151
|
Benderdour M, Charron G, Comte B, Ayoub R, Beaudry D, Foisy S, Deblois D, Des Rosiers C. Decreased cardiac mitochondrial NADP+-isocitrate dehydrogenase activity and expression: a marker of oxidative stress in hypertrophy development. Am J Physiol Heart Circ Physiol 2004; 287:H2122-31. [PMID: 15271667 DOI: 10.1152/ajpheart.00378.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial dysfunction subsequent to increased oxidative stress and alterations in energy metabolism is considered to play a role in the development of cardiac hypertrophy and its progression to failure, although the sequence of events remains to be elucidated. This study aimed at characterizing the impact of hypertrophy development on the activity and expression of mitochondrial NADP+-isocitrate dehydrogenase (mNADP+-ICDH), a metabolic enzyme that controls redox and energy status. We expanded on our previous finding of its inactivation through posttranslational modification by the lipid peroxidation product 4-hydroxynonenal (HNE) in 7-wk-old spontaneously hypertensive rat (SHR) hearts before hypertrophy development (Benderdour et al. J Biol Chem 278: 45154-45159, 2003). In this study, we used 7-, 15-, and 30-wk-old SHR and Sprague-Dawley (SD) rats with abdominal aortic coarctation. Compared with age-matched control Wistar-Kyoto (WKY) rats, SHR hearts showed a significant 25% decrease of mNADP+-ICDH activity, which preceded in time 1) the decline in its protein and mRNA expression levels (between 10% and 35%) and 2) the increase in hypertrophy markers. The chronic and persistent loss of mNADP+-ICDH activity in SHR was associated with enhanced tissue accumulation of HNE-mNADP+-ICDH and total HNE-protein adducts at all ages and contrasted with the profile of changes in the activity of other mitochondrial enzymes involved in antioxidant or energy metabolism. Two-way ANOVA of the data also revealed a significant effect of age on most parameters measured in SHR and WKY hearts. The mNADP+-ICDH activity, protein, and mRNA expression were reduced between 25% and 35% in coarctated SD rats and were normalized by treatment of SHR or coarctated SD rats with renin-angiotensin system inhibitors, which prevented or attenuated hypertrophy. Altogether, our data show that cardiac mNADP+-ICDH activity and expression are differentially and sequentially affected in hypertrophy development and, to a lesser extent, with aging. Decreased cardiac mNADP+-ICDH activity, which is attributed at least in part to HNE adduct formation, appears to be a relevant early and persistent marker of mitochondrial oxidative stress-related alterations in hypertrophy development. Potentially, this could also contribute to the aetiology of cardiomyopathy.
Collapse
Affiliation(s)
- Mohamed Benderdour
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada H1T 1C8
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Carini M, Aldini G, Facino RM. Mass spectrometry for detection of 4-hydroxy-trans-2-nonenal (HNE) adducts with peptides and proteins. MASS SPECTROMETRY REVIEWS 2004; 23:281-305. [PMID: 15133838 DOI: 10.1002/mas.10076] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite the great technical advancement of mass spectrometry, this technique has contributed in a limited way to the discovery and quantitation of specific/precocious markers linked to free radical-mediated diseases. Unsaturated aldehydes generated by free radical-induced lipid peroxidation of polyunsaturated fatty acids, and in particular 4-hydroxy-trans-2 nonenal (HNE), are involved in the onset and progression of many pathologies such as cardiovascular (atherosclerosis, long-term complications of diabetes) and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and cerebral ischemia). Most of the biological effects of HNE are attributed to the capacity of HNE to react with the nucleophilic sites of proteins and peptides (other than nucleic acids), to form covalently modified biomolecules that can disrupt important cellular functions and induce mutations. By considering the emerging role of HNE in several human diseases, an unequivocal analytical approach as mass spectrometry to detect/elucidate the structure of protein-HNE adducts in biological matrices is strictly needed not only to understand the reaction mechanism of HNE, but also to gain a deeper insight into the pathological role of HNE. This with the aim to provide intermediate diagnostic biomarkers for human diseases. This review sheds focus on the "state-of-the-art" of mass spectrometric applications in the field of HNE-protein adducts characterization, starting from the fundamental early studies and discussing the different MS-based approaches that can provide detailed information on the mechanistic aspects of HNE-protein interaction. In the last decade, the increases in the accessible mass ranges of modern instruments and advances in ionization methods have made possible a fundamental improvement in the analysis of protein-HNE adducts by mass spectrometry, and in particular by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass spectrometry. The recent developments and uses of combined analytical approaches to detect and characterize the type/site of interaction have been highlighted, and several other aspects, including sample preparation methodologies, structure elucidation, and data analysis have also been considered.
Collapse
Affiliation(s)
- Marina Carini
- Istituto Chimico Farmaceutico Tossicologico, Faculty of Pharmacy, University of Milan, Viale Abruzzi 42, 20131 Milan, Italy.
| | | | | |
Collapse
|
153
|
Moulas A, Noulas A, Makri E, Papadamou G, Bonanou-Tzedaki S, Dalekos G. Total Antioxidant Status and Erythrocyte Superoxide Dismutase Activity in Patients with Chronic Hepatitis B and C. EUR J INFLAMM 2004. [DOI: 10.1177/1721727x0400200205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Damage of hepatitis B virus (HBV) and hepatitis C virus (HCV)-infected hepatocytes is mediated by both a direct cytopathic effect of the viruses and by immunologic response of T-cells, However, other mechanisms such as oxidative stress, may also be involved in cellular damage. We conducted a study to investigate the status of superoxide dismutase activity (SOD) and the total antioxidant status (TAS) in a consecutive cohort of patients infected with HBV and HCV infections, including HBV patients in the chronic inactive state of the disease. The latter were included in an attempt to determine whether antioxidant status is affected even in cases where an obvious viral activity is absent. TAS and SOD were measured in 55 patients (43 HBV, 12 HCV) and 25 healthy controls. 17 out of 43 patients had chronic inactive HBV state, 15 had chronic hepatitis Band 11 had HBV-related cirrhosis. In the HCV group, 6 patients had chronic hepatitis C and 6 HCV-related cirrhosis. Erythrocyte SOD activity was determined in haemolysate from red blood cells using a kinetic spectrophotometer method. TAS was measured by a colorimetric assay. The mean TAS and SOD values in the total number of patients (1.20±0.12 mmol/L and 1040±255 Ulg Hb, respectively) were significantly lower (p<0.001) compared to healthy controls (1.57±0.13 mmol/L and 1491±420 D/g Hb), Comparisons between groups showed significantly lower (p<0.001) TAS and SOD values in each subgroup of patients compared to healthy controls. A significant positive correlation was found between TAS and SOD in the total number ofpatients (n= 55, p<0.01), in the chronic hepatitis group (n=21, p=0.01) and in the total group of HBV patients (n=43, p<0.01). We demonstrated a significant reduced antioxidant capacity in patients with chronic HBV and HCV as indicated by low TAS and SOD. These findings were independent of the virological, biochemical and clinical status of the patients, including those with chronic inactive HBV state. This could suggest that the tissue-related consequences of oxidative stress might start from the inactive stage of liver viral diseases. However, our observations should be viewed with caution and need to be tested in a larger numbers of patients in order to determine prospectively whether these findings have pathophysiological and/or clinical significance.
