151
|
|
152
|
A role for impaired regulatory T cell function in adverse responses to aluminum adjuvant-containing vaccines in genetically susceptible individuals. Vaccine 2014; 32:5149-55. [PMID: 25066736 DOI: 10.1016/j.vaccine.2014.07.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/28/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Regulatory T cells play a critical role in the immune response to vaccination, but there is only a limited understanding of the response of regulatory T cells to aluminum adjuvants and the vaccines that contain them. Available studies in animal models show that although induced T regulatory cells may be induced concomitantly with effector T cells following aluminum-adjuvanted vaccination, they are unable to protect against sensitization, suggesting that under the Th2 immune-stimulating effects of aluminum adjuvants, Treg cells may be functionally compromised. Allergic diseases are characterized by immune dysregulation, with increases in IL-4 and IL-6, both of which exert negative effects on Treg function. For individuals with a genetic predisposition, the beneficial influence of adjuvants on immune responsiveness may be accompanied by immune dysregulation, leading to allergic diseases. This review examines aspects of the regulatory T cell response to aluminum-adjuvanted immunization and possible genetic susceptibility factors related to that response.
Collapse
|
153
|
Dalessandri T, Strid J. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer. Front Immunol 2014; 5:347. [PMID: 25101088 PMCID: PMC4105846 DOI: 10.3389/fimmu.2014.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022] Open
Abstract
Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
154
|
Iijima K, Kobayashi T, Hara K, Kephart GM, Ziegler SF, McKenzie AN, Kita H. IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure. THE JOURNAL OF IMMUNOLOGY 2014; 193:1549-59. [PMID: 25015831 DOI: 10.4049/jimmunol.1302984] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Humans are frequently exposed to various airborne allergens in the atmospheric environment. These allergens may trigger a complex network of immune responses in the airways, resulting in asthma and other chronic airway diseases. In this study, we investigated the immunological mechanisms involved in the pathological changes induced by chronic exposure to multiple airborne allergens. Naive mice were exposed intranasally to a combination of common airborne allergens, including the house dust mite, Alternaria, and Aspergillus, for up to 8 wk. These allergens acted synergistically and induced robust eosinophilic airway inflammation, specific IgE Ab production, type 2 cytokine response, and airway hyperresponsiveness in 4 wk, followed by airway remodeling in 8 wk. Increased lung infiltration of T cells, B cells, and type 2 innate lymphoid cells was observed. CD4(+) T cells and type 2 innate lymphoid cells contributed to the sources of IL-5 and IL-13, suggesting involvement of both innate and adaptive immunity in this model. The lung levels of IL-33 increased quickly within several hours after allergen exposure and continued to rise throughout the chronic phase of inflammation. Mice deficient in IL-33R (Il1rl1(-/-)) and thymic stromal lymphopoietin receptor (Tslpr(-/-)) showed significant reduction in airway inflammation, IgE Ab levels, and airway hyperresponsiveness. In contrast, mice deficient in IL-25R or IL-1R showed minimal differences as compared with wild-type animals. Thus, chronic exposure to natural airborne allergens triggers a network of innate and adaptive type 2 immune responses and airway pathology, and IL-33 and thymic stromal lymphopoietin most likely play key roles in this process.
Collapse
Affiliation(s)
- Koji Iijima
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | - Takao Kobayashi
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | - Kenichiro Hara
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | - Gail M Kephart
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Andrew N McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hirohito Kita
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905;
| |
Collapse
|
155
|
Complexity of cytokine network regulation of innate lymphoid cells in protective immunity. Cytokine 2014; 70:1-10. [PMID: 24972988 DOI: 10.1016/j.cyto.2014.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
The body's surface provides a critical barrier shielding us from various mechanical and pathogenic insults by virtue of the physical protection it provides and the presence of specialized populations of innate lymphoid cells (ILCs) that sense inflammatory signals induced by pathogens. This response plays a central role in the development and activation of early immune responses. While ILCs depend on common γ-chain cytokine signaling for their development, an essential component of the armory of these cells is their capacity to produce defensive cytokines when activated by viruses, microbes and other parasites. In this review, we describe the multiple intrinsic and extrinsic pathways that comprise the cytokine circuitry regulating the development and function of ILC necessary for protective immunity.
Collapse
|
156
|
Jia X, Zhang H, Cao X, Yin Y, Zhang B. Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca2+/NFAT pathway in airway epithelial cells. FEBS Lett 2014; 588:3047-54. [PMID: 24931369 DOI: 10.1016/j.febslet.2014.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022]
Abstract
The airway epithelium is exposed to a range of irritants in the environment that are known to trigger inflammatory response such as asthma. Transient receptor potential vanilloid 1 (TRPV1) is a Ca(2+)-permeable cation channel critical for detecting noxious stimuli by sensory neurons. Recently increasing evidence suggests TRPV1 is also crucially involved in the pathophysiology of asthma on airway epithelium in human. Here we report that in airway epithelial cells TRPV1 activation potently induces allergic cytokine thymic stromal lymphopoietin (TSLP) release. TSLP induction by protease-activated receptor (PAR)-2 activation is also partially mediated by TRPV1 channels.
Collapse
Affiliation(s)
- Xinying Jia
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China
| | - Hong Zhang
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China
| | - Xu Cao
- Department of Neurology, Peking University Health Science Center, 100191 Beijing, China.
| | - Yuxin Yin
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China
| | - Bo Zhang
- Department of Pathology, Peking University Health Science Center, 100191 Beijing, China.
| |
Collapse
|
157
|
Volpe E, Pattarini L, Martinez-Cingolani C, Meller S, Donnadieu MH, Bogiatzi SI, Fernandez MI, Touzot M, Bichet JC, Reyal F, Paronetto MP, Chiricozzi A, Chimenti S, Nasorri F, Cavani A, Kislat A, Homey B, Soumelis V. Thymic stromal lymphopoietin links keratinocytes and dendritic cell-derived IL-23 in patients with psoriasis. J Allergy Clin Immunol 2014; 134:373-81. [PMID: 24910175 DOI: 10.1016/j.jaci.2014.04.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is a major proallergic cytokine that promotes TH2 responses through dendritic cell (DC) activation. Whether it also plays a role in human autoimmune inflammation and associated pathways is not known. OBJECTIVE In this study we investigated the potential role of several epithelium-derived factors, including TSLP, in inducing IL-23 production by human DCs. We further dissected the role of TSLP in patients with psoriasis, an IL-23-associated skin autoimmune disease. METHODS The study was performed in human subjects using primary cells and tissue samples from patients with psoriasis and healthy donors. We analyzed the production of IL-23 in vitro by blood and skin DCs. We studied the function for TSLP and its interaction with other components of the inflammatory microenvironment in situ and ex vivo. RESULTS We found that TSLP synergized with CD40 ligand to promote DC activation and pathogenic IL-23 production by primary blood and skin DCs. In situ TSLP was strongly expressed by keratinocytes of untreated psoriatic lesions but not in normal skin. Moreover, we could demonstrate that IL-4, an important component of the TH2 inflammation seen in patients with atopic dermatitis, inhibited IL-23 production induced by TSLP and CD40 ligand in a signal transducer and activator of transcription 6-independent manner. CONCLUSION Our results identify TSLP as a novel player within the complex psoriasis cytokine network. Blocking TSLP in patients with psoriasis might contribute to decreasing DC activation and shutting down the production of pathogenic IL-23.
