151
|
Shah VN, Chagot B, Chazin WJ. Calcium-Dependent Regulation of Ion Channels. CALCIUM BINDING PROTEINS 2006; 1:203-212. [PMID: 28757812 PMCID: PMC5531595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Calcium plays an important role in regulating hundreds of biological processes due to its primary role as one of the most ubiquitous second messengers. As a result, the levels of calcium are tightly regulated as are the peak and trough calcium concentrations during a calcium signal. Calcium levels are controlled via a variety of feedback mechanisms and exchangers/transporters. Here the role of calcium in the feedback regulation of ion channel function is reviewed, with an emphasis on the molecular mechanisms governing calcium-dependent function. In particular, the role of calcium in the regulation of voltage-gated sodium, calcium, and potassium channels are reviewed as well as its effects on the ryanodine receptor.
Collapse
Affiliation(s)
| | | | - Walter J. Chazin
- Correspondence to: Walter J. Chazin; Vanderbilt University; Center for Structural Biology; 5140 BIOSCI/Medical Research Building III; Nashville, Tennessee 37232-8725 USA; Tel.: 615.936.2210; Fax: 615.936.2211;
| |
Collapse
|
152
|
Filippov AK, Choi RCY, Simon J, Barnard EA, Brown DA. Activation of P2Y1 nucleotide receptors induces inhibition of the M-type K+ current in rat hippocampal pyramidal neurons. J Neurosci 2006; 26:9340-8. [PMID: 16957090 PMCID: PMC1855006 DOI: 10.1523/jneurosci.2635-06.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have shown previously that stimulation of heterologously expressed P2Y1 nucleotide receptors inhibits M-type K+ currents in sympathetic neurons. We now report that activation of endogenous P2Y1 receptors induces inhibition of the M-current in rat CA1/CA3 hippocampal pyramidal cells in primary neuron cultures. The P2Y1 agonist adenosine 5'-[beta-thio]diphosphate trilithium salt (ADPbetaS) inhibited M-current by up to 52% with an IC50 of 84 nM. The hydrolyzable agonist ADP (10 microM) produced 32% inhibition, whereas the metabotropic glutamate receptor 1/5 agonist DHPG [(S)-3,5-dihydroxyphenylglycine] (10 microM) inhibited M-current by 44%. The M-channel blocker XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride] produced 73% inhibition at 3 microM; neither ADPbetaS nor ADP produced additional inhibition in the presence of XE991. The effect of ADPbetaS was prevented by a specific P2Y1 antagonist, MRS 2179 (2'-deoxy-N'-methyladenosine-3',5'-bisphosphate tetra-ammonium salt) (30 microM). Inhibition of the M-current by ADPbetaS was accompanied by increased neuronal firing in response to injected current pulses. The neurons responding to ADPbetaS were judged to be pyramidal cells on the basis of (1) morphology, (2) firing characteristics, and (3) their distinctive staining for the pyramidal cell marker neurogranin. Strong immunostaining for P2Y1 receptors was shown in most cells in these cultures: 74% of the cells were positive for both P2Y1 and neurogranin, whereas 16% were only P2Y1 positive. These results show the presence of functional M-current-inhibitory P2Y1 receptors on hippocampal pyramidal neurons, as predicted from their effects when expressed in sympathetic neurons. However, the mechanism of inhibition in the two cell types seems to differ because, unlike nucleotide-mediated M-current inhibition in sympathetic neurons, that in hippocampal neurons did not appear to result from raised intracellular calcium.
Collapse
Affiliation(s)
- Alexander K Filippov
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | |
Collapse
|
153
|
Jeske NA, Patwardhan AM, Gamper N, Price TJ, Akopian AN, Hargreaves KM. Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. J Biol Chem 2006; 281:32879-90. [PMID: 16954222 PMCID: PMC2910918 DOI: 10.1074/jbc.m603220200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cannabinoids are known to have multiple sites of action in the nociceptive system, leading to reduced pain sensation. However, the peripheral mechanism(s) by which this phenomenon occurs remains an issue that has yet to be resolved. Because phosphorylation of TRPV1 (transient receptor potential subtype V1) plays a key role in the induction of thermal hyperalgesia in inflammatory pain models, we evaluated whether the cannabinoid agonist WIN 55,212-2 (WIN) regulates the phosphorylation state of TRPV1. Here, we show that treatment of primary rat trigeminal ganglion cultures with WIN led to dephosphorylation of TRPV1, specifically at threonine residues. Utilizing Chinese hamster ovary cell lines, we demonstrate that Thr(144) and Thr(370) were dephosphorylated, leading to desensitization of the TRPV1 receptor. This post-translational modification occurred through activation of the phosphatase calcineurin (protein phosphatase 2B) following WIN treatment. Furthermore, knockdown of TRPA1 (transient receptor potential subtype A1) expression in sensory neurons by specific small interfering RNA abolished the WIN effect on TRPV1 dephosphorylation, suggesting that WIN acts through TRPA1. We also confirm the importance of TRPA1 in WIN-induced dephosphorylation of TRPV1 in Chinese hamster ovary cells through targeted expression of one or both receptor channels. These results imply that the cannabinoid WIN modulates the sensitivity of sensory neurons to TRPV1 activation by altering receptor phosphorylation. In addition, our data could serve as a useful strategy in determining the potential use of certain cannabinoids as peripheral analgesics.
Collapse
Affiliation(s)
- Nathaniel A. Jeske
- Department of Endodontics, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Amol M. Patwardhan
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Nikita Gamper
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Theodore J. Price
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Kenneth M. Hargreaves
- Department of Endodontics, University of Texas Health Science Center, San Antonio, Texas 78229-3900
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229-3900
- To whom correspondence should be addressed: Dept. of Endodontics, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX, 78229-3900. Tel.: 210-567-3388; Fax: 210-567-3389;
| |
Collapse
|
154
|
Robbins J, Marsh SJ, Brown DA. Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides. J Neurosci 2006; 26:7950-61. [PMID: 16870740 PMCID: PMC6674212 DOI: 10.1523/jneurosci.2138-06.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 06/20/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022] Open
Abstract
M-type (Kv7) potassium channels are closed by Gq/11 G-protein-coupled receptors. Several membrane- or channel-associated molecules have been suggested to contribute to this effect, including depletion of phosphatidylinositol-4,5-bisphosphate (PIP2) and activation of Ca2+/calmodulin and protein kinase C. To facilitate further study of these pathways in intact neurons, we have devised novel membrane-targeted probes that can be applied from the outside of the neuron, by attaching a palmitoyl group to site-directed peptides ("palpeptides") (cf. Covic et al., 2002a,b). A palpeptide incorporating the 10-residue C terminus of Galphaq/11 reduced Gq/11-mediated M-current inhibition in sympathetic neurons by the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M but not Go-mediated inhibition of the N-type Ca2+ current by norepinephrine. Instead, the latter was inhibited by the corresponding Go palpeptide. A PIP2 palpeptide, based on the putative PIP2 binding domain of the Kv7.2 channel, inhibited M current (IC50 = approximately 1.5 microm) and enhanced inhibition by oxotremorine-M. Inhibition could not be attributed to activation of mAChRs, calcium influx, or block of M channels but was antagonized by intracellular diC8-PIP2 (dioctanoyl-phosphatidylinositol-4,5-bisphosphate), suggesting that it disrupted PIP2-M channel gating. A fluorescently tagged PIP2 palpeptide was highly targeted to the plasma membrane but did not accumulate in the cytoplasm. We suggest that these palpeptides are anchored in the plasma membrane via the palmitoyl group, such that the peptide moiety can interact with target molecules on the inner face of the membrane. The G-protein-replicating palpeptides were sequence specific and probably compete with the receptor for the cognate G-protein. The PIP2 palpeptide was not sequence specific so probably interacts electrostatically with anionic PIP2 head groups.