Collapse
Affiliation(s)
- A.N. Moulas
- Technological Education Institute (T.E.I) of Larissa, Department of Animal Production, Papakiriazi 22 str, GR 41222 Larissa, Greece
| | - A. Noulas
- Technological Education Institute (T.E.I) of Larissa, Department of Medical Laboratories) GR 41110 Larissa; University of Thessaly, Medical School
| | - E. Makri
- Technological Education Institute (T.E.I) of Larissa, Academic Liver Unit, Papakiriazi 22 str, GR 41222 Larissa, Greece
| | - G. Papadamou
- Technological Education Institute (T.E.I) of Larissa, Academic Liver Unit, Papakiriazi 22 str, GR 41222 Larissa, Greece
| | - S. Bonanou-Tzedaki
- Technological Education Institute (T.E.I) of Larissa, Department of Biochemistry, Papakiriazi 22 str, GR 41222 Larissa, Greece
| | - G.N. Dalekos
- Technological Education Institute (T.E.I) of Larissa, Academic Liver Unit, Papakiriazi 22 str, GR 41222 Larissa, Greece
- Technological Education Institute (T.E.I) of Larissa, Research Laboratory of Internal Medicine), Papakiriazi 22 str, GR 41222 Larissa, Greece
| |
Collapse
|
154
|
Hayashi T, Uchida K, Takebe G, Takahashi K. Rapid formation of 4-hydroxy-2-nonenal, malondialdehyde, and phosphatidylcholine aldehyde from phospholipid hydroperoxide by hemoproteins. Free Radic Biol Med 2004; 36:1025-33. [PMID: 15059643 DOI: 10.1016/j.freeradbiomed.2004.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/12/2004] [Accepted: 01/16/2004] [Indexed: 01/18/2023]
Abstract
4-Hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) are well-known toxic products of lipid peroxidation. Phosphatidylcholine aldehydes are also known as oxidation products of phosphatidylcholine. The mechanism of the formation of these compounds in vivo has been a long-standing question. We observed that the rapid reaction of hemoproteins (methemoglobin, metmyoglobin, and cytochrome c) with 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl) phosphatidylcholine (PLPC-OOH), having a hydroperoxylinoleoyl residue, generated HNE, MDA, and the phosphatidylcholine aldehyde 1-palmitoyl-2-(9-oxononanoyl) phosphatidylcholine. The efficiencies (mol% yield) of the formation of HNE and MDA from decomposed PLPC-OOH by methemoglobin, metmyoglobin, and cytochrome c after incubation for 10 min were 1.6, 1.0, and 1.0% for HNE and 1.2, 0.6, and 0.9% for MDA, respectively. When 1-palmitoyl-2-linoleoyl phosphatidylcholine was incubated with lipoxidase and methemoglobin, the formation of HNE and the phosphatidylcholine aldehyde 1-palmitoyl-2-(9-oxononanoyl) phosphatidylcholine was observed. When 1-palmitoyl-2-arachidonyl phosphatidylcholine was used instead of 1-palmitoyl-2-linoleoyl phosphatidylcholine, the phosphatidylcholine aldehyde 1-palmitoyl-2-oxovaleroyl phosphatidylcholine was obtained. These data suggest that HNE and phosphatidylcholine aldehydes might be rapidly formed from phosphatidylcholine by lipoxygenase and hemoproteins. Furthermore, hemichrome, converted from methemoglobin by deoxycholic acid and ursodeoxycholic acid, showed marked decomposition of HNE. These results suggest that hemoproteins are related to both the formation and the decomposition of HNE.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Hokkaido Institute of Public Health, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0819, Japan
| | | | | | | |
Collapse
|
155
|
Donaldson K, Jimenez L, Rahman I, Faux S, Macnee W, Gilmour P, Borm P, Schins R, Shi T, Stone V. Respiratory Health Effects of Ambient Air Pollution Particles. OXYGEN/NITROGEN RADICALS 2004. [DOI: 10.1201/b14147-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
156
|
Rahman I. Smoking-Induced Inflammation, Injury and Disease. OXYGEN/NITROGEN RADICALS 2004. [DOI: 10.1201/b14147-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
157
|
Rahman I, Kelly F. Biomarkers in breath condensate: a promising new non-invasive technique in free radical research. Free Radic Res 2004; 37:1253-66. [PMID: 14753750 DOI: 10.1080/10715760310001623331] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is associated with a range of inflammatory lung diseases including asthma, adult respiratory distress syndrome, idiopathic pulmonary fibrosis, pneumonia, lung transplantation, chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis and lung cancer. Increased concentrations of reactive oxygen species (ROS) in the airways of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples, or examine the compartments. As a consequence, there is a need for less invasive approaches to measure oxidative stress. Analysis of breath hydrocarbons has partly fulfilled this need, however only gas phase volatile constituents can be assessed by this approach. The collection of exhaled breath condensate (EBC) is a simple, non-invasive approach, which comprehensively samples the lower respiratory tract. It is currently used as a research and diagnostic tool in the free radical field, yielding information on redox disturbance and the degree and type of inflammation in the lung. With further technical developments, such an approach may ultimately have a role in the clinic, in helping to diagnose specific lung diseases. EBC can be exploited to assess a spectrum of potential biomarkers, thus generating a "finger print" characteristic of the disease. By assessing the nature of oxidative stress in this manner, the most appropriate therapy can be selected and the response to treatment monitored.
Collapse
Affiliation(s)
- Irfan Rahman
- Respiratory Medicine, ELEGI, Colt Research Laboratories, MRC Centre for Inflammation Research, The University of Edinburgh Medical School, Wilkie Building, Teviot Place, Edinburgh EH8 9AG, UK.
| | | |
Collapse
|
158
|
Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC, Liu RM, Kavanagh TJ, Forman HJ. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch Biochem Biophys 2004; 423:116-25. [PMID: 14871475 DOI: 10.1016/j.abb.2003.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 11/05/2003] [Indexed: 10/26/2022]
Abstract
Glutamate cysteine ligase (GCL), composed of a catalytic (GCLC) and modulatory (GCLM) subunit, catalyzes the first step of glutathione (GSH) biosynthesis. Using 4-hydroxy-2-nonenal (4HNE), 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and tertiary-butylhydroquinone (tBHQ) as models of oxidative stress which are known to work through different mechanisms, we measured changes in cellular GSH, GCL mRNA, and GCL protein. 4HNE and tBHQ treatments increased cellular GSH levels, while DMNQ exposure depleted GSH. Furthermore, changes in the two GCL mRNAs largely paralleled changes in the GCL proteins; however, the magnitudes differed, suggesting some form of translational control. The molar ratio of GCLC:GCLM ranged from 3:1 to 17:1 in control human bronchial epithelial (HBE1) cells and all treatments further increased this ratio. Data from several mouse tissues show molar ratios of GCLC:GCLM that range from 1:1 to 10:1 in support of these findings. These data demonstrate that alterations in cellular GSH are clearly correlated with GCLC to a greater extent than GCLM. Surprisingly, both control HBE1 cells and some mouse tissues have more GCLC than GCLM and GCLM increases to a much lesser extent than GCLC, suggesting that the regulatory role of GCLM is minimal under physiologically relevant conditions of oxidative stress.
Collapse
Affiliation(s)
- David M Krzywanski
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Zamara E, Novo E, Marra F, Gentilini A, Romanelli RG, Caligiuri A, Robino G, Tamagno E, Aragno M, Danni O, Autelli R, Colombatto S, Dianzani MU, Pinzani M, Parola M. 4-Hydroxynonenal as a selective pro-fibrogenic stimulus for activated human hepatic stellate cells. J Hepatol 2004; 40:60-8. [PMID: 14672615 DOI: 10.1016/s0168-8278(03)00480-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIMS 4-Hydroxynonenal (HNE) is a putative pro-fibrogenic product of oxidative stress able to elicit apoptosis and cytotoxicity in several cell types. This study has been performed to evaluate its 'in vivo' levels in injured liver and whether HNE may induce apoptosis and/or affect selected phenotypic responses in activated human hepatic stellate cells (HSC/MF). METHODS/RESULTS During the development of acute liver injury induced by CCl(4), liver tissue HNE levels were in the range 0.5-10 microM, as shown by high performance liquid chromatography analysis. Cultured human HSC/MF, developed cytotoxicity only if exposed to very high HNE concentrations (25-50 microM) without any sign of induction of classic, caspase-dependent apoptosis, as assessed by evaluating morphology and biochemical parameters of cell death. HNE, at non-cytotoxic doses, up-regulated procollagen type I and tissue inhibitor of metalloproteinases-1 gene expression and/or protein synthesis without significantly affecting chemotaxis (wound healing and haptotaxis assay), matrix metalloproteinases 1 and 2 mRNA expression and activity as well as basal DNA synthesis. CONCLUSIONS HNE, at concentrations compatible with those detected in vivo, does not elicit HSC/MF classic apoptosis but, rather, may act as a potent pro-fibrogenic stimulus for the expression of genes involved in excess extracellular matrix deposition and proposed as survival signals for HSC/MF.
