia arvensis (L.) DC.: An Inhibitor of Pancreatic Lipase. Molecules 2018; 23:E2829. [PMID: 30384448 PMCID: PMC6278432 DOI: 10.3390/molecules23112829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022] Open
Abstract
Pancreatic lipase, a key enzyme for lipid absorption, is one of the most important targets for the treatment of obesity, while natural compounds have recently attracted much interest as potential inhibitors of this enzyme. Here, in an attempt to find new effective agents, the methanolic extract from Moricandia arvensis (L.) DC. and its sub-extracts were investigated for their potential inhibitory activity. The ability to inhibit pancreatic lipase was verified through the in vitro evaluation of the prevention of p-nitrophenyl caprylate hydrolysis. The antioxidant activity was also verified by means of DPPH and β-carotene bleaching tests. Compositional profiling revealed that flavonoid glycosides were the main specialized metabolites present in the methanolic extract from the aerial parts of the plant with kaempferol and quercetin representing the two O-glycosylated aglycones. Kaempferol-3-O-β-(2″-O-glucosyl)-rutinoside and kaempferol-3-O-a-arabinosyl-7-O-rhamnoside were the most abundant flavonols. The crude methanolic extract and the dichloromethane and ethyl acetate sub-extracts showed a strong lipase inhibitory activity, with IC50 values of 2.06 ± 0.02, 1.52 ± 0.02 and 1.31 ± 0.02 mg/mL, respectively. The best capacity to scavenge DPPH radical was detected for the ethyl acetate sub-extract (IC50 = 171.9 ± 1.0 µg/mL), which was also effective in protecting linoleic acid from peroxidation (IC50 = 35.69 ± 2.30 µg/mL). Obtained results support the hypothesis that M. arvensis can be a source of bioactive phytochemicals for the pharmacological inhibition of dietary lipids absorption.
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Federica Morrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Maria Pia Argentieri
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", I-70125 Bari, Italy.
| | - Lucia Gambacorta
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), 70126 Bari, Italy.
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Pinarosa Avato
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", I-70125 Bari, Italy.
| |
Collapse
|
171
|
Cyboran-Mikołajczyk S, Jurkiewicz P, Hof M, Kleszczyńska H. The Impact of O-Glycosylation on Cyanidin Interaction with POPC Membranes: Structure-Activity Relationship. Molecules 2018; 23:E2771. [PMID: 30366469 PMCID: PMC6278410 DOI: 10.3390/molecules23112771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022] Open
Abstract
Cyanidin and its O-glycosides have many important physiological functions in plants and beneficial effects on human health. Their biological activity is not entirely clear and depends on the structure of the molecule, in particular, on the number and type of sugar substituents. Therefore, in this study the detailed structure-activity relationship (SARs) of the anthocyanins/anthocyanidins in relation to their interactions with lipid bilayer was determined. On the basis of their antioxidant activity and the changes induced by them in size and Zeta potential of lipid vesicles, and mobility and order of lipid acyl chains, the impact of the number and type of sugar substituents on the biological activity of the compounds was evaluated. The obtained results have shown, that 3-O-glycosylation changes the interaction of cyanidin with lipid bilayer entirely. The 3-O-glycosides containing a monosaccharide induces greater changes in physical properties of the lipid membrane than those containing disaccharides. The presence of additional sugar significantly reduces glycoside interaction with model lipid membrane. Furthermore, O-glycosylation alters the ability of cyanidin to scavenge free radicals. This alteration depends on the type of free radicals and the sensitivity of the method used for their determination.
Collapse
Affiliation(s)
- Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Piotr Jurkiewicz
- J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejškova 2155/3, Prague 8, 182 23, Czech Republic.
| | - Martin Hof
- J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejškova 2155/3, Prague 8, 182 23, Czech Republic.