Collapse
|
155
|
Su CC, Li SY, Yang JJ, Su MC, Lin MJ. Studies of the effect of ionomycin on the KCNQ4 channel expressed in Xenopus oocytes. Biochem Biophys Res Commun 2006; 348:295-300. [PMID: 16876114 DOI: 10.1016/j.bbrc.2006.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
The effect of ionomycin on the human KCNQ4 channels expressed in Xenopus leavis oocytes was investigated. KCNQ4 channels expressed in Xenopus oocytes were measured using two-electrode voltage clamp. The activation of KCNQ4 current had slow activation kinetics and low threshold (approximately -50 mV). The expressed current of KCNQ4 showed the half-maximal activation (V(1/2)) was -17.8 mV and blocked almost completely by KCNQ4 channel blockers, linopirdine (300 microM) or bepridil (200 microM). The significant increase of KCNQ4 outward current induced by ionomycin (calcium salt) is about 1.7-fold of control current amplitude at +60 mV and shifted V(1/2) by approximately -8 mV (from -17.8 to -26.0 mV). This effect of ionomycin could be reversed by the further addition of BAPTA-AM (0.3 mM), a membrane-permeable calcium chelator. Furthermore, the increased effect of ionomycin on KCNQ4 current is abolished by pretreatment of linopirdine or bepridil. In contrast, direct cytoplasmic injection of calcium medium (up to 1 mM calcium, 50 nl) did not mimic the effect of ionomycin. In conclusion, the effect of ionomycin on enhancement of KCNQ4 current is independent of intracellular calcium mobilization and possibly acts on intramembrane hydrophobic site of KCNQ4 protein expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- Ching-Chyuan Su
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
156
|
Patwardhan AM, Jeske NA, Price TJ, Gamper N, Akopian AN, Hargreaves KM. The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc Natl Acad Sci U S A 2006; 103:11393-8. [PMID: 16849427 PMCID: PMC1544096 DOI: 10.1073/pnas.0603861103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cannabinoids can evoke antihyperalgesia and antinociception at a peripheral site of action. However, the signaling pathways mediating these effects are not clearly understood. We tested the hypothesis that certain cannabinoids directly inhibit peripheral capsaicin-sensitive nociceptive neurons by dephosphorylating and desensitizing transient receptor potential vanilloid 1 (TRPV1) via a calcium calcineurin-dependent mechanism. Application of the cannabinoid WIN 55,212-2 (WIN) to cultured trigeminal (TG) neurons or isolated skin biopsies rapidly and significantly inhibited capsaicin-activated inward currents and neuropeptide exocytosis by a mechanism requiring the presence of extracellular calcium. The inhibitory effect did not involve activation of G protein-coupled cannabinoid receptors, because neither pertussis toxin nor GDPbetaS treatments altered the WIN effect. However, application of WIN-activated calcineurin, as measured by nuclear translocation of the nuclear factor of activated T cells (NFAT)c4 transcription factor, dephosphorylated TRPV1. The WIN-induced desensitization of TRPV1 was mediated by calcineurin, because the application of structurally distinct calcineurin antagonists (calcineurin autoinhibitory peptide and cyclosporine/cyclophilin complex) abolished WIN-induced inhibition of capsaicin-evoked inward currents and neuropeptide exocytosis. This mechanism also contributed to peripheral antinociceptive/antihyperalgesic effects of WIN because pretreatment with the calcineurin antagonist calcineurin autoinhibitory peptide (CAIP) significantly reduced peripherally mediated WIN effects in two behavioral models. Collectively, these data demonstrate that cannabinoids such as WIN directly inhibit TRPV1 functional activities via a calcineurin pathway that represents a mechanism of cannabinoid actions at peripheral sites.
Collapse
Affiliation(s)
- Amol M. Patwardhan
- Departments of Pharmacology and
- Endodontics, University of Texas Health Science Center, San Antonio, TX 78229
| | - Nathaniel A. Jeske
- Endodontics, University of Texas Health Science Center, San Antonio, TX 78229
| | - Theodore J. Price
- Department of Anesthesiology and Dentistry, Center for Research on Pain, McGill University, Montréal, QC, Canada H3A 2B2; and
| | - Nikita Gamper
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Armen N. Akopian
- Endodontics, University of Texas Health Science Center, San Antonio, TX 78229
| | - Kenneth M. Hargreaves
- Departments of Pharmacology and
- Endodontics, University of Texas Health Science Center, San Antonio, TX 78229
- To whom correspondence should be addressed at:
Department of Endodontics, University of Texas Health Science Center, 7702 Floyd Curl Drive, San Antonio, TX 78229. E-mail:
| |
Collapse
|
157
|
Zaika O, Lara LS, Gamper N, Hilgemann DW, Jaffe DB, Shapiro MS. Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+ channels. J Physiol 2006; 575:49-67. [PMID: 16777936 PMCID: PMC1819424 DOI: 10.1113/jphysiol.2006.114074] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Voltage-gated Kv7 (KCNQ) channels underlie important K+ currents in many different types of cells, including the neuronal M current, which is thought to be modulated by muscarinic stimulation via depletion of membrane phosphatidylinositol 4,5-bisphosphate (PIP2). We studied the role of modulation by angiotensin II (angioII) of M current in controlling discharge properties of superior cervical ganglion (SCG) sympathetic neurons and the mechanism of action of angioII on cloned Kv7 channels in a heterologous expression system. In SCG neurons, which endogenously express angioII AT1 receptors, application of angioII for 2 min produced an increase in neuronal excitability and a decrease in spike-frequency adaptation that partially returned to control values after 10 min of angioII exposure. The increase in excitability could be simulated in a computational model by varying only the amount of M current. Using Chinese hamster ovary (CHO) cells expressing cloned Kv7.2 + 7.3 heteromultimers and AT1 receptors studied under perforated patch clamp, angioII induced a strong suppression of the Kv7.2/7.3 current that returned to near baseline within 10 min of stimulation. The suppression was blocked by the phospholipase C inhibitor edelfosine. Under whole-cell clamp, angioII moderately suppressed the Kv7.2/7.3 current whether or not intracellular Ca2+ was clamped or Ca2+ stores depleted. Co-expression of PI(4)5-kinase in these cells sharply reduced angioII inhibition, but did not augment current amplitudes, whereas co-expression of a PIP2 5'-phosphatase sharply reduced current amplitudes, and also blunted the inhibition. The rebound of the current seen in perforated-patch recordings was blocked by the PI4-kinase inhibitor, wortmannin (50 microM), suggesting that PIP2 re-synthesis is required for current recovery. High-performance liquid chromatographic analysis of anionic phospholipids in CHO cells stably expressing AT1 receptors revealed that PIP2 and phosphatidylinositol 4-phosphate levels are to be strongly depleted after 2 min of stimulation with angioII, with a partial rebound after 10 min. The results of this study establish how angioII modulates M channels, which in turn affects the integrative properties of SCG neurons.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Physiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
