151
|
Abu-Amero KK, Hellani A, Salih MA, Alorainy IA, Zidan G, Kern KC, Sicotte NL, Bosley TM. Optic disk and white matter abnormalities in a patient with a de novo 18p partial monosomy. Ophthalmic Genet 2010; 31:147-54. [PMID: 20565246 DOI: 10.3109/13816810.2010.492817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Neuro-ophthalmologic and neuroimaging features of partial chromosome 18p deletion syndromes have not yet been fully described. METHODS Careful neuro-ophthalmologic and neuroimaging evaluation of a young woman with a partial 18p deletion, including 3 Tesla MRI and diffusion tensor imaging, cytogenetic analysis on GTG-banded chromosomes, and 244K array CGH analysis. RESULTS This 17-year-old girl had modest mental retardation, facial dysmorphism, other characteristics typical of 18p deletion syndrome, and anomalous optic disks. MRI showed enlarged third and lateral ventricles, a thin corpus callosum and patchy white matter signal hyperintensities without enhancement, while diffusion tensor imaging (DTI) revealed significant abnormalities of the corpus callosum with relative sparing of the corticospinal tracts. She had a de novo 14.6 Mb deletion on chromosome 18p [del(18)(p11.2>pter)], a region including 143 genes, only 10 of which were likely candidates for phenotypic expression. CONCLUSIONS This young woman had clinical features similar to those described previously with the 18p deletion syndrome, including moderate mental retardation and dysmorphism without focal neurologic signs. She was myopic, like other 18p deletion patients, supporting the concept that 18p contains a candidate locus for myopia. She also had anomalous optic disks, a feature that may be more common in this syndrome than previously recognized. MRI revealed enlarged ventricles and white matter abnormalities that may be explained in part by haploinsufficiency of ADCYAP1 and LPIN2 in the deleted region of chromosome 18.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Mburu P, Romero MR, Hilton H, Parker A, Townsend S, Kikkawa Y, Brown SDM. Gelsolin plays a role in the actin polymerization complex of hair cell stereocilia. PLoS One 2010; 5:e11627. [PMID: 20661277 PMCID: PMC2905391 DOI: 10.1371/journal.pone.0011627] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 06/15/2010] [Indexed: 01/05/2023] Open
Abstract
A complex of proteins scaffolded by the PDZ protein, whirlin, reside at the stereocilia tip and are critical for stereocilia development and elongation. We have shown that in outer hair cells (OHCs) whirlin is part of a larger complex involving the MAGUK protein, p55, and protein 4.1R. Whirlin interacts with p55 which is expressed exclusively in outer hair cells (OHC) in both the long stereocilia that make up the stereocilia bundle proper as well as surrounding shorter microvilli that will eventually regress. In erythrocytes, p55 forms a tripartite complex with protein 4.1R and glycophorin C promoting the assembly of actin filaments and the interaction of whirlin with p55 indicates that it plays a similar role in OHC stereocilia. However, the components directly involved in actin filament regulation in stereocilia are unknown. We have investigated additional components of the whirlin interactome by identifying interacting partners to p55. We show that the actin capping and severing protein, gelsolin, is a part of the whirlin complex. Gelsolin is detected in OHC where it localizes to the tips of the shorter rows but not to the longest row of stereocilia and the pattern of localisation at the apical hair cell surface is strikingly similar to p55. Like p55, gelsolin is ablated in the whirler and shaker2 mutants. Moreover, in a gelsolin mutant, stereocilia in the apex of the cochlea become long and straggly indicating defects in the regulation of stereocilia elongation. The identification of gelsolin provides for the first time a link between the whirlin scaffolding protein complex involved in stereocilia elongation and a known actin regulatory molecule.
Collapse
Affiliation(s)
- Philomena Mburu
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - María Rosario Romero
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Helen Hilton
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Andrew Parker
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Stuart Townsend
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Yoshiaki Kikkawa
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Japan
| | - Steve D. M. Brown
- Medical Research Council Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| |
Collapse
|
153
|
Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, Salmon D, Galasko D, Michael S, Savas JN, Yates JR, Glabe C, Masliah E. Progressive accumulation of amyloid-beta oligomers in Alzheimer's disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 2010; 277:3051-67. [PMID: 20573181 PMCID: PMC2933033 DOI: 10.1111/j.1742-4658.2010.07719.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cognitive impairment in patients with Alzheimer's disease is closely associated with synaptic loss in the neocortex and limbic system. Although the neurotoxic effects of aggregated amyloid-beta oligomers in Alzheimer's disease have been studied extensively in experimental models, less is known about the characteristics of these aggregates across the spectrum of Alzheimer's disease. In this study, postmortem frontal cortex samples from controls and patients with Alzheimer's disease were fractionated and analyzed for levels of oligomers and synaptic proteins. We found that the levels of oligomers correlated with the severity of cognitive impairment (blessed information-memory-concentration score and mini-mental state examination) and with the loss of synaptic markers. Reduced levels of the synaptic vesicle protein, vesicle-associated membrane protein-2, and the postsynaptic protein, postsynaptic density-95, correlated with the levels of oligomers in the various fractions analyzed. The strongest associations were found with amyloid-beta dimers and pentamers. Co-immunoprecipitation and double-labeling experiments supported the possibility that amyloid-beta and postsynaptic density-95 interact at synaptic sites. Similarly, in transgenic mice expressing high levels of neuronal amyloid precursor protein, amyloid-beta co-immunoprecipitated with postsynaptic density-95. This was accompanied by a decrease in the levels of the postsynaptic proteins Shank1 and Shank3 in patients with Alzheimer's disease and in the brains of amyloid precursor protein transgenic mice. In conclusion, this study suggests that the presence of a subpopulation of amyloid-beta oligomers in the brains of patients with Alzheimer's disease might be related to alterations in selected synaptic proteins and cognitive impairment.
Collapse
Affiliation(s)
- Emiley Pham
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Leslie Crews
- Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Kiren Ubhi
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Lawrence Hansen
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Department of Pathology, University of California, San Diego, La Jolla, California 92093
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Anna Cartier
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - David Salmon
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Sarah Michael
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Jeffrey N. Savas
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA 92037
| | - John R. Yates
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA 92037
| | - Charles Glabe
- Department of Biochemistry, University of California, Irvine, Irvine CA 92697
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Department of Pathology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
154
|
DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. Int J Neuropsychopharmacol 2010; 13:347-59. [PMID: 19793403 DOI: 10.1017/s146114570999071x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is unique among psychiatric disorders since there is an explicit requirement for the presence of a well-defined precipitating environmental event. This suggests the participation of adaptable molecular processes such as epigenetic modifications, including acetylation and methylation of histones and DNA methylation. In the present study we investigated whether changes in DNA methylation are associated with the effects of traumatic stressor, using a validated PTSD rat model. Screening of genomic DNA methylation patterns revealed that maladaptation to traumatic stress is associated with numerous changes in the methylation pattern of rat hippocampus. Of the differentially methylated genes revealed by this global screening, Disks Large-Associated Protein (Dlgap2) was of special interest, demonstrating an increase in a specific methylation site which was associated with a reduction in its gene expression in PTSD-like compared to non-PTSD-like rats. The association between the methylation rate and Dlgap2 expression was further substantiated by re-dividing the rats according to their methylation state. A significantly higher expression was observed in the non-methylated compared to methylated rats. In addition, taking all rats as one group revealed a significant correlation between their behavioural stress responses and Dlgap2 transcript levels. These results suggest that alterations in global methylation pattern are involved in behavioural adaptation to environmental stress and pinpoint Dlgap2 as a possible target in PTSD.