Collapse
Affiliation(s)
- Elisabetta Volpe
- Department of Immunology, Institut Curie, Paris, France; Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, Italy.
| | - Lucia Pattarini
- Department of Immunology, Institut Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale U932, Paris, France; Research Section, Institut Curie, Paris, France
| | - Carolina Martinez-Cingolani
- Department of Immunology, Institut Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale U932, Paris, France; Research Section, Institut Curie, Paris, France
| | - Stephan Meller
- Department of Dermatology, Heinrich Heine University, Düsseldorf, Germany
| | - Marie-Helene Donnadieu
- Department of Immunology, Institut Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Sofia I Bogiatzi
- Department of Immunology, Institut Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Maria I Fernandez
- Department of Immunology, Institut Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale U932, Paris, France; Department of Microbiology, Infectiology and Immunology, CHU Sainte-Justine and University of Montreal, Montreal, Quebec, Canada; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Maxime Touzot
- Department of Immunology, Institut Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | | | - Fabien Reyal
- Department of Surgery, Institut Curie, Paris, France
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| | - Andrea Chiricozzi
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Sergio Chimenti
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | | | - Andrea Cavani
- Laboratory of Experimental Immunology, IDI-IRCCS, Rome, Italy
| | - Andreas Kislat
- Department of Dermatology, Heinrich Heine University, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich Heine University, Düsseldorf, Germany
| | - Vassili Soumelis
- Department of Immunology, Institut Curie, Paris, France; Institut National de la Santé et de la Recherche Médicale U932, Paris, France; Research Section, Institut Curie, Paris, France.
| |
Collapse
|
158
|
Nakanishi T, Inaba M, Inagaki-Katashiba N, Tanaka A, Vien PTX, Kibata K, Ito T, Nomura S. Platelet-derived RANK ligand enhances CCL17 secretion from dendritic cells mediated by thymic stromal lymphopoietin. Platelets 2014; 26:425-31. [PMID: 24867354 DOI: 10.3109/09537104.2014.920081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an integral role in cellular cascade that initiate and maintain Th2 responses in allergy. In this study, we examined the interaction between platelets and DCs to determine the role of platelets in the intervention of immune responses through modulation of DC functions. Blood-purified myeloid DCs, which had been stimulated with thymic stromal lymphopoietin (TSLP-DCs), formed aggregates with activated platelets. TSLP-DC maturation was induced after the interaction with TRAP6-activated platelets as indicated by an increase in the expression of CD86, CD40, and CD83. In addition, production of a Th2 cell-attracting chemokine, CCL17, was clearly upregulated by coculture of TSLP-DCs with TRAP6-activated platelets. We further found that an expression of RANK ligand (RANKL) on platelets was upregulated by the TRAP6 activation, and that, using the neutralizing antibody against RANKL, the platelet-derived RANKL induces the activation of TSLP-DCs. Thus, activated platelets can intervene in adaptive immune responses through induction of functional modulation of TSLP-DCs. Platelets have the ability to enhance the DC-mediated Th2 response and may contribute to the allergic inflammation. In conclusion, our study provides new insights in platelet functions and the possible mechanism of allergic responses that stem from DCs.
Collapse
Affiliation(s)
- Takahisa Nakanishi
- First Department of Internal Medicine, Kansai Medical University , Osaka , Japan
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Murakami-Satsutani N, Ito T, Nakanishi T, Inagaki N, Tanaka A, Vien PTX, Kibata K, Inaba M, Nomura S. IL-33 promotes the induction and maintenance of Th2 immune responses by enhancing the function of OX40 ligand. Allergol Int 2014; 63:443-455. [PMID: 24851948 DOI: 10.2332/allergolint.13-oa-0672] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/13/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In Th2 immune responses, TSLP is a key player by induction of OX40-ligand (OX40L) on dendritic cells (DCs), which is the trigger to induce Th2 cell-mediated allergic cascade. Thus, TSLP-DC-OX40L axis might be the principal pathway in the inflammatory cascades in atopic dermatitis and asthma. IL-33, which is produced by epithelial cells, has been implicated in the Th2 immune responses and pathogenesis of the allergic disorders. However, the role of IL-33 in the Th2-polarizing TSLP-DC-OX40L axis still remains largely elusive. We focused on the ability of IL-33 to promote OX40L-mediated Th2 responses. METHODS Purified human naïve or memory CD4+ T cells were stimulated with recombinant OX40L or TSLP-treated DCs (TSLP-DCs) in the presence of IL-33, and the cytokine production by the primed T cells was examined. We also performed immunohistochemical analyses for the expression of IL-33 in specimens of lymph node and skin from the patients with atopic dermatitis. RESULTS IL-33 remarkably enhanced TSLP-DCs-driven or OX40L-driven Th2 responses from naïve T cells and the Th2 functional attributes of CRTH2+ CD4+ Th2 memory cells by the increased production of IL-5, IL-9, and IL-13. In addition, IL-33 was expressed in the nuclei of epithelial cells in not only skin lesion but also lymph nodes of the patient with atopic dermatitis, suggesting a specialized role in adaptive T cell-priming phase. CONCLUSIONS IL-33 works as a positive regulator of TSLP-DC-OX40L axis that initiates and maintains the Th2 cell-mediated inflammatory responses, and therefore, it would be a new therapeutic target for the treatment of allergic disorders.
Collapse
Affiliation(s)
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Takahisa Nakanishi
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Noriko Inagaki
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Akihiro Tanaka
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Phan Thi Xuan Vien
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Kayoko Kibata
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Muneo Inaba
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|
160
|
Cipolat S, Hoste E, Natsuga K, Quist SR, Watt FM. Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility. eLife 2014; 3:e01888. [PMID: 24843010 PMCID: PMC4007207 DOI: 10.7554/elife.01888] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis can result from loss of structural proteins in the outermost epidermal layers, leading to a defective epidermal barrier. To test whether this influences tumour formation, we chemically induced tumours in EPI−/− mice, which lack three barrier proteins—Envoplakin, Periplakin, and Involucrin. EPI−/− mice were highly resistant to developing benign tumours when treated with 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The DMBA response was normal, but EPI−/− skin exhibited an exaggerated atopic response to TPA, characterised by abnormal epidermal differentiation, a complex immune infiltrate and elevated serum thymic stromal lymphopoietin (TSLP). The exacerbated TPA response could be normalised by blocking TSLP or the immunoreceptor NKG2D but not CD4+ T cells. We conclude that atopy is protective against skin cancer in our experimental model and that the mechanism involves keratinocytes communicating with cells of the immune system via signalling elements that normally protect against environmental assaults. DOI:http://dx.doi.org/10.7554/eLife.01888.001 Skin cancer is a common and growing problem—according to the World Health Organization, skin cancers account for one in every three cancers diagnosed world wide. There is some evidence from epidemiological studies that patients with certain allergies might be protected against cancer and, in particular, that the allergic skin condition atopic dermatitis is associated with reduced levels of various skin cancers. However, it is difficult to know if this reduction is due to the atopic dermatitis itself or to the drugs used to treat this allergy. Genetically engineered mice that are lacking three proteins that are involved in the formation of the cornified envelope—the protective layer that replaces the normal plasma membrane in the cells of the outermost skin layers—can be used to study atopic dermatitis. These ‘triple knockout mice’ have a defective epidermal barrier and altered levels of immune T-cells in the skin. Now Cipolat et al. have investigated whether defects in the epidermal barrier protect against skin cancer. Knockout mice and wild-type mice were treated with two chemicals: DMBA, which causes mutations in a gene called HRas, and TPA, which promotes the formation of tumours from cells that contain HRas mutations. After about 16 weeks almost all of the wild-type mice had at least one benign tumour, whereas half of the knockout mice had no tumours. Overall, the average number of benign tumours per mouse was six times higher in the wild-type mice. This shows that the mutations that cause the epidermal barrier defects in knockout mice also protect them against the tumours caused by the combined effects of DMBA and TPA. Cipolat et al. then compared how the mice responded to DMBA or TPA alone. The knockout mice and the wild-type mice responded to DMBA in the same way; however, the knockout mice showed an exaggerated response to TPA, including a strong inflammatory reaction. This response comprised the production of higher levels of various proteins that are involved in communications between skin cells and the immune system. Cipolat et al. propose that the immune reaction caused by this exaggerated response could help to prevent tumour formation by eliminating tumour-forming cells in the skin. DOI:http://dx.doi.org/10.7554/eLife.01888.002
Collapse
Affiliation(s)
- Sara Cipolat
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Esther Hoste
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom
| | - Ken Natsuga
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom Department of Dermatology, Hokkaido University, Sapporo, Japan
| | - Sven R Quist
- Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom Department of Dermatology and Venereology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| |
Collapse
|
161
|
Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, Sattentau QA, Comeau MR, Spergel JM, Artis D. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol 2014; 133:1390-9, 1399.e1-6. [PMID: 24560412 PMCID: PMC4007098 DOI: 10.1016/j.jaci.2014.01.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 01/06/2014] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. OBJECTIVE We sought to test the immunologic mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. METHODS Mice were epicutaneously sensitized with ovalbumin or peanut on an atopic dermatitis-like skin lesion, followed by intragastric antigen challenge. Antigen-specific serum IgE levels and T(H)2 cytokine responses were measured by ELISA. Expression of type 2 cytokines and mast cell proteases in the intestine were measured by using real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by using flow cytometry. In vivo basophil depletion was achieved by using diphtheria toxin treatment of Baso-DTR mice. For cell-transfer studies, the basophil population was expanded in vivo by means of hydrodynamic tail vein injection of thymic stromal lymphopoietin (TSLP) cDNA plasmid. RESULTS Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific T(H)2 cytokine responses, increased antigen-specific serum IgE levels, and accumulation of mast cells in the intestine, promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy, whereas transfer of TSLP-elicited basophils into intact skin promoted disease. CONCLUSION Epicutaneous sensitization on a disrupted skin barrier is associated with accumulation of TSLP-elicited basophils, which are necessary and sufficient to promote antigen-induced intestinal food allergy.