158
|
Kang D, Han J, Kim D. Mechanism of inhibition of TREK-2 (K2P10.1) by the Gq-coupled M3 muscarinic receptor. Am J Physiol Cell Physiol 2006; 291:C649-56. [PMID: 16672694 DOI: 10.1152/ajpcell.00047.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TREK-2 is a member of the two-pore domain K(+) channel family and provides part of the background K(+) current in many types of cells. Neurotransmitters that act on receptors coupled to G(q) strongly inhibit TREK-2 and thus enhance cell excitability. The molecular basis for the inhibition of TREK-2 was studied. In COS-7 cells expressing TREK-2 and M(3) receptor, acetylcholine (ACh) applied to the bath solution strongly inhibited the whole cell current, and this was markedly reduced in the presence of U-73122, an inhibitor of PLC. The inhibition was also observed in cell-attached patches when ACh was applied to the bath solution. In inside-out patches, direct application of guanosine 5'-O-(3-thiotriphosphate) (10 microM), Ca(2+) (5 microM), or diacylglycerol (DAG; 10 microM) produced no inhibition of TREK-2 in >75% of patches tested. Phosphatidic acid, a product of DAG kinase, had no effect on TREK-2. Pretreatment of cells with 20 microM wortmannin, an inhibitor of phosphatidylinositol kinases, did not affect the inhibition or the recovery from inhibition of TREK-2, suggesting that phosphatidylinositol 4,5-bisphosphate depletion did not mediate the inhibition. Pretreatment of cells with a protein kinase C inhibitor (bisindolylmaleimide, 10 microM) markedly inhibited ACh-induced inhibition of TREK-2. Mutation of two putative PKC sites (S326A, S359C) abolished inhibition by ACh. Mutation of these amino acids to aspartate to mimic the phosphorylated state resulted in diminished TREK-2 current and no inhibition by ACh. These results suggest that the agonist-induced inhibition of TREK-2 via M(3) receptor occurs primarily via PKC-mediated phosphorylation.
Collapse
Affiliation(s)
- Dawon Kang
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
159
|
Ghosh S, Nunziato DA, Pitt GS. KCNQ1 Assembly and Function Is Blocked by Long-QT Syndrome Mutations That Disrupt Interaction With Calmodulin. Circ Res 2006; 98:1048-54. [PMID: 16556866 DOI: 10.1161/01.res.0000218863.44140.f2] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calmodulin (CaM) has been recognized as an obligate subunit for many ion channels in which its function has not been clearly established. Because channel subunits associate early during channel biosynthesis, CaM may provide a mechanism for Ca
2+
-dependent regulation of channel formation. Here we show that CaM is a constitutive component of KCNQ1 K
+
channels, the most commonly mutated long-QT syndrome (LQTS) locus. CaM not only acts as a regulator of channel gating, relieving inactivation in a Ca
2+
-dependent manner, but it also contributes to control of channel assembly. Formation of functional tetramers requires CaM interaction with the KCNQ1 C-terminus. This CaM-regulated process is essential: LQTS mutants that disrupt CaM interaction prevent functional assembly of channels in a dominant-negative manner. These findings offer a new mechanism for LQTS defects and provide a basis for understanding novel ways that intracellular Ca
2+
and CaM regulate ion channels.
Collapse
Affiliation(s)
- Smita Ghosh
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
160
|
Shamgar L, Ma L, Schmitt N, Haitin Y, Peretz A, Wiener R, Hirsch J, Pongs O, Attali B. Calmodulin Is Essential for Cardiac
I
KS
Channel Gating and Assembly. Circ Res 2006; 98:1055-63. [PMID: 16556865 DOI: 10.1161/01.res.0000218979.40770.69] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The slow
I
KS
K
+
channel plays a major role in repolarizing the cardiac action potential and consists of the assembly of KCNQ1 and KCNE1 subunits. Mutations in either KCNQ1 or KCNE1 genes produce the long-QT syndrome, a life-threatening ventricular arrhythmia. Here, we show that long-QT mutations located in the KCNQ1 C terminus impair calmodulin (CaM) binding, which affects both channel gating and assembly. The mutations produce a voltage-dependent macroscopic inactivation and dramatically alter channel assembly. KCNE1 forms a ternary complex with wild-type KCNQ1 and Ca
2+
-CaM that prevents inactivation, facilitates channel assembly, and mediates a Ca
2+
-sensitive increase of
I
KS-
current, with a considerable Ca
2+
-dependent left-shift of the voltage-dependence of activation. Coexpression of KCNQ1 or
I
KS
channels with a Ca
2+
-insensitive CaM mutant markedly suppresses the currents and produces a right shift in the voltage-dependence of channel activation. KCNE1 association to KCNQ1 long-QT mutants significantly improves mutant channel expression and prevents macroscopic inactivation. However, the marked right shift in channel activation and the subsequent decrease in current amplitude cannot restore normal levels of
I
KS
channel activity. Our data indicate that in healthy individuals, CaM binding to KCNQ1 is essential for correct channel folding and assembly and for conferring Ca
2+
-sensitive
I
KS
-current stimulation, which increases the cardiac repolarization reserve and hence prevents the risk of ventricular arrhythmias.
Collapse
Affiliation(s)
- Liora Shamgar
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
The pore-forming subunits of many ion channels exist in the membrane as one component of a regulatory protein complex, which may also contain one or more signaling proteins that contribute to the modulation of channel properties. Here I review this field, with emphasis on several different kinds of neuronal potassium channels for which the evidence for ion channel signaling complexes is most compelling. A key challenge for the future is to determine the roles of such signaling protein complexes in neuronal physiology and behavior.