Collapse
|
155
|
Zheng CY, Petralia RS, Wang YX, Kachar B, Wenthold RJ. SAP102 is a highly mobile MAGUK in spines. J Neurosci 2010; 30:4757-66. [PMID: 20357126 PMCID: PMC2874826 DOI: 10.1523/jneurosci.6108-09.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/08/2010] [Indexed: 12/20/2022] Open
Abstract
Membrane-associated guanylate kinases (MAGUKs), which are essential proteins in the postsynaptic density (PSD), cluster and anchor glutamate receptors and other proteins at synapses. The MAGUK family includes PSD-95, PSD-93, SAP102, and SAP97. Individual family members can compensate for one another in their ability to recruit and retain receptors at the postsynaptic membrane as shown through deletion and knock-down studies. SAP102 is highly expressed in both young and mature neurons; however, little is known about its localization and mobility at synapses. Here, we compared the distribution, mobility, and turnover times of SAP102 to the well studied MAGUK PSD-95. Using light and electron microscopy, we found that SAP102 shows a broader distribution as well as peak localization further away from the postsynaptic membrane than PSD-95. Using fluorescence recovery after photobleaching (FRAP), we found that 80% of SAP102 and 36% of PSD-95 are mobile in spines. Previous studies showed that PSD-95 was stabilized at the PSD by N-terminal palmitoylation. We found that stabilization of SAP102 at the PSD was dependent on its SH3/GK domains but not its PDZ interactions. Furthermore, we showed that stabilizing actin or blocking NMDA/AMPA receptors reduced the mobile pool of SAP102 but did not affect the mobile pool of PSD-95. Our results show significant differences in the localization, binding mechanism, and mobility of SAP102 and PSD-95. These differences and the compensatory properties of the MAGUKs point out an unrecognized versatility of the MAGUKs in their function in synaptic organization and plasticity.
Collapse
Affiliation(s)
| | | | | | - Bechara Kachar
- Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
156
|
Hung AY, Sung CC, Brito IL, Sheng M. Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS One 2010; 5:e9842. [PMID: 20352094 PMCID: PMC2844417 DOI: 10.1371/journal.pone.0009842] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/02/2010] [Indexed: 12/05/2022] Open
Abstract
Changes in neuronal activity modify the structure of dendritic spines and alter the function and protein composition of synapses. Regulated degradation of postsynaptic density (PSD) proteins by the ubiquitin-proteasome system is believed to play an important role in activity-dependent synaptic remodeling. Stimulating neuronal activity in vitro and in vivo induces the ubiquitination and degradation of GKAP/SAPAP and Shank, major scaffold proteins of the PSD. However, the specific ubiquitin ligases that regulate postsynaptic protein composition have not been identified. Here we identify the RING finger-containing protein TRIM3 as a specific E3 ubiquitin ligase for the PSD scaffold GKAP/SAPAP1. Present in PSD fractions from rat brain, TRIM3 stimulates ubiquitination and proteasome-dependent degradation of GKAP, and induces the loss of GKAP and associated scaffold Shank1 from postsynaptic sites. Suppression of endogenous TRIM3 by RNA interference (RNAi) results in increased accumulation of GKAP and Shank1 at synapses, as well as enlargement of dendritic spine heads. RNAi of TRIM3 also prevented the loss of GKAP induced by synaptic activity. Thus, TRIM3 is a novel E3 ligase that mediates activity-dependent turnover of PSD scaffold proteins and is a negative regulator of dendritic spine morphology.
Collapse
Affiliation(s)
- Albert Y. Hung
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Clifford C. Sung
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ilana L. Brito
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Morgan Sheng
- Departments of Brain and Cognitive Sciences and Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
157
|
de Arce KP, Varela-Nallar L, Farias O, Cifuentes A, Bull P, Couch BA, Koleske AJ, Inestrosa NC, Alvarez AR. Synaptic clustering of PSD-95 is regulated by c-Abl through tyrosine phosphorylation. J Neurosci 2010; 30:3728-38. [PMID: 20220006 PMCID: PMC2872795 DOI: 10.1523/jneurosci.2024-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 11/21/2022] Open
Abstract
The c-Abl tyrosine kinase is present in mouse brain synapses, but its precise synaptic function is unknown. We found that c-Abl levels in the rat hippocampus increase postnatally, with expression peaking at the first postnatal week. In 14 d in vitro hippocampal neuron cultures, c-Abl localizes primarily to the postsynaptic compartment, in which it colocalizes with the postsynaptic scaffold protein postsynaptic density protein-95 (PSD-95) in apposition to presynaptic markers. c-Abl associates with PSD-95, and chemical or genetic inhibition of c-Abl kinase activity reduces PSD-95 tyrosine phosphorylation, leading to reduced PSD-95 clustering and reduced synapses in treated neurons. c-Abl can phosphorylate PSD-95 on tyrosine 533, and mutation of this residue reduces the ability of PSD-95 to cluster at postsynaptic sites. Our results indicate that c-Abl regulates synapse formation by mediating tyrosine phosphorylation and clustering of PSD-95.
Collapse
Affiliation(s)
- Karen Perez de Arce
- Laboratorio de Señalización Celular, Departmento de Biología Celular y Molecular and
| | - Lorena Varela-Nallar
- Laboratorio de Señalización Celular, Departmento de Biología Celular y Molecular and
- Centro de Envejecimiento y Regeneración, Centro de Regulación Celular y Patología Joaquín V. Luco, and
| | - Olivia Farias
- Laboratorio de Señalización Celular, Departmento de Biología Celular y Molecular and
| | - Alejandra Cifuentes
- Departamento Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile, and
| | - Paulina Bull
- Departamento Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331010 Santiago, Chile, and
| | - Brian A. Couch
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06520
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut 06520
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración, Centro de Regulación Celular y Patología Joaquín V. Luco, and
| | - Alejandra R. Alvarez
- Laboratorio de Señalización Celular, Departmento de Biología Celular y Molecular and
| |
Collapse
|
158
|
Synchronous and asynchronous transmitter release at nicotinic synapses are differentially regulated by postsynaptic PSD-95 proteins. J Neurosci 2010; 29:15770-9. [PMID: 20016093 DOI: 10.1523/jneurosci.4951-09.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rate and timing of information transfer at neuronal synapses are critical for determining synaptic efficacy and higher network function. Both synchronous and asynchronous neurotransmitter release shape the pattern of synaptic influences on a neuron. The PSD-95 family of postsynaptic scaffolding proteins, in addition to organizing postsynaptic components at glutamate synapses, acts transcellularly to regulate synchronous glutamate release. Here we show that PSD-95 family members at nicotinic synapses on chick ciliary ganglion neurons in culture execute multiple functions to enhance transmission. Together, endogenous PSD-95 and SAP102 in the postsynaptic cell appear to regulate transcellularly the synchronous release of transmitter from presynaptic terminals onto the neuron while stabilizing postsynaptic nicotinic receptor clusters under the release sites. Endogenous SAP97, in contrast, has no effect on receptor clusters but acts transcellularly from the postsynaptic cell through N-cadherin to enhance asynchronous release. These separate and parallel regulatory pathways allow postsynaptic scaffold proteins to dictate the pattern of cholinergic input a neuron receives; they also require balancing of PSD-95 protein levels to avoid disruptive competition that can occur through common binding domains.
Collapse
|
159
|
Huang TN, Chang HP, Hsueh YP. CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene. J Neurochem 2010; 112:1562-73. [PMID: 20067577 DOI: 10.1111/j.1471-4159.2010.06569.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent serine kinase (CASK), a causative gene in X-linked mental retardation, acts as a multi-domain scaffold protein and interacts with more than 20 cellular proteins in different subcellular regions of neurons. It is of interest, therefore, to explore whether post-translational modification regulates CASK's protein-protein interactions. Here, we provide evidence that CASK is phosphorylated by protein kinase A (PKA), identifying residue S562 in the PSD-95-Dlg-ZO-1 domain and residue T724 in the guanylate kinase domain as PKA sites by an in vitro PKA kinase reaction and site-directed mutagenesis. Although the role of S562 phosphorylation is not clear, T724 phosphorylation up-regulates the interaction between CASK and T-box transcription factor T-brain-1 (Tbr-1). NMDAR2b, a downstream target of the CASK-Tbr-1 complex, was then used to explore the significance of CASK phosphorylation by PKA. In cultured cortical neurons, the PKA pathway stimulates both the protein expression and the promoter activity of NMDAR2b. Deletion of the Tbr-1-binding sites greatly reduces the 3'-5'-cyclic AMP responsiveness of the NMDAR2b promoter, and the CASK T724A mutation does not promote the 3'-5'-cyclic AMP responsiveness of NMDAR2b. In conclusion, our data provide evidence that PKA phosphorylates CASK, regulates the nuclear function of CASK, and consequently modulates NMDAR2b expression.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
160
|
Structural differences between the SH3-HOOK-GuK domains of SAP90/PSD-95 and SAP97. Protein Expr Purif 2009; 68:201-7. [DOI: 10.1016/j.pep.2009.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 11/24/2022]
|
161
|
Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. THE JOURNAL OF PAIN 2009; 10:895-926. [PMID: 19712899 PMCID: PMC2750819 DOI: 10.1016/j.jpain.2009.06.012] [Citation(s) in RCA: 2431] [Impact Index Per Article: 151.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to activity, inflammation, and neural injury. The net effect of central sensitization is to recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or augmented action potential output: a state of facilitation, potentiation, augmentation, or amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental contribution of the central nervous system to the generation of pain hypersensitivity. Because central sensitization results from changes in the properties of neurons in the central nervous system, the pain is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the sensory response elicited by normal inputs, including those that usually evoke innocuous sensations. PERSPECTIVE In this article, we review the major triggers that initiate and maintain central sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Alban Latremoliere
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | | |
Collapse
|
162
|
Feng W, Zhang M. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 2009; 10:87-99. [DOI: 10.1038/nrn2540] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
163
|
Valen E, Pascarella G, Chalk A, Maeda N, Kojima M, Kawazu C, Murata M, Nishiyori H, Lazarevic D, Motti D, Marstrand TT, Tang MHE, Zhao X, Krogh A, Winther O, Arakawa T, Kawai J, Wells C, Daub C, Harbers M, Hayashizaki Y, Gustincich S, Sandelin A, Carninci P. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res 2008; 19:255-65. [PMID: 19074369 DOI: 10.1101/gr.084541.108] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Finding and characterizing mRNAs, their transcription start sites (TSS), and their associated promoters is a major focus in post-genome biology. Mammalian cells have at least 5-10 magnitudes more TSS than previously believed, and deeper sequencing is necessary to detect all active promoters in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth of novel core promoters that are preferentially used in hippocampus: This is the most comprehensive promoter data set for any tissue to date. Using these data, we present evidence indicating a key role for the Arnt2 transcription factor in hippocampus gene regulation. DeepCAGE can also detect promoters used only in a small subset of cells within the complex tissue.