| | - Halina Kleszczyńska
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
172
|
DEGRADATION OF FLAVONOIDS BY Cryptococcus albidus α-L-RHAMNOSIDASE. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
173
|
Domínguez F, Maycotte P, Acosta-Casique A, Rodríguez-Rodríguez S, Moreno DA, Ferreres F, Flores-Alonso JC, Delgado-López MG, Pérez-Santos M, Anaya-Ruiz M. Bursera copallifera Extracts Have Cytotoxic and Migration-Inhibitory Effects in Breast Cancer Cell Lines. Integr Cancer Ther 2018; 17:654-664. [PMID: 29652200 PMCID: PMC6142086 DOI: 10.1177/1534735418766416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022] Open
Abstract
Plants from the Bursera genus are widely distributed in the tropical dry forests of Mexico. In traditional medicine, extracts from different species of Bursera have been used for a wide range of biological activities, including the treatment of cancer-related symptoms. Compounds present in the Bursera genus include lignans, flavonoids, steroids, short-chain aliphatic alkanes, acetates, alcohols, ketones, and terpenoids. In some instances, secondary metabolites of these classes of compounds may induce cytotoxicity, and therefore we sought to investigate the effects of B. copallifera leaf extracts in breast cancer cell lines to evaluate their potential therapeutic value for the treatment of breast cancer, one of the most prevalent types of cancer in women worldwide. Two B. copallifera leaf extracts exerted cytotoxic effects on both the MCF7 and MDA-MB-231 breast cancer cell line models. The cytotoxic effect was more evident in the MDA-MB-231 triple negative cell line inhibiting also the migration of these cells. We identified hydroxycinnamic acid and flavonol derivatives as major phenolic components of the extracts. Our results strongly suggest a potential use of the Bursera leaf extracts rich in phenolic compounds, their individual phenolic compounds, or their combinations for the treatment of breast cancer.
Collapse
Affiliation(s)
| | - Paola Maycotte
- Instituto Mexicano del Seguro Social,
Atlixco, Puebla, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Slámová K, Kapešová J, Valentová K. "Sweet Flavonoids": Glycosidase-Catalyzed Modifications. Int J Mol Sci 2018; 19:E2126. [PMID: 30037103 PMCID: PMC6073497 DOI: 10.3390/ijms19072126] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023] Open
Abstract
Natural flavonoids, especially in their glycosylated forms, are the most abundant phenolic compounds found in plants, fruit, and vegetables. They exhibit a large variety of beneficial physiological effects, which makes them generally interesting in a broad spectrum of scientific areas. In this review, we focus on recent advances in the modifications of the glycosidic parts of various flavonoids employing glycosidases, covering both selective trimming of the sugar moieties and glycosylation of flavonoid aglycones by natural and mutant glycosidases. Glycosylation of flavonoids strongly enhances their water solubility and thus increases their bioavailability. Antioxidant and most biological activities are usually less pronounced in glycosides, but some specific bioactivities are enhanced. The presence of l-rhamnose (6-deoxy-α-l-mannopyranose) in rhamnosides, rutinosides (rutin, hesperidin) and neohesperidosides (naringin) plays an important role in properties of flavonoid glycosides, which can be considered as "pro-drugs". The natural hydrolytic activity of glycosidases is widely employed in biotechnological deglycosylation processes producing respective aglycones or partially deglycosylated flavonoids. Moreover, deglycosylation is quite commonly used in the food industry aiming at the improvement of sensoric properties of beverages such as debittering of citrus juices or enhancement of wine aromas. Therefore, natural and mutant glycosidases are excellent tools for modifications of flavonoid glycosides.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Jana Kapešová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
175
|
Xie L, Zhang L, Wang C, Wang X, Xu YM, Yu H, Wu P, Li S, Han L, Gunatilaka AAL, Wei X, Lin M, Molnár I, Xu Y. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E4980-E4989. [PMID: 29760061 PMCID: PMC5984488 DOI: 10.1073/pnas.1716046115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is a prominent strategy to optimize the pharmacokinetic and pharmacodynamic properties of drug-like small-molecule scaffolds by modulating their solubility, stability, bioavailability, and bioactivity. Glycosyltransferases applicable for "sugarcoating" various small-molecule acceptors have been isolated and characterized from plants and bacteria, but remained cryptic from filamentous fungi until recently, despite the frequent use of some fungi for whole-cell biocatalytic glycosylations. Here, we use bioinformatic and genomic tools combined with heterologous expression to identify a glycosyltransferase-methyltransferase (GT-MT) gene pair that encodes a methylglucosylation functional module in the ascomycetous fungus Beauveria bassiana The GT is the founding member of a family nonorthologous to characterized fungal enzymes. Using combinatorial biosynthetic and biocatalytic platforms, we reveal that this GT is a promiscuous enzyme that efficiently modifies a broad range of drug-like substrates, including polyketides, anthraquinones, flavonoids, and naphthalenes. It yields both O- and N-glucosides with remarkable regio- and stereospecificity, a spectrum not demonstrated for other characterized fungal enzymes. These glucosides are faithfully processed by the dedicated MT to afford 4-O-methylglucosides. The resulting "unnatural products" show increased solubility, while representative polyketide methylglucosides also display increased stability against glycoside hydrolysis. Upon methylglucosidation, specific polyketides were found to attain cancer cell line-specific antiproliferative or matrix attachment inhibitory activities. These findings will guide genome mining for fungal GTs with novel substrate and product specificities, and empower the efficient combinatorial biosynthesis of a broad range of natural and unnatural glycosides in total biosynthetic or biocatalytic formats.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Xiaojing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Ya-Ming Xu
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Shenglan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | | | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| | - István Molnár
- Natural Products Center, University of Arizona, Tucson, AZ 85706;
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| |
Collapse
|
176
|
Nidetzky B, Gutmann A, Zhong C. Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00710] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
177
|
Luna L, Simirgiotis MJ, Lima B, Bórquez J, Feresin GE, Tapia A. UHPLC-MS Metabolome Fingerprinting: The Isolation of Main Compounds and Antioxidant Activity of the Andean Species Tetraglochin ameghinoi (Speg.) Speg. Molecules 2018; 23:molecules23040793. [PMID: 29596368 PMCID: PMC6017344 DOI: 10.3390/molecules23040793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Abstract
The seriated extracts of petroleum ether (PE-E), dichloromethane (DCM-E) and methanol extracts (MeOH-E) from the aerial parts of the native South American plant Tetraglochin ameghinoi (Rosaceae), were evaluated regarding their antioxidant and antibacterial activities. The antioxidant properties were evaluated by free radical scavenging methods (DPPH and TEAC), ferric-reducing antioxidant power (FRAP) and lipoperoxidation in erythrocytes (LP), while the antibacterial activity was performed against Gram-positive and Gram-negative bacteria according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The chemical and biological analyses of this plant are very important since this bush is currently used in traditional medicine as a cholagogue and digestive. The polar MeOH-E showed the highest antioxidant activities (17.70 µg/mL in the DPPH assay, 381.43 ± 22.38 mM TE/g extract in the FRAP assay, 387.76 ± 91.93 mg TE/g extract in the TEAC assay and 93.23 + 6.77% in the LP assay) and it was selected for chromatographic isolation of its components. These components were found to be four acetophenones, including the new phloracetophenone glucoside: 4′,6′,-dihydroxy-2′-O-(6″-acetyl)-β-d-glucopyranosylacetophenone or IUPAC name: (6-(2-acetyl-3,5-dihydroxyphenoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl acetate, whose structure was elucidated by NMR and MS methods. In addition, twenty-six compounds, including five of these acetophenone derivatives, two sugars, six flavonoids, eleven phenolic acids and two triterpenes, were identified based on UHPLC-OT-MS and PDA analysis on the MeOH-E. The results support the medicinal use of the plant.
Collapse
Affiliation(s)
- Lorena Luna
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Li bertador General San Martín 1109 (O), San Juan CP5400, Argentina.
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile.
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Beatriz Lima
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Li bertador General San Martín 1109 (O), San Juan CP5400, Argentina.
- CONICET (Consejo Nacional de Ciencia y Tecnología), CABA, Buenos Aires C1405DJR, Argentina.
| | - Jorge Bórquez
- Laboratorio de Productos Naturales Depto. de Química, Facultad de Ciencias, Universidad de Antofagasta, Av. Coloso S-N, Antofagasta 1240000, Chile.
| | - Gabriela E Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Li bertador General San Martín 1109 (O), San Juan CP5400, Argentina.
- CONICET (Consejo Nacional de Ciencia y Tecnología), CABA, Buenos Aires C1405DJR, Argentina.
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Li bertador General San Martín 1109 (O), San Juan CP5400, Argentina.