Collapse
Affiliation(s)
- Irwin B Levitan
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
162
|
Wen H, Weiger TM, Ferguson TS, Shahidullah M, Scott SS, Levitan IB. A Drosophila KCNQ channel essential for early embryonic development. J Neurosci 2006; 25:10147-56. [PMID: 16267222 PMCID: PMC6725806 DOI: 10.1523/jneurosci.3086-05.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian voltage-dependent KCNQ channels are responsible for distinct types of native potassium currents and are associated with several human diseases. We cloned a novel Drosophila KCNQ channel (dKCNQ) based on its sequence homology to the mammalian genes. When expressed in Chinese hamster ovary cells, dKCNQ gives rise to a slowly activating and slowly deactivating current that activates in the subthreshold voltage range. Like the M-current produced by mammalian KCNQ channels, dKCNQ current is sensitive to the KCNQ-specific blocker linopirdine and is suppressed by activation of a muscarinic receptor. dKCNQ is also similar to the mammalian channels in that it binds calmodulin (CaM), and CaM binding is necessary to produce functional currents. In situ hybridization analysis demonstrates that dKCNQ mRNA is present in brain cortical neurons, the cardia (proventriculus), and the nurse cells and oocytes of the ovary. We generated mutant flies with deletions in the genomic sequence of dKCNQ. Embryos produced by homozygous deletion females exhibit disorganized nuclei and fail to hatch, suggesting strongly that a maternal contribution of dKCNQ protein and/or mRNA is essential for early embryonic development.
Collapse
Affiliation(s)
- Hua Wen
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
163
|
Shen W, Hamilton SE, Nathanson NM, Surmeier DJ. Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J Neurosci 2006; 25:7449-58. [PMID: 16093396 PMCID: PMC6725301 DOI: 10.1523/jneurosci.1381-05.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In response to glutamatergic synaptic drive, striatal medium spiny neurons in vivo transition to a depolarized "up state" near spike threshold. In the up state, medium spiny neurons either depolarize enough to spike or remain below spike threshold and are silent before returning to the hyperpolarized "down state." Previous work has suggested that subthreshold K+ channel currents were responsible for this dichotomous behavior, but the channels giving rise to the current and the factors determining its engagement have been a mystery. To move toward resolution of these questions, perforated-patch recordings from medium spiny neurons in tissue slices were performed. K+ channels with pharmacological and kinetic features of KCNQ channels potently regulated spiking at up-state potentials. Single-cell reverse transcriptase-PCR confirmed the expression of KCNQ2, KCNQ3, and KCNQ5 mRNAs in medium spiny neurons. KCNQ channel currents in these cells were potently reduced by M1 muscarinic receptors, because the effects of carbachol were blocked by M1 receptor antagonists and lost in neurons lacking M1 receptors. Reversal of the modulation was blocked by a phosphoinositol 4-kinase inhibitor, indicating a requirement for phosphotidylinositol 4,5-bisphosphate resynthesis for recovery. Inhibition of protein kinase C reduced the efficacy of the muscarinic modulation. Finally, acceleration of cholinergic interneuron spiking with 4-aminopyridine mimicked the effects of exogenous agonist application. Together, these results show that KCNQ channels are potent regulators of the excitability of medium spiny neurons at up-state potentials, and they are modulated by intrastriatal cholinergic interneurons, providing a mechanistic explanation for variability in spiking during up states seen in vivo.
Collapse
Affiliation(s)
- Weixing Shen
- Department of Physiology, Institute for Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
164
|
Li Y, Gamper N, Hilgemann DW, Shapiro MS. Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci 2006; 25:9825-35. [PMID: 16251430 PMCID: PMC6725574 DOI: 10.1523/jneurosci.2597-05.2005] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated Kv7 (KCNQ) channels underlie important K+ currents, including the neuronal M current, and are thought to be sensitive to membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2 depletion to underlie muscarinic receptor inhibition. We studied regulation of Kv7.2-7.4 channels by PIP2 in Chinese hamster ovary (CHO) cells using single-channel and whole-cell patch clamp and biochemical analysis. Maximal open probabilities (Po) of Kv7.2-Kv7.4 homomultimers and of Kv7.2/7.3 heteromultimers were found to be strongly dependent on the [diC8-PIP2] applied to inside-out patches, with differential apparent affinities that correlate with their maximal Po in on-cell mode. Unitary conductance was not affected by PIP2. Raising tonic [PIP2] by coexpression of phosphatidylinositol (4)5-kinase increased the maximal Po of both Kv7.2 and Kv7.2/7.3 channels studied in on-cell patches and increased whole-cell Kv7.2, but not Kv7.3, current amplitudes. In cells coexpressed with muscarinic M1 receptors, bath application of muscarinic agonist reduced the maximal Po of Kv7.2/7.3 channels isolated in on-cell patches. Coexpression of a PIP2 sequestering construct moderately reduced whole-cell Kv7.2/7.3 currents, and coexpression of a construct containing a PIP2 phosphatase nearly abolished them. Finally, biochemical analysis of anionic phospholipids in CHO cells stably expressing M1 receptors shows that PIP2 and PIP are nearly depleted 1 min after muscarinic stimulation, with an unexpected rebound after 10 min. These results strongly support the direct regulation of Kv7 channels by PIP2 and its depletion as the mechanism of muscarinic suppression of M channels. Divergent apparent affinities of Kv7.2-7.4 channels for PIP2 may underlie their highly differential maximal Po observed in cell-attached patches.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
165
|
Beisel KW, Rocha-Sanchez SM, Morris KA, Nie L, Feng F, Kachar B, Yamoah EN, Fritzsch B. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J Neurosci 2005; 25:9285-93. [PMID: 16207888 PMCID: PMC6725753 DOI: 10.1523/jneurosci.2110-05.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human KCNQ4 mutations known as DFNA2 cause non-syndromic, autosomal-dominant, progressive high-frequency hearing loss in which the cellular and molecular basis is unclear. We provide immunofluorescence data showing that Kcnq4 expression in the adult cochlea has both longitudinal (base to apex) and radial (inner to outer hair cells) gradients. The most intense labeling is in outer hair cells at the apex and in inner hair cells as well as spiral ganglion neurons at the base. Spatiotemporal expression studies show increasing intensity of KCNQ4 protein labeling from postnatal day 21 (P21) to P120 mice that is most apparent in inner hair cells of the middle turn. We have identified four alternative splice variants of Kcnq4 in mice. The alternative use of exons 9-11 produces three transcript variants (v1-v3), whereas the fourth variant (v4) skips all three exons; all variants have the same amino acid sequence at the C termini. Both reverse transcription-PCR and quantitative PCR analyses demonstrate that these variants have differential expression patterns along the length of the mouse organ of Corti and spiral ganglion neurons. Our expression data suggest that the primary defect leading to high-frequency loss in DFNA2 patients may be attributable to high levels of the dysfunctional Kcnq4_v3 variant in the spiral ganglion and inner hair cells in the basal hook region. Progressive hearing loss associated with aging may result from an increasing mutational load expansion toward the apex in inner hair cells and spiral ganglion neurons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Cochlea/cytology