Collapse
Affiliation(s)
- Eivind Valen
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes vej 5, DK-2200, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Steiner P, Higley MJ, Xu W, Czervionke BL, Malenka RC, Sabatini BL. Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 2008; 60:788-802. [PMID: 19081375 PMCID: PMC2671083 DOI: 10.1016/j.neuron.2008.10.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 08/29/2008] [Accepted: 10/07/2008] [Indexed: 12/23/2022]
Abstract
Long-term potentiation (LTP) is accompanied by dendritic spine growth and changes in the composition of the postsynaptic density (PSD). We find that activity-dependent growth of apical spines of CA1 pyramidal neurons is accompanied by destabilization of the PSD that results in transient loss and rapid replacement of PSD-95 and SHANK2. Signaling through PSD-95 is required for activity-dependent spine growth and trafficking of SHANK2. N-terminal PDZ and C-terminal guanylate kinase domains of PSD-95 are required for both processes, indicating that PSD-95 coordinates multiple signals to regulate morphological plasticity. Activity-dependent trafficking of PSD-95 is triggered by phosphorylation at serine 73, a conserved calcium/calmodulin-dependent protein kinase II (CaMKII) consensus phosphorylation site, which negatively regulates spine growth and potentiation of synaptic currents. We propose that PSD-95 and CaMKII act at multiple steps during plasticity induction to initially trigger and later terminate spine growth by trafficking growth-promoting PSD proteins out of the active spine.
Collapse
Affiliation(s)
- Pascal Steiner
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael J. Higley
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Weifeng Xu
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Brian L. Czervionke
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
165
|
Bruneau EG, Esteban JA, Akaaboune M. Receptor-associated proteins and synaptic plasticity. FASEB J 2008; 23:679-88. [PMID: 18978155 DOI: 10.1096/fj.08-107946] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Changes in synaptic strength are important for synaptic development and synaptic plasticity. Most directly responsible for these synaptic changes are alterations in synaptic receptor number and density. Although alterations in receptor density mediated by the insertion, lateral mobility, removal, and recycling of receptors have been extensively studied, the dynamics and regulators of intracellular scaffolding proteins have only recently begun to be illuminated. In particular, a closer look at the receptor-associated proteins, which bind to receptors and are necessary for their synaptic localization and clustering, has revealed broader functions than previously thought and some rather unexpected thematic similarities. More than just "placeholders" or members of a passive protein "scaffold," receptor-associated proteins in every synapse studied have been shown to provide a number of signaling roles. In addition, the most recent state-of-the-art imaging has revealed that receptor-associated proteins are highly dynamic and are involved in regulating synaptic receptor density. Together, these results challenge the view that receptor-associated proteins are members of a static and stable scaffold and argue that their dynamic mobility may be essential for regulating activity-dependent changes in synaptic strength.
Collapse
Affiliation(s)
- Emile G Bruneau
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
166
|
Perugi F, Muriaux D, Ramirez BC, Chabani S, Decroly E, Darlix JL, Blot V, Pique C. Human Discs Large is a new negative regulator of human immunodeficiency virus-1 infectivity. Mol Biol Cell 2008; 20:498-508. [PMID: 18946087 DOI: 10.1091/mbc.e08-02-0189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 replication is positively or negatively regulated through multiple interactions with host cell proteins. We report here that human Discs Large (Dlg1), a scaffold protein recruited beneath the plasma membrane and involved in the assembly of multiprotein complexes, restricts HIV-1 infectivity. The endogenous Dlg1 and HIV-1 Gag polyprotein spontaneously interact in HIV-1-chronically infected T cells. Depleting endogenous Dlg1 in either adherent cells or T cells does not affect Gag maturation, production, or release, but it enhances the infectivity of progeny viruses five- to sixfold. Conversely, overexpression of Dlg1 reduces virus infectivity by approximately 80%. Higher virus infectivity upon Dlg1 depletion correlates with increased Env content in cells and virions, whereas the amount of virus-associated Gag or genomic RNA remains identical. Dlg1 knockdown is also associated with the redistribution and colocalization of Gag and Env toward CD63 and CD82 positive vesicle-like structures, including structures that seem to still be connected to the plasma membrane. This study identifies both a new negative regulator that targets the very late steps of the HIV-1 life cycle, and an assembly pathway that optimizes HIV-1 infectivity.
Collapse
Affiliation(s)
- Fabien Perugi
- Department of Cell Biology, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Keith D, El-Husseini A. Excitation Control: Balancing PSD-95 Function at the Synapse. Front Mol Neurosci 2008; 1:4. [PMID: 18946537 PMCID: PMC2526002 DOI: 10.3389/neuro.02.004.2008] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 01/12/2023] Open
Abstract
Excitability of individual neurons dictates the overall excitation in specific brain circuits. This process is thought to be regulated by molecules that regulate synapse number, morphology and strength. Neuronal excitation is also influenced by the amounts of neurotransmitter receptors and signaling molecules retained at particular synaptic sites. Recent studies revealed a key role for PSD-95, a scaffolding molecule enriched at glutamatergic synapses, in modulation of clustering of several neurotransmitter receptors, adhesion molecules, ion channels, cytoskeletal elements and signaling molecules at postsynaptic sites. In this review we will highlight mechanisms that control targeting of PSD-95 at the synapse, and discuss how this molecule influences the retention and clustering of diverse synaptic proteins to regulate synaptic structure and strength. We will also discuss how PSD-95 may maintain a balance between excitation and inhibition in the brain and how alterations in this balance may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dove Keith
- Department of Psychiatry and the Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
168
|
Abstract
Much is known about the composition and function of the postsynaptic density (PSD), but less is known about its molecular organization. We use EM tomography to delineate the organization of PSDs at glutamatergic synapses in rat hippocampal cultures. The core of the PSD is dominated by vertically oriented filaments, and ImmunoGold labeling shows that PSD-95 is a component of these filaments. Vertical filaments contact two types of transmembrane structures whose sizes and positions match those of glutamate receptors and intermesh with two types of horizontally oriented filaments lying 10-20 nm from the postsynaptic membrane. The longer horizontal filaments link adjacent NMDAR-type structures, whereas the smaller filaments link both NMDA- and AMPAR-type structures. The orthogonal, interlinked scaffold of filaments at the core of the PSD provides a structural basis for understanding dynamic aspects of postsynaptic function.
