151
|
Fadai NT, Baker RE, Simpson MJ. Accurate and efficient discretizations for stochastic models providing near agent-based spatial resolution at low computational cost. J R Soc Interface 2019; 16:20190421. [PMID: 31640499 DOI: 10.1098/rsif.2019.0421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Understanding how cells proliferate, migrate and die in various environments is essential in determining how organisms develop and repair themselves. Continuum mathematical models, such as the logistic equation and the Fisher-Kolmogorov equation, can describe the global characteristics observed in commonly used cell biology assays, such as proliferation and scratch assays. However, these continuum models do not account for single-cell-level mechanics observed in high-throughput experiments. Mathematical modelling frameworks that represent individual cells, often called agent-based models, can successfully describe key single-cell-level features of these assays but are computationally infeasible when dealing with large populations. In this work, we propose an agent-based model with crowding effects that is computationally efficient and matches the logistic and Fisher-Kolmogorov equations in parameter regimes relevant to proliferation and scratch assays, respectively. This stochastic agent-based model allows multiple agents to be contained within compartments on an underlying lattice, thereby reducing the computational storage compared to existing agent-based models that allow one agent per site only. We propose a systematic method to determine a suitable compartment size. Implementing this compartment-based model with this compartment size provides a balance between computational storage, local resolution of agent behaviour and agreement with classical continuum descriptions.
Collapse
Affiliation(s)
- Nabil T Fadai
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
152
|
Nanba D. Human keratinocyte stem cells: From cell biology to cell therapy. J Dermatol Sci 2019; 96:66-72. [PMID: 31669183 DOI: 10.1016/j.jdermsci.2019.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Human keratinocyte cultures contain keratinocyte stem cells, and have been involved in significant progress regarding stem cell biology as well as keratinocyte biology. Such cultures have also been applied in cell therapy for extensive severe burns for more than three decades, and in genetic disorders of the skin recently. Human keratinocyte stem cells were firstly characterized as holoclones by ex post clonal analysis, but in situ identification of keratinocyte stem cells is required for clinical applications. Recently, it was demonstrated that human keratinocyte stem cells display a unique rotational motion at early stages of culture, with subsequent dynamic collective motion at later stages. This finding enables image-based identification of keratinocyte stem cells, and noninvasive evaluation of their proliferative capacity, which can be applied for the quality assurance of human keratinocyte cultures. This review summarizes the historical development of human keratinocyte cultures and its applications for cell biology and cell therapy. This article also introduces recent advances in keratinocyte stem cell research with medical relevance and discusses the next-generation of regenerative medicine using human keratinocyte stem cells.
Collapse
Affiliation(s)
- Daisuke Nanba
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
153
|
Testis-specific Arf promoter expression in a transposase-aided BAC transgenic mouse model. Mol Biol Rep 2019; 46:6243-6252. [PMID: 31583563 DOI: 10.1007/s11033-019-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/04/2019] [Indexed: 10/25/2022]
Abstract
CDKN2A is an evolutionarily conserved gene encoding proteins implicated in tumor suppression, ocular development, aging, and metabolic diseases. Like the human form, mouse Cdkn2a encodes two distinct proteins-p16Ink4a, which blocks cyclin-dependent kinase activity, and p19Arf, which is best known as a positive regulator of the p53 tumor suppressor-and their functions have been well-studied in genetically engineered mouse models. Relatively little is known about how expression of the two transcripts is controlled in normal development and in certain disease states. To better understand their coordinate and transcript-specific expression in situ, we used a transposase-aided approach to generate a new BAC transgenic mouse model in which the first exons encoding Arf and Ink4a are replaced by fluorescent reporters. We show that mouse embryo fibroblasts generated from the transgenic lines faithfully display induction of each transgenic reporter in cell culture models, and we demonstrate the expected expression of the Arf reporter in the normal testis, one of the few places where that promoter is normally expressed. Interestingly, the TGFβ-2-dependent induction of the Arf reporter in the eye-a process essential for normal eye development-does not occur. Our findings illustrate the value of BAC transgenesis in mapping key regulatory elements in the mouse by revealing the genomic DNA required for Cdkn2a induction in cultured cells and the developing testis, and the apparent lack of elements driving expression in the developing eye.
Collapse
|
154
|
βarrestin-1 regulates DNA repair by acting as an E3-ubiquitin ligase adaptor for 53BP1. Cell Death Differ 2019; 27:1200-1213. [PMID: 31506606 PMCID: PMC7206116 DOI: 10.1038/s41418-019-0406-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023] Open
Abstract
Cellular DNA is constantly under threat from internal and external insults, consequently multiple pathways have evolved to maintain chromosomal fidelity. Our previous studies revealed that chronic stress, mediated by continuous stimulation of the β2-adrenergic-βarrestin-1 signaling axis suppresses activity of the tumor suppressor p53 and impairs genomic integrity. In this pathway, βarrestin-1 (βarr1) acts as a molecular scaffold to promote the binding and degradation of p53 by the E3-ubiquitin ligase, MDM2. We sought to determine whether βarr1 plays additional roles in the repair of DNA damage. Here we demonstrate that in mice βarr1 interacts with p53-binding protein 1 (53BP1) with major consequences for the repair of DNA double-strand breaks. 53BP1 is a principle component of the DNA damage response, and when recruited to the site of double-strand breaks in DNA, 53BP1 plays an important role coordinating repair of these toxic lesions. Here, we report that βarr1 directs 53BP1 degradation by acting as a scaffold for the E3-ubiquitin ligase Rad18. Consequently, knockdown of βarr1 stabilizes 53BP1 augmenting the number of 53BP1 DNA damage repair foci following exposure to ionizing radiation. Accordingly, βarr1 loss leads to a marked increase in irradiation resistance both in cells and in vivo. Thus, βarr1 is an important regulator of double strand break repair, and disruption of the βarr1/53BP1 interaction offers an attractive strategy to protect cells against high levels of exposure to ionizing radiation.
Collapse
|
155
|
Matsuno Y, Atsumi Y, Shimizu A, Katayama K, Fujimori H, Hyodo M, Minakawa Y, Nakatsu Y, Kaneko S, Hamamoto R, Shimamura T, Miyano S, Tsuzuki T, Hanaoka F, Yoshioka KI. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nat Commun 2019; 10:3925. [PMID: 31477700 PMCID: PMC6718401 DOI: 10.1038/s41467-019-11760-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. However, it remains unclear how MSI and hypermutation arise and contribute to cancer development. Here, we show that MSI and hypermutation are triggered by replication stress in an MMR-deficient background, enabling clonal expansion of cells harboring ARF/p53-module mutations and cells that are resistant to the anti-cancer drug camptothecin. While replication stress-associated DNA double-strand breaks (DSBs) caused chromosomal instability (CIN) in an MMR-proficient background, they induced MSI with concomitant suppression of CIN via a PARP-mediated repair pathway in an MMR-deficient background. This was associated with the induction of mutations, including cancer-driver mutations in the ARF/p53 module, via chromosomal deletions and base substitutions. Immortalization of MMR-deficient mouse embryonic fibroblasts (MEFs) in association with ARF/p53-module mutations was ~60-fold more efficient than that of wild-type MEFs. Thus, replication stress-triggered MSI and hypermutation efficiently lead to clonal expansion of cells with abrogated defense systems. Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. Here authors reveal a mechanism by which replication stress induces MSI and associated induction of mutations in vitro.
Collapse
Affiliation(s)
- Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuko Atsumi
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kotoe Katayama
- Human Genome Center, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, 103-0027, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, Tsurumai-cho, Syouwa-ku, Nagoya, 466-8550, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.,National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
156
|
Almengló C, González‐Mosquera T, Caamaño P, Seoane M, Fraga M, Devesa J, Costoya JA, Arce VM. Immortalization of a cell line with neural stem cell characteristics derived from mouse embryo brain. Dev Dyn 2019; 249:112-124. [DOI: 10.1002/dvdy.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Cristina Almengló
- Departamento de FisioloxiaFacultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Universidade de Santiago de Compostela, Santiago de Compostela Spain
| | - Tamara González‐Mosquera
- Departamento de FisioloxiaFacultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Universidade de Santiago de Compostela, Santiago de Compostela Spain
| | - Pilar Caamaño
- Fundacion Publica Galega de Medicina Xenomica Santiago de Compostela Spain
| | - Marcos Seoane
- Departamento de FisioloxiaFacultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Universidade de Santiago de Compostela, Santiago de Compostela Spain
| | - Máximo Fraga
- Departamento de Ciencias ForensesAnatomía Patolóxica, Xinecoloxía e Obstetricia, e Pediatría, Universidade de Santiago de Compostela Santiago de Compostela Spain
| | - Jesús Devesa
- Research and DevelopmentMedical Center Foltra Teo Spain
| | - José A. Costoya
- Departamento de FisioloxiaFacultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Universidade de Santiago de Compostela, Santiago de Compostela Spain
| | - Víctor M. Arce
- Departamento de FisioloxiaFacultade de Medicina and Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS). Universidade de Santiago de Compostela, Santiago de Compostela Spain
| |
Collapse
|
157
|
Almutairi MS, Hassan ES, Keeton AB, Piazza GA, Abdelhameed AS, Attia MI. Antiproliferative activity and possible mechanism of action of certain 5-methoxyindole tethered C-5 functionalized isatins. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3069-3078. [PMID: 31695325 PMCID: PMC6718129 DOI: 10.2147/dddt.s208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
Background Cancer is one of the most dreaded human diseases, that has become an ever-increasing health problem and is a prime cause of death globally. The potential antiproliferative activity of certain indole-isatin molecular hybrids 5a-w was evaluated in vitro against three human cancer cell lines. Methods Standard protocols were adopted to examine the antiproliferative potential and mechanisms of compounds 5a-w. Western blot analysis was carried out on compound 5o. Results Compounds 5a-w demonstrated in vitro antiproliferative activity in the range of 22.6-97.8%, with compounds 5o and 5w being the most active antiproliferative compounds with IC50 values of 1.69 and 1.91 µM, which is fivefold and fourfold more potent than sunitinib (IC50=8.11 µM), respectively. Compound 5o was selected for in-depth pharmacological testing to understand its possible mechanism of antiproliferative activity. It caused a lengthening of the G1 phase and a reduction in the S and G2/M phases of the cell cycle and had an IC50 value of 10.4 μM with the resistant NCI-H69AR cancer cell line. Moreover, compound 5o significantly decreased the amount of phosphorylated Rb protein in a dose-dependent fashion, which was confirmed via Western blot analysis. Conclusion The current investigation highlighted the potential antiproliferative activity of compounds 5a-w as well as the antiproliferative profile of compound 5o. These compounds can be harnessed as new lead antiproliferatives in the preclinical studies of cancer chemotherapy.