- Exons
- Ganglia, Spinal/cytology
- Gene Expression/physiology
- Gene Expression Regulation, Developmental/physiology
- Hair Cells, Auditory, Inner/metabolism
- Hearing Loss, High-Frequency/genetics
- Hearing Loss, High-Frequency/metabolism
- KCNQ Potassium Channels/genetics
- KCNQ Potassium Channels/metabolism
- Mice
- Mice, Inbred Strains
- Neurons, Afferent/metabolism
- RNA Splicing/genetics
Collapse
Affiliation(s)
- Kirk W Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178, USA.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Shahidullah M, Santarelli LC, Wen H, Levitan IB. Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc Natl Acad Sci U S A 2005; 102:16454-9. [PMID: 16263935 PMCID: PMC1283421 DOI: 10.1073/pnas.0503966102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
KCNQ2 and KCNQ3 ion channel pore-forming subunits coassemble to form a heteromeric voltage-gated potassium channel that underlies the neuronal M-current. We and others showed that calmodulin (CaM) binds to specific sequence motifs in the C-terminal domain of KCNQ2 and KCNQ3. We also found that a fusion protein containing a KCNQ2 CaM-binding motif, coexpressed with KCNQ2 and KCNQ3, competes with the full-length KCNQ2 channel for CaM binding and thereby decreases KCNQ2/3 current density in heterologous cells. We have explored the importance of CaM binding for the generation of the native M-current and regulation of membrane excitability in rat hippocampal neurons in primary cell culture. M-current properties were studied in cultured neurons by using whole-cell patch clamp recording. The M-current density is lower in neurons expressing the CaM-binding motif fusion protein, as compared to control neurons transfected with vector alone. In contrast, no change in M-current density is observed in cells transfected with a mutant fusion protein that is unable to bind CaM. The CaM-binding fusion protein does not influence the rapidly inactivating A-current or the large conductance calcium-activated potassium channel-mediated fast spike afterhyperpolarization in neurons in which the M-current is suppressed. Furthermore, the CaM-binding fusion protein, but not the nonbinding mutant, increases both the number of action potentials evoked by membrane depolarization and the size of the spike afterdepolarization. These results suggest that CaM binding regulates M-channel function and membrane excitability in the native neuronal environment.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
167
|
Abstract
K(+) channels play a crucial role in regulating the excitability of neurons. Many K(+) channels are, in turn, regulated by neurotransmitters. One of the first neurotransmitter-regulated channels to be identified, some 25 years ago, was the M channel. This was categorized as such because its activity was inhibited through stimulation of muscarinic acetylcholine receptors. M channels are now known to be composed of subunits of the Kv7 (KCNQ) K(+) channel family. However, until recently, the link between the receptors and the channels has remained elusive. Here, we summarize recent developments that have begun to clarify this link and discuss their implications for physiology and medicine.
Collapse
Affiliation(s)
- Patrick Delmas
- Laboratoire de Neurophysiologie Cellulaire, UMR 6150 CNRS, Faculté de Médecine, IFR Jean Roche, Bd. Pierre Dramard, 13916 Marseille Cedex 20, France.
| | | |
Collapse
|
168
|
Delmas P, Coste B, Gamper N, Shapiro MS. Phosphoinositide lipid second messengers: new paradigms for calcium channel modulation. Neuron 2005; 47:179-82. [PMID: 16039560 DOI: 10.1016/j.neuron.2005.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuronal Ca2+ channels are key transducers coupling excitability to cellular function. As such, they are tightly regulated by multiple G protein-signaling pathways that finely tune their activity. In addition to fast, direct G(beta)gamma modulation of Ca2+ channels, a slower Galpha(q/11)-mediated mechanism has remained enigmatic despite intensive study. Recent work suggests that membrane phosphoinositides are crucial determinants of Ca2+ channel activity. Here, we discuss their role in Ca2+ channel modulation and the leading theories that seek to elucidate the underlying molecular details of the so-called "mysterious" G(q/11)-mediated signal.
Collapse
Affiliation(s)
- Patrick Delmas
- Laboratoire de Neurophysiologie Cellulaire, CNRS, UMR 6150, Faculté de Médecine, IFR Jean Roche, Bd. Pierre Dramard, 13916 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
169
|
Wong RKS, Bianchi R, Chuang SC, Merlin LR. Group I mGluR-induced epileptogenesis: distinct and overlapping roles of mGluR1 and mGluR5 and implications for antiepileptic drug design. Epilepsy Curr 2005; 5:63-8. [PMID: 16059439 PMCID: PMC1176311 DOI: 10.1111/j.1535-7597.2005.05207.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The group I metabotropic glutamate receptor subtypes, mGluR1 and mGluR5, have both distinct and overlapping actions in epileptogenesis. Data are reviewed revealing how activation of these receptor subtypes participates in the induction and maintenance of the long-lasting epileptiform discharges elicited in the hippocampal circuit. Differences in the cellular actions and regional distributions of mGluR1 and mGluR5 provide hints regarding the potential usefulness and limitations of subtype-specific antagonists as antiepileptic agents.
Collapse
Affiliation(s)
- Robert K S Wong
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, USA
| | | | | | | |
Collapse
|
170
|
Nakajo K, Kubo Y. Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes. J Physiol 2005; 569:59-74. [PMID: 16179364 PMCID: PMC1464213 DOI: 10.1113/jphysiol.2005.094995] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well established that stimulation of G(q)-coupled receptors such as the M1 muscarinic acetylcholine receptor inhibits KCNQ/M currents. While it is generally accepted that this muscarinic inhibition is mainly caused by the breakdown of PIP(2), the role of the subsequent activation of protein kinase C (PKC) is not well understood. By reconstituting M currents in Xenopus oocytes, we observed that stimulation of coexpressed M1 receptors with 10 microm oxotremorine M (oxo-M) induces a positive shift (4-30 mV, depending on which KCNQ channels are expressed) in the conductance-voltage relationship (G-V) of KCNQ channels. When we applied phorbol 12-myristate 13-acetate (PMA), a potent PKC activator, we observed a large positive shift (17.8 +/- 1.6 mV) in the G-V curve for KCNQ2, while chelerythrine, a PKC inhibitor, attenuated the shift caused by the stimulation of M1 receptors. By contrast, reducing PIP(2) had little effect on the G-V curve for KCNQ2 channels; although pretreating cells with 10 mum wortmannin for 30 min reduced KCNQ2 current amplitude by 80%, the G-V curve was shifted only slightly (5 mV). Apparently, the shift induced by muscarinic stimulation in Xenopus oocytes was mainly caused by PKC activation. When KCNQ2/3 channels were expressed in HEK 293T cells, the G-V curve seemed already to be shifted in a positive direction, even before activation of PKC, and PMA failed to shift the curve any further. That alkaline phosphatase in the patch pipette shifted the G-V curve in a negative direction suggests KCNQ2/3 channels are constitutively phosphorylated in HEK 293T cells.