Collapse
Affiliation(s)
- Mario Noti
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Brian S Kim
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Mark C Siracusa
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Gregory D Rak
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science, RIKEN Yokohama Institute, Kanagawa, Japan; Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Quentin A Sattentau
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Jonathan M Spergel
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - David Artis
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
162
|
Moret FM, Hack CE, van der Wurff-Jacobs KMG, Radstake TRDJ, Lafeber FPJG, van Roon JAG. Thymic Stromal Lymphopoietin, a Novel Proinflammatory Mediator in Rheumatoid Arthritis That Potently Activates CD1c+ Myeloid Dendritic Cells to Attract and Stimulate T Cells. Arthritis Rheumatol 2014; 66:1176-84. [DOI: 10.1002/art.38338] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/26/2013] [Indexed: 12/11/2022]
|
163
|
Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy 2014; 44:620-30. [DOI: 10.1111/cea.12296] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I. H. Heijink
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- Department of Pulmonology; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - M. C. Nawijn
- Department of Pathology and Medical Biology; Experimental Pulmonology and Inflammation Research; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
- GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen the Netherlands
| | - T.-L. Hackett
- Centre for Heart Lung Innovation; St Paul's Hospital; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
164
|
Lund S, Walford HH, Doherty TA. Type 2 Innate Lymphoid Cells in Allergic Disease. ACTA ACUST UNITED AC 2014; 9:214-221. [PMID: 24876829 PMCID: PMC4033554 DOI: 10.2174/1573395510666140304235916] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/02/2023]
Abstract
Type II innate lymphoid cells (ILC2) are a novel population of lineage-negative cells that produce high levels
of Th2 cytokines IL-5 and IL-13. ILC2 are found in human respiratory and gastrointestinal tissue as well as in skin.
Studies from mouse models of asthma and atopic dermatitis suggest a role for ILC2 in promoting allergic inflammation.
The epithelial cytokines IL-25, IL-33, and TSLP, as well as the lipid mediator leukotriene D4, have been shown to
potently activate ILC2 under specific conditions and supporting the notion that many separate pathways in allergic disease
may result in stimulation of ILC2. Ongoing investigations are required to better characterize the relative contribution of
ILC2 in allergic inflammation as well as mechanisms by which other cell types including conventional T cells regulate
ILC2 survival, proliferation, and cytokine production. Importantly, therapeutic strategies to target ILC2 may reduce
allergic inflammation in afflicted individuals. This review summarizes the development, surface marker profile, cytokine
production, and upstream regulation of ILC2, and focuses on the role of ILC2 in common allergic diseases.
Collapse
Affiliation(s)
- Sean Lund
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Hannah H Walford
- Rady's Children's Hospital of San Diego, Division of Rheumatology, Allergy and Immunology, San Diego, CA, USA
| | - Taylor A Doherty
- Department of Medicine, University of California, La Jolla, CA, USA
| |
Collapse
|
165
|
Hallstrand TS, Hackett TL, Altemeier WA, Matute-Bello G, Hansbro PM, Knight DA. Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clin Immunol 2014; 151:1-15. [PMID: 24503171 DOI: 10.1016/j.clim.2013.12.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022]
Abstract
Recent genetic, structural and functional studies have identified the airway and lung epithelium as a key orchestrator of the immune response. Further, there is now strong evidence that epithelium dysfunction is involved in the development of inflammatory disorders of the lung. Here we review the characteristic immune responses that are orchestrated by the epithelium in response to diverse triggers such as pollutants, cigarette smoke, bacterial peptides, and viruses. We focus in part on the role of epithelium-derived interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), as well as CC family chemokines as critical regulators of the immune response. We cite examples of the function of the epithelium in host defense and the role of epithelium dysfunction in the development of inflammatory diseases.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.
| | - Tillie L Hackett
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Gustavo Matute-Bello
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
166
|
Hatayama T, Hirasawa N. [TSLP-basophil axis]. Nihon Yakurigaku Zasshi 2014; 143:103-4. [PMID: 24531904 DOI: 10.1254/fpj.143.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
167
|
Han NR, Kim HM, Jeong HJ. The β-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Exp Biol Med (Maywood) 2014; 239:454-64. [PMID: 24510054 DOI: 10.1177/1535370213520111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The compound β-sitosterol (BS) is one of the most common forms of phytosterols and has anti-cancer, anti-oxidant, anti-bacterial, and anti-inflammatory effects. However, the effect of BS on atopic dermatitis (AD) has not been elucidated. Therefore, we investigated whether BS would be an effective treatment against AD. We treated BS on 2,4-dinitrofluorobenzene (DNFB)-induced AD-like skin lesions in NC/Nga mice, anti-CD3/anti-CD28-stimulated splenocytes, and phorbol myristate acetate/calcium ionophore A23187-stimulated human mast cell line (HMC-1) cells. Histological analysis, ELISA, PCR, caspase-1 assay, and Western blot analysis were performed. BS reduced the total clinical severity in DNFB-treated NC/Nga mice. Infiltration of inflammatory cells and number of scratching were clearly reduced in the BS-treated group compared with the DNFB-treated group. BS significantly reduced the levels of inflammation-related mRNA and protein in the AD skin lesions. BS significantly reduced the levels of histamine, IgE, and interleukin-4 in the serum of DNFB-treated NC/Nga mice. The activation of mast cell-derived caspase-1 was decreased by treatment with BS in the AD skin lesions. BS also significantly decreased the production of tumor necrosis factor-α from the stimulated splenocytes. In the stimulated human mast cell line, HMC-1 cells, increased intracellular calcium levels were decreased by treatment with BS. Further, BS inhibited the production and mRNA expression of TSLP through blocking of caspase-1 and nuclear factor-κB signal pathways in the stimulated HMC-1 cells. These results provide additional evidence that BS may be considered an effective therapeutic drug for the treatment of AD.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | |
Collapse
|
168
|
Li DZ, Wang BY, Yang BJ, He SL, Lin J, Dong JC, Wu C, Hu J. Thymic stromal lmphopoietin pomotes macrophage-derived foam cell formation. ACTA ACUST UNITED AC 2014; 34:23-28. [PMID: 24496674 DOI: 10.1007/s11596-014-1226-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/09/2014] [Indexed: 11/25/2022]
Abstract
The effect of thymic stromal lymphopoietin (TSLP) on macrophage-derived foam cell formation and the underlying mechanism were studied. Macrophages isolated from C57BL/6 mice were co-cultured in vitro with different concentrations of TSLP or TSLPR-antibody in the presence of oxidized low density lipoprotein (ox-LDL). The effects of TSLP on macrophage-derived foam cell formation were observed by using oil red O staining and intracellular lipid determination. The expression levels of foam cell scavenger receptors (CD36 and SRA) as well as ABCA1 and TSLPR were detected by using RT-PCR and Western blotting. As compared with the control group, TSLP treatment significantly promoted lipid accumulation in macrophages, significantly increased protein expression of CD36 and TSLPR in a dose-dependent manner, and significantly reduced the expression of ABCA1 protein in a dose-dependent manner. No significant differences were noted between the TSLPR-antibody group and the control group. TSLP may down-regulate the expression of cholesterol efflux receptor ABCA1 and up-regulate scavenger receptor expression via the TSLPR signaling pathway, thereby promoting macrophage-derived foam cell formation.