| |
Collapse
|
178
|
Chen L, Teng H, Xie Z, Cao H, Cheang WS, Skalicka-Woniak K, Georgiev MI, Xiao J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Crit Rev Food Sci Nutr 2018; 58:513-527. [PMID: 27438892 DOI: 10.1080/10408398.2016.1196334] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past two decades, extensive studies have revealed that inflammation represents a major risk factor for various human diseases. Chronic inflammatory responses predispose to pathological progression of chronic illnesses featured with penetration of inflammatory cells, dysregulation of cellular signaling, excessive generation of cytokines, and loss of barrier function. Hence, the suppression of inflammation has the potential to delay, prevent, and to treat chronic diseases. Flavonoids, which are widely distributed in humans daily diet, such as vegetables, fruits, tea and cocoa, among others, are considered as bioactive compounds with anti-inflammatory potential. Modification of flavonoids including hydroxylation, o-methylation, and glycosylation, can alter their metabolic features and affect mechanisms of inflammation. Structure-activity relationships among naturally occurred flavonoids hence provide us with a preliminary insight into their anti-inflammatory potential, not only attributing to the antioxidant capacity, but also to modulate inflammatory mediators. The present review summarizes current knowledge and underlies mechanisms of anti-inflammatory activities of dietary flavonoids and their influences involved in the development of various inflammatory-related chronic diseases. In addition, the established structure-activity relationships of phenolic compounds in this review may give an insight for the screening of new anti-inflammatory agents from dietary materials.
Collapse
Affiliation(s)
- Lei Chen
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Hui Teng
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Zhenglu Xie
- b Jinshan College , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Hui Cao
- c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade , Taipa , Macau
| | - Wai San Cheang
- c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade , Taipa , Macau
| | - Krystyna Skalicka-Woniak
- d Department of Pharmacognosy with Medicinal Plant Unit , Medical University of Lublin , Lublin , Poland
| | - Milen I Georgiev
- e Group of Plant Cell Biotechnology and Metabolomics , The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences , Plovdiv , Bulgaria
- f Center of Plant Systems Biology and Biotechnology , Plovdiv , Bulgaria
| | - Jianbo Xiao
- c Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade , Taipa , Macau
| |
Collapse
|
179
|
Shrestha A, Pandey RP, Dhakal D, Parajuli P, Sohng JK. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl Microbiol Biotechnol 2018; 102:1251-1267. [PMID: 29308528 DOI: 10.1007/s00253-017-8694-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/27/2022]
Abstract
Two plant-originated C-glucosyltransferases (CGTs) UGT708D1 from Glycine max and GtUF6CGT1 from Gentiana triflora were accessed for glucosylation of selected flavones chrysin and luteolin. Uridine diphosphate (UDP)-glucose pool was enhanced in Escherichia coli cell cytosol by introducing heterologous UDP-glucose biosynthetic genes, i.e., glucokinase (glk), phosphoglucomutase (pgm2), and glucose 1-phosphate uridylyltransferase (galU), along with glucose facilitator diffusion protein from (glf) from different organisms, in a multi-monocistronic vector with individual T7 promoter, ribosome binding site, and terminator for each gene. The C-glucosylated products were analyzed by high-performance liquid chromatography-photodiode array, high-resolution quadruple time-of-flight electrospray ionization mass spectrometry, and one-dimensional nuclear magnetic resonance analyses. Fed-batch shake flask culture showed 8% (7 mg/L; 16 μM) and 11% (9 mg/L; 22 μM) conversion of chrysin to chrysin 6-C-β-D-glucoside with UGT708D1 and GtUF6CGT1, respectively. Moreover, the bioengineered E. coli strains with exogenous UDP-glucose biosynthetic genes and glucose facilitator diffusion protein enhanced the production of chrysin 6-C-β-D-glucoside by approximately 1.4-fold, thus producing 10 mg/L (12%, 24 μM) and 14 mg/L (17%, 34 μM) by UGT708D1 and GtUF6CGT1, respectively, without supplementation of additional UDP-glucose in the medium. The biotransformation was further elevated when the bioengineered strain was scaled up in lab-scale fermentor at 3 L volume. HPLC analysis of fermentation broth extract revealed 50% (42 mg/L, 100 μM) conversion of chrysin to chrysin 6-C-β-D-glucoside at 48 h upon supplementation of 200 μM of chrysin. The maximum conversion of luteolin was 38% (34 mg/L, 76 μM) in 50-mL shake flask fermentation at 48 h. C-glucosylated derivative of chrysin was found to be more soluble and more stable to high temperature, different pH range, and β-glucosidase enzyme, than O-glucosylated derivative of chrysin.