Collapse
Affiliation(s)
- Koichi Nakajo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.
| | | |
Collapse
|
171
|
Jensen HS, Callø K, Jespersen T, Jensen BS, Olesen SP. The KCNQ5 potassium channel from mouse: A broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. ACTA ACUST UNITED AC 2005; 139:52-62. [PMID: 15963599 DOI: 10.1016/j.molbrainres.2005.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 04/29/2005] [Accepted: 05/09/2005] [Indexed: 12/24/2022]
Abstract
The KCNQ proteins compose a sub-group of the voltage-activated potassium channel family. The family consists of five members (KCNQ1 to 5--also named Kv7.1 to Kv7.5) encoded by single genes, which all give rise to proteins forming slowly activating potassium-selective ion channels. The physiological importance of the KCNQ channel family is emphasized by the fact that mutations in four of the five genes have been linked to human pathologies (KCNQ1 to 4). Here, we present the cloning and characterization of a novel KCNQ5 ortholog from mouse isolated by homology cloning from total mouse brain RNA (GenBank accession number: AY679158). The predicted protein is 95% identical to human KCNQ5. Upon expression in Xenopus oocytes, these proteins form voltage-dependent slowly activating channels with half-maximal activation at -21 mV. Our functional characterization revealed three novel modes of modulation: pH-dependent potentiation by Zn2+ (EC50 = 21.8 microM at pH 7.4), inhibition by acidification (IC50 = 0.75 microM; pKa = 6.1), and regulation by small changes in cell volume. Furthermore, the channels are activated by the anti-convulsant drug retigabine (EC50 = 2.0 microM) and inhibited by the M-current blockers linopiridine and XE-991. Finally, real-time RT-PCR was used to quantify the expression profile in a wide range of mouse tissues. These experiments revealed a relatively broad expression pattern in the nervous system but also expression in other tissues. Highest overall expression levels were observed in cortex and hippocampus. This study shows that murine KCNQ5 channels, in addition to sharing biophysical and pharmacological characteristics with the human ortholog, are tightly regulated by physiological stimuli such as changes in extracellular Zn2+, pH, and tonicity, thus adding to the complex regulation of these channels.
Collapse
|
172
|
Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS. Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels. J Neurosci 2005; 24:10980-92. [PMID: 15574748 PMCID: PMC6730206 DOI: 10.1523/jneurosci.3869-04.2004] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulation of voltage-gated Ca2+ channels via G-protein-coupled receptors is a prime mechanism regulating neurotransmitter release and synaptic plasticity. Despite extensive studies, the molecular mechanism underlying Gq/11-mediated modulation remains unclear. We found cloned and native N-type Ca2+ channels to be regulated by phosphatidylinositol [correction] 4,5-bisphosphate (PIP2). In inside-out oocyte patches, PIP2 greatly attenuated or reversed the observed rundown of expressed channels. In sympathetic neurons, muscarinic M1 ACh receptor suppression of the Ca2+ current (ICa) was temporally correlated with PIP2 hydrolysis, blunted by PIP2 in whole-cell pipettes, attenuated by expression of PIP2-sequestering proteins, and became irreversible when PIP2 synthesis was blocked. We also probed mechanisms of receptor specificity. Although bradykinin also induced PIP2 hydrolysis, it did not inhibit ICa. However, bradykinin receptors became nearly as effective as M1 receptors when PIP2 synthesis, IP3 receptors, or the activity of neuronal Ca2+ sensor-1 were blocked, suggesting that bradykinin receptor-induced intracellular Ca2+ increases stimulate PIP2 synthesis, compensating for PIP2 hydrolysis. We suggest that differential use of PIP2 signals underlies specificity of Gq/11-coupled receptor actions on the channels
Collapse
MESH Headings
- 1-Phosphatidylinositol 4-Kinase/physiology
- Animals
- Biolistics
- Bradykinin/pharmacology
- Calcium/metabolism
- Calcium Channels, N-Type/chemistry
- Calcium Channels, N-Type/physiology
- Calcium Signaling
- Calcium-Binding Proteins/physiology
- Cells, Cultured
- Female
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Ion Transport
- Isoenzymes/physiology
- Male
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/physiology
- Neurons/physiology
- Oocytes
- Patch-Clamp Techniques
- Phosphatidylinositol 4,5-Diphosphate/biosynthesis
- Phosphatidylinositol 4,5-Diphosphate/physiology
- Phospholipase C delta
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Recombinant Fusion Proteins/physiology
- Superior Cervical Ganglion/cytology
- Transfection
- Type C Phospholipases/physiology
- Xenopus laevis
Collapse
Affiliation(s)
- Nikita Gamper
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
173
|
Zhang R, Dzhura I, Grueter CE, Thiel W, Colbran RJ, Anderson ME. A dynamic α‐β inter‐subunit agonist signaling complex is a novel feedback mechanism for regulating L‐type Ca
2+
channel opening. FASEB J 2005; 19:1573-5. [PMID: 15994413 DOI: 10.1096/fj.04-3283fje] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
174
|
Suh BC, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 2005; 15:370-8. [PMID: 15922587 DOI: 10.1016/j.conb.2005.05.005] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/05/2005] [Indexed: 12/20/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate is a signaling phospholipid of the plasma membrane that has a dynamically changing concentration. In addition to being the precursor of inositol trisphosphate and diacylglycerol, it complexes with and regulates many cytoplasmic and membrane proteins. Recent work has characterized the regulation of a wide range of ion channels by phosphatidylinositol 4,5-bisphosphate, helping to redefine the role of this lipid in cells and in neurobiology. In most cases, phosphatidylinositol 4,5-bisphosphate increases channel activity, and its hydrolysis by phospholipase C reduces channel activity.
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
175
|
Abstract
The human KCNQ gene family encodes potassium channels linked to several genetic syndromes including neonatal epilepsy, cardiac arrhythmia, and progressive deafness. KCNQ channels form M-type potassium channels, which are critical regulators of neuronal excitability that mediate autonomic responses, pain, and higher brain function. Fundamental mechanisms of the normal and abnormal cellular roles for these channels may be gained from their study in simple model organisms. Here we report that a multigene family of KCNQ-like channels is present in the nematode, Caenorhabditis elegans. We show that many aspects of the functional properties, tissue expression pattern, and modulation of these C. elegans channels are conserved, including suppression by the M1 muscarinic receptor. We also describe a conserved mechanism of modulation by diacylglycerol for a subset of C. elegans and vertebrate KCNQ/KQT channels, which is dependent upon the carboxyl-terminal domains of channel subunits and activated protein kinase C.