Collapse
Affiliation(s)
- Maha S Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eman S Hassan
- Department of Medical Laboratory Sciences, Al-Ghad International Medical Sciences College, Female Section, Riyadh 13315, Saudi Arabia
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed I Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza 12622, Egypt
| |
Collapse
|
158
|
Morphological and Molecular Changes in Juvenile Normal Human Fibroblasts Exposed to Simulated Microgravity. Sci Rep 2019; 9:11882. [PMID: 31417174 PMCID: PMC6695420 DOI: 10.1038/s41598-019-48378-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
The literature suggests morphological alterations and molecular biological changes within the cellular milieu of human cells, exposed to microgravity (µg), as many cell types assemble to multicellular spheroids (MCS). In this study we investigated juvenile normal human dermal fibroblasts (NHDF) grown in simulated µg (s-µg) on a random positioning machine (RPM), aiming to study changes in cell morphology, cytoskeleton, extracellular matrix (ECM), focal adhesion and growth factors. On the RPM, NHDF formed an adherent monolayer and compact MCS. For the two cell populations we found a differential regulation of fibronectin, laminin, collagen-IV, aggrecan, osteopontin, TIMP-1, integrin-β1, caveolin-1, E-cadherin, talin-1, vimentin, α-SM actin, TGF-β1, IL-8, MCP-1, MMP-1, and MMP-14 both on the transcriptional and/or translational level. Immunofluorescence staining revealed only slight structural changes in cytoskeletal components. Flow cytometry showed various membrane-bound proteins with considerable variations. In silico analyses of the regulated proteins revealed an interaction network, contributing to MCS growth via signals mediated by integrin-β1, E-cadherin, caveolin-1 and talin-1. In conclusion, s-µg-conditions induced changes in the cytoskeleton, ECM, focal adhesion and growth behavior of NHDF and we identified for the first time factors involved in fibroblast 3D-assembly. This new knowledge might be of importance in tissue engineering, wound healing and cancer metastasis.
Collapse
|
159
|
Al Hasan M, Roy P, Dolan S, Martin PE, Patterson S, Bartholomew C. Adhesion G-protein coupled receptor 56 is required for 3T3-L1 adipogenesis. J Cell Physiol 2019; 235:1601-1614. [PMID: 31304602 DOI: 10.1002/jcp.29079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Obesity-associated conditions represent major global health and financial burdens and understanding processes regulating adipogenesis could lead to novel intervention strategies. This study shows that adhesion G-protein coupled receptor 56 (GPR56) gene transcripts are reduced in abdominal visceral white adipose tissue derived from obese Zucker rats versus lean controls. Immunostaining in 3T3-L1 preadipocytes reveals both mitotic cell restricted surface and low level general expression patterns of Gpr56. Gpr56 transcripts are differentially expressed in 3T3-L1 cells during adipogenesis. Transient knockdown (KD) of Gpr56 in 3T3-L1 cells dramatically inhibits differentiation through reducing the accumulation of both neutral cellular lipids (56%) and production of established adipogenesis Pparγ 2 (60-80%), C/ebpα (40-78%) mediator, and Ap2 (56-80%) marker proteins. Furthermore, genome editing of Gpr56 in 3T3-L1 cells created CW2.2.4 and RM4.2.5.5 clones (Gpr56 -/- cells) with compound heterozygous deletion frameshift mutations which abolish adipogenesis. Genome edited cells have sustained levels of the adipogenesis inhibitor β-catenin, reduced proliferation, reduced adhesion, altered profiles, and or abundance of extracellular matrix component gene transcripts for fibronectin, types I, III, and IV collagens and loss of actin stress fibers. β-catenin KD alone is insufficient to restore adipogenesis in Gpr56 -/- cells. Together these data show that Gpr56 is required for adipogenesis in 3T3-L1 cells. This report is the first demonstration that Gpr56 participates in regulation of the adipogenesis developmental program. Modulation of the levels of this protein and/or its biological activity may represent a novel target for development of therapeutic agents for the treatment of obesity.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Poornima Roy
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Sharron Dolan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Patricia E Martin
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Steven Patterson
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Chris Bartholomew
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| |
Collapse
|
160
|
CRAF mutations in lung cancer can be oncogenic and predict sensitivity to combined type II RAF and MEK inhibition. Oncogene 2019; 38:5933-5941. [PMID: 31285551 PMCID: PMC6756226 DOI: 10.1038/s41388-019-0866-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/04/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Two out of 41 non-small cell lung cancer patients enrolled in a clinical study were found with a somatic CRAF mutation in their tumor, namely CRAFP261A and CRAFP207S. To our knowledge, both mutations are novel in lung cancer and CRAFP261A has not been previously reported in cancer. Expression of CRAFP261A in HEK293T cells and BEAS-2B lung epithelial cells led to increased ERK pathway activation in a dimer-dependent manner, accompanied with loss of CRAF phosphorylation at the negative regulatory S259 residue. Moreover, stable expression of CRAFP261A in mouse embryonic fibroblasts and BEAS-2B cells led to anchorage-independent growth. Consistent with a previous report, we could not observe a gain-of-function with CRAFP207S. Type II but not type I RAF inhibitors suppressed the CRAFP261A-induced ERK pathway activity in BEAS-2B cells, and combinatorial treatment with type II RAF inhibitors and a MEK inhibitor led to a stronger ERK pathway inhibition and growth arrest. Our findings suggest that the acquisition of a CRAFP261A mutation can provide oncogenic properties to cells, and that such cells are sensitive to combined MEK and type II RAF inhibitors. CRAF mutations should be diagnostically and therapeutically explored in lung and perhaps other cancers.
Collapse
|
161
|
Prieto I, Zambrano A, Laso J, Aranda A, Samper E, Monsalve M. Early induction of senescence and immortalization in PGC-1α-deficient mouse embryonic fibroblasts. Free Radic Biol Med 2019; 138:23-32. [PMID: 31029787 DOI: 10.1016/j.freeradbiomed.2019.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
AIMS Oxidative stress is known to induce early replicative senescence. Senescence has been proposed to work as a barrier to immortalization and tumor development. Here, we aimed to evaluate the impact of the loss of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α), a master regulator of oxidative metabolism and mitochondrial reactive oxygen species (ROS) generation, on replicative senescence and immortalization in mouse embryonic fibroblasts (MEFs). RESULTS We found that primary MEFs lacking PGC-1α showed higher levels of ROS than wild-type MEFs at all cell passages tested. The elevated production of ROS was associated with higher levels of oxidative DNA damage and the increased formation of DNA double-strand breaks. Evaluation of the induction of DNA repair systems in response to γ-radiation indicated that the loss of PGC-1α also resulted in a small but significant reduction in their activity. DNA damage induced the early activation of senescence markers, including an increase in the number of β-galactosidase-positive cells, the induction of p53 phosphorylation, and the increase in p16 and p19 protein. These changes were, however, not sufficient to reduce proliferation rates of PGC-1α-deficient MEFs at any cell passage tested. Moreover, PGC-1α-deficient cells escaped replicative senescence. INNOVATION & CONCLUSION PGC-1α plays an important role in the control of cellular senescence and immortalization.
Collapse
Affiliation(s)
- Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4. 28029, Madrid, Spain.
| | - Alberto Zambrano
- Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III. Ctra. Majadahonda-Pozuelo km 2. 28220, Madrid, Spain.
| | - Javier Laso
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC). Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4. 28029, Madrid, Spain.
| | - Enrique Samper
- NIMGenetics, Genómica y Medicina S.L. Faraday, 7. 28049, Madrid, Spain.
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4. 28029, Madrid, Spain.
| |
Collapse
|
162
|
Berendse K, Boek M, Gijbels M, Van der Wel NN, Klouwer FC, van den Bergh-Weerman MA, Shinde AB, Ofman R, Poll-The BT, Houten SM, Baes M, Wanders RJA, Waterham HR. Liver disease predominates in a mouse model for mild human Zellweger spectrum disorder. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2774-2787. [PMID: 31207289 DOI: 10.1016/j.bbadis.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022]
Abstract
Zellweger spectrum disorders (ZSDs) are autosomal recessive diseases caused by defective peroxisome assembly. They constitute a clinical continuum from severe early lethal to relatively milder presentations in adulthood. Liver disease is a prevalent symptom in ZSD patients. The underlying pathogenesis for the liver disease, however, is not fully understood. We report a hypomorphic ZSD mouse model, which is homozygous for Pex1-c.2531G>A (p.G844D), the equivalent of the most common pathogenic variant found in ZSD, and which predominantly presents with liver disease. After introducing the Pex1-G844D allele by knock-in, we characterized homozygous Pex1-G844D mice for survival, biochemical parameters, including peroxisomal and mitochondrial functions, organ histology, and developmental parameters. The first 20 post-natal days (P20) were critical for survival of homozygous Pex1-G844D mice (~20% survival rate). Lethality was likely due to a combination of cholestatic liver problems, liver dysfunction and caloric deficit, probably as a consequence of defective bile acid biosynthesis. Survival beyond P20 was nearly 100%, but surviving mice showed a marked delay in growth. Surviving mice showed similar hepatic problems as described for mild ZSD patients, including hepatomegaly, bile duct proliferation, liver fibrosis and mitochondrial alterations. Biochemical analyses of various tissues showed the absence of functional peroxisomes accompanied with aberrant levels of peroxisomal metabolites predominantly in the liver, while other tissues were relatively spared. ur findings show that homozygous Pex1-G844D mice have a predominant liver disease phenotype, mimicking the hepatic pathology of ZSD patients, and thus constitute a good model to study pathogenesis and treatment of liver disease in ZSD patients.
Collapse
Affiliation(s)
- Kevin Berendse
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands; Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Paediatric Neurology, the Netherlands
| | - Maxim Boek
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Marion Gijbels
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands
| | | | - Femke C Klouwer
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands; Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Paediatric Neurology, the Netherlands
| | | | - Abhijit Babaji Shinde
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, University of Leuven, Belgium
| | - Rob Ofman
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Bwee Tien Poll-The
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Paediatric Neurology, the Netherlands
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, University of Leuven, Belgium
| | - Ronald J A Wanders
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands
| | - Hans R Waterham
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, the Netherlands.
| |
Collapse
|
163
|
|
164
|
Kazyken D, Magnuson B, Bodur C, Acosta-Jaquez HA, Zhang D, Tong X, Barnes TM, Steinl GK, Patterson NE, Altheim CH, Sharma N, Inoki K, Cartee GD, Bridges D, Yin L, Riddle SM, Fingar DC. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci Signal 2019; 12:12/585/eaav3249. [PMID: 31186373 PMCID: PMC6935248 DOI: 10.1126/scisignal.aav3249] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AMP-activated protein kinase (AMPK) senses energetic stress and, in turn, promotes catabolic and suppresses anabolic metabolism coordinately to restore energy balance. We found that a diverse array of AMPK activators increased mTOR complex 2 (mTORC2) signaling in an AMPK-dependent manner in cultured cells. Activation of AMPK with the type 2 diabetes drug metformin (GlucoPhage) also increased mTORC2 signaling in liver in vivo and in primary hepatocytes in an AMPK-dependent manner. AMPK-mediated activation of mTORC2 did not result from AMPK-mediated suppression of mTORC1 and thus reduced negative feedback on PI3K flux. Rather, AMPK associated with and directly phosphorylated mTORC2 (mTOR in complex with rictor). As determined by two-stage in vitro kinase assay, phosphorylation of mTORC2 by recombinant AMPK was sufficient to increase mTORC2 catalytic activity toward Akt. Hence, AMPK phosphorylated mTORC2 components directly to increase mTORC2 activity and downstream signaling. Functionally, inactivation of AMPK, mTORC2, and Akt increased apoptosis during acute energetic stress. By showing that AMPK activates mTORC2 to increase cell survival, these data provide a potential mechanism for how AMPK paradoxically promotes tumorigenesis in certain contexts despite its tumor-suppressive function through inhibition of growth-promoting mTORC1. Collectively, these data unveil mTORC2 as a target of AMPK and the AMPK-mTORC2 axis as a promoter of cell survival during energetic stress.