Collapse
Affiliation(s)
- Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Prakash Parajuli
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
180
|
Förster N, Mewis I, Glatt H, Haack M, Brigelius-Flohé R, Schreiner M, Ulrichs C. Characteristic single glucosinolates from Moringa oleifera: Induction of detoxifying enzymes and lack of genotoxic activity in various model systems. Food Funct 2018; 7:4660-4674. [PMID: 27775133 DOI: 10.1039/c6fo01231k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leaves of Moringa oleifera are used by tribes as biological cancer medicine. Scientific investigations with M. oleifera conducted so far have almost exclusively used total plant extracts. Studies on the activity of single compounds are missing. Therefore, the biological effects of the two main aromatic multi-glycosylated glucosinolates of M. oleifera were investigated in the present study. The cytotoxic effects of M. oleifera glucosinolates were identified for HepG2 cells (NRU assay), for V79-MZ cells (HPRT assay, SCE assay), and for two Salmonella typhimurium strains (Ames test). Genotoxic effects of these glucosinolates were not observed (Ames test, HPRT assay, and SCE assay). Reporter gene assays revealed a significant increase in the ARE-dependent promoter activity of NQO1 and GPx2 indicating an activation of the Nrf2 pathway by M. oleifera glucosinolates. Since both enzymes can also be induced via activation of the AhR, plasmids containing promoters of both enzymes mutated in the respective binding sites (pGL3enh-hNQO1-ARE, pGL3enh-hNQO1-XRE, pGL3bas-hGPX2-mutARE, pGL3bas-hGPX2-mutXRE) were transfected. Analyses revealed that the majority of the stimulating effects was mediated by the ARE motif, whereas the XRE motif played only a minor role. The stimulating effects of M. oleifera glucosinolates could be demonstrated both at the transcriptional (reporter gene assay, real time-PCR) and translational levels (enzyme activity) making them interesting compounds for further investigation.
Collapse
Affiliation(s)
- Nadja Förster
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14195 Berlin, Germany.
| | - Inga Mewis
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Hansruedi Glatt
- Former Department of Nutritional Toxicology, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany and Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Michael Haack
- Former Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Regina Brigelius-Flohé
- Former Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Monika Schreiner
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Christian Ulrichs
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14195 Berlin, Germany.
| |
Collapse
|
181
|
Aiello F, Armentano B, Polerà N, Carullo G, Loizzo MR, Bonesi M, Cappello MS, Capobianco L, Tundis R. From Vegetable Waste to New Agents for Potential Health Applications: Antioxidant Properties and Effects of Extracts, Fractions and Pinocembrin from Glycyrrhiza glabra L. Aerial Parts on Viability of Five Human Cancer Cell Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7944-7954. [PMID: 28862446 DOI: 10.1021/acs.jafc.7b03045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glycyrrhiza glabra cultivation and harvesting produces substantial quantities of aerial parts as waste. With the aim to prospect an innovative valorization of these byproducts, the aerial parts were harvested in May and October and analyzed for their chemical profile, antioxidant properties, and effects on viability of five cancer cell lines. Pinocembrin was the main constituent. A significant protection of lipid peroxidation was observed with the May total extract (IC50 of 4.2 ± 0.4 μg/mL at 30 min of incubation). The effects on viability of HeLa, MCF-7, MDA-MB-231, Caco-2, and PC3 human cancer cells were investigated. All samples shown a remarkable activity with IC50 values below 25 μg/mL. Samples from plants harvested in May exhibited greater activity than those harvested in October. MCF-7 and HeLa were the most sensitive cells with IC50 in the range 2.73-3.01 and 3.28-5.53 μg/mL, respectively. G. glabra aerial parts represent a good source of valuable products.
Collapse
Affiliation(s)
- Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Via P. Bucci 87036, Rende, Cosenza, Italy
| | - Biagio Armentano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Via P. Bucci 87036, Rende, Cosenza, Italy
| | - Nicoletta Polerà
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Via P. Bucci 87036, Rende, Cosenza, Italy
| | - Gabriele Carullo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Via P. Bucci 87036, Rende, Cosenza, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Via P. Bucci 87036, Rende, Cosenza, Italy
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Via P. Bucci 87036, Rende, Cosenza, Italy
| | - Maria Stella Cappello
- CNR, Institute of Science of Food Production (ISPA) , Prov. le Lecce-Monteroni, 73100 Lecce, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento , 73100 Lecce, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Via P. Bucci 87036, Rende, Cosenza, Italy
| |
Collapse
|
182
|
Antunes-Ricardo M, Rodríguez-Rodríguez C, Gutiérrez-Uribe JA, Cepeda-Cañedo E, Serna-Saldívar SO. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.). Int J Mol Sci 2017; 18:E1816. [PMID: 28829356 PMCID: PMC5578202 DOI: 10.3390/ijms18081816] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp(AP-BL)) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp(AP-BL) values than triglycosides. Sugar substituents affected the Papp(AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.