Collapse
Affiliation(s)
- Da-Zhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo-Yuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao-Jie Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shao-Lin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiang-Chuan Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
169
|
Miazgowicz MM, Headley MB, Larson RP, Ziegler SF. Thymic stromal lymphopoietin and the pathophysiology of atopic disease. Expert Rev Clin Immunol 2014; 5:547-556. [PMID: 20436950 DOI: 10.1586/eci.09.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is an IL-7-related cytokine expressed predominantly by barrier epithelial cells. TSLP is a potent activator of several cell types, including myeloid-derived dendritic cells, monocytes/macrophages and mast cells. Recent studies have revealed an important role for TSLP in the initiation and progression of allergic inflammatory diseases. In this review, we will discuss the role of TSLP in atopic diseases, as well as its function in immune homeostasis.
Collapse
Affiliation(s)
- Michael M Miazgowicz
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA and Immunology Department, University of Washington School of Medicine, Seattle, WA, USA and Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA, Tel.: +1 206 583 6525, ,
| | | | | | | |
Collapse
|
170
|
Erdmann RB, Gartner JG, Leonard WJ, Ellison CA. Lack of functional TSLP receptors mitigates Th2 polarization and the establishment and growth of 4T1 primary breast tumours but has different effects on tumour quantities in the lung and brain. Scand J Immunol 2014; 78:408-18. [PMID: 24033709 DOI: 10.1111/sji.12106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 02/03/2023]
Abstract
The 4T1 mammary carcinoma cell line produces TSLP. We had hypothesized that TSLP promotes the development of a permissive environment for the growth and metastasis of primary tumour and that this is associated with a Th2-polarized antitumour immune response. We found that, in Tslpr(-/-) mice, the mean tumour diameters were smaller from days 27 to 40, and relatively fewer tumour cells were present in the lung, compared with wild-type mice. Polarization of the Th2 cytokine profile was also diminished in Tslpr(-/-) mice. These findings confirmed those reported previously by others. Here, we further show that primary tumours are established less often in Tslpr(-/-) mice and that, unexpectedly, the relative number of tumour cells in the brain is greater in Tslpr(-/-) mice compared with wild-type mice. Findings from our cytotoxicity assays show that 4T1-directed lysis is undetectable in both WT and Tslpr(-/-) mice, ruling out the possibility that altered cytotoxic responses in Tslpr(-/-) mice are responsible for the differences we observed. In a human tissue microarray, positive staining for TSLP was seen in tumour cells from breast cancer tissue, but it was also seen in normal glandular epithelial cells from normal breast tissue, which has not been shown before. Thus, our findings provide new insight into the effects of TSLP in metastatic breast cancer.
Collapse
Affiliation(s)
- R B Erdmann
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
171
|
Segawa R, Yamashita S, Mizuno N, Shiraki M, Hatayama T, Satou N, Hiratsuka M, Hide M, Hirasawa N. Identification of a cell line producing high levels of TSLP: Advantages for screening of anti-allergic drugs. J Immunol Methods 2014; 402:9-14. [DOI: 10.1016/j.jim.2013.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/03/2013] [Accepted: 10/30/2013] [Indexed: 12/27/2022]
|
172
|
Yamashita S, Segawa R, Satou N, Hiratsuka M, Leonard WJ, Hirasawa N. Induction of thymic stromal lymphopoietin production by nonanoic acid and exacerbation of allergic inflammation in mice. Allergol Int 2013; 62:463-71. [PMID: 24060765 DOI: 10.2332/allergolint.13-oa-0552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/16/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) plays critical roles in the induction and exacerbation of allergic diseases. We tested various chemicals in the environment and found that xylene and 1,2,4-trimethylbenzene induced the production of TSLP in vivo. These findings prompted us to search for additional chemicals that induce TSLP production. In this study, we examined whether fatty acids could induce the production of TSLP in vivo and exacerbate allergic inflammation. METHODS Various fatty acids and related compounds were painted on the ear lobes of mice and the amount of TSLP in the homogenate of ear lobe tissue was determined. The effects of nonanoic acid on allergic inflammation were also examined. RESULTS Octanoic acid, nonanoic acid, and decanoic acid markedly induced TSLP production, while a medium-chain aldehyde and alcohol showed only weak activity. Nonanoic acid induced the production of TSLP with a maximum at 24 h. TSLP production was even observed in nonanoic acid-treated C3H/HeJ mice that lacked functional toll-like receptor 4. The aryl hydrocarbon receptor agonist β-naphthoflavone did not induce TSLP production. Nonanoic acid promoted sensitization to ovalbumin, resulting in an enhancement in the cutaneous anaphylactic response. In addition, painting of nonanoic acid after the sensitization augmented picryl chloride-induced thickening of the ear, which was reversed in TSLP receptor-deficient mice. CONCLUSIONS Nonanoic acid and certain fatty acids induced TSLP production, resulting in the exacerbation of allergic inflammation. We propose that TSLP-inducing chemical compounds such as nonanoic acid be recognized as chemical allergo-accelerators.
Collapse
Affiliation(s)
- Saori Yamashita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | | | | | | | | | | |
Collapse
|
173
|
Han SC, Kang GJ, Ko YJ, Kang HK, Moon SW, Ann YS, Yoo ES. External Application of Fermented Olive Flounder (Paralichthys olivaceus) Oil Alleviates Inflammatory Responses in 2,4-Dinitrochlorobenzeneinduced Atopic Dermatitis Mouse Model. Toxicol Res 2013; 28:159-64. [PMID: 24278605 PMCID: PMC3834415 DOI: 10.5487/tr.2012.28.3.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022] Open
Abstract
Allergic skin inflammation such as atopic dermatitis (AD) is characterized by edema and infiltration with various inflammatory cells such as mast cells, basophils, eosinophils and T cells. Thymic stromal lymphopoietin (TSLP) is produced mainly by epidermal keratinocytes, as well as dermal fibroblasts and mast cells in the skin lesions of AD. Omega-3 polyunsaturated fatty acids in fish oil can reduce inflammation in allergic patients. Fermentation has a tremendous capacity to transform chemical structures. The antiinflammatory effects of fish oil have been described in many diseases, but the beneficial effects by which fermented olive flounder oil (FOF) modulates the allergic response is poorly understood. In this study, we produced FOF and tested its ability to suppress the various allergic inflammatory responses. The ability of FOF to modulate the immune system was investigated using a mouse model of AD. The FOF-treated group showed significantly decreased immunoglobulin E (IgE) and histamine in serum. Also, the increased TSLP expression was significantly inhibited in the FOF group; the FOF-treated group was not appreciably different from the hydrocort cream treatment group. In addition, FOF treatment resulted in a smaller spleen size with reduced the thickness and length compared to the induction group. Splenocytes from mice treated with FOF produced significantly less IFN-γ, IL-4, T-box transcription factor (T-bet) and GATA binding protein 3 (GATA3) expression compared with the induction group. These results suggest that FOF may be effective in treating the allergic symptoms of AD. 5.
Collapse
Affiliation(s)
- Sang-Chul Han
- Department of Pharmacology, School of Medicine, Jeju National University, , Jeju 690-756, Korea
| | | | | | | | | | | | | |
Collapse
|
174
|
Salazar F, Ghaemmaghami AM. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol 2013; 4:356. [PMID: 24204367 PMCID: PMC3816228 DOI: 10.3389/fimmu.2013.00356] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/21/2013] [Indexed: 11/13/2022] Open
Abstract
Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors DCs are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence DCs behavior through the release of a number of Th2 promoting cytokines. In this review we will summarize current understanding of how allergens are recognized by DCs and epithelial cells and what are the consequences of such interaction in the context of allergic sensitization and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signaling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitization hence hindering development or progression of allergic diseases.
Collapse
Affiliation(s)
- Fabián Salazar
- Division of Immunology, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham , UK
| | | |
Collapse
|
175
|
Nakanishi W, Yamaguchi S, Matsuda A, Suzukawa M, Shibui A, Nambu A, Kondo K, Suto H, Saito H, Matsumoto K, Yamasoba T, Nakae S. IL-33, but not IL-25, is crucial for the development of house dust mite antigen-induced allergic rhinitis. PLoS One 2013; 8:e78099. [PMID: 24205109 PMCID: PMC3808342 DOI: 10.1371/journal.pone.0078099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/07/2013] [Indexed: 11/19/2022] Open
Abstract
Both interleukin (IL)-33 and IL-25 induce Th2 cytokine production by various cell types, suggesting that they contribute to development of allergic disorders. However, the precise roles of IL-33 and IL-25 in house dust mite (HDM)-induced allergic rhinitis (AR) remain unclear. Both IL-33 and IL-25 were produced mainly by nasal epithelial cells during HDM-induced AR. Eosinophil and goblet cell counts in the nose and IL-5 levels in lymph node cell culture supernatants were significantly decreased in IL-33-deficient, but not IL-25-deficient, mice compared with wild-type mice during HDM-induced AR, but the serum IgE and IgG1 levels did not differ. On the other hand, HDM-induced AR developed similarly in wild-type mice transferred with either IL-33-deficient BM cells or wild-type BM cells. IL-33, but not IL-25, produced by nasal epithelial cells was crucial for the development of murine HDM-induced AR. These observations suggest that IL-33 neutralization may be a potential approach for treatment of HDM-induced AR in humans.