Collapse
Affiliation(s)
- Elena Zamara
- Dipartimento di Medicina e Oncologia Sperimentale, Università di Torino, Corso Raffaello 30, 10125 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Grillo CA, Piroli GG, Rosell DR, Hoskin EK, Mcewen BS, Reagan LP. Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience 2003; 121:133-40. [PMID: 12946706 DOI: 10.1016/s0306-4522(03)00343-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidative stress and modulation of anti-oxidant enzymes may contribute to the deleterious consequences of diabetes mellitus and to the effects of chronic (i.e. 21 day) stress in the CNS. We therefore compared the effects of short- and long-term exposure to diabetes-induced hyperglycemia, restraint stress and the combined effects of restraint stress and diabetes upon parameters of oxidative stress in the rat hippocampus. Whereas 7 days of restraint stress or hyperglycemia, or the combination, produced similar increases in oxidative stress markers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) throughout the hippocampus, 21 days of stress or hyperglycemia did not increase these markers in the dentate gyrus. In contrast, Ammon's horn still showed elevated levels of these lipid peroxidation products, especially in diabetic rats subjected to 21 days of restraint stress. The expression of two anti-oxidant enzymes, copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese SOD, was also differentially regulated by stress and hyperglycemia in a time- and region-specific manner in the rat hippocampus. Although long-term stress decreased both SOD isoforms, diabetes increased Cu/Zn-SOD expression in DG with or without 21 days of repeated stress. These increases may account for the finding that protein-conjugated HNE and MDA levels returned to control levels between 7 days and 21 days of hyperglycemia or the combination of diabetes and stress. These results suggest that while other anti-oxidant pathways may account for decreases in oxidative stress in the long-term stress paradigm, increases in Cu/Zn-SOD expression may contribute to the region-specific attenuation of oxidative stress in the diabetic rat hippocampus.
Collapse
Affiliation(s)
- C A Grillo
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
161
|
Madrigal JLM, García-Bueno B, Moro MA, Lizasoain I, Lorenzo P, Leza JC. Relationship between cyclooxygenase-2 and nitric oxide synthase-2 in rat cortex after stress. Eur J Neurosci 2003; 18:1701-5. [PMID: 14511348 DOI: 10.1046/j.1460-9568.2003.02888.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many studies have focused on the relationships between distinct enzymatic sources of oxidative mediators. Recently, we have shown that cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS-2) isoforms are up-regulated and account for oxidative damage in brain after stress. To assess the time course of these events, we have used adult male Wistar rats, some of which were immobilized for 6 h. Whereas pretreatment with the specific COX-2 inhibitor NS-398 (5 mg/kg i.p.) decreased Ca2+-independent NOS activity after 6 h of stress, pretreatment with the specific NOS-2 inhibitor 1400 W (4 mg/kg i.p.) did not decrease prostaglandin E2 (PGE2) accumulation induced by stress after 6 h. The observed effects of NS-398 and 1400 W were independent of the general response to stress--neither drug modified stress-induced corticosterone response--which might indicate a possible adaptive role for COX-2 and NOS-2 pathways in this situation. These findings are discussed as possible therapeutic targets in the context of neuropsychiatric disorders related to stress.
Collapse
Affiliation(s)
- José L M Madrigal
- Department of Pharmacology, Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
162
|
Madrigal JLM, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, Boscá L, Leza JC. Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacology 2003; 28:1579-88. [PMID: 12784118 DOI: 10.1038/sj.npp.1300187] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase (COX) is the rate-limiting enzyme in the metabolism of arachidonic acid into prostanoids. Although it is constitutively expressed in brain neurons, the inducible isoform (COX-2) is also upregulated in pathological conditions such as seizures, ischemia or some degenerative diseases. To assess whether COX-2 is regulated after stress, we have used adult male Wistar rats, some of which were immobilized during 6 h. An increase in PGE2 concentration occurs in brain cortex after 2-6 h of the onset of stress as well as an enhancement of COX-2 protein. Immunohistochemical studies indicate that COX-2 is expressed in the cortex and hippocampus after stress in cells with morphology of neurons. Administration of PDTC (150 mg/kg), an inhibitor of the transcription factor NF-kappaB or MK-801 (0.2 mg/kg), an N-methyl-D-aspartate receptor blocker, prevents both stress-induced increase in COX-2 activity and protein levels, suggesting an implication of these factors in the mechanism by which stress induces COX-2 in brain. To assess if COX-2 accounts for the oxidative status seen in brain after stress, a group of animals were i.p. injected with NS-398, a specific COX-2 inhibitor 1 h prior to the onset of stress. NS-398 (5 mg/kg) decreases stress-induced malondialdehyde accumulation in cortex as well as prevents the stress-induced oxidation of glutathione. Finally, NS-398 reduced Ca2+-independent inducible nitric oxide synthase (iNOS, NOS-2) activity and lowered the stress-induced accumulation of NO metabolite levels in cortex. These effects of NS-398 seem to be due to the specific inhibition of COX-2, since it has no effect on stress-induced corticosterone release, glutamate release, and NF-kappaB activation. These findings are discussed as possible damaging and/or adaptive roles for stress-induced COX-2 in the brain.
Collapse
Affiliation(s)
- José L M Madrigal
- Department of Pharmacology, Faculty of Medicine, University of Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Alary J, Guéraud F, Cravedi JP. Fate of 4-hydroxynonenal in vivo: disposition and metabolic pathways. Mol Aspects Med 2003; 24:177-87. [PMID: 12892995 DOI: 10.1016/s0098-2997(03)00012-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the cytotoxicity of 4-hydroxynonenal (HNE), and to the fact that this major product of lipid peroxidation is a rather long-living compound compared with reactive oxygen species, the capability of organisms to inactivate and eliminate HNE has received increasing attention during the last decade. Several recent in vivo studies have addressed the issue of the diffusion, kinetics, biotransformation and excretion of HNE. Part of these studies are primarily concerned with the toxicological significance of HNE biotransformation and more precisely with the metabolic pathways by which HNE is inactivated and eliminated. The other aim of in vivo metabolic study is the characterisation of end-metabolites, especially in urine, in order to develop specific and non-invasive biomarkers of lipid peroxidation. When HNE is administered intravenously or intraperitoneally, it is mainly excreted into urine and bile as conjugated metabolites, in a proportion that is dependent on the administration route. However, biliary metabolites undergo an enterohepatic cycle that limits the final excretion of faecal metabolites. Only a very low amount of metabolites is found to be bound to macromolecules. The main urinary metabolites are represented by two groups of compounds. One comes from the mercapturic acid formation from (i) 1,4 dihydroxynonene-glutathione (DHN-GSH) which originates from the conjugation of HNE with GSH by glutathione-S-transferases and the subsequent reduction of the aldehyde by a member of aldo-keto reductase superfamily; (ii) the lactone of 4-hydroxynonanoic-GSH (HNA-lactone-GSH) which originates from the conjugation of HNE followed by the oxidation of the aldehyde by aldehyde dehydrogenase; (iii) HNA-GSH which originates from the hydrolysis of the corresponding lactone. The other one is a group of metabolites issuing from the omega-hydroxylation of HNA or HNA-lactone by cytochromes P450 4A, followed eventually, in the case of omega-oxidized-HNA-lactone, by conjugation with GSH and subsequent mercapturic acid formation. Biliary metabolites are GSH or mercapturic acid conjugates of DHN, HNE and HNA. Stereochemical aspects of HNE metabolism are also discussed.