Collapse
Affiliation(s)
- Aguan D Wei
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
176
|
Gamper N, Li Y, Shapiro MS. Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell 2005; 16:3538-51. [PMID: 15901836 PMCID: PMC1182296 DOI: 10.1091/mbc.e04-09-0849] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Calmodulin modulation of ion channels has emerged as a prominent theme in biology. The sensitivity of KCNQ1-5 K+ channels to modulation by Ca2+/calmodulin (CaM) was studied using patch-clamp, Ca2+ imaging, and biochemical and pharmacological approaches. Coexpression of CaM in Chinese hamster ovary (CHO) cells strongly reduced currents of KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3. In simultaneous current recording/Ca2+ imaging experiments, CaM conferred Ca2+ sensitivity to KCNQ4 and KCNQ5, but not to KCNQ1, KCNQ3, or KCNQ1/KCNE1 channels. A chimera constructed from the carboxy terminus of KCNQ4 and the rest KCNQ1 displayed Ca2+ sensitivity similar to KCNQ4. Chimeras constructed from different lengths of the KCNQ4 carboxy terminal and the rest KCNQ3 localized a region that confers sensitivity to Ca2+/CaM. Lobe-specific mutations of CaM revealed that its amino-terminal lobe mediates the Ca2+ sensitivity of the KCNQ/CaM complex. The site of CaM action within the channel carboxy terminus overlaps with that of the KCNQ opener N-ethylmaleimide (NEM). We found that CaM overexpression reduced NEM augmentation of KCNQ2, KCNQ4, and KCNQ5, and NEM pretreatment reduced Ca2+/CaM-mediated suppression of M current in sympathetic neurons by bradykinin. We propose that two functionally distinct types of carboxy termini underlie the observed differences among this channel family.
Collapse
Affiliation(s)
- Nikita Gamper
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
177
|
Gamper N, Stockand JD, Shapiro MS. The use of Chinese hamster ovary (CHO) cells in the study of ion channels. J Pharmacol Toxicol Methods 2005; 51:177-85. [PMID: 15862463 DOI: 10.1016/j.vascn.2004.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 11/27/2022]
Abstract
The line of epithelial-like Chinese hamster ovary (CHO) cells was initiated by T.T. Puck in 1957. Since then, CHO cells have become a widely used mammalian expression system in industry and science. This paper discusses the different features of CHO cell physiology as well as the specific aspects of using these cells for ion channel studies; among the discussed features are the culturing and transfection of CHO cells, details of electrophysiological recordings from them and applications for the study of ion channel physiology and pharmacology. Examples of successful reconstitution of mammalian ion channels in CHO cells discussed in the paper include reconstitution of KCNQ channel regulation by muscarinic acetylcholine receptors and the study of the amiloride-sensitivity of epithelial sodium channels (ENaC).
Collapse
Affiliation(s)
- Nikita Gamper
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio TX 78229, USA
| | | | | |
Collapse
|
178
|
Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC, Brown DA, Marsh SJ. Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci 2005; 25:3400-13. [PMID: 15800195 PMCID: PMC6724893 DOI: 10.1523/jneurosci.3231-04.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 02/11/2005] [Accepted: 02/11/2005] [Indexed: 10/25/2022] Open
Abstract
The relationship between receptor-induced membrane phosphatidylinositol-4'5'-bisphosphate (PIP2) hydrolysis and M-current inhibition was assessed in single-dissociated rat sympathetic neurons by simultaneous or parallel recording of membrane current and membrane-to-cytosol translocation of the fluorescent PIP2/inositol 1,4,5-trisphosphate (IP3)-binding peptide green fluorescent protein-tagged pleckstrin homology domain of phospholipase C (GFP-PLCdelta-PH). The muscarinic receptor agonist oxotremorine-M produced parallel time- and concentration-dependent M-current inhibition and GFP-PLCdelta-PH translocation; bradykinin also produced parallel time-dependent inhibition and translocation. Phosphatidylinositol-4-phosphate-5-kinase (PI5-K) overexpression reduced both M-current inhibition and GFP-PLCdelta-PH translocation by both oxotremorine-M and bradykinin. These effects were partly reversed by wortmannin, which inhibits phosphatidylinositol-4-kinase (PI4-K). PI5-K overexpression also reduced the inhibitory action of oxotremorine-M on PIP2-gated G-protein-gated inward rectifier (Kir3.1/3.2) channels; bradykinin did not inhibit these channels. Overexpression of neuronal calcium sensor-1 protein (NCS-1), which increases PI4-K activity, did not affect responses to oxotremorine-M but reduced both fluorescence translocation and M-current inhibition by bradykinin. Using an intracellular IP3 membrane fluorescence-displacement assay, initial mean concentrations of membrane [PIP2] were estimated at 261 microm (95% confidence limit; 192-381 microm), rising to 693 microm (417-1153 microm) in neurons overexpressing PI5-K. Changes in membrane [PIP2] during application of oxotremorine-M were calculated from fluorescence data. The results, taken in conjunction with previous data for KCNQ2/3 (Kv7.2/Kv7.3) channel gating by PIP2 (Zhang et al., 2003), accorded with the hypothesis that the inhibitory action of oxotremorine-M on M current resulted from depletion of PIP2. The effects of bradykinin require additional components of action, which might involve IP3-induced Ca2+ release and consequent M-channel inhibition (as proposed previously) and stimulation of PIP2 synthesis by Ca2+-dependent activation of NCS-1.
Collapse
Affiliation(s)
- Joanna S Winks
- 1Ion Channel Pharmacology Group, IPC 388, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent CT13 9NJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
179
|
Chambard JM, Ashmore JF. Regulation of the voltage-gated potassium channel KCNQ4 in the auditory pathway. Pflugers Arch 2005; 450:34-44. [PMID: 15660259 DOI: 10.1007/s00424-004-1366-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 10/21/2004] [Indexed: 10/25/2022]
Abstract
The potassium channel KCNQ4, expressed in the mammalian cochlea, has been associated tentatively with an outer hair cell (OHC) potassium current, I(K,n), a current distinguished by an activation curve shifted to exceptionally negative potentials. Using CHO cells as a mammalian expression system, we have examined the properties of KCNQ4 channels under different phosphorylation conditions. The expressed current showed the typical KCNQ4 voltage-dependence, with a voltage for half-maximal activation (V(1/2)) of -25 mV, and was blocked almost completely by 200 microM linopirdine. Application of 8-bromo-cAMP or the catalytic sub-unit of PKA shifted V(1/2) by approximately -10 and -20 mV, respectively. Co-expression of KCNQ4 and prestin, the OHC motor protein, altered the voltage activation by a further -15 mV. Currents recorded with less than 1 nM Ca(2+) in the pipette ran down slowly (12% over 5 min). Buffering the pipette Ca(2+) to 100 nM increased the run-down rate sevenfold. Exogenous PKA in the pipette prevented the effect of elevated [Ca(2+)](i) on run-down. Inhibition of the calcium binding proteins calmodulin or calcineurin by W-7 or cyclosporin A, respectively, also prevented the calcium-dependent rapid run-down. We suggest that KCNQ4 phosphorylation via PKA and coupling to a complex that may include prestin can lead to the negative activation and the negative resting potential found in adult OHCs.