Collapse
Affiliation(s)
- Wakako Nakanishi
- Department of Otolaryngology Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan
| | - Maho Suzukawa
- Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
- National Hospital Organization, Tokyo Hospital, Tokyo, Japan
| | - Akiko Shibui
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Hajime Suto
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tatuya Yamasoba
- Department of Otolaryngology Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
176
|
Kuroda E, Coban C, Ishii KJ. Particulate adjuvant and innate immunity: past achievements, present findings, and future prospects. Int Rev Immunol 2013; 32:209-20. [PMID: 23570316 PMCID: PMC3632271 DOI: 10.3109/08830185.2013.773326] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Particulates and crystals stimulate the immune system to induce inflammatory responses. Several nanometer- to micrometer-sized particulates, such as particle matter 2.5 (PM2.5), diesel particles, and sand dust, induce pulmonary inflammation and allergic asthma. Conversely, nanometer- to micrometer-sized crystal, sphere, and hydrogel forms of aluminum salts (referred to as “alum”) have been used as vaccine adjuvants to enhance antibody responses in animals and humans. Although most of these particulates induce type-2 immune responses in vivo, the molecular and immunological mechanisms of action as a vaccine adjuvant are poorly understood. In this review, recent advances in particulate adjuvant research from the standpoint of innate immune responses are discussed.
Collapse
Affiliation(s)
- Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
177
|
Chang RS, Wang YC, Kao ST. Soluble toll-like receptor 4 reversed attenuating effect of Chinese herbal Xiao-Qing-Long-Tang on allergen induced nerve growth factor and thymic stromal lymphopoietin. Exp Ther Med 2013; 6:1199-1207. [PMID: 24223644 PMCID: PMC3820713 DOI: 10.3892/etm.2013.1294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
Xiao-Qing-Long-Tang (XQLT) is known to regulate allergic immune reactions. The aim of this study was to investigate the effects of XQLT on allergen-induced cytokines and associated signaling pathways. An acute allergic mouse model was used to investigate the effects of XQLT on nerve growth factor (NGF) during an allergic reaction, while human pulmonary alveolar epithelial cells (HPAEpiCs) were used to investigate the effects of XQLT on Dermatophagoides pteronyssinus group 2 (Der p 2)-induced NGF, p75 neurotrophin receptor (p75NTR) and thymic stromal lymphopoietin (TSLP) expression. XQLT was demonstrated to inhibit NGF- and p75NTR-related allergic reactions in the mouse model. XQLT also reduced the expression of Toll-like receptor 4 (TLR4) in the lungs of the model mice. XQLT inhibited Der p 2-induced NGF, TSLP and p75NTR expression in the HPAEpiC cell line. The use of recombinant soluble TLR4 (sTLR4) in a competitive assay partially attenuated the inhibitory effect of XQLT on NGF, TSLP and p75NTR expression in HPAEpiC cells. The inhibitory effect of XQLT on the Ser536 phosphorylation of p65 (nuclear factor-κB; NF-κB), a TLR4-induced factor, was also attenuated by sTLR4. In conclusion, XQLT inhibited Der p allergen-induced NGF, p75NTR and TSLP expression. This inhibition was attenuated by sTLR4. The mechanism of action of XQLT may be correlated with TLR4, a primary receptor in the innate immune system. The findings of this study may focus the search for pharmacological targets of XQLT onto TLR4, which is important in the allergen presentation pathway.
Collapse
Affiliation(s)
- Ren-Shiu Chang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402; ; Department of Chinese Medicine, Tainan Sin-Lau Hospital, Tainan 70142
| | | | | |
Collapse
|
178
|
Mogie G, Shanks K, Nkyimbeng-Takwi EH, Smith E, Davila E, Lipsky MM, DeTolla LJ, Keegan AD, Chapoval SP. Neuroimmune semaphorin 4A as a drug and drug target for asthma. Int Immunopharmacol 2013; 17:568-75. [PMID: 23994348 DOI: 10.1016/j.intimp.2013.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
Abstract
Neuroimmune semaphorin 4A (Sema4A) has been shown to play an important costimulatory role in T cell activation and regulation of Th1-mediated diseases such as multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), and experimental autoimmune myocarditis (EAM). Sema4A has three functional receptors, Tim-2 expressed on CD4+ T cells, Th2 cells in particular, and Plexin B1 and D1 predominantly expressed on epithelial and endothelial cells, correspondingly. We recently showed that Sema4A has a complex expression pattern in lung tissue in a mouse model of asthma. We and others have shown that corresponding Plexin expression can be found on immune cells as well. Moreover, we demonstrated that Sema4A-deficient mice displayed significantly higher lung local and systemic allergic responses pointing to its critical regulatory role in the disease. To determine the utility of Sema4A as a novel immunotherapeutic, we introduced recombinant Sema4A protein to the allergen-sensitized WT and Sema4A(-/-) mice before allergen challenge. We observed significant reductions in the allergic inflammatory lung response in Sema4A-treated mice as judged by tissue inflammation including eosinophilia and mucus production. Furthermore, we demonstrated that in vivo administration of anti-Tim2 Ab led to a substantial upregulation of allergic inflammation in WT mouse lungs. These data highlight the potential to develop Sema4A as a new therapeutic for allergic airway disease.
Collapse
Affiliation(s)
- G Mogie
- Center for Vascular and Inflammatory Diseases, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). ADVANCES IN PHARMACOLOGY 2013; 66:129-55. [PMID: 23433457 DOI: 10.1016/b978-0-12-404717-4.00004-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Originally shown to promote the growth and activation of B cells, thymic stromal lymphopoietin (TSLP) is now known to have wide-ranging impacts on both hematopoietic and nonhematopoietic cell lineages, including dendritic cells, basophils, eosinophils, mast cells, CD4⁺, CD8⁺ and natural killer T cells, B cells and epithelial cells. While TSLP's role in the promotion of TH2 responses has been extensively studied in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This chapter will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity and cancer. Importantly, these insights into TSLP's multifaceted roles could potentially allow for novel therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Abstract
CD4(+) T helper-2 (Th2) cells, which produce a unique profile of IL-4, IL-5 and IL-13 pro-inflammatory cytokines, are thought to be central in the orchestration and amplification of allergic asthma. However, a novel non-T/non-B lymphoid cell population, named type 2 innate lymphocytes (ILC2s), that produces high amounts of IL-5 and IL-13 was recently discovered. Unlike Th2 cells, these ILC2s are not antigen-restricted and are activated by epithelial cell-derived cytokines IL-25 and IL-33. In this review, we will focus on recent studies, mainly involving allergen-based mouse models, that have provided evidence for a significant contribution of ILC2 to allergic airway information.