Collapse
Affiliation(s)
- Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Brian Magnuson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Hugo A. Acosta-Jaquez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Xin Tong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Tammy M. Barnes
- Department of Internal Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Gabrielle K. Steinl
- Department of Internal Medicine and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Nicole E. Patterson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Christopher H. Altheim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Naveen Sharma
- School of Kinesiology, Department of Molecular and Integrative Physiology, Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ken Inoki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Gregory D. Cartee
- School of Kinesiology, Department of Molecular and Integrative Physiology, Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | - Diane C. Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.,Corresponding author.
| |
Collapse
|
165
|
Coulombe P, Nassar J, Peiffer I, Stanojcic S, Sterkers Y, Delamarre A, Bocquet S, Méchali M. The ORC ubiquitin ligase OBI1 promotes DNA replication origin firing. Nat Commun 2019; 10:2426. [PMID: 31160578 PMCID: PMC6547688 DOI: 10.1038/s41467-019-10321-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication initiation is a two-step process. During the G1-phase of the cell cycle, the ORC complex, CDC6, CDT1, and MCM2-7 assemble at replication origins, forming pre-replicative complexes (pre-RCs). In S-phase, kinase activities allow fork establishment through (CDC45/MCM2-7/GINS) CMG-complex formation. However, only a subset of all potential origins becomes activated, through a poorly understood selection mechanism. Here we analyse the pre-RC proteomic interactome in human cells and find C13ORF7/RNF219 (hereafter called OBI1, for ORC-ubiquitin-ligase-1) associated with the ORC complex. OBI1 silencing result in defective origin firing, as shown by reduced CMG formation, without affecting pre-RC establishment. OBI1 catalyses the multi-mono-ubiquitylation of a subset of chromatin-bound ORC3 and ORC5 during S-phase. Importantly, expression of non-ubiquitylable ORC3/5 mutants impairs origin firing, demonstrating their relevance as OBI1 substrates for origin firing. Our results identify a ubiquitin signalling pathway involved in origin activation and provide a candidate protein for selecting the origins to be fired.
Collapse
Affiliation(s)
- Philippe Coulombe
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Joelle Nassar
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Slavica Stanojcic
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), 34090, Montpellier, France
| | - Yvon Sterkers
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), 34090, Montpellier, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, 34090, Montpellier, France
| | - Axel Delamarre
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Stéphane Bocquet
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Marcel Méchali
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
166
|
Stöckli J, Zadoorian A, Cooke KC, Deshpande V, Yau B, Herrmann G, Kebede MA, Humphrey SJ, James DE. ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Mol Metab 2019; 25:83-94. [PMID: 31105056 PMCID: PMC6601125 DOI: 10.1016/j.molmet.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 01/01/2023] Open
Abstract
Objective Insulin suppresses adipose tissue lipolysis after a meal, playing a key role in metabolic homeostasis. This is mediated via the kinase Akt and its substrate phosphodiesterase 3B (PDE3B). Once phosphorylated and activated, PDE3B hydrolyses cAMP leading to the inactivation of cAMP-dependent protein kinase (PKA) and suppression of lipolysis. However, several gaps have emerged in this model. Here we investigated the role of the PDE3B-interacting protein, α/β-hydrolase ABHD15 in this process. Methods Lipolysis, glucose uptake, and signaling were assessed in ABHD15 knock down and knock out adipocytes and fat explants in response to insulin and/or β-adrenergic receptor agonist. Glucose and fatty acid metabolism were determined in wild type and ABHD15−/− littermate mice. Results Deletion of ABHD15 in adipocytes resulted in a significant defect in insulin-mediated suppression of lipolysis with no effect on insulin-mediated glucose uptake. ABHD15 played a role in suppressing PKA signaling as phosphorylation of the PKA substrate Perilipin-1 remained elevated in response to insulin upon ABHD15 deletion. ABHD15−/− mice had normal glucose metabolism but defective fatty acid metabolism: plasma fatty acids were elevated upon fasting and in response to insulin, and this was accompanied by elevated liver triglycerides upon β-adrenergic receptor activation. This is likely due to hyperactive lipolysis as evident by the larger triglyceride depletion in brown adipose tissue in these mice. Finally, ABHD15 protein levels were reduced in adipocytes from mice fed a Western diet, further implicating this protein in metabolic homeostasis. Conclusions Collectively, ABHD15 regulates adipocyte lipolysis and liver lipid accumulation, providing novel therapeutic opportunities for modulating lipid homeostasis in disease. Insulin was unable to suppress lipolysis in the absence of ABHD15 in adipocytes in vitro, ex vivo and in mice in vivo. The lipolysis defect was associated with defective signalling via protein kinase A and its substrate Perilipin-1. The defect was specific for lipolysis with no impairment in insulin signalling or insulin-stimulated glucose uptake. Deletion of ABHD15 caused a significant increase in fatty acid deposition in liver in response to stress.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Armella Zadoorian
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Vinita Deshpande
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Belinda Yau
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gaia Herrmann
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
167
|
Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci Rep 2019; 9:6643. [PMID: 31040333 PMCID: PMC6491613 DOI: 10.1038/s41598-019-43115-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chronic wounds affect thousands of people worldwide, causing pain and discomfort to patients and represent significant economical burdens to health care systems. The treatment of chronic wounds is very difficult and complex, particularly when wounds are colonized by bacterial biofilms which are highly tolerant to antibiotics. Enterococcus faecium and Enterococcus faecalis are within the most frequent bacteria present in chronic wounds. Bacteriophages (phages) have been proposed as an efficient and alternative against antibiotic-resistant infections, as those found in chronic wounds. We have isolated and characterized two novel enterococci phages, the siphovirus vB_EfaS-Zip (Zip) and the podovirus vB_EfaP-Max (Max) to be applied during wound treatment. Both phages demonstrated lytic behavior against E. faecalis and E. faecium. Genome analysis of both phages suggests the absence of genes associated with lysogeny. A phage cocktail containing both phages was tested against biofilms formed in wound simulated conditions at a multiplicity of infection of 1.0 and a 2.5 log CFU.mL−1 reduction in the bacterial load after at 3 h of treatment was observed. Phages were also tested in epithelial cells colonized by these bacterial species and a 3 log CFU.mL−1 reduction was observed using both phages. The high efficacy of these new isolated phages against multi-species biofilms, their stability at different temperatures and pH ranges, short latent periods and non-cytotoxicity to epithelial cells suggest their therapeutic use to control infectious biofilms present in chronic wounds.
Collapse
|
168
|
Zhivagui M, Ng AWT, Ardin M, Churchwell MI, Pandey M, Renard C, Villar S, Cahais V, Robitaille A, Bouaoun L, Heguy A, Guyton KZ, Stampfer MR, McKay J, Hollstein M, Olivier M, Rozen SG, Beland FA, Korenjak M, Zavadil J. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res 2019; 29:521-531. [PMID: 30846532 PMCID: PMC6442384 DOI: 10.1101/gr.242453.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Humans are frequently exposed to acrylamide, a probable human carcinogen found in commonplace sources such as most heated starchy foods or tobacco smoke. Prior evidence has shown that acrylamide causes cancer in rodents, yet epidemiological studies conducted to date are limited and, thus far, have yielded inconclusive data on association of human cancers with acrylamide exposure. In this study, we experimentally identify a novel and unique mutational signature imprinted by acrylamide through the effects of its reactive metabolite glycidamide. We next show that the glycidamide mutational signature is found in a full one-third of approximately 1600 tumor genomes corresponding to 19 human tumor types from 14 organs. The highest enrichment of the glycidamide signature was observed in the cancers of the lung (88% of the interrogated tumors), liver (73%), kidney (>70%), bile duct (57%), cervix (50%), and, to a lesser extent, additional cancer types. Overall, our study reveals an unexpectedly extensive contribution of acrylamide-associated mutagenesis to human cancers.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alvin W T Ng
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Manuraj Pandey
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Claire Renard
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Stephanie Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Liacine Bouaoun
- Environment and Radiation Section, International Agency for Research on Cancer, Lyon 69008, France
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center, New York University, Langone Medical Center, New York, New York 10016, USA
| | - Kathryn Z Guyton
- IARC Monographs Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Monica Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
- Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds LS2 9JT, United Kingdom
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| |
Collapse
|
169
|
Fan HH, Yu IS, Lin YH, Wang SY, Liaw YH, Chen PL, Yang TL, Lin SW, Chen YT. P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies. FASEB J 2019; 33:5571-5584. [PMID: 30640520 DOI: 10.1096/fj.201802027r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology facilitates somatic genome editing to reveal cooperative genetic interactions at the cellular level without extensive breeding between different mutant animals. Here we propose a transgenic inducible Cas9 effector-CRISPR mutagen ( ICE CRIM) mouse model in which CRISPR/Cas9-mediated somatic mutagenesis events can occur in response to Cre expression. The well-known tumor suppressor gene, Trp53, and 2 important DNA mismatch repair genes, Mlh1 and Msh2, were selected to be our somatic mutagenesis targets. Amplicon-based sequencing was performed to validate the editing efficiency and to identify the mutant allelic series. Crossed with various Cre lines, the Trp53 ICE CRIM alleles were activated to generate targeted cancer gene somatic or germ line mutant variants. We provide experimental evidence to show that an activated ICE CRIM can mutate both targeted alleles within a cell. Simultaneous disruption of multiple genes was also achieved when there were multiple single-guide RNA expression cassettes embedded within an activated ICE CRIM. Our mouse model can be used to generate mutant pools in vivo, which enables a functional screen to be performed in situ. Our results also provide evidence to support a monoclonal origin of hematopoietic neoplasms and to indicate that DNA mismatch repair deficiency accelerates tumorigenesis in Trp53 mutant genetic background.-Fan, H.-H., Yu, I.-S., Lin, Y.-H., Wang, S.-Y., Liaw, Y.-H., Chen, P.-L., Yang, T.-L., Lin, S.-W., Chen, Y.-T. P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies.