Collapse
Affiliation(s)
- Jacques Alary
- Institut National de la Recherche Agronomique, UMR-1089 Xénobiotiques, BP 3, 180 chemin de Tournefeuille, 31931 Toulouse cedex 9, France
| | | | | |
Collapse
|
164
|
Marinari UM, Nitti M, Pronzato MA, Domenicotti C. Role of PKC-dependent pathways in HNE-induced cell protein transport and secretion. Mol Aspects Med 2003; 24:205-11. [PMID: 12892998 DOI: 10.1016/s0098-2997(03)00015-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The beta isoforms of protein Kinase C (PKC) are closely involved in the regulation of cell protein transport and secretion. We have shown in different cellular types that treatment with HNE in a concentration range detectable in many pathophysiological conditions is able to induce selective activation of betaPKCs through direct interaction between the aldehyde and these isoenzymes. In isolated rat hepatocytes this specific isoenzyme activation plays a key role in the transport of procathepsin D from the trans-Golgi network to the endosomal-lysosomal compartment and in the exocytosis of mature cathepsin D. In NT2 neurons, HNE-mediated betaPKC activation induces an increase in intracellular amyloid beta production, without affecting full-length amyloid precursor protein expression. In a mouse macrophage-like cell line, the same beta isoform activation increases the release of the MCP-1 chemokine. Thus, pathophysiological HNE concentrations (0.1-1 microM) derived from a slight imbalance of the redox state are able to alter protein trafficking through beta PKC activation. These results suggest that mild oxidative stress and the PKC signal transduction pathway are closely involved in the pathophysiology of many diseases caused by changes in protein trafficking and release.
Collapse
Affiliation(s)
- Umberto Maria Marinari
- Department of Experimental Medicine, General Pathology Section, University of Genova, Via L.B. Alberti 2, Genova 16132, Italy
| | | | | | | |
Collapse
|
165
|
Abstract
The review is focused on the currently major aspect of 4-hydroxynonenal (HNE) research--studies that combine biological activities of the aldehyde together with the methods of its identification in cells and tissues. Because there were some excellent reviews on HNE published in recent years, starting in 1990 and 1991 with supreme reviews done by Hermann Esterbauer, who discovered the aldehyde, and colleagues from the Institute of Biochemistry in Graz, this article pays most of attention to the most recent articles, published in the last 15 months. Additionally, an overview on the relevance of HNE is given with respect to the research and publication trends in the period of 10 years (1993-2002) according to the data in the Current Contents and Medline data bases. It is obvious that HNE started in 1993 as a "toxic product of lipid peroxidation" and "second toxic messenger of free radicals", to become in 2002 a reliable marker of oxidative stress, a possible causative agent of several diseases (such as Alzheimer's disease), growth modulating factor and a signaling molecule. Novel analytical methods developed suitable pathways for HNE to become a clinically applicable marker of lipid peroxidation on one side and on the other a standardized parameter of food quality control. As it is also present physiologically in various cells and tissues, it is likely that HNE will soon become one of the most attractive factors for those who search for a small and reactive molecular link between genomics and proteomics.
Collapse
Affiliation(s)
- Neven Zarkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka 54, HR-1000 Zagreb, Croatia.
| |
Collapse
|
166
|
Abstract
4-hydroxy-2-nonenal (HNE) activates a variety of signaling pathways. We have recently evaluated the effect of oxidized fatty acid metabolites on cyclooxygenase-2 (COX-2) induction in rat liver epithelial RL34 cells and found that, among the compounds tested, HNE most dramatically induced COX-2. A p38 mitogen-activated protein kinase (p38 MAPK) pathway has been shown to play a key role in the mechanism of the HNE-induced COX-2 expression. It appears that the HNE-induced activation of p38 MAPK leads to the stabilization of COX-2 mRNA.
Collapse
Affiliation(s)
- Koji Uchida
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | |
Collapse
|
167
|
Abstract
The onset of lipid peroxidation within cellular membranes is associated with changes in their physiochemical properties and with the impairment of enzymatic functions located in the membrane environment. There is increasing evidence that aldehydic molecules generated endogenously during the process of lipid peroidation are causally involved in most of the pathophysiological effects associated with oxidative stress in cells and tissues. 4-Hydroxy-2-nonenal (HNE), among them, is believed to be largely responsible for cytopathological effects observed during oxidative stree in vivo and has achieved the status of one of the best recognized and most studied of the cytotoxic products of lipid peroxidation. In the present review, I provide a comprehensive summary of HNE, as the product and mediator or oxidative stress.
Collapse
Affiliation(s)
- Koji Uchida
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University 464-8601, Nagoya, Japan.
| |
Collapse
|
168
|
Shin Y, White BH, Uh M, Sidhu A. Modulation of D1-like dopamine receptor function by aldehydic products of lipid peroxidation. Brain Res 2003; 968:102-13. [PMID: 12644268 DOI: 10.1016/s0006-8993(02)04279-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growing evidence indicates that aldehydic products of lipid peroxidation play an important role in the pathophysiology of neurodegenerative disorders such as Parkinson's disease. In the present study, modulation of D1-like receptor binding and function by saturated alkanals and unsaturated alkenals, 4-hydroxynonenal (4-HNE) and trans-2-nonenal (nonenal), was examined in rat striatal membranes. The 4-HNE and nonenal were most effective in modulating both the specific D1-like receptor binding and function as measured by adenylate cyclase activation. Inactivation of receptor binding and the depression of adenylate cyclase activity were partially prevented by protection of the D1/D5-receptor with the agonist (R)-SKF 38393 or the specific antagonist SCH 23390. 4-HNE inhibited adenylate cyclase activation by Gpp (NH)p and forskolin, indicating the modulation of Gsalpha and the catalytic subunit of adenylate cyclase, respectively. Our data suggests that aldehydic products of lipid peroxidation can directly modulate the binding and functional properties of D1/D5 receptors, as well as effector proteins within their signaling pathway.
Collapse
Affiliation(s)
- Yangmee Shin
- Department of Pediatrics, Georgetown University Medical Center, 3970 Reservoir Road, N.W., 20057, Washington, DC, USA
| | | | | | | |
Collapse
|
169
|
Dickinson DA, Moellering DR, Iles KE, Patel RP, Levonen AL, Wigley A, Darley-Usmar VM, Forman HJ. Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 2003; 384:527-37. [PMID: 12751783 DOI: 10.1515/bc.2003.061] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adaptation to oxidative and nitrosative stress occurs in cells first exposed to a nontoxic stress, resulting in the ability to tolerate a toxic challenge of the same or a related oxidant. Adaptation is observed in a wide variety of cells including endothelial cells on exposure to nitric oxide or oxidized lipids, and lung epithelial cells exposed to air-borne pollutants and toxicants. This acquired characteristic has been related to the regulation of a family of stress responding proteins including those that control the synthesis of the intracellular antioxidant glutathione. The focus of this article, which includes a review of recent results along with new data, is the regulation and signaling of glutathione biosynthesis, especially those relating to adaptive mechanisms. These concepts are illustrated with examples using nitric oxide and oxidized low density lipoprotein mediated adaptation to oxidative stress. These data are discussed in the context of other adaptive mechanisms relating to glutathione synthesis including those from dietary constituents such as curcumin.