Collapse
|
181
|
Cheng DT, Ma C, Niewoehner J, Dahl M, Tsai A, Zhang J, Gonsiorek W, Apparsundaram S, Pashine A, Ravindran P, Jung J, Hang J, Allard J, Bitter H, Tribouley C, Narula S, Wilson S, Fuentes ME. Thymic stromal lymphopoietin receptor blockade reduces allergic inflammation in a cynomolgus monkey model of asthma. J Allergy Clin Immunol 2013; 132:455-62. [PMID: 23810153 DOI: 10.1016/j.jaci.2013.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/05/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) pathway blockade is a potential strategy for asthma treatment because the main activities of TSLP are activation of myeloid dendritic cells (mDCs) and modulation of cytokine production by mast cells. TSLP-activated mDCs prime the differentiation of naive T cells into inflammatory TH2 cells. OBJECTIVE We sought to investigate mechanisms underlying the development of allergic lung inflammation in cynomolgus monkeys using gene expression profiling and to assess the effect of thymic stromal lymphopoietin receptor (TSLPR) blockade in this model. METHODS An mAb against human TSLPR was generated and confirmed to be cross-reactive to cynomolgus monkey. Animals were dosed weekly with either vehicle or anti-TSLPR mAb for 6 weeks, and their responses to allergen challenge at baseline, week 2, and week 6 were assessed. RESULTS After 6 weeks of treatment, anti-TSLPR mAb-treated animals showed reduced bronchoalveolar lavage (BAL) fluid eosinophil counts, reduced airway resistance in response to allergen challenge, and reduced IL-13 cytokine levels in BAL fluid compared with values seen in vehicle-treated animals. Expression profiling of BAL fluid cells collected before and after challenge showed a group of genes upregulated by allergen challenge that strongly overlapped with 11 genes upregulated in dendritic cells (DCs) when in vitro stimulated by TSLP (TSLP-DC gene signature). The number of genes differentially expressed in response to challenge was reduced in antibody-treated animals after 6 weeks relative to vehicle-treated animals. Expression of the TSLP-DC gene signature was also significantly reduced in antibody-treated animals. CONCLUSION These results demonstrate promising efficacy for TSLPR blockade in an allergic lung inflammation model in which TSLP activation of mDCs might play a key role.
Collapse
|
182
|
Andersen SS, Hvid M, Pedersen FS, Deleuran B. Proximity ligation assay combined with flow cytometry is a powerful tool for the detection of cytokine receptor dimerization. Cytokine 2013; 64:54-7. [PMID: 23726671 DOI: 10.1016/j.cyto.2013.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 03/11/2013] [Accepted: 04/23/2013] [Indexed: 12/26/2022]
Abstract
Many cytokine receptors are cell surface proteins that promiscuously combine to form active signalling homo- or heterodimers. Thus, receptor chain dimerization can be viewed as a direct measure of a high probability of intracellular signalling by specific cytokines. Proximity ligation assay (PLA) is an antibody-based method for selective and highly sensitive detection of protein interactions by microscopy. As proof of concept, the aim of this study was to combine antibodies towards interleukin 7 receptor alpha (IL-7Rα) and the common gamma chain (γc) with PLA and flow cytometry to enable the detection of IL-7 receptor heterodimers. The presence of IL-7 receptor heterodimers on the surface of the HPB-ALL T cell line was detected by PLA and microscopy with a resolution of one complex per cell. Optimisation of the PLA reaction on cell suspensions identified buffer effects with critical importance for the flow cytometric outcome. In addition, blocking, fixation and incubation conditions were optimised to prevent unspecific antibody binding. PLA combined with flow cytometry very sensitively detected receptor heterodimers on the cell surface. Thus, the method is a powerful tool for the investigation of cytokine receptor dimerization.
Collapse
Affiliation(s)
- Sofie Selmer Andersen
- Department of Biomedicine, Aarhus University, Wilhelm-Meyers Allé 4, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, C.F. Moellers Allé 3, 8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
183
|
Larson RP, Comeau MR, Ziegler SF. Cutting edge: allergen-specific CD4 T cells respond indirectly to thymic stromal lymphopoietin to promote allergic responses in the skin. THE JOURNAL OF IMMUNOLOGY 2013; 190:4474-7. [PMID: 23543759 DOI: 10.4049/jimmunol.1201677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that has been implicated in the initiation of allergic responses. CD4 T cells and dendritic cells are able to respond to TSLP in vitro; however, there has not been a careful dissection of the spatiotemporal response to TSLP by CD4 T cells in vivo during an allergic response. Previous work has suggested a requirement for TSLP in amplifying Th2 responses during allergen challenge by direct action on CD4 T cells; however, these studies did not determine whether there is an effect of TSLP on CD4 T cells during allergen sensitization. In this study we demonstrate an indirect role for TSLP on CD4 T cells during sensitization and challenge phases of an allergic response. This indirect effect of TSLP on CD4 T cells is due in part to the presence of TSLP exclusively in the allergen-sensitized and -challenged skin, rather than the draining lymph nodes.
Collapse
Affiliation(s)
- Ryan P Larson
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | | |
Collapse
|
184
|
Miazgowicz MM, Elliott MS, Debley JS, Ziegler SF. Respiratory syncytial virus induces functional thymic stromal lymphopoietin receptor in airway epithelial cells. J Inflamm Res 2013; 6:53-61. [PMID: 23576878 PMCID: PMC3617816 DOI: 10.2147/jir.s42381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The epithelial-derived cytokine thymic stromal lymphopoietin (TSLP) plays a key role in the development and progression of atopic disease and has notably been shown to directly promote the allergic inflammatory responses that characterize asthma. Current models suggest that TSLP is produced by epithelial cells in response to inflammatory stimuli and acts primarily upon dendritic cells to effect a T helper type 2-type inflammatory response. Recent reports, however, have shown that epithelial cells themselves are capable of expressing the TSLP receptor (TSLPR), and may thus directly contribute to a TSLP-dependent response. We report here that beyond simply expressing the receptor, epithelial cells are capable of dynamically regulating TSLPR in response to the same inflammatory cues that drive the production of TSLP, and that epithelial cells produce chemokine C–C motif ligand 17, a T helper type 2-associated chemokine, in response to stimulation with TSLP. These data suggest that a direct autocrine or paracrine response to TSLP by epithelial cells may initiate the initial waves of chemotaxis during an allergic inflammatory response. Intriguingly, we find that the regulation of TSLPR, unlike TSLP, is independent of nuclear factor kappa-light-chain-enhancer of activated B cells, suggesting that the cell may be able to independently regulate TSLP and TSLPR levels in order to properly modulate its response to TSLP. Finally, we show evidence for this dynamic regulation occurring following the viral infection of primary epithelial cells from asthmatic patients. Taken together, the data suggest that induction of TSLPR and a direct response to TSLP by epithelial cells may play a novel role in the development of allergic inflammation.
Collapse
Affiliation(s)
- Michael M Miazgowicz
- Immunology Program, Benaroya Research Institute, Seattle, WA ; Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | | | | | | |
Collapse
|
185
|
Bleck B, Grunig G, Chiu A, Liu M, Gordon T, Kazeros A, Reibman J. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3757-63. [PMID: 23455502 DOI: 10.4049/jimmunol.1201165] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses, and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders, and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We show that DEP and ambient fine PM upregulate TSLP mRNA and human microRNA (hsa-miR)-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α-treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm(2)) downregulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared with resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells.
Collapse
Affiliation(s)
- Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Piehler D, Grahnert A, Eschke M, Richter T, Köhler G, Stenzel W, Alber G. T1/ST2 promotes T helper 2 cell activation and polyfunctionality in bronchopulmonary mycosis. Mucosal Immunol 2013; 6:405-14. [PMID: 22990621 DOI: 10.1038/mi.2012.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-33 enhances T helper (Th)2 immunity via its receptor T1/ST2. Infection with the yeast-like pathogen Cryptococcus neoformans is usually controlled by a Th1-mediated immune response. The mechanisms responsible for nonprotective Th2 immunity leading to allergic inflammation in pulmonary cryptococcosis are still not fully understood. Using a murine pulmonary model of C. neoformans infection, we report that T1/ST2 expression correlates with the intensity of Th2 activation, as demonstrated by the expression of CD25 and CD44 and downregulation of CD62L. Antigen-specific T1/ST2(+) Th cells are the primary source of the Th2 cytokines IL-5 and IL-13 as compared with wild-type T1/ST2(-) Th cells or Th cells from T1/ST2(-/-) mice. In addition, T1/ST2(+) Th cells almost exclusively contain bi- and trifunctional Th2 cytokine-producing Th cells compared with T1/ST2(-) Th cells or Th cells from T1/ST2(-/-) mice. Finally, T1/ST2-driven Th2 development resulted in defective pulmonary fungal control. These data demonstrate that T1/ST2 directs Th2 cell activation and polyfunctionality in allergic bronchopulmonary mycosis.