Collapse
Affiliation(s)
- Hsiang-Hsuan Fan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hung Lin
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Wang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Hsuan Liaw
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; and
- Center of Genomic Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center of Genomic Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
170
|
Cabrié A, Guittet O, Tomasini R, Vincendeau P, Lepoivre M. Crosstalk between TAp73 and TGF-β in fibroblast regulates iNOS expression and Nrf2-dependent gene transcription. Free Radic Biol Med 2019; 134:617-629. [PMID: 30753884 DOI: 10.1016/j.freeradbiomed.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022]
Abstract
Inducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression. Induction of iNOS by immunological stimuli was upregulated in immortalized MEFs from TAp73-/- mice, compared to TAp73+/+ fibroblasts. This overexpression resulted both from increased levels of NOS2 transcripts, and from an increased stability of the protein. Limitation of iNOS expression by TAp73 in wild-type cells is alleviated by TGF-β receptor I inhibitors, suggesting a cooperation between TAp73 and TGF-β in suppression of iNOS expression. Accordingly, downregulation of iNOS expression by exogenous TGF-β1 was impaired in TAp73-/- fibroblasts. Increased NO production in these cells resulted in a stronger, NO-dependent induction of Nrf2 target genes, indicating that the Nrf2-dependent adaptive response to nitrosative stress in fibroblasts is proportional to iNOS activity. NO-dependent induction of two HIF-1 target genes was also stronger in TAp73-deficient cells. Finally, the antimicrobial action of NO against Trypanosoma musculi parasites was enhanced in TAp73-/- fibroblasts. Our data indicate that tumor suppressive TAp73 isoforms cooperate with TGF-β to control iNOS expression, NO-dependent adaptive responses to stress, and pathogen proliferation.
Collapse
Affiliation(s)
- Aimeric Cabrié
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Olivier Guittet
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Richard Tomasini
- CRCM, INSERM, U1068, F-13288, Marseille Cedex 9, France; Paoli-Calmettes Institute, F-13288, Marseille Cedex 9, France; Aix-Marseille University, UM 105, F-13288, Marseille Cedex 9, France; CNRS, UMR7258, F-13288, Marseille Cedex 9, France
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR177 IRD/CIRAD "INTERTRYP", Université Bordeaux, F-33000, Bordeaux, France
| | - Michel Lepoivre
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
171
|
Kunova Bosakova M, Nita A, Gregor T, Varecha M, Gudernova I, Fafilek B, Barta T, Basheer N, Abraham SP, Balek L, Tomanova M, Fialova Kucerova J, Bosak J, Potesil D, Zieba J, Song J, Konik P, Park S, Duran I, Zdrahal Z, Smajs D, Jansen G, Fu Z, Ko HW, Hampl A, Trantirek L, Krakow D, Krejci P. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci U S A 2019; 116:4316-4325. [PMID: 30782830 PMCID: PMC6410813 DOI: 10.1073/pnas.1800338116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cilia/metabolism
- Fibroblast Growth Factors/metabolism
- HEK293 Cells
- Hedgehog Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Models, Animal
- Molecular Docking Simulation
- NIH 3T3 Cells
- Phosphorylation
- Protein Interaction Domains and Motifs
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteomics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Neha Basheer
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marketa Tomanova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jana Fialova Kucerova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Juraj Bosak
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Peter Konik
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Sohyun Park
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Ales Hampl
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095;
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
172
|
Demeter T, Vaskovicova M, Malik R, Horvat F, Pasulka J, Svobodova E, Flemr M, Svoboda P. Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci Alliance 2019; 2:2/1/e201800289. [PMID: 30808654 PMCID: PMC6391682 DOI: 10.26508/lsa.201800289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
A systematic survey of dsRNA expression in mouse fibroblasts and embryonic stem cells shows main constraints for RNAi. RNAi activity depends on the initial Dicer cleavage of dsRNA, having implications for the evolution of mammalian RNAi functions. RNAi is the sequence-specific mRNA degradation guided by siRNAs produced from long dsRNA by RNase Dicer. Proteins executing RNAi are present in mammalian cells but rather sustain the microRNA pathway. Aiming for a systematic analysis of mammalian RNAi, we report here that the main bottleneck for RNAi efficiency is the production of functional siRNAs, which integrates Dicer activity, dsRNA structure, and siRNA targeting efficiency. Unexpectedly, increased expression of Dicer cofactors TARBP2 or PACT reduces RNAi but not microRNA function. Elimination of protein kinase R, a key dsRNA sensor in the interferon response, had minimal positive effects on RNAi activity in fibroblasts. Without high Dicer activity, RNAi can still occur when the initial Dicer cleavage of the substrate yields an efficient siRNA. Efficient mammalian RNAi may use substrates with some features of microRNA precursors, merging both pathways even more than previously suggested. Although optimized endogenous Dicer substrates mimicking miRNA features could evolve for endogenous regulations, the same principles would make antiviral RNAi inefficient as viruses would adapt to avoid efficacy.
Collapse
Affiliation(s)
- Tomas Demeter
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Vaskovicova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Josef Pasulka
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Matyas Flemr
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
173
|
Jacquemont S, Pacini L, Jønch AE, Cencelli G, Rozenberg I, He Y, D'Andrea L, Pedini G, Eldeeb M, Willemsen R, Gasparini F, Tassone F, Hagerman R, Gomez-Mancilla B, Bagni C. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum Mol Genet 2019; 27:2039-2051. [PMID: 29590342 PMCID: PMC5985734 DOI: 10.1093/hmg/ddy099] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome (FXS) is a monogenic form of intellectual disability and autism spectrum disorder caused by the absence of the fragile X mental retardation protein (FMRP). In biological models for the disease, this leads to upregulated mRNA translation and as a consequence, deficits in synaptic architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here, we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here, we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those in neurons we suggest the validity of this peripheral biomarker. Our study offers a potential explanation for the comprehensive drug development program undertaken thus far yielding negative results and suggests that a significant proportion, but not all individuals with FXS, may benefit from the reduction of excessive levels of protein synthesis.
Collapse
Affiliation(s)
- Sébastien Jacquemont
- Sainte-Justine University Hospital Research Centre, Montreal, QC H3T 1C5.,University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Aia E Jønch
- Department of Clinical Genetics, Odense University Hospital.,Human Genetics, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Izabela Rozenberg
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Yunsheng He
- Biomarker Development, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Laura D'Andrea
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marwa Eldeeb
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 1738, 3000DR Rotterdam, The Netherlands
| | - Fabrizio Gasparini
- Neuroscience Discovery, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine and Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| | - Randi Hagerman
- Department of Pediatric and Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Baltazar Gomez-Mancilla
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
174
|
Cytocompatibility of Potential Bioactive Cerium-Doped Glasses based on 45S5. MATERIALS 2019; 12:ma12040594. [PMID: 30781522 PMCID: PMC6416737 DOI: 10.3390/ma12040594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 01/10/2023]
Abstract
The cytocompatibility of potential bioactive cerium-containing (Ce3+/Ce4+) glasses is here investigated by preparing three different glasses with increasing amount of doping CeO₂ (1.2, 3.6 and 5.3 mol% of CeO₂, called BG_1.2, BG_3.6 and BG_5.3, respectively) based on 45S5 Bioglass® (called BG). These materials were characterized by Environmental Scanning Electron Microscopy (ESEM) and infrared spectroscopy (FTIR) after performing bioactivity tests in Dulbecco's Modified Eagle Medium (DMEM) solution, and the ions released in solution were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Optical Emission Spectrometry (ICP-OES). The data obtained clearly show that the glass surfaces of BG, BG_1.2 and BG_3.6 were covered by hydroxyapatite (HA), while BG_5.3 favored the formation of a cerium phosphate crystal phase. The cytotoxicity tests were performed using both murine long bone osteocyte-like (MLO-Y4) and mouse embryonic fibroblast (NIH/3T3) cell lines. The cerium-containing bioactive glasses show an increment in cell viability with respect to BG, and at long times, no cell aggregation and deformation were observed. The proliferation of NIH/3T3 cells increased with the cerium content in the glasses; in particular, BG_3.6 and BG_5.3 showed a higher proliferation of cells than the negative control. These results highlight and enforce the proposal of cerium-doped bioactive glasses as a new class of biomaterials for hard-tissue applications.
Collapse
|
175
|
Kopp F, Elguindy MM, Yalvac ME, Zhang H, Chen B, Gillett FA, Lee S, Sivakumar S, Yu H, Xie Y, Mishra P, Sahenk Z, Mendell JT. PUMILIO hyperactivity drives premature aging of Norad-deficient mice. eLife 2019; 8:42650. [PMID: 30735131 PMCID: PMC6407921 DOI: 10.7554/elife.42650] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Although numerous long noncoding RNAs (lncRNAs) have been identified, our understanding of their roles in mammalian physiology remains limited. Here, we investigated the physiologic function of the conserved lncRNA Norad in vivo. Deletion of Norad in mice results in genomic instability and mitochondrial dysfunction, leading to a dramatic multi-system degenerative phenotype resembling premature aging. Loss of tissue homeostasis in Norad-deficient animals is attributable to augmented activity of PUMILIO proteins, which act as post-transcriptional repressors of target mRNAs to which they bind. Norad is the preferred RNA target of PUMILIO2 (PUM2) in mouse tissues and, upon loss of Norad, PUM2 hyperactively represses key genes required for mitosis and mitochondrial function. Accordingly, enforced Pum2 expression fully phenocopies Norad deletion, resulting in rapid-onset aging-associated phenotypes. These findings provide new insights and open new lines of investigation into the roles of noncoding RNAs and RNA binding proteins in normal physiology and aging. Only a tiny portion of our genetic material contains the information required to create proteins, the workhorses of the body. The rest of our DNA, however, is not useless: some of it can be transcribed to create molecules known as non-coding RNAs, which are increasingly scrutinized by scientists. For example, a non-coding RNA called NORAD acts as a guardian of the genome by reducing the activity of a protein named PUMILIO. Without NORAD, PUMILIO becomes overactive, and this causes problems as genetic information is split between two ‘daughter cells’ when a cell divides. Defects in the amount of genetic material in cells have been linked with faster aging in animals. In addition, some studies suggest that as animals get older, the levels of NORAD in the body decrease, while the levels of PUMILIO increase. However, the precise role that NORAD may play in aging remains unclear. To address this question, Kopp et al. engineered mutant mice that lack Norad (the mouse equivalent of human NORAD) and carefully monitored how they grew and developed. The animals looked normal at birth, but they seemed to age faster: for instance, their fur became thin and gray, and their brains developed age-related abnormalities much sooner than normal mice. At the level of individual cells, losing Norad was also associated with problems often seen in old age. The mutant animals were more likely to have incorrect amounts of genetic information in their cells, and they had defects in the cell compartments that create the energy necessary for life. Further experiments showed that these issues were driven by PUMILIO being hyperactive. Overall, the work by Kopp et al. reveal that the non-coding RNA Norad is essential to keep PUMILIO activity in check and to prevent problems associated with aging from appearing in young animals. Further studies are now needed to take a closer look at how NORAD and other non-coding RNAs keep us healthy.