Collapse
|
169
|
Wong J, Lerrigo R, Jang CY, Fang G. Aurora A regulates the activity of HURP by controlling the accessibility of its microtubule-binding domain. Mol Biol Cell 2008; 19:2083-91. [PMID: 18321990 DOI: 10.1091/mbc.e07-10-1088] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HURP is a spindle-associated protein that mediates Ran-GTP-dependent assembly of the bipolar spindle and promotes chromosome congression and interkinetochore tension during mitosis. We report here a biochemical mechanism of HURP regulation by Aurora A, a key mitotic kinase that controls the assembly and function of the spindle. We found that HURP binds to microtubules through its N-terminal domain that hyperstabilizes spindle microtubules. Ectopic expression of this domain generates defects in spindle morphology and function that reduce the level of tension across sister kinetochores and activate the spindle checkpoint. Interestingly, the microtubule binding activity of this N-terminal domain is regulated by the C-terminal region of HURP: in its hypophosphorylated state, C-terminal HURP associates with the microtubule-binding domain, abrogating its affinity for microtubules. However, when the C-terminal domain is phosphorylated by Aurora A, it no longer binds to N-terminal HURP, thereby releasing the inhibition on its microtubule binding and stabilizing activity. In fact, ectopic expression of this C-terminal domain depletes endogenous HURP from the mitotic spindle in HeLa cells in trans, suggesting the physiological importance for this mode of regulation. We concluded that phosphorylation of HURP by Aurora A provides a regulatory mechanism for the control of spindle assembly and function.
Collapse
Affiliation(s)
- Jim Wong
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
170
|
Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, Kidd FL, Sung CC, Miyakawa T, Bear MF, Weinberg RJ, Sheng M. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci 2008; 28:1697-708. [PMID: 18272690 PMCID: PMC2633411 DOI: 10.1523/jneurosci.3032-07.2008] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/20/2007] [Accepted: 12/15/2007] [Indexed: 12/18/2022] Open
Abstract
Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders.
Collapse
Affiliation(s)
- Albert Y. Hung
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Kensuke Futai
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Carlo Sala
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, 20129 Milan, Italy
| | - Juli G. Valtschanoff
- Department of Cell and Developmental Biology, and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Jubin Ryu
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mollie A. Woodworth
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Fleur L. Kidd
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Clifford C. Sung
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Mark F. Bear
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Richard J. Weinberg
- Department of Cell and Developmental Biology, and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, The Institute of Physical and Chemical Research (RIKEN)-Massachusetts Institute of Technology Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
171
|
Keith D, El-Husseini A. Excitation Control: Balancing PSD-95 Function at the Synapse. Front Mol Neurosci 2008; 1:4. [PMID: 18946537 DOI: 10.3389/neuro.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 05/19/2023] Open
Abstract
Excitability of individual neurons dictates the overall excitation in specific brain circuits. This process is thought to be regulated by molecules that regulate synapse number, morphology and strength. Neuronal excitation is also influenced by the amounts of neurotransmitter receptors and signaling molecules retained at particular synaptic sites. Recent studies revealed a key role for PSD-95, a scaffolding molecule enriched at glutamatergic synapses, in modulation of clustering of several neurotransmitter receptors, adhesion molecules, ion channels, cytoskeletal elements and signaling molecules at postsynaptic sites. In this review we will highlight mechanisms that control targeting of PSD-95 at the synapse, and discuss how this molecule influences the retention and clustering of diverse synaptic proteins to regulate synaptic structure and strength. We will also discuss how PSD-95 may maintain a balance between excitation and inhibition in the brain and how alterations in this balance may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dove Keith
- Department of Psychiatry and the Brain Research Centre, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
172
|
Ting JT, Feng G. Glutamatergic Synaptic Dysfunction and Obsessive-Compulsive Disorder. CURRENT CHEMICAL GENOMICS 2008; 2:62-75. [PMID: 19768139 PMCID: PMC2746669 DOI: 10.2174/1875397300802010062] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/13/2008] [Accepted: 11/16/2008] [Indexed: 01/22/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric condition estimated to afflict 1-3% of the world population. The estimated financial impact in the treatment and management of OCD is in the billions of dollars annually in the US alone. At present there is a marked lack of evidence on the specific causes of OCD. Current hypotheses largely focus on the serotonin (5-HT) system on the basis of the effectiveness of selective serotonin reuptake inhibitors (SSRIs) in alleviating symptoms of patients with OCD, yet a considerable fraction of patients are non-responsive or minimally responsive to these agents. Despite this fact, SSRIs have remained the primary pharmacological treatment avenue for OCD. In recent years, multiple lines of evidence have implicated glutamatergic synaptic dysfunction within the cortico-striatal-thalamo-cortical (CSTC) brain circuit in the etiology of OCD and related disorders, thereby prompting intensified effort in the development and evaluation of agents that modulate glutamatergic neurotransmission for the treatment of OCD. With this in mind, here we review the following topics with respect to synaptic dysfunction and the neural circuitry underlying OCD: (1) evidence supporting the critical involvement of the CSTC circuit, (2) genetic studies supporting the involvement of glutamatergic dysfunction, (3) insights from genetic animal models of OCD, and (4) preliminary findings with glutamatergic neurotransmission-modulating agents in the treatment of OCD. Given the putative mechanistic overlap between OCD and the broader OC-spectrum of disorders, unraveling the synaptic basis of OCD has potential to translate into more effective treatments for an array of poorly understood human disorders.
Collapse
Affiliation(s)
| | - Guoping Feng
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
173
|
Kreienkamp HJ. Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 2008:365-80. [PMID: 18491060 DOI: 10.1007/978-3-540-72843-6_15] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Shank proteins are multidomain scaffold proteins of the postsynaptic density, connecting neurotransmitter receptors and other membrane proteins with signaling proteins and the actin cytoskeleton. By virtue of their protein interactions, Shank proteins assemble signaling platforms for G-protein-mediated signaling and the control of calcium homeostasis in dendritic spines. In addition, they participate in morphological changes, leading to maturation of dendritic spines and synapse formation. The importance of the Shank scaffolding function is demonstrated by genetically determined forms of mental retardation, which may be caused by haploinsufficiency for the SHANK3 gene. Consistent with its central function within the postsynaptic density, the availability of Shank is tightly controlled by local synthesis and degradation, as well as actin-dependent dynamic rearrangements within the dendritic spine.
Collapse
Affiliation(s)
- H-J Kreienkamp
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany.
| |
Collapse
|
174
|
Synaptic adhesion molecules and PSD-95. Prog Neurobiol 2007; 84:263-83. [PMID: 18206289 DOI: 10.1016/j.pneurobio.2007.10.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/31/2007] [Accepted: 10/26/2007] [Indexed: 11/21/2022]
Abstract
Synaptic adhesion molecules are known to participate in various steps of synapse development including initial contacts between dendrites and axons, formation of early synapses, and their maturation and plastic changes. Notably, a significant subset of synaptic adhesion molecules associates with synaptic scaffolding proteins, suggesting that they may act in concert to couple trans-synaptic adhesion to molecular organization of synaptic proteins. Here, we describe an emerging group of synaptic adhesion molecules that directly interact with the abundant postsynaptic scaffold PSD-95, which include neuroligins, NGLs, SALMs, and ADAM22, and discuss how these proteins and PSD-95 act together to regulate synaptic development. PSD-95 may be one of the central organizers of synaptic adhesion that recruits diverse proteins to sites of synaptic adhesion, promotes trans-synaptic signaling, and couples neuronal activity with changes in synaptic adhesion.
Collapse
|
175
|
Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, Feliciano C, Chen M, Adams JP, Luo J, Dudek SM, Weinberg RJ, Calakos N, Wetsel WC, Feng G. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 2007; 448:894-900. [PMID: 17713528 PMCID: PMC2442572 DOI: 10.1038/nature06104] [Citation(s) in RCA: 591] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 07/16/2007] [Indexed: 02/06/2023]
Abstract
Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, although the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3; also known as DLGAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of Sapap3 exhibit increased anxiety and compulsive grooming behaviour leading to facial hair loss and skin lesions; both behaviours are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural and biochemical studies of Sapap3-mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of Sapap3 in the striatum rescues the synaptic and behavioural defects of Sapap3-mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviours.