Collapse
Affiliation(s)
- Dale A Dickinson
- Center for Free Radical Biology and Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:95-109. [PMID: 12542980 DOI: 10.5483/bmbrep.2003.36.1.095] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. The sources of the increased oxidative stress in patients with chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) derive from the increased burden of inhaled oxidants, and from the increased amounts of reactive oxygen species (ROS) generated by several inflammatory, immune and various structural cells of the airways. Increased levels of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs and blood in patients with lung diseases. ROS, either directly or via the formation of lipid peroxidation products such as 4-hydroxy-2-nonenal may play a role in enhancing the inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox sensitive transcription factors such as NF-capital KJE, MacedonianB and AP-1. Recent evidences have indicated that oxidative stress and pro-inflammatory mediators can alter nuclear histone acetylation/deacetylation allowing access for transcription factor DNA binding leading to enhanced pro-inflammatory gene expression in various lung cells. Understanding of the mechanisms of redox signaling, NF-kappaB/AP-1 regulation, the balance between histone acetylation and deacetylation and the release and expression of pro- and antiinflammatory mediators may lead to the development of novel therapies based on the pharmacological manipulation of antioxidants in lung inflammation and injury. Antioxidants that have effective wide spectrum activity and good bioavailability, thiols or molecules which have dual antioxidant and anti-inflammatory activity, may be potential therapeutic agents which not only protect against the direct injurious effects of oxidants, but may fundamentally alter the underlying inflammatory processes which play an important role in the pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Irfan Rahman
- Respiratory Medicine, ELEGI Laboratory, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
171
|
Affiliation(s)
- Henry Jay Forman
- Department of Environmental Health Sciences, School of Public Health, and, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
172
|
Enoiu M, Herber R, Leroy P, Wellman M. The role of gamma-glutamyltranspeptidase in the metabolism and cytotoxicity of 4-hydroxynonenal-glutathione conjugate: evidence and hypothesis. Biofactors 2003; 17:175-85. [PMID: 12897439 DOI: 10.1002/biof.5520170117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Milica Enoiu
- Faculty of Pharmacy, University Carol Davila, 6 Traian Vuia, 70139 Bucharest, Romania
| | | | | | | |
Collapse
|
173
|
Fernandes PH, Wang H, Rizzo CJ, Lloyd RS. Site-specific mutagenicity of stereochemically defined 1,N2-deoxyguanosine adducts of trans-4-hydroxynonenal in mammalian cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:68-74. [PMID: 12929118 DOI: 10.1002/em.10174] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trans-4-hydroxynonenal (HNE) is a toxic compound produced endogenously during lipid peroxidation. HNE is a potent electrophile that is reactive with both proteins and nucleic acids. HNE preferentially reacts with deoxyguanosine to form four stereoisomeric HNE-deoxyguanosine (HNE-dG) adducts: (6R, 8S, 11R), (6S, 8R, 11S), (6R, 8S, 11S), and (6S, 8R, 11R). These adducts were synthesized into 12-mer oligodeoxynucleotides, inserted into a DNA shuttle vector and evaluated for the ability of each stereoisomer to induce mutagenesis when replicated through mammalian cells. The resultant mutagenicity of these adducts was related to their stereochemistry, in that two of the HNE-dG adducts, (6R, 8S, 11R) and (6S, 8R, 11S), were significantly more mutagenic than the (6R, 8S, 11S) and (6S, 8R, 11R) HNE-dG adducts. These data conclusively demonstrate that HNE-derived DNA adducts can be mutagenic in mammalian cells and their ability to cause mutations is dictated by their stereochemistry.
Collapse
Affiliation(s)
- Priscilla H Fernandes
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
174
|
Aldini G, Granata P, Carini M. Detoxification of cytotoxic alpha,beta-unsaturated aldehydes by carnosine: characterization of conjugated adducts by electrospray ionization tandem mass spectrometry and detection by liquid chromatography/mass spectrometry in rat skeletal muscle. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:1219-1228. [PMID: 12489081 DOI: 10.1002/jms.381] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oxidation of polyunsaturated fatty acids containing phospholipids in tissue generates lipid hydroperoxides, which are further degraded to several products, among which unsaturated aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) play an important role in mediating the pathological effects of oxidative stress. While the reaction of HNE with glutathione (GSH) is a well recognized pathway of detoxification in biological systems, no data are available on HNE interactions with carnosine, a dipeptide (beta-alanyl-L-histidine) present in high concentration in skeletal muscle. The aim of this work was to study the quenching ability of carnosine towards HNE and to characterize the reaction products by electrospray ionization tandem mass spectrometry (ESI-MS/MS), using GSH as a model peptide. GSH incubation with HNE in 1 mM phosphate buffer (pH 7.4) results in the complete disappearance of HNE within 1 h owing to the formation of a Michael adduct, S-(4-hydroxynonanal-3-yl)glutathione. The reaction of HNE with carnosine was studied in different molar ratios and monitored up to 24 h by high-performance liquid chromatography (HPLC) (HNE consumption), MS/MS (infusion) and liquid chromatography mass spectrometry (LC/MS) experiments. Carnosine, although less reactive than GSH, significantly quenched HNE (48.2 +/- 0.9% HNE consumption after 1 h; carnosine:HNE molar ratio 10 : 1). Two reaction products were identified: the Michael adduct, N-(4-hydroxynonanal-3-yl)carnosine involving the imidazolic nitrogen of histidine, and the imine adduct, involving the amino group of the beta-alanine residue. Definitive structure assignment was achieved by chemical reduction with NaBH(4) and multinuclear magnetic resonance experiments. To understand whether carnosine acts as a quencher of unsaturated aldehydes in biological matrices, rat skeletal muscle homogenate was incubated with HNE and the formation of conjugated adducts was determined by LC/MS analysis. Three main products were detected and identified as Michael adducts of HNE with GSH, carnosine and anserine (the N-methylated derivative of carnosine, present in high concentrations in rat muscle). The results indicate that beside GSH, histidine-containing dipeptides could be involved in the detoxification pathway of reactive aldehydes from lipid peroxidation generated in skeletal muscle during physical endurance.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Istituto Chimico Farmaceutico Tossicologico, University of Milan, Viale Abruzzi 42, 20131 Milan, Italy.
| | | | | |
Collapse
|
175
|
Abstract
The mechanisms of thiol metabolism and chemistry have particular relevance to both cellular defenses against toxicant exposure and to redox signaling. Here, we will focus on glutathione (GSH), the major endogenous low- molecular-weight nonprotein thiol synthesized de novo in mammalian cells. The major pathways for GSH metabolism in defense of the cell are reduction of hydroperoxides by glutathione peroxidases (GSHPx) and some peroxiredoxins, which yield glutathione disulfide (GSSG), and conjugation reactions catalyzed by glutathione-S-transferases. GSSG can be reduced to GSH by glutathione reductase, but glutathione conjugates are excreted from cells. The exoenzyme gamma-glutamyltranspeptidase (GGT) removes the glutamate from extracellular GSH, producing cysteinyl-glycine from which a dipeptidase then generates cysteine, an amino acid often limiting for de novo GSH synthesis. Synthesis of GSH from the constituent amino acids occurs in two regulated, enzymatically catalyzed steps. The signaling pathways leading to activation of the transcription factors that regulate these genes are a current area of intense investigation. The elucidation of the signaling for GSH biosynthesis in human bronchial epithelial cells in response to 4-hydroxynonenal (4HNE), an end product of lipid peroxidation, will be used as an example. GSH also participates in redox signaling through the removal of H(2)O(2), which has the properties of a second messenger, and by reversing the formation of sulfenic acid, a moiety formed by reaction of critical cysteine residues in signaling proteins with H(2)O(2). Disruption of GSH metabolism will therefore have major a impact upon function of cells in terms of both defense and normal physiology.
Collapse
Affiliation(s)
- Dale A Dickinson
- Department of Environmental Health Sciences, School of Public Health, and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
176
|
Dickinson DA, Iles KE, Watanabe N, Iwamoto T, Zhang H, Krzywanski DM, Forman HJ. 4-hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells. Free Radic Biol Med 2002; 33:974. [PMID: 12361807 DOI: 10.1016/s0891-5849(02)00991-7] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutathione is the most abundant non-protein thiol in the cell, with roles in cell cycle regulation, detoxification of xenobiotics, and maintaining the redox tone of the cell. The glutathione content is controlled at several levels, the most important being the rate of de novo synthesis, which is mediated by two enzymes, glutamate cysteine ligase (GCL), and glutathione synthetase (GS), with GCL being rate-limiting generally. The GCL holoenzyme consists of a catalytic (GCLC) and a modulatory (GCLM) subunit, which are encoded by separate genes. In the present study, the signaling mechanisms leading to de novo synthesis of GSH in response to physiologically relevant concentrations of 4-hydroxy-2-nonenal (4HNE), an endproduct of lipid peroxidation, were investigated. We demonstrated that exposure to 4HNE resulted in increased content of both Gcl mRNAs, both GCL subunits, phosphorylated JNK1 and c-Jun proteins, as well as Gcl TRE sequence-specific AP-1 binding activity. These increases were attenuated by pretreating the cells with a novel membrane-permeable JNK pathway inhibitor, while chemical inhibitors of the p38 or ERK pathways were ineffective. These data reveal that de novo GSH biosynthesis in response to 4HNE signals through the JNK pathway and suggests a major role for AP-1 driven expression of both Gcl genes in HBE1 cells.