Collapse
Affiliation(s)
- Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - César Rodríguez-Rodríguez
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Janet A Gutiérrez-Uribe
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Eduardo Cepeda-Cañedo
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Sergio O Serna-Saldívar
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| |
Collapse
|
183
|
Dludla PV, Joubert E, Muller CJF, Louw J, Johnson R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2- O-β-D-glucoside. Nutr Metab (Lond) 2017; 14:45. [PMID: 28702068 PMCID: PMC5504778 DOI: 10.1186/s12986-017-0200-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed. Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec- Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
184
|
Vinayagam R, Xiao J, Xu B. An insight into anti-diabetic properties of dietary phytochemicals. PHYTOCHEMISTRY REVIEWS 2017; 16:535-553. [DOI: 10.1007/s11101-017-9496-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
185
|
Smiljkovic M, Stanisavljevic D, Stojkovic D, Petrovic I, Marjanovic Vicentic J, Popovic J, Golic Grdadolnik S, Markovic D, Sankovic-Babice S, Glamoclija J, Stevanovic M, Sokovic M. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI JOURNAL 2017; 16:795-807. [PMID: 28827996 PMCID: PMC5547395 DOI: 10.17179/excli2017-300] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022]
Abstract
Bioactive potential of apigenin derivative apigenin-7-O-glucoside related to its antifungal activity on Candida spp. and cytotoxic effect on colon cancer cells was studied and compared with bioactive potential of apigenin. Antifungal activity was tested on 14 different isolates of Candida spp. using membrane permeability assay, measuring inhibition of reactive oxidative species and inhibition of CYP51 C. albicans enzyme. Cytotoxic potential of apigenin-7-O-glucoside was tested on colon cancer HCT116 cells by measuring cell viability, apoptosis rate and apoptosis- and colon cancer-related gene expression. Obtained results indicated considerable antifungal activity of apigenin-7-O-glucoside towards all Candida isolates. Breakdown of C. albicans plasma membrane was achieved upon treatment with apigenin-7-O-glucoside for shorter period of time then with apigenin. Reduction of intra- and extracellular reactive oxidative species was achieved with minimum inhibitory concentrations of both compounds, suggesting that reactive oxidative species inhibition could be a mechanism of antifungal action. None of the compounds exhibited binding affinity to C. albicans CYP51 protein. Besides, apigenin-7-O-glucoside was more effective compared to apigenin in reduction of cell's viability and induction of cell death of HCT116 cells. Treatment with both compounds resulted in chromatin condensation, apoptotic bodies formation and apoptotic genes expression in HCT116 cells, but the apigenin-7-O-glucoside required a lower concentration to achieve the same effect. Compounds apigenin-7-O-glucoside and apigenin displayed prominent antifungal potential and cytotoxic effect on HCT116 cells. However, our results showed that apigenin-7-O-glucoside has more potent activity compared to apigenin in all assays that we used.
Collapse
Affiliation(s)
- Marija Smiljkovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Danijela Stanisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Dejan Stojkovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Isidora Petrovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Jelena Marjanovic Vicentic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Jelena Popovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Simona Golic Grdadolnik
- Laboratory of Biomolecular Structure, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Dejan Markovic
- Clinic for Pediatric and Preventative Dentistry, Faculty of Dental Medicine, Rankeova 4, Belgrade
| | | | - Jasmina Glamoclija
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010 Belgrade, Serbia
| | - Marina Sokovic
- Department of Plant Physiology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
186
|
Sun L, Guo Y, Zhang Y, Zhuang Y. Antioxidant and Anti-tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by cAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front Pharmacol 2017; 8:104. [PMID: 28337140 PMCID: PMC5343546 DOI: 10.3389/fphar.2017.00104] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Rape bee pollen possesses many nutritional and therapeutic properties because of its abundant nutrimental and bioactive components. In this study, free (FPE) and bound (BPE) phenolic extracts of rape bee pollen were obtained, phenolic and flavonoid contents were determined, and composition of phenolic acids was analyzed. In vitro antioxidant and anti-tyrosinase (TYR) activities of FPE and BPE were compared, and inhibitory melanogenesis of FPE was further evaluated. Results showed FPE and BPE contain total phenolic contents of 11.76 and 0.81 mg gallic acid equivalents/g dry weight (DW) and total flavonoid contents of 19.24 and 3.65 mg rutin equivalents/g DW, respectively. Phenolic profiling showed FPE and BPE fractions contained 12 and 9 phenolic acids, respectively. FPE contained the highest rutin content of 774.87 μg/g. FPE and BPE showed the high antioxidant properties in vitro and high inhibitory activities for mushroom TYR. Higher activities of FPE than those of BPE can be attributed to difference in their phenolic compositions. Inhibitory melanogenesis activities of FPE against B16 were further evaluated. Results showed suppressed intracellular TYR activity, reduced melanin content, and promoted glutathione synthesis (p < 0.05) in FPE-treated cells. FPE reduced mRNA expression of TYR, TYR-related protein (TRP)-1 and TRP-2, and significantly suppressed cyclic adenosine monophosphate (cAMP) levels through down-regulation of melanocortin 1 receptor gene expression (p < 0.05). FPE reduced mRNA expression of microphthalmia-associated transcription factor (MITF), significantly inhibiting intracellular melanin synthesis (p < 0.05). Hence, FPE regulates melanogenesis of B16 cells involved in cAMP/MITF/TYR pathway. These results revealed that FPE can be used as pharmaceutical agents and cosmetics to protect cells from abnormal melanogenesis.