Collapse
Affiliation(s)
- Jeffrey M. Welch
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jing Lu
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Cell Biology, Neurobiology, and Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nicholas C. Trotta
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Joao Peca
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jin-Dong Ding
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Catia Feliciano
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Gulbenkian PhD Programme in Biomedicine, Gulbenkian Science Institute, Portugal
| | - Meng Chen
- Division of Neurology, Center for Translational Neuroscience, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - J. Paige Adams
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Jianhong Luo
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Serena M. Dudek
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Richard J. Weinberg
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Division of Neurology, Center for Translational Neuroscience, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Cell Biology, Neurobiology, and Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Guoping Feng
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
176
|
Okabe S. Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 2007; 34:503-18. [PMID: 17321751 DOI: 10.1016/j.mcn.2007.01.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022] Open
Abstract
The postsynaptic density (PSD) is a structure composed of both membranous and cytoplasmic proteins localized at the postsynaptic plasma membrane of excitatory synapses. Biochemical and molecular biological studies have identified a number of proteins present in the PSD. Glutamate receptors are important constituents of the PSD and membrane proteins involved in synaptic signal transduction and cell adhesion are also essential components. Scaffolding proteins containing multiple protein interaction motifs are thought to provide the framework of the PSD through their interactions with both membrane proteins and the cytoplasmic proteins. Among the cytoplasmic signaling molecules, calcium-calmodulin-dependent protein kinase II stands out as a major component of the PSD and its dynamic translocation to the PSD in response to neuronal activity is crucial in synaptic signal transduction. Recent advancements in molecular biological, structural and electrophysiological techniques have enabled us to directly measure the number, distribution and interactions of PSD molecules with high sensitivity and precision. In this review, I describe the structure and molecular composition of the PSD as well as the molecular interactions between the major constituents. This information will be combined with recent quantitative analyses of the PSD protein contents per synapse, in order to provide a current view of the PSD molecular architecture and its dynamics.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
177
|
Cuthbert PC, Stanford LE, Coba MP, Ainge JA, Fink AE, Opazo P, Delgado JY, Komiyama NH, O'Dell TJ, Grant SGN. Synapse-associated protein 102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. J Neurosci 2007; 27:2673-82. [PMID: 17344405 PMCID: PMC2851144 DOI: 10.1523/jneurosci.4457-06.2007] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/18/2006] [Accepted: 01/09/2007] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanisms whereby information encoded within patterns of action potentials is deciphered by neurons is central to cognitive psychology. The multiprotein complexes formed by NMDA receptors linked to synaptic membrane-associated guanylate kinase (MAGUK) proteins including synapse-associated protein 102 (SAP102) and other associated proteins are instrumental in these processes. Although humans with mutations in SAP102 show mental retardation, the physiological and biochemical mechanisms involved are unknown. Using SAP102 knock-out mice, we found specific impairments in synaptic plasticity induced by selective frequencies of stimulation that also required extracellular signal-regulated kinase signaling. This was paralleled by inflexibility and impairment in spatial learning. Improvement in spatial learning performance occurred with extra training despite continued use of a suboptimal search strategy, and, in a separate nonspatial task, the mutants again deployed a different strategy. Double-mutant analysis of postsynaptic density-95 and SAP102 mutants indicate overlapping and specific functions of the two MAGUKs. These in vivo data support the model that specific MAGUK proteins couple the NMDA receptor to distinct downstream signaling pathways. This provides a mechanism for discriminating patterns of synaptic activity that lead to long-lasting changes in synaptic strength as well as distinct aspects of cognition in the mammalian nervous system.
Collapse
Affiliation(s)
- Peter C Cuthbert
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Zhang Y, Guo H, Kwan H, Wang JW, Kosek J, Lu B. PAR-1 kinase phosphorylates Dlg and regulates its postsynaptic targeting at the Drosophila neuromuscular junction. Neuron 2007; 53:201-15. [PMID: 17224403 PMCID: PMC1855201 DOI: 10.1016/j.neuron.2006.12.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/08/2006] [Accepted: 12/14/2006] [Indexed: 11/26/2022]
Abstract
Targeting of synaptic molecules to their proper location is essential for synaptic differentiation and plasticity. PSD-95/Dlg proteins have been established as key components of the postsynapse. However, the molecular mechanisms regulating the synaptic targeting, assembly, and disassembly of PSD-95/Dlg are not well understood. Here we show that PAR-1 kinase, a conserved cell polarity regulator, is critically involved in controlling the postsynaptic localization of Dlg. PAR-1 is prominently localized at the Drosophila neuromuscular junction (NMJ). Loss of PAR-1 function leads to increased synapse formation and synaptic transmission, whereas overexpression of PAR-1 has the opposite effects. PAR-1 directly phosphorylates Dlg at a conserved site and negatively regulates its mobility and targeting to the postsynapse. The ability of a nonphosphorylatable Dlg to largely rescue PAR-1-induced synaptic defects supports the idea that Dlg is a major synaptic substrate of PAR-1. Control of Dlg synaptic targeting by PAR-1-mediated phosphorylation thus constitutes a critical event in synaptogenesis.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Pathology, Stanford University School of Medicine, GRECC/VAPAHCS, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
179
|
González-Mariscal L, Lechuga S, Garay E. Role of tight junctions in cell proliferation and cancer. ACTA ACUST UNITED AC 2007; 42:1-57. [PMID: 17502225 DOI: 10.1016/j.proghi.2007.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acquisition of a cancerous phenotype by epithelial cells involves the disruption of intercellular adhesions. The reorganization of the E-cadherin/beta-catenin complex in adherens junctions during cell transformation is widely recognized. Instead the implication of tight junctions (TJs) in this process is starting to be unraveled. The aim of this article is to review the role of TJ proteins in cell proliferation and cancer.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Center for Research and Advanced Studies (Cinvestav), Department of Physiology, Biophysics and Neuroscience, Ave. Instituto Politécnico Nacional 2508, México, DF 07360, México.
| | | | | |
Collapse
|
180
|
Reese ML, Dakoji S, Bredt DS, Dötsch V. The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol 2007; 14:155-63. [PMID: 17220895 DOI: 10.1038/nsmb1195] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/27/2006] [Indexed: 11/08/2022]
Abstract
The postsynaptic density protein PSD-95 and related membrane-associated guanylate kinases are scaffolding proteins, whose modular interaction motifs organize protein complexes at cell junctions. The signature guanylate kinase domain (GK) contains elements of the protein's GMP-binding site but does not bind nucleotide. Instead, the GK domain has evolved from an enzyme to a protein-protein interaction motif. Here, we show that this canonical GMP-binding region interacts with microtubule-associated protein-1a (MAP1a) and we present a structural model. We determine the consensus GK-binding sequence in MAP1a and demonstrate that PSD-95 can use a similar interaction mode to bind diverse protein partners. Furthermore, we show that PSD-95 GK has adopted the conformational flexibility of the ancestral enzyme to bind its varied ligands, which suggests a mechanism of regulation.
Collapse
Affiliation(s)
- Michael L Reese
- Graduate Group in Biophysics, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
181
|
Abstract
The tight junction is an intracellular junctional structure that mediates adhesion between epithelial cells and is required for epithelial cell function. Tight junctions control paracellular permeability across epithelial cell sheets and also serve as a barrier to intramembrane diffusion of components between a cell's apical and basolateral membrane domains. Recent genetic and biochemical studies in invertebrates and vertebrates indicate that tight junction proteins play an important role in the establishment and maintenance of apico-basal polarity. Proteins involved in epithelial cell polarization form evolutionarily conserved multiprotein complexes at the tight junction, and these protein complexes regulate the architecture of epithelia throughout the polarization process. Accumulating information regarding the regulation of these polarity proteins will lead to a better understanding of the molecular mechanisms whereby cell polarity is established.
Collapse
Affiliation(s)
- Kunyoo Shin
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
182
|
Gardner LA, Naren AP, Bahouth SW. Assembly of an SAP97-AKAP79-cAMP-dependent protein kinase scaffold at the type 1 PSD-95/DLG/ZO1 motif of the human beta(1)-adrenergic receptor generates a receptosome involved in receptor recycling and networking. J Biol Chem 2006; 282:5085-5099. [PMID: 17170109 DOI: 10.1074/jbc.m608871200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Appropriate trafficking of the beta(1)-adrenergic receptor (beta(1)-AR) after agonist-promoted internalization is crucial for the resensitization of its signaling pathway. Efficient recycling of the beta(1)-AR required the binding of the protein kinase A anchoring protein-79 (AKAP79) to the carboxyl terminus of the beta(1)-AR (Gardner, L. A., Tavalin, S. A., Goehring, A., Scott, J. D., and Bahouth, S. W. (2006) J. Biol. Chem. 281, 33537-33553). In this study we show that AKAP79 forms a complex with the type 1 PDZ-binding sequence (ESKV) at the extreme carboxyl terminus of the beta(1)-AR, which is mediated by the membrane-associated guanylate kinase (MAGUK) protein SAP97. Thus, the PDZ and its associated SAP97-AKAP79 complex are involved in targeting the cyclic AMP-dependent protein kinase (PKA) to the beta(1)-AR. The PDZ and its scaffold were required for efficient recycling of the beta(1)-AR and for PKA-mediated phosphorylation of the beta(1)-AR at Ser(312). Overexpression of the catalytic subunit of PKA or mutagenesis of Ser(312) to the phosphoserine mimic aspartic acid both rescued the recycling of the trafficking-defective beta(1)-ARDelta PDZ mutant. Thus, trafficking signals transmitted from the PDZ-associated scaffold in the carboxyl terminus of the beta(1)-AR to Ser(312) in the 3rd intracellular loop (3rd IC) were paramount in setting the trafficking itinerary of the beta(1)-AR. The data presented here show that a novel beta(1)-adrenergic receptosome is organized at the beta(1)-AR PDZ to generate a scaffold essential for trafficking and networking of the beta(1)-AR.