Collapse
Affiliation(s)
- Dale A Dickinson
- Department of Environmental Health Sciences, School of Public Health, University of Alabama-Birmingham, 1665 University Boulevard, Birmingham, AL 35294-0022, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Low molecular weight thiol-containing compounds have an essential role in many biochemical and pharmacological reactions due to the ease with each they are oxidized, and the rapidity with which they can be regenerated. Thioredoxin and glutathione (GSH) are two of the major small molecular weight thiol-containing compounds synthesized de novo in mammalian cells that participate in those functions. Understanding the mechanisms of thiol metabolism has special relevance to understanding the cell's defense against toxicant exposure and as the focal point in redox signaling. This commentary will, however, focus on GSH consumption and synthesis, and the role of thiols in signaling. The chemical reactions of GSH, including conjugation reactions mediated by glutathione S-transferases (GST) and oxidation reactions mediated by glutathione peroxidases will be described. The regulation of GSH synthesis will be illustrated from a compilation of studies designed to understand the various levels at which enzymatic GSH biosynthesis is controlled, and the signaling pathways that mediate them. The response of the cell to 4-hydroxynonenal (4HNE), a reactive aldehyde produced physiologically in response to inflammation and various air pollutants, will be explored in detail. Finally, the direct role of thiols as signaling molecules will be addressed, with particular attention given to "redox state." It is our aim that this commentary will lead the reader to appreciate that studies investigating the signaling for and regulation of thiol metabolism must never be generalized, and that perturbations in any of step of thiol metabolism may have etiological roles in genetically, virally, and environmentally borne pathologies.
Collapse
Affiliation(s)
- Dale A Dickinson
- Department of Environmental Health Sciences, Center for Free Radical Biology, School of Public Health, University of Alabama at Birmingham, 1530 3rd Avenue S, RPHB-317, Birmingham, AL 35294-0022, USA
| | | |
Collapse
|
178
|
Rahman I, van Schadewijk AAM, Crowther AJL, Hiemstra PS, Stolk J, MacNee W, De Boer WI. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002; 166:490-5. [PMID: 12186826 DOI: 10.1164/rccm.2110101] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking results in oxidative stress and inflammation in the lungs, which are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). 4-Hydroxy-2-nonenal (4-HNE), a highly reactive diffusible product of lipid peroxidation, is a key mediator of oxidant-induced cell signaling and apoptosis. 4-HNE has a high affinity toward cysteine, histidine, and lysine groups and forms direct protein adducts. We investigated the presence of 4-HNE-modified proteins in lung tissue obtained from subjects with and without COPD. We studied 23 current or ex-smokers with similar smoking histories with COPD (n = 11; FEV(1) < 70% predicted) or without COPD (n = 12; FEV(1) > 84% predicted) who had undergone lung resection. As 4-HNE and transforming growth factor-beta(1) (TGF-beta(1)) can modulate gamma-glutamylcysteine synthetase (gamma-GCS) mRNA levels in lung cells, we assessed the relations between 4-HNE-modified protein levels, FEV(1), gamma-GCS, and TGF-beta(1). 4-HNE-modified protein levels were elevated in airway and alveolar epithelial cells, endothelial cells, and neutrophils in subjects with COPD, compared with the levels in subjects without COPD (p < 0.01). We also observed a significant inverse correlation between the levels of 4-HNE adducts in alveolar epithelium, airway endothelium, and neutrophils and FEV(1) (p < 0.05) and a positive correlation between 4-HNE adducts and TGF-beta(1) protein and mRNA as well as gamma-GCS mRNA levels in airway and alveolar epithelium (p < 0.01). The elevated levels of 4-HNE may play a role in the signaling events in lung inflammation leading to the imbalance of the expression of both proinflammatory mediators and protective antioxidant genes in COPD.
Collapse
Affiliation(s)
- Irfan Rahman
- Respiratory Medicine Unit, ELEGI Laboratory, University of Edinburgh Medical School, Wilkie Building, Teviot Place, Edinburgh EH8 9AG, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
179
|
Casu A, Bassi AM, Canepa C, Maloberti G, Nanni G. Thioacetamide impairs retinol storage and dolichol content in rat liver cells in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:266-72. [PMID: 12176393 DOI: 10.1016/s1388-1981(02)00251-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of this paper was to ascertain whether chronic pretreatment with thioacetamide (TAA) might alter the uptake of a load of retinol and dolichol distribution in hepatocytes (HC), hepatic stellate cells (HSC) (Ito-1 and Ito-2 subfractions), Kupffer (KC) and sinusoidal endothelial cells (SEC). The reason why retinol and dolichol content was studied is that their metabolism and transport might be interrelated and that the two isoprenoids might exert different functions in the cells of the hepatic sinusoid. Rats were treated for 2 and 4 months with TAA, a known fibrogenic hepatotoxin, at a low dosage, to produce an early stage of damage. Three days before sacrifice, the rats were given a load of vitamin A, and cells were isolated to investigate its uptake. In HC, the load of retinol was taken up and accumulated, while a decrease in dolichol preceded retinol increase. In HSC, much less of the retinol load was stored than in controls, and dolichol content also decreased. Various minor modifications were seen in KC and SEC.Collectively, the results show that the distribution of these two isoprenoids, which play important roles in cellular differentiation and proliferation, is differently altered in the multiple cell types that line the hepatic sinusoid, and that both isoprenoids seem to participate in the first steps of liver damage.
Collapse
Affiliation(s)
- A Casu
- Department of Experimental Medicine, Section of General Pathology, University of Genoa, Via L.B. Alberti 2, 16132 Genoa, Italy
| | | | | | | | | |
Collapse
|
180
|
Abstract
Skin is a major target of oxidative stress due to reactive oxygen species (ROS) that originate in the environment and in the skin itself. ROS are generated during normal metabolism, are an integral part of normal cellular function, and are usually of little harm because of intracellular mechanisms that reduce their damaging effects. Antioxidants attenuate the damaging effects of ROS and can impair and/or reverse many of the events that contribute to epidermal toxicity and disease. However, increased or prolonged free radical action can overwhelm ROS defense mechanisms, contributing to the development of cutaneous diseases and disorders. Although ROS play a role in diseases such as skin cancer, their biological targets and pathogenic mode of action are still not fully understood. In addition, strategies useful in the therapeutic management of ROS action in human skin are still lacking. This review is intended to give investigators an introduction to ROS, antioxidants, two skin disorders influenced by ROS action (skin cancer and psoriasis), and relevant model systems used to study ROS action.
Collapse
Affiliation(s)
- Kevin J Trouba
- National Institute of Environmental Health Sciences, Laboratory of Molecular Toxicology, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
181
|
Barrera G, Pizzimenti S, Laurora S, Moroni E, Giglioni B, Dianzani MU. 4-Hydroxynonenal affects pRb/E2F pathway in HL-60 human leukemic cells. Biochem Biophys Res Commun 2002; 295:267-75. [PMID: 12150942 DOI: 10.1016/s0006-291x(02)00649-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
4-Hydroxynonenal (HNE), a highly reactive product of lipid peroxidation, has an antiproliferative effect in several tumor cell lines and provokes alteration of cell cycle progression in HL-60 cells. HNE down-regulates c-myc expression in K562, HL-60, and MEL cells. This prompted us to study the cascade of phenomena that, starting from the CKIs expression and the phosphorylation of pRb, arrives at the E2F binding to consensus sequence in the P2 promoter of the c-myc gene. Treatment of HL-60 cells with HNE (1 microM) causes a p53-independent increase of p21(WAF1/CIP1) expression, pRb dephosphorylation, a decrease of low molecular weight E2F complexes and an increase of high molecular weight E2F complexes bound to P2 c-myc promoter. E2F4 expression is reduced by HNE treatment as well as the amount of pRb/E2F4 complexes, whereas the amount of pRb/E2F1 complexes is increased. In conclusion, HNE can affect the pRb/E2F pathway by modifying the expression of several genes involved in the control of cell proliferation.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Dipartimento di Medicina e Oncologia Sperimentale, Sezione di Patologia Generale, Corso Raffaello 30, 10125 Turin, Italy
| | | | | | | | | | | |
Collapse
|
182
|
Hamadeh HK, Knight BL, Haugen AC, Sieber S, Amin RP, Bushel PR, Stoll R, Blanchard K, Jayadev S, Tennant RW, Cunningham ML, Afshari CA, Paules RS. Methapyrilene toxicity: anchorage of pathologic observations to gene expression alterations. Toxicol Pathol 2002; 30:470-82. [PMID: 12187938 DOI: 10.1080/01926230290105712] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methapyrilene (MP) exposure of animals can result in an array of adverse pathological responses including hepatotoxicity. This study investigates gene expression and histopathological alterations in response to MP treatment in order to 1) utilize computational approaches to classify samples derived from livers of MP treated rats based on severity of toxicity incurred in the corresponding tissue, 2) to phenotypically anchor gene expression pattems, and 3) to gain insight into mechanism(s) of methapyrilene hepatotoxicity. Large-scale differential gene expression levels associated with the exposure of male Sprague-Dawley rats to the rodent hepatic carcinogen MP for 1, 3, or 7 days after daily dosage with 10 or 100 mg/kg/day were monitored. Hierarchical clustering and principal component analysis were successful in classifying samples in agreement with microscopic observations and revealed low-dose effects that were not observed histopathologically. Data from cDNA microarray analysis corroborated observed histopathological alterations such as hepatocellular necrosis, bile duct hyperplasia, microvesicular vacuolization, and portal inflammation observed in the livers of MP exposed rats and provided insight into the role of specific genes in the studied toxicological processes.