Collapse
Affiliation(s)
- J-M Chambard
- Department of Physiology and Centre for Auditory Research, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
180
|
Affiliation(s)
- Mark S Shapiro
- Department of Physiology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| |
Collapse
|
181
|
Higashida H, Hoshi N, Zhang JS, Yokoyama S, Hashii M, Jin D, Noda M, Robbins J. Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res 2005; 51:231-4. [PMID: 15710486 DOI: 10.1016/j.neures.2004.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
The second messenger for closure of M/KCNQ potassium channels in post-ganglionic neurons and central neurons had remained as a 'mystery in the neuroscience field' for over 25 years. However, recently the details of the pathway leading from muscarinic acetylcholine receptor (mAChR)-stimulation to suppression of the M/KCNQ-current were discovered. A key molecule is A-kinase anchoring protein (AKAP; AKAP79 in human, or its rat homolog, AKAP150) which forms a trimeric complex with protein kinase C (PKC) and KCNQ channels. AKAP79 or 150 serves as an adapter that brings the anchored C-kinase to the substrate KCNQ channel to permit the rapid and 'definitive' phosphorylation of serine residues, resulting in avoidance of signal dispersion. Thus, these findings suggest that mAChR-induced short-term modulation (or memory) does occur within the already well-integrated molecular complex, without accompanying Hebbian synapse plasticity. However, before this identity is confirmed, many other modulators which affect M-currents remain to be addressed as intriguing issues.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Li Y, Langlais P, Gamper N, Liu F, Shapiro MS. Dual phosphorylations underlie modulation of unitary KCNQ K(+) channels by Src tyrosine kinase. J Biol Chem 2004; 279:45399-407. [PMID: 15304482 DOI: 10.1074/jbc.m408410200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src tyrosine kinase suppresses KCNQ (M-type) K(+) channels in a subunit-specific manner representing a mode of modulation distinct from that involving G protein-coupled receptors. We probed the molecular and biophysical mechanisms of this modulation using mutagenesis, biochemistry, and both whole-cell and single channel modes of patch clamp recording. Immunoprecipitation assays showed that Src associates with KCNQ2-5 subunits but phosphorylates only KCNQ3-5. Using KCNQ3 as a background, we found that mutation of a tyrosine in the amino terminus (Tyr-67) or one in the carboxyl terminus (Tyr-349) abolished Src-dependent modulation of heterologously expressed KCNQ2/3 heteromultimers. The tyrosine phosphorylation was much weaker for either the KCNQ3-Y67F or KCNQ3-Y349F mutants and wholly absent in the KCNQ3-Y67F/Y349F double mutant. Biotinylation assays showed that Src activity does not alter the membrane abundance of channels in the plasma membrane. In recordings from cell-attached patches containing a single KCNQ2/3 channel, we found that Src inhibits the open probability of the channels. Kinetic analysis was consistent with the channels having two discrete open times and three closed times. Src activity reduced the durations of the longest open time and lengthened the longest closed time of the channels. The implications for the mechanisms of channel regulation by the dual phosphorylations on both channel termini are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | |
Collapse
|
183
|
Li Y, Gamper N, Shapiro MS. Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent. J Neurosci 2004; 24:5079-90. [PMID: 15175377 PMCID: PMC6729199 DOI: 10.1523/jneurosci.0882-04.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cysteine-modifying reagent N-ethylmaleimide (NEM) is known to augment currents from native M-channels in sympathetic neurons and cloned KCNQ2 channels. As a probe for channel function, we investigated the mechanism of NEM action and subunit specificity of cloned KCNQ2-5 channels expressed in Chinese hamster ovary cells at the whole-cell and single-channel levels. Biotinylation assays and total internal reflection fluorescence microscopy indicated that NEM action is not caused by increased trafficking of channels to the membrane. At saturating voltages, whole-cell currents of KCNQ2, KCNQ4, and KCNQ5 but not KCNQ3 were augmented threefold to fourfold by 50 microm NEM, and their voltage dependencies were negatively shifted by 10-20 mV. Unitary conductances of KCNQ2 and KCNQ3 (6.2 and 8.5 pS, respectively) were much higher that those of KCNQ4 and KCNQ5 (2.1 and 2.2 pS, respectively). Surprisingly, the maximal open probability (P(o)) of KCNQ3 was near unity, much higher than that of KCNQ2, KCNQ4, and KCNQ5. NEM increased the P(o) of KCNQ2, KCNQ4, and KCNQ5 by threefold to fourfold but had no effect on their unitary conductances, suggesting that the increase in macroscopic currents can be accounted for by increases in P(o). Analysis of KCNQ3/4 chimeras determined the C terminus to be responsible for the differential maximal P(o), channel expression, and NEM action between the two channels. To further localize the site of NEM action, we mutated three cysteine residues in the C terminus of KCNQ4. The C519A mutation alone ablated most of the augmentation by NEM, suggesting that NEM acts via alkylation of this residue.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio Texas 78229, USA
| | | | | |
Collapse
|
184
|
Abstract
We studied modulation of current in human embryonic kidney tsA-201 cells coexpressing rat erg1 channels with M(1) muscarinic receptors. Maximal current was inhibited 30% during muscarinic receptor stimulation, with a small positive shift of the midpoint of activation. Inhibition was attenuated by coexpression of the regulator of G-protein signalling RGS2 or of a dominant-negative protein, G(q), but not by N-ethylmaleimide or C3 toxin. Overexpression of a constitutively active form of G(q) (but not of G(13) or of G(s)) abolished the erg current. Hence it is likely that G(q/11), and not G(i/o) or G(13), mediates muscarinic inhibition. Muscarinic suppression of erg was attenuated by chelating intracellular Ca(2+) to < 1 nm free Ca(2+) with 20 mm BAPTA in the pipette, but suppression was normal if internal Ca(2+) was strongly clamped to a 129 nm free Ca(2+) level with a BAPTA buffer and this was combined with numerous other measures to prevent intracellular Ca(2+) transients (pentosan polysulphate, preincubation with thapsigargin, and removal of extracellular Ca(2+)). Hence a minimum amount of Ca(2+) was necessary for the inhibition, but a Ca(2+) elevation was not. The ATP analogue AMP-PCP did not prevent inhibition. The protein kinase C (PKC) blockers staurosporine and bisindolylmaleimide I did not prevent inhibition, and the PKC-activating phorbol ester PMA did not mimic it. Neither the tyrosine kinase inhibitor genistein nor the tyrosine phosphatase inhibitor dephostatin prevented inhibition by oxotremorine-M. Hence protein kinases are not needed. Experiments with a high concentration of wortmannin were consistent with recovery being partially dependent on PIP(2) resynthesis. Wortmannin did not prevent muscarinic inhibition. Our studies of muscarinic inhibition of erg current suggest a role for phospholipase C, but not the classical downstream messengers, such as PKC or a calcium transient.
Collapse
Affiliation(s)
- Wiebke Hirdes
- Department of Physiology and Biophysics, University of Washington School of Medicine, G-424 Health Sciences Building, Box 357290, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
185
|
Delmas P, Crest M, Brown DA. Functional organization of PLC signaling microdomains in neurons. Trends Neurosci 2004; 27:41-7. [PMID: 14698609 DOI: 10.1016/j.tins.2003.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Patrick Delmas
- Intégration des Informations Sensorielles, CNRS, UMR 6150, IFR Jean Roche, Faculté de Médecine, Boulevard Pierre Dramard, 13916 Marseille, France.
| | | | | |
Collapse
|