Collapse
Affiliation(s)
- Florian Kopp
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mahmoud M Elguindy
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Mehmet E Yalvac
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, United States.,Department of Neurology, The Ohio State University, Columbus, United States
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Beibei Chen
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, United States
| | - Frank A Gillett
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sungyul Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sushama Sivakumar
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yang Xie
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zarife Sahenk
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, United States.,Department of Pediatrics, The Ohio State University, Columbus, United States.,Department of Neurology, The Ohio State University, Columbus, United States
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
176
|
Levasseur MD, Thomas C, Davies OR, Higgins JMG, Madgwick S. Aneuploidy in Oocytes Is Prevented by Sustained CDK1 Activity through Degron Masking in Cyclin B1. Dev Cell 2019; 48:672-684.e5. [PMID: 30745144 PMCID: PMC6416240 DOI: 10.1016/j.devcel.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/22/2018] [Accepted: 12/29/2018] [Indexed: 01/10/2023]
Abstract
Successful mitosis requires that cyclin B1:CDK1 kinase activity remains high until chromosomes are correctly aligned on the mitotic spindle. It has therefore been unclear why, in mammalian oocyte meiosis, cyclin B1 destruction begins before chromosome alignment is complete. Here, we resolve this paradox and show that mouse oocytes exploit an imbalance in the ratio of cyclin B1 to CDK1 to control CDK1 activity; early cyclin B1 destruction reflects the loss of an excess of non-CDK1-bound cyclin B1 in late prometaphase, while CDK1-bound cyclin B1 is destroyed only during metaphase. The ordered destruction of the two forms of cyclin B1 is brought about by a previously unidentified motif that is accessible in free cyclin B1 but masked when cyclin B1 is in complex with CDK1. This protects the CDK1-bound fraction from destruction in prometaphase, ensuring a period of prolonged CDK1 activity sufficient to achieve optimal chromosome alignment and prevent aneuploidy. In mouse oocytes, an excess of cyclin B1 preserves CDK1 activity A motif in non-CDK1-bound cyclin B1 confers preferential APC/C targeting Non-CDK1-bound cyclin B1 is gradually destroyed before CDK1-bound cyclin B1 Prolonged CDK1 activity assists the spindle checkpoint and prevents aneuploidy
Collapse
Affiliation(s)
- Mark D Levasseur
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Thomas
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen R Davies
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jonathan M G Higgins
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Suzanne Madgwick
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
177
|
van de Vrugt HJ, Harmsen T, Riepsaame J, Alexantya G, van Mil SE, de Vries Y, Bin Ali R, Huijbers IJ, Dorsman JC, Wolthuis RMF, Te Riele H. Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair. Sci Rep 2019; 9:768. [PMID: 30683899 PMCID: PMC6347620 DOI: 10.1038/s41598-018-36506-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia (FA) is a cancer predisposition syndrome characterized by congenital abnormalities, bone marrow failure, and hypersensitivity to aldehydes and crosslinking agents. For FA patients, gene editing holds promise for therapeutic applications aimed at functionally restoring mutated genes in hematopoietic stem cells. However, intrinsic FA DNA repair defects may obstruct gene editing feasibility. Here, we report on the CRISPR/Cas9-mediated correction of a disruptive mutation in Fancf. Our experiments revealed that gene editing could effectively restore Fancf function via error-prone end joining resulting in a 27% increased survival in the presence of mitomycin C. In addition, templated gene correction could be achieved after double strand or single strand break formation. Although templated gene editing efficiencies were low (≤6%), FA corrected embryonic stem cells acquired a strong proliferative advantage over non-corrected cells, even without imposing genotoxic stress. Notably, Cas9 nickase activity resulted in mono-allelic gene editing and avoidance of undesired mutagenesis. In conclusion: DNA repair defects associated with FANCF deficiency do not prohibit CRISPR/Cas9 gene correction. Our data provide a solid basis for the application of pre-clinical models to further explore the potential of gene editing against FA, with the eventual aim to obtain therapeutic strategies against bone marrow failure.
Collapse
Affiliation(s)
- Henri J van de Vrugt
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| | - Tim Harmsen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Joey Riepsaame
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford South Parks Road, OX1 3RE, Oxford, UK
| | - Georgina Alexantya
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Saskia E van Mil
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Yne de Vries
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Rob M F Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
178
|
Bell S, Redmann AL, Terentjev EM. Universal Kinetics of the Onset of Cell Spreading on Substrates of Different Stiffness. Biophys J 2019; 116:551-559. [PMID: 30665696 PMCID: PMC6369430 DOI: 10.1016/j.bpj.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
When plated onto substrates, cell morphology and even stem-cell differentiation are influenced by the stiffness of their environment. Stiffer substrates give strongly spread (eventually polarized) cells with strong focal adhesions and stress fibers; very soft substrates give a less developed cytoskeleton and much lower cell spreading. The kinetics of this process of cell spreading is studied extensively, and important universal relationships are established on how the cell area grows with time. Here, we study the population dynamics of spreading cells, investigating the characteristic processes involved in the cell response to the substrate. We show that unlike the individual cell morphology, this population dynamics does not depend on the substrate stiffness. Instead, a strong activation temperature dependence is observed. Different cell lines on different substrates all have long-time statistics controlled by the thermal activation over a single energy barrier ΔG ≈ 18 kcal/mol, whereas the early-time kinetics follows a power law ∼t5. This implies that the rate of spreading depends on an internal process of adhesion complex assembly and activation; the operational complex must have five component proteins, and the last process in the sequence (which we believe is the activation of focal adhesion kinase) is controlled by the binding energy ΔG.
Collapse
Affiliation(s)
- Samuel Bell
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Anna-Lena Redmann
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
179
|
Deng H, Mondal S, Sur S, Woodworth CD. Establishment and optimization of epithelial cell cultures from human ectocervix, transformation zone, and endocervix optimization of epithelial cell cultures. J Cell Physiol 2019; 234:7683-7694. [PMID: 30609028 DOI: 10.1002/jcp.28049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
Abstract
Cervical cancer is a major public health problem and research using cell culture models has improved understanding of this disease. The human cervix contains three anatomic regions; ectocervix with stratified squamous epithelium, endocervix with secretory epithelium, and transformation zone (TZ) with metaplastic cells. Most cervical cancers originate within the TZ. However, little is known about the biology of TZ cells or why they are highly susceptible to carcinogenesis. The goal of this study was to develop and optimize methods to compare growth and differentiation of cells cultured from ectocervix, TZ or endocervix. We examined the effects of different serum-free media on cell attachment, cell growth and differentiation, and cell population doublings in monolayer culture. We also optimized conditions for organotypic culture of cervical epithelial cells using collagen rafts with human cervical stromal cells. Finally, we present a step-by-step protocol for culturing cells from each region of human cervix.
Collapse
Affiliation(s)
- Han Deng
- Department of Biology, Clarkson University, Potsdam, New York
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, New York
| | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, New York
| | | |
Collapse
|
180
|
Walen KH. Genomic Instability in Cancer II: 4N-Skewed (90°) Reductive Division via Fragile Sites to Fitness Increase for Solid and Hematological Cancer Beginnings. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jct.2019.107045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
181
|
Abstract
The structural maintenance of chromosomes (SMC) complex, SMC5/6, is important for genome maintenance in all model eukaryotes. To date, the most extensive studies have focused on the roles of Smc5/6 in lower eukaryotes, such as yeast and fly. In the handful of studies that have used mammalian cells, siRNA was used by most to knockdown SMC5/6 components. RNAi methods have been very important for scientific progression, but they are hindered by incomplete silencing of protein expression and off-target effects. This chapter outlines the use of a conditional knockout approach in mouse embryonic fibroblasts to study the function of the SMC5/6 complex. These cell lines provide an alternative method to study the function and properties of the SMC5/6 complex in mammals.
Collapse
Affiliation(s)
- Himaja Gaddipati
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
182
|
Abstract
The 3T3-L1 murine preadipocyte cell line is a commonly used tool for analysis of the subcellular pathways involved in preadipocytic cell differentiation (a process also commonly known as adipogenesis). The major characteristic of adipogenesis is the intracellular accumulation of membrane-bound lipid droplets. Here, we describe methods used for the culture and transformation of these preadipocytes into mature adipocytes and quantification of intracellular lipid accumulation using the lipid specific dye, Oil Red O.
Collapse
Affiliation(s)
- Eleanor Cave
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
183
|
Gulias-Cañizo R, Lagunes-Guillén A, González-Robles A, Sánchez-Guzmán E, Castro-Muñozledo F. (-)-Epigallocatechin-3-gallate, reduces corneal damage secondary from experimental grade II alkali burns in mice. Burns 2018; 45:398-412. [PMID: 30600126 DOI: 10.1016/j.burns.2018.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Since recent reports have shown that (-)-Epigallocatechin-3-gallate (EGCG) could be used for treating proliferative and inflammatory disorders, we explored its use for the management of corneal chemical burns. MATERIALS AND METHODS Initially, EGCG was assayed on the rabbit corneal epithelial cell line RCE1(5T5) to establish the best testing conditions, and to avoid unwanted outcomes in the experimental animals. Then, we studied its effects on cell proliferation, cell cycle progression and cell differentiation. Afterwards, we instilled EGCG in experimental grade II corneal alkali burns in mice, three times a day up to 21days, and evaluated by slit lamp examination and histological sections of corneal epithelial, corneal endothelial and stromal edema, as well as the presence of inflammatory cells and neovascularization. RESULTS EGCG reduced cell growth and led to a decline in the proportion of proliferative cells in a concentration dependent manner. At 10μM, EGCG promoted cell differentiation, an effect not related with apoptosis or cytotoxicity. When 10μM EGCG was instilled in corneal alkali burns in mice three times a day up to 21days, EGCG significantly reduced corneal opacity and neovascularization. The improved clinical appearance of the cornea was associated to a controlled epithelial growth; epithelial morphology was similar to that observed in normal epithelium and contrasted with the hyperproliferative, desquamating epithelium observed in control burn wounds. EGCG reduced corneal, stromal and endothelial edema, and wound inflammation. CONCLUSION This work constitutes the first evidence for the use of EGCG in the acute phase of a corneal alkali burn, representing a possible novel alternative to improve patient outcomes as an add-on therapy.