Collapse
Affiliation(s)
- Hisham K Hamadeh
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Nitti M, Domenicotti C, d'Abramo C, Assereto S, Cottalasso D, Melloni E, Poli G, Biasi F, Marinari UM, Pronzato MA. Activation of PKC-beta isoforms mediates HNE-induced MCP-1 release by macrophages. Biochem Biophys Res Commun 2002; 294:547-52. [PMID: 12056801 DOI: 10.1016/s0006-291x(02)00512-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-Hydroxynonenal (HNE) in the concentration range detectable in many pathophysiologic conditions is able to modulate signal transduction cascades and gene expression. Here, we report the stimulating effect of 1 microM HNE on the release of the monocyte chemotactic protein-1 (MCP-1) by murine macrophages. MCP-1-increased export following 1-h cell treatment with HNE proved to be comparable to that exerted by standard amounts of bacterial lipopolysaccharide (LPS). However, the key molecular event in HNE-induced secretion of MCP-1 appeared to be the increased activity of beta-PKC isoforms, which are recognized as playing a role in the regulation of cell protein transport and secretion. On the other hand, in LPS-stimulated cells, the delta isoform was seen to be involved and was probably related to LPS-mediated effects on MCP-1 expression and synthesis. In conclusion, HNE might interact with other pro-inflammatory stimuli, like LPS, in a concerted amplification of MCP-1 production and secretion.
Collapse
Affiliation(s)
- M Nitti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Via L.B. Alberti, 2, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Physical exercise may be associated with a 10- to 20-fold increase in whole body oxygen uptake. Oxygen flux in the active peripheral skeletal muscle fibres may increase by as much as 100- to 200-fold during exercise. Studies during the past 2 decades suggest that during strenuous exercise, generation of reactive oxygen species (ROS) is elevated to a level that overwhelms tissue antioxidant defence systems. The result is oxidative stress. The magnitude of the stress depends on the ability of the tissues to detoxify ROS, that is, antioxidant defences. Antioxidants produced by the body act in concert with their exogenous, mainly dietary, counterparts to provide protection against the ravages of reactive oxygen as well as nitrogen species. Antioxidant supplementation is likely to provide beneficial effects against exercise-induced oxidative tissue damage. While universal recommendations specifying types and dosages of antioxidants are difficult to make, it would be prudent for competitive athletes routinely engaged in strenuous exercise to seek an estimate of individual requirement. A new dimension in oxidant biology has recently unfolded. Although excessive oxidants may cause damage to tissues, lower levels of oxidants in biological cells may act as messenger molecules enabling the function of numerous physiological processes. It is plausible that some exercise-induced beneficial effects are actually oxidant-mediated. Such developments call for an even more careful analysis of the overall significance of types and amounts of antioxidants in diet. While these complexities pose significant challenges, experts agree that if used prudently, oxidants and antioxidants may serve as potent therapeutic tools. Efforts to determine individual needs of athletes and a balanced diet rich in antioxidant supplements are highly recommended.
Collapse
Affiliation(s)
- C K Sen
- Department of Surgery and Molecular and Cellular Biochemistry, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus 43210, USA.
| |
Collapse
|
185
|
Abstract
It is well established that fatty acid metabolites of cyclooxygenase, lipoxygenase (LOX), and cytochrome P450 are implicated in essential aspects of cellular signaling including the induction of programmed cell death. Here we review the roles of enzymatic and non-enzymatic products of polyunsaturated fatty acids in controlling cell growth and apoptosis. Also, the spontaneous oxidation of polyunsaturated fatty acids yields reactive aldehydes and other products of lipid peroxidation that are potentially toxic to cells and may also signal apoptosis. Significant conflicting data in terms of the role of LOX enzymes are highlighted, prompting a re-evaluation of the relationship between LOX and prostate cancer cell survival. We include new data showing that LNCaP, PC3, and Du145 cells express much lower levels of 5-LOX mRNA and protein compared with normal prostate epithelial cells (NHP2) and primary prostate carcinoma cells (TP1). Although the 5-LOX activating protein inhibitor MK886 killed these cells, another 5-LOX inhibitor AA861 hardly showed any effect. These observations suggest that 5-LOX is unlikely to be a prostate cancer cell survival factor, implying that the mechanisms by which LOX inhibitors induce apoptosis are more complex than expected. This review also suggests several mechanisms involving peroxisome proliferator activated receptor activation, BCL proteins, thiol regulation, and mitochondrial and kinase signaling by which cell death may be produced in response to changes in non-esterified and non-protein bound fatty acid levels. Overall, this review provides a context within which the effects of fatty acids and fatty acid oxidation products on signal transduction pathways, particularly those involved in apoptosis, can be considered in terms of their overall importance relative to the much better studied protein or peptide signaling factors.
Collapse
Affiliation(s)
- Dean G Tang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas, Austin 78712, USA
| | | | | | | |
Collapse
|
186
|
Pizzimenti S, Laurora S, Briatore F, Ferretti C, Dianzani MU, Barrera G. Synergistic effect of 4-hydroxynonenal and PPAR ligands in controlling human leukemic cell growth and differentiation. Free Radic Biol Med 2002; 32:233-45. [PMID: 11827749 DOI: 10.1016/s0891-5849(01)00798-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Peroxisome proliferator-activated receptors play an important role in the differentiation of different cell lines. In this study we demonstrate that PPAR-alpha ligands (clofibrate and ciprofibrate) and PPAR-gamma ligands (troglitazone and 15d-prostaglandin J2) inhibit growth and induce monocytic differentiation in HL-60 cells, whereas only PPAR-gamma ligands inhibit growth of U937 cells. Differentiation was demonstrated by the analysis of surface antigen expression CD11b and CD14, and by the characteristic morphological changes. PPAR-gamma ligands are more effective than PPAR-alpha ligands in the inhibition of cell growth and in the induction of differentiation. The physiological product of lipid peroxidation, 4-hydroxynonenal (HNE), which alone induces granulocytic-like differentiation of HL-60 cells, potentiates the monocytic differentiation induced by ciprofibrate, troglitazone, and 15d-prostaglandin J2. The same HNE treatment significantly inhibits U937 cell growth and potentiates the inhibition of cell growth in PPAR-gamma ligand-treated cells. However, HNE does not induce a significant number of CD14-positive U937 cells. HNE causes a great increase of PPAR-gamma expression in both HL-60 and U937 cells, whereas it does not modify the PPAR-alpha expression. This observation may account for the high synergistic effect displayed by HNE and PPAR-gamma ligands in the inhibition of cell growth and differentiation induction. These results represent the first evidence of the involvement of a product of lipid peroxidation in the modulation of PPAR ligand activity and suggest a relationship between HNE and PPAR ligand pathways in leukemic cell growth and differentiation.