Collapse
Affiliation(s)
- Lidia A Gardner
- Departments of Pharmacology and University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
| | - Anjaparavanda P Naren
- Physiology, the University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
| | - Suleiman W Bahouth
- Departments of Pharmacology and University of Tennessee Health Sciences Center, Memphis, Tennessee 38163.
| |
Collapse
|
183
|
Qian Y, Prehoda KE. Interdomain interactions in the tumor suppressor discs large regulate binding to the synaptic protein GukHolder. J Biol Chem 2006; 281:35757-63. [PMID: 16982606 PMCID: PMC1987391 DOI: 10.1074/jbc.m607057200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidomain scaffolding proteins are central components of many signaling pathways and are commonly found at membrane specializations. Here we have shown that multiple interdomain interactions in the scaffold Discs Large (Dlg) regulate binding to the synaptic protein GukHolder (GukH). GukH binds the Src homology 3 (SH3) and guanylate kinase-like (GK) protein interaction domains of Dlg, whereas an intramolecular interaction between the two domains inhibits association with GukH. Regulation occurs through a PDZ domain adjacent to the SH3 that allows GukH to interact with the composite SH3-GK binding site, but PDZ ligands inhibit GukH binding such that Dlg forms mutually exclusive PDZ ligand and GukH cellular complexes. The PDZ-SH3-GK module is a common feature of membrane associate guanylate kinase scaffolds such as Dlg, and these results indicate that its supramodular architecture leads to regulation of Dlg complexes.
Collapse
Affiliation(s)
- Yi Qian
- Institute of Molecular Biology, Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
184
|
Korkin D, Davis FP, Alber F, Luong T, Shen MY, Lucic V, Kennedy MB, Sali A. Structural modeling of protein interactions by analogy: application to PSD-95. PLoS Comput Biol 2006; 2:e153. [PMID: 17096593 PMCID: PMC1635541 DOI: 10.1371/journal.pcbi.0020153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/04/2006] [Indexed: 11/18/2022] Open
Abstract
We describe comparative patch analysis for modeling the structures of multidomain proteins and protein complexes, and apply it to the PSD-95 protein. Comparative patch analysis is a hybrid of comparative modeling based on a template complex and protein docking, with a greater applicability than comparative modeling and a higher accuracy than docking. It relies on structurally defined interactions of each of the complex components, or their homologs, with any other protein, irrespective of its fold. For each component, its known binding modes with other proteins of any fold are collected and expanded by the known binding modes of its homologs. These modes are then used to restrain conventional molecular docking, resulting in a set of binary domain complexes that are subsequently ranked by geometric complementarity and a statistical potential. The method is evaluated by predicting 20 binary complexes of known structure. It is able to correctly identify the binding mode in 70% of the benchmark complexes compared with 30% for protein docking. We applied comparative patch analysis to model the complex of the third PSD-95, DLG, and ZO-1 (PDZ) domain and the SH3-GK domains in the PSD-95 protein, whose structure is unknown. In the first predicted configuration of the domains, PDZ interacts with SH3, leaving both the GMP-binding site of guanylate kinase (GK) and the C-terminus binding cleft of PDZ accessible, while in the second configuration PDZ interacts with GK, burying both binding sites. We suggest that the two alternate configurations correspond to the different functional forms of PSD-95 and provide a possible structural description for the experimentally observed cooperative folding transitions in PSD-95 and its homologs. More generally, we expect that comparative patch analysis will provide useful spatial restraints for the structural characterization of an increasing number of binary and higher-order protein complexes.
Collapse
Affiliation(s)
- Dmitry Korkin
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
| | - Fred P Davis
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
| | - Frank Alber
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
| | - Tinh Luong
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Min-Yi Shen
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
| | - Vladan Lucic
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mary B Kennedy
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Andrej Sali
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
185
|
Sumita K, Sato Y, Iida J, Kawata A, Hamano M, Hirabayashi S, Ohno K, Peles E, Hata Y. Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. J Neurochem 2006; 100:154-66. [PMID: 17059560 DOI: 10.1111/j.1471-4159.2006.04170.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic scaffolding molecule (S-SCAM) is a synaptic protein, which harbors five or six PSD-95/Discs large/ZO-1 (PDZ), a guanylate kinase and two WW domains. It interacts with NMDA receptor subunits, neuroligin and beta-catenin, and is involved in the accumulation of neuroligin at excitatory synapses. In this study, we have demonstrated S-SCAM is localized at inhibitory synapses in rat primary cultured hippocampal neurons. We have identified beta-dystroglycan (beta-DG) as a binding partner for S-SCAM at inhibitory synapses. WW domains of S-SCAM bind to three sequences of beta-DG. We have also revealed that S-SCAM can interact with neuroligin 2, which is known to be exclusively localized at inhibitory synapses. The WW domains and the second PDZ domain of S-SCAM are involved in the interaction with neuroligin 2. Beta-DG, neuroligin 2 and S-SCAM form a tripartite complex in vitro. Neuroligin 2 is detected in the immunoprecipitates by anti-beta-DG antibody from rat brain. S-SCAM, beta-DG and neuroligin 2 are partially co-localized in rat hippocampal neurons. These data suggest that S-SCAM is associated with beta-DG and neuroligin 2 at inhibitory synapses, and functions as a linker between the dystrophin glycoprotein complex and the neurexin-neuroligin complex.
Collapse
Affiliation(s)
- Kazutaka Sumita
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Brenk CH, Prott EC, Trost D, Hoischen A, Walldorf C, Radlwimmer B, Wieczorek D, Propping P, Gillessen-Kaesbach G, Weber RG, Engels H. Towards mapping phenotypical traits in 18p− syndrome by array-based comparative genomic hybridisation and fluorescent in situ hybridisation. Eur J Hum Genet 2006; 15:35-44. [PMID: 17024214 DOI: 10.1038/sj.ejhg.5201718] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Molecular karyotyping holds the promise of improving genotype-phenotype correlations for frequent chromosome conditions such as the 18p- syndrome. In spite of more than 150 reported cases with deletions in 18p, no reliable phenotype map for the characteristic clinical findings such as mental retardation, post-natal growth retardation and typical facial features has been established yet. Here, we report on four patients with partial monosomy 18p of different sizes owing to unbalanced translocations that were thoroughly characterised clinically and by molecular karyotyping. One patient had a terminal deletion of 1.6 Mb in 18p and a trisomy of 8q24.23-qter as determined by array-based comparative genomic hybridisation and large insert clone fluorescent in situ hybridisation. In two sibs and a fourth patient, cytogenetic and molecular-cytogenetic analyses showed the terminal deletions in 18p (8.0 and 13.84 Mb, respectively) to be accompanied by partial trisomies of 20p. Literature analyses of typical phenotypic features of 18p-, 8q+ and 20p+ syndromes allowed the attribution of clinical findings in our patients to the respective chromosomal aberration. Based on these data, we propose a phenotype map for several clinical features of the 18p- syndrome: Round face was tentatively mapped to the distal 1.6 Mb of 18p; post-natal growth retardation and seizures to the distal 8 Mb and ptosis and short neck to the proximal half of 18p.