Collapse
Affiliation(s)
- Rosario Gulias-Cañizo
- Hospital "Luis Sánchez Bulnes" de la Asociación para Evitar la Ceguera en, México City, México; Departamento de Biología Celular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | - Anell Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, CINVESTAV-IPN. Apdo. Postal 14-740, México D.F. 07000, México
| | | |
Collapse
|
184
|
Brauer PR, Kim JH, Ochoa HJ, Stratton ER, Black KM, Rosencrans W, Stacey E, Hagos EG. Krüppel-like factor 4 mediates cellular migration and invasion by altering RhoA activity. ACTA ACUST UNITED AC 2018; 24:1-10. [PMID: 29498307 DOI: 10.1080/15419061.2018.1444034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kru¨ppel like factor 4 (KLF4) is a transcription factor that regulates genes related to differentiation and proliferation. KLF4 also plays a role in metastasis via epithelial to mesenchymal transition. Here, we investigate the function of Klf4 in migration and invasion using mouse embryonic fibroblasts and the RKO human colon cancer cell line. Compared to wild-type, cells lacking Klf4 exhibited increased migration-associated phenotypes. In addition, overexpression of Klf4 in Klf4-/- MEFs attenuated the presence of stress fibers to wild-type levels. An invasion assay suggested that lack of Klf4 resulted in increased invasive capacity. Finally, analysis of RhoA showed elevated RhoA activity in both RKO and MEF cells. Taken together, our results strongly support the novel role of KLF4 in a post-translational regulatory mechanism where KLF4 indirectly modulates the actin cytoskeleton morphology via activity of RhoA in order to inhibit cellular migration and invasion.
Collapse
Affiliation(s)
- Philip R Brauer
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Jee Hun Kim
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Humberto J Ochoa
- a Department of Biology , Colgate University , Hamilton , NY , USA.,b Center for Cancer Research, Lab of Cancer Biology and Genetics , National Cancer Institute , Bethesda , MD , USA
| | | | - Kathryn M Black
- a Department of Biology , Colgate University , Hamilton , NY , USA.,c School of Medicine , Tulane University , New Orleans , LA , USA
| | | | - Eliza Stacey
- a Department of Biology , Colgate University , Hamilton , NY , USA
| | - Engda G Hagos
- a Department of Biology , Colgate University , Hamilton , NY , USA
| |
Collapse
|
185
|
Abstract
Background The origin of cancer cells is the most fundamental yet unresolved problem in cancer research. Cancer cells are thought to be transformed from the normal cells. However, recent studies reveal that the primary cancer cells (PCCs) for cancer initiation and secondary cancer cells (SCCs) for cancer progression are formed in but not transformed from the senescent normal and cancer cells, respectively. Nevertheless, the cellular mechanism of PCCs/SCCs formation is unclear. Here, based on the evidences (1) the nascent PCCs/SCCs are small and organelle-less resembling bacteria; (2) our finding that the cyanobacterium TDX16 acquires its algal host DNA and turns into a new alga TDX16-DE by de novo organelle biogenesis, and (3) PCCs/SCCs formations share striking similarities with TDX16 development and transition, we propose the bacterial origin of cancer cells (BOCC). Presentation of the hypothesis The intracellular bacteria take up the DNAs of the senescent/necrotic normal cells/PCCs and then develop into PCCs/SCCs by hybridizing the acquired DNAs with their own ones and expressing the hybrid genomes. Testing the hypothesis BOCC can be confirmed by testing BOCC-based predictions, such as normal cells with no intracellular bacteria can not "transform" into cancer cells in any conditions. Implications of the hypothesis According to BOCC theory: (1) cancer cells are new single-celled eukaryotes, which is why the hallmarks of cancer are mostly the characteristics of protists; (2) genetic changes and instabilities are not the causes, but the consequences of cancer cell formation; and (3) the common role of carcinogens, infectious agents and relating factors is inducing or related to cellular senescence rather than mutations. Therefore, BOCC theory provides new rationale and direction for cancer research, prevention and therapy.
Collapse
Affiliation(s)
- Qing-Lin Dong
- Department of Bioengineering, Hebei University of Technology, Tianjin, 300130 China
| | - Xiang-Ying Xing
- Department of Bioengineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
186
|
Benati D, Miselli F, Cocchiarella F, Patrizi C, Carretero M, Baldassarri S, Ammendola V, Has C, Colloca S, Del Rio M, Larcher F, Recchia A. CRISPR/Cas9-Mediated In Situ Correction of LAMB3 Gene in Keratinocytes Derived from a Junctional Epidermolysis Bullosa Patient. Mol Ther 2018; 26:2592-2603. [PMID: 30122422 PMCID: PMC6224783 DOI: 10.1016/j.ymthe.2018.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 01/11/2023] Open
Abstract
Deficiency of basement membrane heterotrimeric laminin 332 component, coded by LAMA3, LAMB3, and LAMC2 genes, causes junctional epidermolysis bullosa (JEB), a severe skin adhesion defect. Herein, we report the first application of CRISPR/Cas9-mediated homology direct repair (HDR) to in situ restore LAMB3 expression in JEB keratinocytes in vitro and in immunodeficient mice transplanted with genetically corrected skin equivalents. We packaged an adenovector carrying Cas9/guide RNA (gRNA) tailored to the intron 2 of LAMB3 gene and an integration defective lentiviral vector bearing a promoterless quasi-complete LAMB3 cDNA downstream a splice acceptor site and flanked by homology arms. Upon genuine HDR, we exploited the in vitro adhesion advantage of laminin 332 production to positively select LAMB3-expressing keratinocytes. HDR and restored laminin 332 expression were evaluated at single-cell level. Notably, monoallelic-targeted integration of LAMB3 cDNA was sufficient to in vitro recapitulate the adhesive property, the colony formation typical of normal keratinocytes, as well as their cell growth. Grafting of genetically corrected skin equivalents onto immunodeficient mice showed a completely restored dermal-epidermal junction. This study provides evidence for efficient CRISPR/Cas9-mediated in situ restoration of LAMB3 expression, paving the way for ex vivo clinical application of this strategy to laminin 332 deficiency.
Collapse
Affiliation(s)
- Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Miselli
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabienne Cocchiarella
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clarissa Patrizi
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Carretero
- Epithelial Biomedicine Division, CIEMAT-CIBERER (Centre for Biomedical Research on Rare Diseases), Madrid, Spain; Department of Bioengineering, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Samantha Baldassarri
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Cristina Has
- Department of Dermatology and Venereology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | | | - Marcela Del Rio
- Epithelial Biomedicine Division, CIEMAT-CIBERER (Centre for Biomedical Research on Rare Diseases), Madrid, Spain; Department of Bioengineering, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Fernando Larcher
- Epithelial Biomedicine Division, CIEMAT-CIBERER (Centre for Biomedical Research on Rare Diseases), Madrid, Spain; Department of Bioengineering, Universidad Carlos III de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
187
|
Rotter D, Peiris H, Grinsfelder DB, Martin AM, Burchfield J, Parra V, Hull C, Morales CR, Jessup CF, Matusica D, Parks BW, Lusis AJ, Nguyen NUN, Oh M, Iyoke I, Jakkampudi T, McMillan DR, Sadek HA, Watt MJ, Gupta RK, Pritchard MA, Keating DJ, Rothermel BA. Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep 2018; 19:embr.201744706. [PMID: 30389725 DOI: 10.15252/embr.201744706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.
Collapse
Affiliation(s)
- David Rotter
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heshan Peiris
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D Bennett Grinsfelder
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jana Burchfield
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valentina Parra
- Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS) and Center for Exercise Metabolism and Cancer (CEMC), University of Chile, Santiago, Chile
| | - Christi Hull
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi R Morales
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misook Oh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry, Pohang University of Science and Technology, Pohang, South Korea
| | - Israel Iyoke
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanvi Jakkampudi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Randy McMillan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Medical Centre, Dallas, TX, USA
| | - Hesham A Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew J Watt
- The Department of Physiology and Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Monash University, Clayton, Vic., Australia
| | - Rana K Gupta
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic., Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
188
|
Hayashi M, Yoshitake K, Tokunaka R, Yoshida Y, Oshima M, Tatsuta S, Hamada T, Kamitomo A, Hamajima A. Combination of meshed dermis graft and cultured epithelial autograft for massive burns: Three case reports. Medicine (Baltimore) 2018; 97:e13313. [PMID: 30508922 PMCID: PMC6283229 DOI: 10.1097/md.0000000000013313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE This study reviewed the use of a combination of meshed dermis graft and cultured epithelial autografts (CEA) made in Japan "JACE" (JACE; Japan Tissue Engineering Co., Ltd. Japan) for the treatment of massively burns. JACE is a Green-type CEA. We recently described a method in which we prepare the wound bed for burned patients by using artificial dermis and graft with JACE on a meshed 6:1 split-thickness autograft. In this report, we used a meshed 3:1 split-thickness dermis graft without epithelial cells. There are several reports of combination of using CEA on meshed split-thickness autograft, however this is the first report of using CEA on meshed split-thickness dermis graft. PATIENT CONCERNS AND DIAGNOSIS Between March 2015 and August 2017, 3 burn patients were enrolled in this study. The patients ranged in age from 51 to 66 years. All 3 patients suffered severe burn injury that caused by flame. % Total Body Surface Area (TBSA) burned were ranged from 37.5% to 69%. INTERVENTIONS All patients received surgical treatment with tangential excision within a week from admission. We implanted artificial dermis immediately after debridement. Basically, we applied meshed 6:1 split-thickness autografts to the wound bed and covered with JACE. However, in the absence of split-thickness autografts, we used a meshed 3:1 split-thickness dermis graft instead of a meshed 6:1 split-thickness autograft. OUTCOMES At 3 weeks after the transplantation of JACE, the take rate for JACE sheets was >60% on the meshed 3:1 split-thickness dermis graft. Furthermore, almost all of the burn wounds had healed at 6 weeks after surgery. LESSONS We observed good results by grafting JACE on meshed 3:1 dermis graft. With this new method, it is possible to cover a large burn wound by harvesting tissue from only a small site.
Collapse
Affiliation(s)
- Minoru Hayashi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Kotaro Yoshitake
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Ryohei Tokunaka
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Yuki Yoshida
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Mikiko Oshima
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Sayo Tatsuta
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Taishi Hamada
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Ayako Kamitomo
- Department of Plastic, Reconstructive and Aesthetic Surgery, Japan Red Cross Maebashi Hospital
| | - Akito Hamajima
- Department of Plastic Surgery, Gunma Children's Medical Center, Gunma, Japan
| |
Collapse
|
189
|
Higa R, Hanada T, Teranishi H, Miki D, Seo K, Hada K, Shiraishi H, Mimata H, Hanada R, Kangawa K, Murai T, Nakao K. CD105 maintains the thermogenic program of beige adipocytes by regulating Smad2 signaling. Mol Cell Endocrinol 2018; 474:184-193. [PMID: 29574003 DOI: 10.1016/j.mce.2018.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Beige adipocytes are thermogenic adipocytes with developmental and anatomical properties distinct from those of classical brown adipocytes. Recent studies have revealed several key molecular regulators of beige adipocyte development. CD105, also called endoglin, is a membrane protein composed of TGF-β receptor complex. It regulates TGF-β-family signal transduction and vascular formation in vivo. We report here that CD105 maintains the thermogenic gene program of beige adipocytes by regulating Smad2 signaling. Cd105-/- adipocyte precursors showed augmented Smad2 activation and decreased expression of thermogenic genes such as Ucp1 and Prdm16-which encodes a transcriptional regulatory protein for thermogenesis-after adipogenic differentiation. Smad2 signaling augmentation by the constitutively active form of Smad2 decreased the expression of thermogenic genes in beige adipocytes. Loss of thermogenic activity in Cd105-/- beige adipocytes was rescued by Prdm16 expression. These data reveal a novel function of CD105 in beige adipocytes: maintaining their thermogenic program by regulating Smad2 signaling.