Collapse
Affiliation(s)
- Liping Sun
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| | - Yan Guo
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| | - Yanxin Zhang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| |
Collapse
|
187
|
Han L, Fang C, Zhu R, Peng Q, Li D, Wang M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int J Biol Macromol 2017; 95:520-527. [DOI: 10.1016/j.ijbiomac.2016.11.089] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/19/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
188
|
Cao H, Chai TT, Wang X, Morais-Braga MFB, Yang JH, Wong FC, Wang R, Yao H, Cao J, Cornara L, Burlando B, Wang Y, Xiao J, Coutinho HDM. Phytochemicals from fern species: potential for medicine applications. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:379-440. [PMID: 32214919 PMCID: PMC7089528 DOI: 10.1007/s11101-016-9488-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023]
Abstract
Ferns are an important phytogenetic bridge between lower and higher plants. Historically they have been used in many ways by humans, including as ornamental plants, domestic utensils, foods, and in handicrafts. In addition, they have found uses as medicinal herbs. Ferns produce a wide array of secondary metabolites endowed with different bioactivities that could potentially be useful in the treatment of many diseases. However, there is currently relatively little information in the literature on the phytochemicals present in ferns and their pharmacological applications, and the most recent review of the literature on the occurrence, chemotaxonomy and physiological activity of fern secondary metabolites was published over 20 years ago, by Soeder (Bot Rev 51:442-536, 1985). Here, we provide an updated review of this field, covering recent findings concerning the bioactive phytochemicals and pharmacology of fern species.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of ScienceUniversiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Xin Wang
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai, 200234 China
| | | | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of ScienceUniversiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Huankai Yao
- School of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221004 China
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Jianguo Cao
- Department of Biology, Shanghai Normal University, 100 Guilin Rd, Shanghai, 200234 China
| | - Laura Cornara
- Dipartimento di Scienze della Terra dell’Ambiente e della Vita, Polo Botanico, Università degli Studi di Genova, Corso Dogali 1M, 16136 Genoa, Italy
| | - Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genoa, Italy
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Regional University of Cariri–URCA, Crato, CE Brazil
| |
Collapse
|
189
|
Pharmacological Basis for Use of Selaginella moellendorffii in Gouty Arthritis: Antihyperuricemic, Anti-Inflammatory, and Xanthine Oxidase Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2103254. [PMID: 28250791 PMCID: PMC5307293 DOI: 10.1155/2017/2103254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022]
Abstract
This study was aimed at evaluating the effects of Selaginella moellendorffii Hieron. (SM) on gouty arthritis and getting an insight of the possible mechanisms. HPLC method was developed for chemical analysis. The paw oedema, the neutrophil accumulation, inflammatory mediators, lipid peroxidation, and histopathological changes of the joints were analyzed in gouty arthritis rat model, and the kidney injury and serum urate were detected in hyperuricemic mice. Pharmacokinetic result demonstrated that the main apigenin glycosides might be quantitatively transformed into apigenin in the mammalian body. Among these compounds, the apigenin exhibited the strongest effect on xanthine oxidase (XOD). SM aqueous extract has proved to be active in reducing hyperuricemia in dose-dependent manner, and the levels of blood urea nitrogen (BUN) and creatinine (Cr) in high dose group were decreased significantly as compared with hyperuricemic control group (P < 0.01). The high dose of SM extract could significantly prevent the paw swelling, reduce gouty joint inflammatory features, reduce the release of IL-1β and TNF-α, lower malondialdehyde (MDA) and myeloperoxidase (MPO) levels, and increase superoxide dismutase (SOD) level (P < 0.01). For the first time, this study provides a rational basis for the traditional use of SM aqueous extract against gout in folk medicine.