Collapse
|
187
|
Kuriu T, Inoue A, Bito H, Sobue K, Okabe S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 2006; 26:7693-706. [PMID: 16855097 PMCID: PMC6674289 DOI: 10.1523/jneurosci.0522-06.2006] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organization and dynamic remodeling of postsynaptic density (PSD) are thought to be critical in postsynaptic signal transduction, but the underlying molecular mechanisms are not well understood. We show here that four major scaffolding molecules, PSD-95, GKAP, Shank, and PSD-Zip45, show distinct instability in total molecular content per synapse. Fluorescence recovery after photobleaching also confirmed their distinct turnover rates. Among the PSD molecules examined, PSD-95 was most stable, but its elimination did not influence the dynamics of its direct binding partner GKAP. Multiple interactions of scaffolding molecules with the actin cytoskeleton have suggested their importance in both maintenance and remodeling of the PSD. Indeed, acute pharmacological disruption of F-actin rapidly eliminated the dynamic fraction of GKAP, Shank, and PSD-Zip45, without changing synaptic localization of PSD-95. GKAP content in synapses increased after pharmacological enhancement of neuronal activity, whereas Shank and PSD-Zip45 content showed reduction. Inhibition of F-actin dynamics prevented activity-dependent redistribution of all three scaffolds. We also assessed involvement of glutamate receptors in the regulation of PSD dynamics. Genetic manipulations eliminating either NMDA receptors or metabotropic glutamate receptors did not primarily influence mobility of their binding scaffolds. These results collectively indicate a critical role of filamentous actin in determining the extent of dynamic reorganization in PSD molecular composition.
Collapse
|
188
|
Abstract
Glutamatergic synapses in the central nervous system are characterized by an electron-dense web underneath the postsynaptic membrane; this web is called the postsynaptic density (PSD). PSDs are composed of a dense network of several hundred proteins, creating a macromolecular complex that serves a wide range of functions. Prominent PSD proteins such as members of the MaGuk or ProSAP/Shank family build up a dense scaffold that creates an interface between clustered membrane-bound receptors, cell adhesion molecules and the actin-based cytoskeleton. Moreover, kinases, phosphatases and several proteins of different signalling pathways are specifically localized within the spine/PSD compartment. Small GTPases and regulating proteins are also enriched in PSDs being the molecular basis for regulated structural changes of cytoskeletal components within the synapse in response to external or internal stimuli, e.g. synaptic activation. This synaptic rearrangement (structural plasticity) is a rapid process and is believed to underlie learning and memory formation. The characterization of synapse/PSD proteins is especially important in the light of recent data suggesting that several mental disorders have their molecular defect at the synapse/PSD level.
Collapse
Affiliation(s)
- T M Boeckers
- Department of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
189
|
Ko J, Kim S, Chung HS, Kim K, Han K, Kim H, Jun H, Kaang BK, Kim E. SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron 2006; 50:233-45. [PMID: 16630835 DOI: 10.1016/j.neuron.2006.04.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 02/22/2006] [Accepted: 04/04/2006] [Indexed: 12/28/2022]
Abstract
Synaptic cell adhesion molecules (CAMs) are known to play key roles in various aspects of synaptic structures and functions, including early differentiation, maintenance, and plasticity. We herein report the identification of a family of cell adhesion-like molecules termed SALM that interacts with the abundant postsynaptic density (PSD) protein PSD-95. SALM2, a SALM isoform, distributes to excitatory, but not inhibitory, synaptic sites. Overexpression of SALM2 increases the number of excitatory synapses and dendritic spines. Mislocalized expression of SALM2 disrupts excitatory synapses and dendritic spines. Bead-induced direct aggregation of SALM2 results in coclustering of PSD-95 and other postsynaptic proteins, including GKAP and AMPA receptors. Knockdown of SALM2 by RNA interference reduces the number of excitatory synapses and dendritic spines and the frequency, but not amplitude, of miniature excitatory postsynaptic currents. These results suggest that SALM2 is an important regulator of the differentiation of excitatory synapses.
Collapse
Affiliation(s)
- Jaewon Ko
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Regalado MP, Terry-Lorenzo RT, Waites CL, Garner CC, Malenka RC. Transsynaptic signaling by postsynaptic synapse-associated protein 97. J Neurosci 2006; 26:2343-57. [PMID: 16495462 PMCID: PMC6674804 DOI: 10.1523/jneurosci.5247-05.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The molecular mechanisms by which postsynaptic modifications lead to precisely coordinated changes in presynaptic structure and function are primarily unknown. To address this issue, we examined the presynaptic consequences of postsynaptic expression of members of the membrane-associated guanylate kinase family of synaptic scaffolding proteins. Postsynaptic expression of synapse-associated protein 97 (SAP97) increased presynaptic protein content and active zone size to a greater extent than comparable amounts of postsynaptic PSD-95 (postsynaptic density-95) or SAP102. In addition, postsynaptic expression of SAP97 enhanced presynaptic function, as measured by increased FM4-64 dye uptake. The structural presynaptic effects of postsynaptic SAP97 required ligand binding through two of its PDZ (PSD-95/Discs large/zona occludens-1) domains as well as intact N-terminal and guanylate kinase domains. Expression of SAP97 recruited a complex of additional postsynaptic proteins to synapses including glutamate receptor 1, Shank1a, SPAR (spine-associated RapGAP), and proSAP2. Furthermore, inhibition of several different transsynaptic signaling proteins including cadherins, integrins, and EphB receptor/ephrinB significantly reduced the presynaptic growth caused by postsynaptic SAP97. These results suggest that SAP97 may play a central role in the coordinated growth of synapses during development and plasticity by recruiting a complex of postsynaptic proteins that enhances presynaptic terminal growth and function via multiple transsynaptic molecular interactions.
Collapse
|
191
|
Roussignol G, Ango F, Romorini S, Tu JC, Sala C, Worley PF, Bockaert J, Fagni L. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2006; 25:3560-70. [PMID: 15814786 PMCID: PMC6725374 DOI: 10.1523/jneurosci.4354-04.2005] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Shank proteins assemble glutamate receptors with their intracellular signaling apparatus and cytoskeleton at the postsynaptic density. Whether Shank plays a role in spinogenesis and synaptogenesis remained unclear. Here, we report that knock-down of Shank3/prolinerich synapse-associated protein-2 by RNA interference reduces spine density in hippocampal neurons. Moreover, transgene expression of Shank 3 is sufficient to induce functional dendritic spines in aspiny cerebellar neurons. Transfected Shank protein recruits functional glutamate receptors, increases the number and size of synaptic contacts, and increases amplitude, frequency, and the AMPA component of miniature EPSCs, similar to what is observed during synapse developmental maturation. Mutation/deletion approaches indicate that these effects require interactions of Shank3 with the glutamate receptor complex. Consistent with this observation, chronic treatment with glutamate receptor antagonists alters maturation of the Shank3-induced spines. These results strongly suggest that Shank proteins and the associated glutamate receptors participate in a concerted manner to form spines and functional synapses.
Collapse
Affiliation(s)
- Gautier Roussignol
- Institut de Génomique Fonctionnelle, Unité Mixte de Recherche 5203, 34000 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR, Hanfelt J, Nakagawa T, Sheng M, Peng J. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 2006; 5:1158-70. [PMID: 16507876 DOI: 10.1074/mcp.d500009-mcp200] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Lisé MF, Wong TP, Trinh A, Hines RM, Liu L, Kang R, Hines DJ, Lu J, Goldenring JR, Wang YT, El-Husseini A. Involvement of Myosin Vb in Glutamate Receptor Trafficking. J Biol Chem 2006; 281:3669-78. [PMID: 16338934 DOI: 10.1074/jbc.m511725200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin V motors mediate cargo transport; however, the identity of neuronal molecules transported by these proteins remains unknown. Here we show that myosin Vb is expressed in several neuronal populations and associates with the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor subunit GluR1. In developing hippocampal neurons, expression of the tail domain of myosin Vb, but not myosin Va, enhanced GluR1 accumulation in the soma and reduced its surface expression. These changes were accompanied by reduced GluR1 clustering and diminished frequency of excitatory but not inhibitory synaptic currents. Similar effects were observed upon expression of full-length myosin Vb lacking a C-terminal region required for binding to the small GTPase Rab11. In contrast, mutant myosin Vb did not change the localization of several other neurotransmitter receptors, including the glutamate receptor subunit NR1. These results reveal a novel mechanism for the transport of a specific glutamate receptor subunit in neurons mediated by a member of the myosin V family.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain/metabolism
- COS Cells
- Cell Line
- Chlorocebus aethiops
- Cloning, Molecular
- DNA, Complementary/metabolism
- Electrophysiology
- Female
- Glutathione Transferase/metabolism
- Hippocampus/embryology
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Microscopy, Fluorescence
- Mutagenesis
- Mutation
- Myosin Type V/chemistry
- Myosins/chemistry
- Neurons/metabolism
- Neurotransmitter Agents/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Protein Transport
- Rats
- Rats, Wistar
- Receptors, AMPA/metabolism
- Receptors, Glutamate/chemistry
- Receptors, Glutamate/metabolism
- Subcellular Fractions
- Transfection
- rab GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Marie-France Lisé
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Ataman B, Budnik V, Thomas U. Scaffolding proteins at the Drosophila neuromuscular junction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:181-216. [PMID: 17137929 DOI: 10.1016/s0074-7742(06)75009-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bulent Ataman
- Department of Neurobiology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
195
|
Sans N, Wang PY, Du Q, Petralia RS, Wang YX, Nakka S, Blumer JB, Macara IG, Wenthold RJ. mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression. Nat Cell Biol 2005; 7:1179-90. [PMID: 16299499 DOI: 10.1038/ncb1325] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/26/2005] [Indexed: 02/06/2023]
Abstract
Appropriate trafficking and targeting of glutamate receptors (GluRs) to the postsynaptic density is crucial for synaptic function. We show that mPins (mammalian homologue of Drosophila melanogaster partner of inscuteable) interacts with SAP102 and PSD-95 (two PDZ proteins present in neurons), and functions in the formation of the NMDAR-MAGUK (N-methyl-D-aspartate receptor-membrane-associated guanylate kinase) complex. mPins enhances trafficking of SAP102 and NMDARs to the plasma membrane in neurons. Expression of dominant-negative constructs and short-interfering RNA (siRNA)-mediated knockdown of mPins decreases SAP102 in dendrites and modifies surface expression of NMDARs. mPins changes the number and morphology of dendritic spines and these effects depend on its Galphai interaction domain, thus implicating G-protein signalling in the regulation of postsynaptic structure and trafficking of GluRs.