Collapse
Affiliation(s)
- Ryoko Higa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Toshikatsu Hanada
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan.
| | - Hitoshi Teranishi
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Daisuke Miki
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Urology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Kazuyuki Seo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazumasa Hada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Hiromitsu Mimata
- Department of Urology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
| | - Kenji Kangawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; National Cerebral and Cardiovascular Center, 565-8565 Osaka, Japan
| | - Toshiya Murai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
190
|
Lee JM, Lee BH, Chang SN, Oh H, Ryu B, Kim U, Park JH. Establishment, characterization, and toxicological application of a spontaneous immortalized cell line from the striped field mouse, Apodemus agrarius. In Vitro Cell Dev Biol Anim 2018; 54:779-787. [PMID: 30306320 DOI: 10.1007/s11626-018-0290-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
It is important to secure various biological resources in situations of diminishing wildlife genetic diversity. Cultured cells are useful bioresources because they can stably store genetic information for a long time and can be expanded efficiently. Here, we established fibroblast cell lines from Apodemus agrarius as a new living resource. A. agrarius is an important sub-predator species in ecosystem food chains and for the study of infection epidemiology. Established cell lines were characterized by chromosome and mitochondrial gene analysis, the observation of cell morphology, and their anchorage-dependent growth pattern. We also examined susceptibility to endocrine disruptors (EDCs), which threaten biodiversity, using these established cell lines. Nonylphenol (NP) is a well-known EDC that threatens wildlife; however, its impact is poorly understood. Sensitivity to NP was confirmed based on two cell viability assays, namely MTT and lactate dehydrogenase. Cells exposed to NP were analyzed for abnormalities in cell growth and mitochondrial function by evaluating the expression of genes (specifically, those encoding growth hormone receptor and cytochrome C oxidase). This newly established cell line represents a valuable tool for the evaluation of toxic substances such as EDCs and this cell was biobanked for study about relationship between various environmental pollution and decreasing biodiversity.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Hee Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
191
|
Vav1 mutations identified in human cancers give rise to different oncogenic phenotypes. Oncogenesis 2018; 7:80. [PMID: 30297765 PMCID: PMC6175932 DOI: 10.1038/s41389-018-0091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 09/09/2018] [Indexed: 01/26/2023] Open
Abstract
Vav1 is physiologically active as a GDP/GTP nucleotide exchange factor (GEF) in the hematopoietic system. Overexpression of Vav1 in multiple tumor types is known to enhance oncogenicity, yet whether or not Vav1 is a bona fide oncogene is still a matter of debate. Although mutations in Vav1 were recently identified in human cancers of various origins, the functional activities of these mutants are not known. We tested the transforming potential of three mutations identified in human lung adenocarcinoma: E59K, D517E, and L801P. Results from several assays indicative of transforming activities such as rate of proliferation, growth in agar, and generation of tumors in NOD/SCID mice clearly indicated that E59K and D517E are highly transforming but L801P at the SH3 domain is not. The acquired oncogenic activity of these mutants can be attributed to their enhanced activity as GEFs for Rho/Rac GTPases. Deciphering of the mechanisms leading to overactivity of the tested mutants revealed that the E59K mutation facilitates cleavage of a truncated protein that is uncontrollably active as a GEF, while D517E generates a highly stable overexpressed protein that is also more active as a GEF than wild-type Vav1. These findings support the classification of Vav1 as a bona fide oncogene in human cancer.
Collapse
|
192
|
Acharya D, Nera B, Milstone ZJ, Bourke L, Yoon Y, Rivera-Pérez JA, Trivedi CM, Fazzio TG. TIP55, a splice isoform of the KAT5 acetyltransferase, is essential for developmental gene regulation and organogenesis. Sci Rep 2018; 8:14908. [PMID: 30297694 PMCID: PMC6175934 DOI: 10.1038/s41598-018-33213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Regulation of chromatin structure is critical for cell type-specific gene expression. Many chromatin regulatory complexes exist in several different forms, due to alternative splicing and differential incorporation of accessory subunits. However, in vivo studies often utilize mutations that eliminate multiple forms of complexes, preventing assessment of the specific roles of each. Here we examined the developmental roles of the TIP55 isoform of the KAT5 histone acetyltransferase. In contrast to the pre-implantation lethal phenotype of mice lacking all four Kat5 transcripts, mice specifically deficient for Tip55 die around embryonic day 11.5 (E11.5). Prior to developmental arrest, defects in heart and neural tube were evident in Tip55 mutant embryos. Specification of cardiac and neural cell fates appeared normal in Tip55 mutants. However, cell division and survival were impaired in heart and neural tube, respectively, revealing a role for TIP55 in cellular proliferation. Consistent with these findings, transcriptome profiling revealed perturbations in genes that function in multiple cell types and developmental pathways. These findings show that Tip55 is dispensable for the pre- and early post-implantation roles of Kat5, but is essential during organogenesis. Our results raise the possibility that isoform-specific functions of other chromatin regulatory proteins may play important roles in development.
Collapse
Affiliation(s)
- Diwash Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Bernadette Nera
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Zachary J Milstone
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lauren Bourke
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yeonsoo Yoon
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jaime A Rivera-Pérez
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Chinmay M Trivedi
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
193
|
Sheffels E, Sealover NE, Wang C, Kim DH, Vazirani IA, Lee E, M Terrell E, Morrison DK, Luo J, Kortum RL. Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange factor SOS2 to mediate cell transformation. Sci Signal 2018; 11:11/546/eaar8371. [PMID: 30181243 DOI: 10.1126/scisignal.aar8371] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
About a third of tumors have activating mutations in HRAS, NRAS, or KRAS, genes encoding guanosine triphosphatases (GTPases) of the RAS family. In these tumors, wild-type RAS cooperates with mutant RAS to promote downstream effector activation and cell proliferation and transformation, suggesting that upstream activators of wild-type RAS are important modulators of mutant RAS-driven oncogenesis. The guanine nucleotide exchange factor (GEF) SOS1 mediates KRAS-driven proliferation, but little is understood about the role of SOS2. We found that RAS family members have a hierarchical requirement for the expression and activity of SOS2 to drive cellular transformation. In mouse embryonic fibroblasts (MEFs), SOS2 critically mediated mutant KRAS-driven, but not HRAS-driven, transformation. Sos2 deletion reduced epidermal growth factor (EGF)-dependent activation of wild-type HRAS and phosphorylation of the kinase AKT in cells expressing mutant RAS isoforms. Assays using pharmacological inhibitors revealed a hierarchical requirement for signaling by phosphoinositide 3-kinase (PI3K) in promoting RAS-driven cellular transformation that mirrored the requirement for SOS2. KRAS-driven transformation required the GEF activity of SOS2 and was restored in Sos2-/- MEFs by expression of constitutively activated PI3K. Finally, CRISPR/Cas9-mediated deletion of SOS2 reduced EGF-stimulated AKT phosphorylation and synergized with MEK inhibition to revert the transformed phenotype of human KRAS mutant pancreatic and lung tumor cells. These results indicate that SOS2-dependent PI3K signaling mediates mutant KRAS-driven transformation, revealing therapeutic targets in KRAS-driven cancers. Our data also reveal the importance of three-dimensional culture systems in investigating the mediators of mutant KRAS.
Collapse
Affiliation(s)
- Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chenyue Wang
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Do Hyung Kim
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Isabella A Vazirani
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth Lee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI)-Frederick, Frederick, MD 21702, USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI)-Frederick, Frederick, MD 21702, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
194
|
Kuri-Harcuch W, Velez-delValle C, Vazquez-Sandoval A, Hernández-Mosqueira C, Fernandez-Sanchez V. A cellular perspective of adipogenesis transcriptional regulation. J Cell Physiol 2018; 234:1111-1129. [PMID: 30146705 DOI: 10.1002/jcp.27060] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Adipose cells store lipids in the cytoplasm and signal systemically through secretion of adipokines and other molecules that regulate body energy metabolism. Differentiation of fat cells and its regulation has been the focus of extensive research since the early 1970s. In this review, we had attempted to examine the research bearing on the control of adipose cell differentiation, some of it dating back to the early days when Howard Green and his group described the preadipocyte cell lines 3T3-L1 and 3T3-F442A during 1974-1975. We also concentrated our attention on research published during the last few years, emphasizing data described on transcription factors that regulate adipose differentiation, outside of those that were reported earlier as part of the canonical adipogenic transcriptional cascade, which has been the subject of ample reviews by several groups of researchers. We focused on the studies carried out with the two preadipocyte cell culture models, the 3T3-L1 and 3T3-F442A cells that have provided essential data on adipose biology.
Collapse
Affiliation(s)
- Walid Kuri-Harcuch
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cristina Velez-delValle
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfredo Vazquez-Sandoval
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia Hernández-Mosqueira
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Veronica Fernandez-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
195
|
Boncler M, Lukasiak M, Dastych J, Golanski J, Watala C. Differentiated mitochondrial function in mouse 3T3 fibroblasts and human epithelial or endothelial cells in response to chemical exposure. Basic Clin Pharmacol Toxicol 2018; 124:199-210. [PMID: 30137675 DOI: 10.1111/bcpt.13117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Mouse 3T3 fibroblasts are commonly used for in vitro toxicity testing; however, their sensitivity to stimuli is not well defined. To assess the sensitivity of the 3T3 cell line, the study compared the changes in mitochondrial membrane potential (MMP) occurring after exposure to eight chemicals known to demonstrate pro-apoptotic activity (glycerol, isopropanol, ethanol, paracetamol, propranolol, cobalt chloride, formaldehyde and atropine). Five cell lines were used as follows: mouse 3T3 fibroblasts, human epithelial cells (A549, Caco-2 and HepG2) and human endothelial cells (HMEC-1). Cell sensitivity was assessed based on the total area under and over the dose-response curves (AUOC) in relation to baselines. The 3T3 fibroblasts had the highest AUOC values and were the most sensitive to the action of all the examined chemicals, with the exception of formaldehyde. Significant changes in MMP between the 3T3 cell line and other cells were observed after cell treatment with atropine (A549, Caco-2 or HMEC-1 cells vs 3T3 cells, P < 0.05), propranolol (A549 vs 3T3 cells, P < 0.01; HepG2 vs 3T3 cells, P < 0.05), cobalt chloride (A549 cells vs 3T3 cells, P < 0.01) or ethanol (HMEC-1 vs 3T3, P < 0.05). Formaldehyde appeared the most toxic compound for Caco-2 cells (Caco-2 vs 3T3 cells, P < 0.05). The surface areas (AUOC) calculated for each other chemical and obtained for HepG2, Caco-2, A549 and HMEC-1 did not differ significantly between cell lines. We postulate that mouse 3T3 fibroblasts demonstrate significantly higher relative sensitivity to many agents with toxic potential.