Collapse
Affiliation(s)
- D Piehler
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
187
|
Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, Sakamoto K, Wagner KU, Kaplan DH, Reizis B, Hennighausen L, Ziegler SF. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat Immunol 2013; 14:364-71. [PMID: 23435120 PMCID: PMC4161284 DOI: 10.1038/ni.2541] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/08/2013] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are critical in immune responses, linking innate and adaptive immunity. We found here that DC-specific deletion of the transcription factor STAT5 was not critical for development but was required for T helper type 2 (TH2), but not TH1, allergic responses in both the skin and lungs. Loss of STAT5 in DCs led to the inability to respond to thymic stromal lymphopoietin (TSLP). STAT5 was required for TSLP-dependent DC activation, including upregulation of the expression of costimulatory molecules and chemokine production. Furthermore, TH2 responses in mice with DC-specific loss of STAT5 resembled those seen in mice deficient in the receptor for TSLP. Our results show that the TSLP-STAT5 axis in DCs is a critical component for the promotion of type 2 immunity at barrier surfaces.
Collapse
Affiliation(s)
- Bryan D Bell
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Hershenson MB. Rhinovirus-Induced Exacerbations of Asthma and COPD. SCIENTIFICA 2013; 2013:405876. [PMID: 24278777 PMCID: PMC3820304 DOI: 10.1155/2013/405876] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
Over the past two decades, increasing evidence has shown that, in patients with chronic airways disease, viral infection is the most common cause of exacerbation. This review will examine the evidence for viral-induced exacerbations of asthma and chronic obstructive lung disease and the potential mechanisms by which viruses cause exacerbations. Attention will be focused on rhinovirus, the most common cause of respiratory exacerbations. Exacerbations due to rhinovirus, which infects relatively few cells in the airway and does not cause the cytotoxicity of other viruses such as influenza or respiratory syncytial virus, are particularly poorly understood. While the innate immune response likely plays a role in rhinovirus-induced exacerbations, its precise role, either adaptive or maladaptive, is debated. Because current treatment strategies are only partially effective, further research examining the cellular and molecular mechanisms underlying viral-induced exacerbations of chronic airways diseases is warranted.
Collapse
Affiliation(s)
- Marc B. Hershenson
- Departments of Pediatrics and Communicable Diseases and Molecular and Integrative Physiology, University of Michigan Medical School, 1150 W. Medical Center Drive, Room 3570B, Medical Science Research Building 2, Ann Arbor, MI 48109-5688, USA
| |
Collapse
|
189
|
Asosingh K, Cheng G, Xu W, Savasky BM, Aronica MA, Li X, Erzurum SC. Nascent endothelium initiates Th2 polarization of asthma. THE JOURNAL OF IMMUNOLOGY 2013; 190:3458-65. [PMID: 23427249 DOI: 10.4049/jimmunol.1202095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asthma airway remodeling is linked to Th2 inflammation. Angiogenesis is a consistent feature of airway remodeling, but its contribution to pathophysiology remains unclear. We hypothesized that nascent endothelial cells in newly forming vessels are sufficient to initiate Th2-inflammation. Vascular endothelial (VE)-cadherin is a constitutively expressed endothelial cell adhesion molecule that is exposed in its monomer form on endothelial tip cells prior to adherens junction formation. Abs targeted to VE-cadherin monomers inhibit angiogenesis by blocking this adherens junction formation. In this study, VE-cadherin monomer Ab reduced angiogenesis in the lungs of the allergen-induced murine asthma model. Strikingly, Th2 responses including, IgE production, eosinophil infiltration of the airway, subepithelial fibrosis, mucus metaplasia, and airway-hyperreactivity were also attenuated by VE-cadherin blockade, via mechanisms that blunted endothelial IL-25 and proangiogenic progenitor cell thymic stromal lymphopoietin production. The results identify angiogenic responses in the origins of atopic inflammation.
Collapse
Affiliation(s)
- Kewal Asosingh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Jang S, Morris S, Lukacs NW. TSLP promotes induction of Th2 differentiation but is not necessary during established allergen-induced pulmonary disease. PLoS One 2013; 8:e56433. [PMID: 23437132 PMCID: PMC3577905 DOI: 10.1371/journal.pone.0056433] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/09/2013] [Indexed: 01/22/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) has been implicated in the development of allergic inflammation by promoting Th2-type responses and has become a potential therapeutic target. Using in vitro T cell differentiation cultures we were able to validate that TSLP played a more critical role in the early development of Th2 immune responses with less significant enhancement of already developed Th2 responses. Adoptive transfer of naive DO11.10 ovalbumin-specific T cells followed by airway exposure to ovalbumin showed an early impairment of Th2 immune response in TSLP−/− mice compared to wild type mice during the development of a Th2 response. In contrast, transfer of already differentiated Th2 cells into TSLP−/− mice did not change lung pathology or Th2 cytokine production upon ovalbumin challenge compared to transfer into wild type mice. An allergen-induced Th2 airway model demonstrated that there was only a difference in gob5 expression (a mucus-associated gene) between wild type and TSLP−/− mice. Furthermore, when allergic animals with established disease were treated with a neutralizing anti-TSLP antibody there was no change in airway hyperreponsiveness (AHR) or Th2 cytokine production compared to the control antibody treated animals, whereas a change in gob5 gene expression was also observed similar to the TSLP−/− mouse studies. In contrast, when animals were treated with anti-TSLP during the initial stages of allergen sensitization there was a significant change in Th2 cytokines during the final allergen challenge. Collectively, these studies suggest that in mice TSLP has an important role during the early development of Th2 immune responses, whereas its role at later stages of allergic disease may not be as critical for maintaining the Th2-driven allergic disease.
Collapse
Affiliation(s)
- Sihyug Jang
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Susan Morris
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas W. Lukacs
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
191
|
Usategui A, Criado G, Izquierdo E, Del Rey MJ, Carreira PE, Ortiz P, Leonard WJ, Pablos JL. A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis. Ann Rheum Dis 2013; 72:2018-23. [PMID: 23413283 DOI: 10.1136/annrheumdis-2012-202279] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE [corrected] Systemic sclerosis (SSc) is an autoimmune disease characterised by progressive fibrosis. Although SSc shares pathogenetic features with other autoimmune diseases, the participation of profibrotic Th2 cytokines is unique to SSc, but the mechanisms of Th2 skewing are unknown. We have analysed the expression and function of thymic stromal lymphopoietin (TSLP), a central regulator of Th2-mediated allergic inflammation, in human SSc, primary lung fibrosis and in a mouse model of scleroderma. METHODS TSLP expression was analysed by immunohistochemistry in human SSc skin, primary lung fibrosis and mouse bleomycin-induced skin fibrosis, and by quantitative RT-PCR in mouse skin and cultured fibroblasts. The regulation of TSLP expression by specific toll-like receptors (TLR)-2, -3 and -4 agonists was analysed in human dermal fibroblast cultures. The role of TSLP in skin fibrosis and local cytokine expression was analysed in TSLP receptor (TSLPR)-deficient mice. RESULTS TSLP was overexpressed by epithelial cells, mast cells and fibroblasts in human SSc skin and lung fibrosis, and in the bleomycin model of scleroderma. In cultured human and mouse skin fibroblasts, TSLP expression was inducible by activation of TLR, particularly TLR3. In TSLPR-deficient mice, bleomycin-induced fibrosis was significantly reduced in parallel with significantly reduced local expression of IL-13. CONCLUSIONS These data provide the first evidence of TSLP overexpression in SSc and other non-allergic fibrotic conditions, and demonstrate a profibrotic role that is potentially meditated by specific changes in the local cytokine milieu. Thus, modulating TSLP may have antifibrotic therapeutic implications.
Collapse
Affiliation(s)
- Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), , Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Atamas SP, Chapoval SP, Keegan AD. Cytokines in chronic respiratory diseases. F1000 BIOLOGY REPORTS 2013; 5:3. [PMID: 23413371 PMCID: PMC3564216 DOI: 10.3410/b5-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines are small, secreted proteins that control immune responses. Within the lung, they can control host responses to injuries or infection, resulting in clearance of the insult, repair of lung tissue, and return to homeostasis. Problems can arise when this response is over exuberant and/or cytokine production becomes dysregulated. In such cases, chronic and repeated inflammatory reactions and cytokine production can be established, leading to airway remodeling and fibrosis with unintended, maladaptive consequences. In this report, we describe the cytokines and molecular mechanisms behind the pathology observed in three major chronic diseases of the lung: asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Overlapping mechanisms are presented as potential sites for therapeutic intervention.