Collapse
Affiliation(s)
- Nathalie Sans
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 50, Room 4146, 50 South Drive, Bethesda, MD 20892-8027, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Bongiorno-Borbone L, Kadaré G, Benfenati F, Girault JA. FAK and PYK2 interact with SAP90/PSD-95-Associated Protein-3. Biochem Biophys Res Commun 2005; 337:641-6. [PMID: 16202977 DOI: 10.1016/j.bbrc.2005.09.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Accepted: 09/13/2005] [Indexed: 12/26/2022]
Abstract
Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2) are two related non-receptor tyrosine kinases highly expressed in brain. Although they are both involved in synaptic plasticity, little is known about their specific neuronal partners. Using a yeast two-hybrid screen and GST pull-down assays we show that SAPAP3 (SAP90/PSD-95-Associated Protein-3) interacts with FAK (residues 676-840) and PYK2. The three proteins partly co-distribute in the same sucrose gradient fractions as the post-synaptic density protein PSD-95 and Src. Our results suggest that SAPAP3 is an anchoring protein for FAK and PYK2 in post-synaptic densities and may contribute to the synaptic function of these tyrosine kinases.
Collapse
|
197
|
Sugiyama Y, Kawabata I, Sobue K, Okabe S. Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods 2005; 2:677-84. [PMID: 16118638 DOI: 10.1038/nmeth783] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 07/18/2005] [Indexed: 11/08/2022]
Abstract
To build a quantitative model of molecular organization of neurons, it is essential to have information about the number of protein molecules at individual synapses. Here we developed a method to estimate absolute numbers of individual proteins at actual excitatory synapses by calibrating the fluorescence intensity of microspheres with single EGFP molecules. In cultured hippocampal neurons, we observed a monotonous increase of postsynaptic protein numbers per single synapse during neuronal differentiation and subsequent stabilization. At maturity we calculated that a single excitatory postsynaptic site contains 100-450 of individual postsynaptic proteins, such as PSD-95, GKAP, Shank and Homer. This narrow range of postsynaptic protein content suggests relatively simple stoichiometry of postsynaptic molecular organization. The EGFP-based calibration technique provides an unprecedented general method for estimating the amounts of proteins in macromolecular complexes.
Collapse
Affiliation(s)
- Yoshiko Sugiyama
- Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | |
Collapse
|
198
|
Francke F, Buck F, Bächner D. MYND domain specific interaction of the melanin-concentrating hormone receptor 1 interacting zinc-finger protein with alpha- and beta-tubulin. Biochem Biophys Res Commun 2005; 334:1292-8. [PMID: 16039987 DOI: 10.1016/j.bbrc.2005.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/29/2022]
Abstract
MIZIP was originally identified as a highly conserved zinc-finger protein from human brain interacting with the C-terminus of the melanin-concentrating hormone receptor 1. However, the cellular functions of MIZIP are still not known. Here, we focussed on the identification of associated proteins using affinity purification from human cells. This resulted in the identification of alpha- and beta-tubulin. The interaction was confirmed in vitro and in vivo using GST pull-down and immunoprecipitation assays, and was mapped to the MYND zinc-finger of MIZIP and to the N-terminus of tubulin. Immunoprecipitation and immunocytochemistry analyses demonstrate that MIZIP binds to tubulin but not to cellular microtubules in vivo and that ectopic expression of MIZIP does not interfere with the overall structure of the microtubular cytoskeleton. Our results suggest that MIZIP might play an important role in mammalian cells by associating with tubulin and thus might provide a link between MCHR1 and tubulin functions.
Collapse
Affiliation(s)
- Felix Francke
- Institute for Cell Biochemistry and Clinical Neurobiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | |
Collapse
|
199
|
Petralia RS, Sans N, Wang YX, Wenthold RJ. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 2005; 29:436-52. [PMID: 15894489 PMCID: PMC1414063 DOI: 10.1016/j.mcn.2005.03.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 03/21/2005] [Accepted: 03/28/2005] [Indexed: 11/16/2022] Open
Abstract
In glutamatergic synapses, glutamate receptors (GluRs) associate with many other proteins involved in scaffolding and signal transduction. The ontogeny of these postsynaptic density (PSD) proteins involves changes in their composition during development, paralleling changes in GluR type and function. In the CA1 region of the hippocampus, at postnatal day 2 (P2), many synapses already have a distinct PSD. We used immunoblot analysis, subcellular fractionation, and quantitative immunogold electron microscopy to examine the distribution of PSD proteins during development of the hippocampus. Synapses at P2 contained substantial levels of NR1 and NR2B and most GluR-associated proteins, including SAP102, SynGAP, the chain of proteins from GluRs/SAP102 through GKAP/Shank/Homer and metabotropic glutamate receptors, and the adhesion factors, cadherin, catenin, neuroligin, and Nr-CAM. Development was marked by substantial decreases in NR2B and SAP102 and increases in NR2A, PSD-95, AMPA receptors, and CaMKII. Other components showed more moderate changes.
Collapse
Affiliation(s)
- Ronald S Petralia
- Laboratory of Neurochemistry, NIDCD/NIH, 50/4142, 50 South Drive MSC 8027, Bethesda, MD 20892-8027, USA.
| | | | | | | |
Collapse
|
200
|
Funke L, Dakoji S, Bredt DS. MEMBRANE-ASSOCIATED GUANYLATE KINASES REGULATE ADHESION AND PLASTICITY AT CELL JUNCTIONS. Annu Rev Biochem 2005; 74:219-45. [PMID: 15952887 DOI: 10.1146/annurev.biochem.74.082803.133339] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue development, differentiation, and physiology require specialized cellular adhesion and signal transduction at sites of cell-cell contact. Scaffolding proteins that tether adhesion molecules, receptors, and intracellular signaling enzymes organize macromolecular protein complexes at cellular junctions to integrate these functions. One family of such scaffolding proteins is the large group of membrane-associated guanylate kinases (MAGUKs). Genetic studies have highlighted critical roles for MAGUK proteins in the development and physiology of numerous tissues from a variety of metazoan organisms. Mutation of Drosophila discs large (dlg) disrupts epithelial septate junctions and causes overgrowth of imaginal discs. Similarly, mutation of lin-2, a related MAGUK in Caenorhabditis elegans, blocks vulval development, and mutation of the postsynaptic density protein PSD-95 impairs synaptic plasticity in mammalian brain. These diverse roles are explained by recent biochemical and structural analyses of MAGUKs, which demonstrate their capacity to assemble well--efined--yet adaptable--protein complexes at cellular junctions.
Collapse
Affiliation(s)
- Lars Funke
- Department of Physiology, University of California at San Francisco, California 94143, USA.
| | | | | |
Collapse
|