Collapse
Affiliation(s)
- Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | | | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jacek Golanski
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
196
|
Moorefield EC, Blue RE, Quinney NL, Gentzsch M, Ding S. Generation of renewable mouse intestinal epithelial cell monolayers and organoids for functional analyses. BMC Cell Biol 2018; 19:15. [PMID: 30111276 PMCID: PMC6094565 DOI: 10.1186/s12860-018-0165-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Background Conditional reprogramming has enabled the development of long-lived, normal epithelial cell lines from mice and humans by in vitro culture with ROCK inhibitor on a feeder layer. We applied this technology to mouse small intestine to create 2D mouse intestinal epithelial monolayers (IEC monolayers) from genetic mouse models for functional analysis. Results IEC monolayers form epithelial colonies that proliferate on a feeder cell layer and are able to maintain their genotype over long-term passage. IEC monolayers form 3D spheroids in matrigel culture and monolayers on transwell inserts making them useful for functional analyses. IEC monolayers derived from the Cystic Fibrosis (CF) mouse model CFTR ∆F508 fail to respond to CFTR activator forskolin in 3D matrigel culture as measured by spheroid swelling and transwell monolayer culture via Ussing chamber electrophysiology. Tumor IEC monolayers generated from the ApcMin/+ mouse intestinal cancer model grow more quickly than wild-type (WT) IEC monolayers both on feeders and as spheroids in matrigel culture. Conclusions These results indicate that generation of IEC monolayers is a useful model system for growing large numbers of genotype-specific mouse intestinal epithelial cells that may be used in functional studies to examine molecular mechanisms of disease and to identify and assess novel therapeutic compounds.
Collapse
Affiliation(s)
- Emily C Moorefield
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, 6340C MBRB, CB #7545, Chapel Hill, NC, 27599-7545, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, 6340C MBRB, CB #7545, Chapel Hill, NC, 27599-7545, USA
| | - Nancy L Quinney
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martina Gentzsch
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, 6340C MBRB, CB #7545, Chapel Hill, NC, 27599-7545, USA.,Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, 111 Mason Farm Road, 6340C MBRB, CB #7545, Chapel Hill, NC, 27599-7545, USA.
| |
Collapse
|
197
|
Zhao R, Jin J, Sun X, Jin K, Wang M, Ahmed MF, Zuo Q, Zhang Y, Zhao Z, Chen G, Li B. The establishment of clonally derived chicken embryonic fibroblast cell line (CSC) with high transfection efficiency and ability as a feeder cell. J Cell Biochem 2018; 119:8841-8850. [PMID: 30076744 DOI: 10.1002/jcb.27137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/07/2018] [Indexed: 11/09/2022]
Abstract
This study established a single cloned chicken embryonic fibroblast (CEF) cell line. It solves the main problem of the instability of a cultured primary cell and its impact on the experiment. In this study, CEF pass through this crisis and formed a continuous cell line after subculture. We isolated single postcrisis CEF by a mouth pipette under a convert microscope then established a single cloned cell line named CSC-1-5 which passaged continuously from 96-well plates to 60 mm culture plates. CSC has a normal chicken diploid karyotype, no tumorigenicity, and a high G2/M phase cell ratio. We found that Fugene could mediate the transfection of CSCs efficiently; it was significantly improved compared with the primary cells. It could also promote the proliferation of chicken embryonic stem cell as a feeder layer.
Collapse
Affiliation(s)
- Ruifeng Zhao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinyu Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Man Wang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mahmoud F Ahmed
- College of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
198
|
Lee I, Kim D, Park GL, Jeon TJ, Kim SM. Investigation of wound healing process guided by nano-scale topographic patterns integrated within a microfluidic system. PLoS One 2018; 13:e0201418. [PMID: 30048525 PMCID: PMC6062108 DOI: 10.1371/journal.pone.0201418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
When living tissues are injured, they undergo a sequential process of homeostasis, inflammation, proliferation and maturation, which is called wound healing. The working mechanism of wound healing has not been wholly understood due to its complex environments with various mechanical and chemical factors. In this study, we propose a novel in vitro wound healing model using a microfluidic system that can manipulate the topography of the wound bed. The topography of the extracellular matrix (ECM) in the wound bed is one of the most important mechanical properties for rapid and effective wound healing. We focused our work on the topographical factor which is one of crucial mechanical cues in wound healing process by using various nano-patterns on the cell attachment surface. First, we analyzed the cell morphology and dynamic cellular behaviors of NIH-3T3 fibroblasts on the nano-patterned surface. Their morphology and dynamic behaviors were investigated for relevance with regard to the recovery function. Second, we developed a highly reproducible and inexpensive research platform for wound formation and the wound healing process by combining the nano-patterned surface and a microfluidic channel. The effect of topography on wound recovery performance was analyzed. This in vitro wound healing research platform will provide well-controlled topographic cue of wound bed and contribute to the study on the fundamental mechanism of wound healing.
Collapse
Affiliation(s)
- Insu Lee
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | - Daegyu Kim
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Ga-Lahm Park
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- WCSL of Integrated Human Airway-on-a-Chip, Inha University, Incheon, Republic of Korea
- * E-mail: (SMK); (TJJ)
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
- WCSL of Integrated Human Airway-on-a-Chip, Inha University, Incheon, Republic of Korea
- * E-mail: (SMK); (TJJ)
| |
Collapse
|
199
|
Fitzsimmons WJ, Woods RJ, McCrone JT, Woodman A, Arnold JJ, Yennawar M, Evans R, Cameron CE, Lauring AS. A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biol 2018; 16:e2006459. [PMID: 29953453 PMCID: PMC6040757 DOI: 10.1371/journal.pbio.2006459] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/11/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Mutation rates can evolve through genetic drift, indirect selection due to genetic hitchhiking, or direct selection on the physicochemical cost of high fidelity. However, for many systems, it has been difficult to disentangle the relative impact of these forces empirically. In RNA viruses, an observed correlation between mutation rate and virulence has led many to argue that their extremely high mutation rates are advantageous because they may allow for increased adaptability. This argument has profound implications because it suggests that pathogenesis in many viral infections depends on rare or de novo mutations. Here, we present data for an alternative model whereby RNA viruses evolve high mutation rates as a byproduct of selection for increased replicative speed. We find that a poliovirus antimutator, 3DG64S, has a significant replication defect and that wild-type (WT) and 3DG64S populations have similar adaptability in 2 distinct cellular environments. Experimental evolution of 3DG64S under selection for replicative speed led to reversion and compensation of the fidelity phenotype. Mice infected with 3DG64S exhibited delayed morbidity at doses well above the lethal level, consistent with attenuation by slower growth as opposed to reduced mutational supply. Furthermore, compensation of the 3DG64S growth defect restored virulence, while compensation of the fidelity phenotype did not. Our data are consistent with the kinetic proofreading model for biosynthetic reactions and suggest that speed is more important than accuracy. In contrast with what has been suggested for many RNA viruses, we find that within-host spread is associated with viral replicative speed and not standing genetic diversity. Why organisms have different mutation rates is a longstanding question in evolutionary biology. The polymerases of RNA viruses generally lack proofreading activity and exhibit extremely high mutation rates. Because most mutations are deleterious and mutation rates are typically tuned by natural selection, we asked why RNA viruses haven’t evolved a polymerase with a lower mutation rate. We used experimental evolution and a murine infection model to show that RNA virus mutation rates may actually be too high and are not necessarily adaptive. Rather, our data indicate that viral mutation rates have evolved to be higher as a result of selection for viruses with faster replication kinetics. We suggest that viruses have high mutation rates, not because they facilitate adaptation but because it is hard to be both fast and accurate and these viruses have prioritized speed over fidelity.
Collapse
Affiliation(s)
- William J. Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert J. Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John T. McCrone
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew Woodman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Madhumita Yennawar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Richard Evans
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Adam S. Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
200
|
Eldehna WM, Al-Wabli RI, Almutairi MS, Keeton AB, Piazza GA, Abdel-Aziz HA, Attia MI. Synthesis and biological evaluation of certain hydrazonoindolin-2-one derivatives as new potent anti-proliferative agents. J Enzyme Inhib Med Chem 2018; 33:867-878. [PMID: 29707975 PMCID: PMC7011955 DOI: 10.1080/14756366.2018.1462802] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In connection with our research program on the development of novel indolin-2-one-based anticancer candidates, herein we report the design and synthesis of different series of hydrazonoindolin-2-ones 3a-e, 5a-e, 7a-c, and 10a-l. The synthesised derivatives were in vitro evaluated for their anti-proliferative activity towards lung A-549, colon HT-29, and breast ZR-75 human cancer cell lines. Compounds 5b, 5c, 7b, and 10e emerged as the most potent derivatives with average IC50 values of 4.37, 2.53, 2.14, and 4.66 µM, respectively, which are superior to Sunitinib (average IC50 = 8.11 µM). Furthermore, compounds 7b and 10e were evaluated for their effects on cell cycle progression and levels of phosphorylated retinoblastoma (Rb) protein in the A-549 cancer cell line. Moreover, 7b and 10e inhibited the cell growth of the multidrug-resistant lung cancer NCI-H69AR cell line with IC50 = 16 µM. In addition, the cytotoxic activities of 7b and 10e were assessed towards three non-tumorigenic cell lines (Intestine IEC-6, Breast MCF-10A, and Fibroblast Swiss-3t3) where both compounds displayed mean tumor selectivity index (1.6 and 1.8) higher than that of Sunitinib (1.4).
Collapse
Affiliation(s)
- Wagdy M Eldehna
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kafrelsheikh University , Kafrelsheikh , Egypt
| | - Reem I Al-Wabli
- b Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Maha S Almutairi
- b Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Adam B Keeton
- c Department of Oncologic Sciences and Pharmacology , Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama , Mobile , AL , USA
| | - Gary A Piazza
- c Department of Oncologic Sciences and Pharmacology , Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama , Mobile , AL , USA
| | - Hatem A Abdel-Aziz
- d Department of Applied Organic Chemistry , National Research Centre , Giza , Egypt
| | - Mohamed I Attia
- b Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia.,e Medicinal and Pharmaceutical Chemistry Department , Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) , Giza , Egypt
| |
Collapse
|