Collapse
Affiliation(s)
- Sergei P Atamas
- Department of Medicine, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Baltimore VA Medical Center Baltimore, MD 21201 USA
| | | | | |
Collapse
|
193
|
Yao W, Zhang Y, Jabeen R, Nguyen ET, Wilkes DS, Tepper RS, Kaplan MH, Zhou B. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 2013; 38:360-72. [PMID: 23376058 DOI: 10.1016/j.immuni.2013.01.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 10/16/2012] [Indexed: 12/22/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine important for the initiation and development of T helper (Th2) cell-mediated allergic inflammation. In this study, we identified a positive association between interleukin-9 (IL-9) and TSLP concentration in the serum of infants with atopic dermatitis. In primary cell cultures, the addition of TSLP led to an increase in IL-9 production from human and mouse Th9 cells, and induced an increase in signal transducer and activator of transcription 5 (STAT5) activation and binding to the Il9 promoter. In vivo, use of an adoptive transfer model demonstrated that TSLP promoted IL-9-dependent, Th9 cell-induced allergic inflammation by acting directly on T cells. Moreover, transgenic expression of TSLP in the lung stimulated IL-9 production in vivo, and anti-IL-9 treatment attenuated TSLP-induced airway inflammation. Together, our results demonstrate that TSLP promotes Th9 cell differentiation and function and define a requirement for IL-9 in TSLP-induced allergic inflammation.
Collapse
Affiliation(s)
- Weiguo Yao
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Chen ZG, Zhang TT, Li HT, Chen FH, Zou XL, Ji JZ, Chen H. Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite. PLoS One 2013; 8:e51268. [PMID: 23300949 PMCID: PMC3534685 DOI: 10.1371/journal.pone.0051268] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/31/2012] [Indexed: 12/28/2022] Open
Abstract
Chronic allergic asthma is characterized by Th2-typed inflammation, and contributes to airway remodeling and the deterioration of lung function. However, the initiating factor that links airway inflammation to remodeling is unknown. Thymic stromal lymphopoietin (TSLP), an epithelium-derived cytokine, can strongly activate lung dendritic cells (DCs) through the TSLP-TSLPR and OX40L-OX40 signaling pathways to promote Th2 differentiation. To determine whether TSLP is the underlying trigger of airway remodeling in chronic allergen-induced asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM) extracts for up to 5 consecutive weeks. We showed that repeated respiratory exposure to HDM caused significant airway eosinophilic inflammation, peribronchial collagen deposition, goblet cell hyperplasia, and airway hyperreactivity (AHR) to methacholine. These effects were accompanied with a salient Th2 response that was characterized by the upregulation of Th2-typed cytokines, such as IL-4 and IL-13, as well as the transcription factor GATA-3. Moreover, the levels of TSLP and transforming growth factor beta 1 (TGF-β1) were also increased in the airway. We further demonstrated, using the chronic HDM-induced asthma model, that the inhibition of Th2 responses via neutralization of TSLP with an anti-TSLP mAb reversed airway inflammation, prevented structural alterations, and decreased AHR to methacholine and TGF-β1 level. These results suggest that TSLP plays a pivotal role in the initiation and persistence of airway inflammation and remodeling in the context of chronic allergic asthma.
Collapse
Affiliation(s)
- Zhuang-Gui Chen
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tian-Tuo Zhang
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| | - Hong-Tao Li
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Fen-Hua Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ling Zou
- Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Jing-Zhi Ji
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
195
|
Leyva-Castillo JM, Hener P, Jiang H, Li M. TSLP Produced by Keratinocytes Promotes Allergen Sensitization through Skin and Thereby Triggers Atopic March in Mice. J Invest Dermatol 2013; 133:154-63. [DOI: 10.1038/jid.2012.239] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
196
|
Eosinophils and Anti-Pathogen Host Defense. EOSINOPHILS IN HEALTH AND DISEASE 2013. [PMCID: PMC7156009 DOI: 10.1016/b978-0-12-394385-9.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
197
|
Han H, Headley MB, Xu W, Comeau MR, Zhou B, Ziegler SF. Thymic stromal lymphopoietin amplifies the differentiation of alternatively activated macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 190:904-12. [PMID: 23275605 DOI: 10.4049/jimmunol.1201808] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The epithelial-derived cytokine thymic stromal lymphopoietin (TSLP) has been associated with the promotion of type 2 inflammation and the induction of allergic disease. In humans TSLP is elevated in the lungs of asthma patients and in the lesional skin of individuals with atopic dermatitis, whereas mice lacking TSLP responses are refractory to models of Th2-driven allergic disease. Although several cell types, including dendritic cells, basophils, and CD4 T cells, have been shown to respond to TSLP, its role in macrophage differentiation has not been studied. Type 2 cytokines (i.e., IL-4 and IL-13) can drive the differentiation of macrophages into alternatively activated macrophages (aaMs, also referred to as M2 macrophages). This population of macrophages is associated with allergic inflammation. We therefore reasoned that TSLP/TSLPR signaling may be involved in the differentiation and activation of aaMs during allergic airway inflammation. In this study, we report that TSLP changes the quiescent phenotype of pulmonary macrophages toward an aaM phenotype during TSLP-induced airway inflammation. This differentiation of airway macrophages was IL-13-, but not IL-4-, dependent. Taken together, we demonstrate in this study that TSLP/TSLPR plays a significant role in the amplification of aaMΦ polarization and chemokine production, thereby contributing to allergic inflammation.
Collapse
Affiliation(s)
- Hongwei Han
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | | | | | | | | | | |
Collapse
|
198
|
The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol 2012; 20:53-8. [PMID: 23222642 PMCID: PMC3539207 DOI: 10.1038/nsmb.2456] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022]
Abstract
A newly discovered negative glucocorticoid response element (nGRE) mediates DNA-dependent transrepression by the glucocorticoid receptor (GR) across the genome and plays a major role in immunosuppressive therapy. The nGRE differs dramatically from activating response elements and the mechanism driving GR binding and transrepression is unknown. To unravel the mechanism of nGRE-mediated transrepression by the glucocorticoid receptor, we characterize the interaction between GR and a nGRE in the thymic stromal lymphopoetin (TSLP) promoter. We show using structural and mechanistic approaches that nGRE binding represents a new mode of sequence recognition by human GR and that nGREs prevent receptor dimerization through a unique GR-binding orientation and strong negative cooperativity, ensuring the presence of monomeric GR at repressive elements.
Collapse
|
199
|
Abstract
Asthma is a complex disorder of the airways that is characterized by T helper type 2 (Th2) inflammation. The pleiotrophic cytokine TSLP has emerged as an important player involved in orchestrating the inflammation seen in asthma and other atopic diseases. Early research elucidated the role of TSLP on CD4+ T cells, and recent work has revealed the impact of TSLP on multiple cell types. Furthermore, TSLP plays an important role in the sequential progression of atopic dermatitis to asthma, clarifying the key role of TSLP in the pathogenesis of asthma, a finding with therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Mohit Kashyap
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| |
Collapse
|
200
|
Borowski A, Vetter T, Kuepper M, Wohlmann A, Krause S, Lorenzen T, Virchow JC, Luttmann W, Friedrich K. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain. Cytokine 2012. [PMID: 23199813 DOI: 10.1016/j.cyto.2012.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine with a pivotal role in development and maintenance of atopic diseases such as allergic asthma and atopic dermatitis. Moreover, recent studies show an involvement of TSLP in the progression of various cancers. TSLP signaling is mediated by the TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor. It consists of the IL-7 receptor alpha chain (IL-7Rα), which is shared with the IL-7 receptor, and the TSLPRα chain as a specific subunit. Blocking signal release by TSLP without affecting IL-7 function is a potentially interesting option for the treatment of atopic diseases or certain tumors. By employing the extracellular domain of human TSLPRα chain (hTSLPRα(ex)) as an antigen, we generated a set of monoclonal antibodies. Several binders to native and/or denatured receptor protein were identified and characterized by cytometry and Western blot analysis. A screen based on a STAT3-driven reporter gene assay in murine pro-B cells expressing a functional hTSLPR yielded two hybridoma clones with specific antagonistic properties towards hTSLP, but not IL-7. Kinetic studies measuring blockade of hTSLP-dependent STAT phosphorylation in a TSLP-responsive cell line revealed an inhibitory constant in the nanomolar range.
Collapse
Affiliation(s)
- Andreas Borowski
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|