Collapse
|
190
|
Abstract
The International Symposium on Phytochemicals in Medicine and Food (ISPMF2015) was held from June 26 to 29, 2015, in Shanghai, China. It is for the first time that a Phytochemical Society of Europe conference took place in China, which provided an opportunity for 270 scientists from 48 countries to communicate their up-to-date knowledge on phytochemicals. ISPMF2015 comprised exciting and various programs with 16 sessions, including 12 plenary lectures, 20 invited talks, 55 short oral presentations, and more than 130 posters. With the help of Prof. Fergus M. Clydesdale, a special issue of Critical Reviews in Food Science and Nutrition containing 11 reviews from scientists was presented in this conference. In this special issue, bioactive flavonoids and polysaccharides for human health received significant attention.
Collapse
Affiliation(s)
- Jianbo Xiao
- a College of Food Science, Fujian Agriculture and Forestry University , Fuzhou , Fujian , P. R. China
- b Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Macau University , Taipa, Macau , P. R. China
| |
Collapse
|
191
|
Evaluation of the distribution and metabolism of polyphenols derived from cupuassu ( Theobroma grandiflorum ) in mice gastrointestinal tract by UPLC-ESI-QTOF. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
192
|
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 2016; 8:78. [PMID: 26861391 PMCID: PMC4772042 DOI: 10.3390/nu8020078] [Citation(s) in RCA: 520] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol-gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health.
Collapse
Affiliation(s)
- Tugba Ozdal
- Department of Food Engineering, Faculty of Engineering and Architecture, Okan Univesity, Tuzla, Istanbul TR-34959, Turkey.
| | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China.
| | - Dilek Boyacioglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| |
Collapse
|
193
|
Akram M, Syed AS, Kim KA, Lee JS, Chang SY, Kim CY, Bae ON. Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:322-330. [PMID: 26319962 DOI: 10.1016/j.jep.2015.08.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/06/2015] [Accepted: 08/23/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia plebeia R. Br. (SP) has been widely used as a traditional folk medicine for the treatment of infectious diseases and pain. An anti-inflammatory potential of SP has remains largely unknown. AIM OF THE STUDY We tried to elucidate the principle mechanism and the active ingredients underlying the anti-inflammatory activities of SP. MATERIALS AND METHODS We investigated the protective activities of SP methanolic extract (SPME) and seven representative ingredients against inflammation. Quantitative analysis using HPLC-DAD-ESI/MS was conducted to determine the relative amounts of these seven active ingredients in SPME. Both in vitro murine macrophages and in vivo mouse models were employed to elucidate SP- and active ingredient-mediated anti-inflammatory effects. RESULTS SPME significantly reduced inflammatory processes both in vivo in a TPA-induced ear edema model and in vitro in lipopolysaccharide (LPS)-activated macrophages. SPME decreased the release of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS). Seven active components (luteoloside (C1), nepitrin (C2), homoplantagenin (C3), luteolin (C4), nepetin (C5), hispidulin (C6), and eupatorin (C7)) of SPME were analyzed and their relative concentrations were determined, demonstrating that C2, C3, C5 and C6 were present in higher amounts than were C1, C4, and C7. These major compounds inhibited NO and PGE2 production, and iNOS and COX-II protein expression through heme oxygenase-1 (HO-1) induction via activation of nuclear factor erythroid 2-related factor2 (Nrf2). CONCLUSION Our data demonstrate that SPME possesses potent in vitro and in vivo anti-inflammatory activities. Nepetin and hispidulin, and their glycosides are the major active compounds in SPME, and their effects are mediated by Nrf2/HO-1 signaling. Taken together, we propose that SPME and its active ingredients may serve as novel therapeutic candidates for diseases associated with excessive inflammation.
Collapse
Affiliation(s)
- Muhammad Akram
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ahmed Shah Syed
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Kyeong-A Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jong Soo Lee
- CL Institute Korea (CLIK), Ansan, Republic of Korea; Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Chul Young Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea.
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|