Collapse
Affiliation(s)
- Stefania Pizzimenti
- Dipartimento di Medicina e Oncologia Sperimentale, Universita' degli Studi di Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
187
|
Kumagai T, Nakamura Y, Osawa T, Uchida K. Role of p38 mitogen-activated protein kinase in the 4-hydroxy-2-nonenal-induced cyclooxygenase-2 expression. Arch Biochem Biophys 2002; 397:240-5. [PMID: 11795877 DOI: 10.1006/abbi.2001.2601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
COX-2 is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins (PGs). 4-Hydroxy-2-nonenal (HNE), one of the lipid peroxidation end-products, has been recently identified as a potent COX-2 inducer in rat epithelial cell RL34 cells (Kumagai et al. (2000) Biochem. Biophys. Res. Commun. 273, 437-441). Here we investigated the molecular mechanism underlying the COX-2 induction by HNE mainly focusing on the activation of p38 mitogen-activated protein kinase (MAPK) pathways. The observations that (i) HNE induced phosphorylation of p38 MAPK and MKK3/MKK6 within 5 min and that (ii) SB203580, a p38 MAPK-specific inhibitor, suppressed the HNE-induced COX-2 expression suggested that the p38 MAPK pathway was involved in the HNE-induced COX-2 expression. Overexpression of p38 MAPK enhanced the HNE-induced COX-2 expression, whereas the overexpression of dominant negative p38 MAPK suppressed it. Furthermore, we also found that HNE upregulated the COX-2 expression by the stabilization of COX-2 mRNA via the p38 MAPK pathway.
Collapse
Affiliation(s)
- Takeshi Kumagai
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
188
|
Enoiu M, Herber R, Wennig R, Marson C, Bodaud H, Leroy P, Mitrea N, Siest G, Wellman M. gamma-Glutamyltranspeptidase-dependent metabolism of 4-hydroxynonenal-glutathione conjugate. Arch Biochem Biophys 2002; 397:18-27. [PMID: 11747306 DOI: 10.1006/abbi.2001.2633] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major pathway for detoxification of the highly reactive lipid peroxidation product, 4-hydroxy-2,3-trans-nonenal (HNE) is through the conjugation with glutathione (GSH). We have studied the metabolism of GS-HNE conjugate by the enzyme gamma-glutamyltranspeptidase (GGT) using its purified form, as well as a GGT-overexpressing fibroblast cell line (V79 GGT). Using mass spectrometry analysis we identified for the first time cysteinylglycine-HNE (CysGly-HNE) as the GGT metabolite of GS-HNE. Furthermore, the GGT-dependent metabolism of GS-HNE in the V79 GGT cell line was associated with a considerable increase of cytotoxicity as compared to a control cell line which does not express GGT (V79 Cl). The cytotoxic effect was dose- and time-dependent (100% cellular death at 200 microM GS-HNE after 24 h incubation) in V79 GGT cells, whereas no decrease of viability was observed in V79 Cl cells. A similar cytotoxic effect was obtained when cells were incubated directly with CysGly-HNE, demonstrating that this GGT-dependent metabolite unlike GS-HNE, exhibits cytotoxic properties.
Collapse
Affiliation(s)
- Milica Enoiu
- EA 3117, Faculty of Pharmacy, University Henri Poincaré Nancy 1, 54001 Nancy Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Takabe W, Kodama T, Hamakubo T, Tanaka K, Suzuki T, Aburatani H, Matsukawa N, Noguchi N. Anti-atherogenic antioxidants regulate the expression and function of proteasome alpha-type subunits in human endothelial cells. J Biol Chem 2001; 276:40497-501. [PMID: 11533053 DOI: 10.1074/jbc.m104882200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that phenolic antioxidants such as probucol exert their anti-atherogenic effects through scavenging lipid-derived radicals. In this study the potential for genomics to reveal unanticipated pharmacological properties of phenolic antioxidants is explored. It was found that two anti-atherogenic compounds, BO-653 and probucol, inhibited the expression of three alpha-type proteasome subunits, PMSA2, PMSA3, and PMSA4 in human umbilical vein endothelial cells. Here we report that both BO-653 and probucol caused not only inhibition of the mRNA levels of these three subunits but also inhibition of both the gene expression and protein synthesis of the alpha-type subunit, PMSA1. Other subunit components of the proteasome such as the beta-type subunits (PMSB1, PMSB7), the ATPase subunit of 19 S (PMSC6), the non-ATPase subunit of 19 S (PMSD1), and PA28 (PMSE2) were not significantly affected by treatment with these compounds. The specific inhibition of alpha-type subunit expression in response to these antioxidants resulted in functional alterations of the proteasome with suppression of degradation of multiubiquitinated proteins and IkappaBalpha. These results suggest that certain compounds previously classified solely as antioxidants are able to exert potentially important modulatory effects on proteasome function.
Collapse
Affiliation(s)
- W Takabe
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Oxidative stress results from an oxidant/antioxidant imbalance in favour of oxidants. A large number of studies have demonstrated that increased oxidative burden occurs in airways diseases, shown by increased marks of oxidative stress in the airspaces and systemically in these patients. There is now substantial evidence that oxidative stress plays an important role in the injurious and inflammatory responses in airways diseases such as asthma and chronic obstructive pulmonary disease (COPD). In addition to these proinflammatory mechanisms resulting from oxidative stress, protective mechanisms such as the upregulation of protective antioxidant genes also occur. At present, effective antioxidant therapy that has good bioavailability and potency is not available. Such drugs are being developed and should in the future allow the hypothesis that oxidative stress is a fundamental factor in the inflammation, which occurs in these airways diseases to be tested.
Collapse
Affiliation(s)
- W MacNee
- Respiratory Medicine, ELEGI, Colt Research Laboratories, Wilkie Building, Edinburgh, Scotland, UK.
| |
Collapse
|
191
|
Affiliation(s)
- M Parola
- Dipartimento di Medicina e Oncologia Sperimentale, Sezione di Patologia Generale, Università degli Studi di Torino, Italy.
| | | |
Collapse
|
192
|
Rinaldi M, Barrera G, Spinsanti P, Pizzimenti S, Ciafrè SA, Parella P, Farace MG, Signori E, Dianzani MU, Fazio VM. Growth inhibition and differentiation induction in murine erythroleukemia cells by 4-hydroxynonenal. Free Radic Res 2001; 34:629-37. [PMID: 11697038 DOI: 10.1080/10715760100300521] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
4-Hydroxynonenal (HNE) is one of the major end products of lipid peroxidation. Here we show that the exposure of murine erythroleukemia (MEL) cells to 1 microM HNE, for 10.5 h over 2 days, induces a differentiation comparable with that observed in cells exposed to DMSO for the whole experiment (7 days). The exposure of MEL cells for the same length of time demonstrates a higher degree of differentiation in HNE-treated than in DMSO-treated MEL cells. The protooncogene c-myc is down-modulated early, in HNE-induced MEL cells as well as in DMSO-treated cells. However, ornithine decarboxylase gene expression first increases and then decreases, during the lowering of the proliferation rate. These findings indicate that HNE, at a concentration physiologically found in many normal tissues and in the plasma, induces MEL cell differentiation by modulation of specific gene expression.
Collapse
Affiliation(s)
- M Rinaldi
- Laboratory of Molecular Medicine & Biotechnology, University Campus Bio-Medico, School of Medicine, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Robino G, Zamara E, Novo E, Dianzani MU, Parola M. 4-Hydroxy-2,3-alkenals as signal molecules modulating proliferative and adaptative cell responses. Biofactors 2001; 15:103-6. [PMID: 12016336 DOI: 10.1002/biof.5520150211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- G Robino
- Department of Experimental Medicine and Oncology, University of Torino, Italy
| | | | | | | | | |
Collapse
|
194
|
Robino G, Parola M, Marra F, Caligiuri A, De Franco RM, Zamara E, Bellomo G, Gentilini P, Pinzani M, Dianzani MU. Interaction between 4-hydroxy-2,3-alkenals and the platelet-derived growth factor-beta receptor. Reduced tyrosine phosphorylation and downstream signaling in hepatic stellate cells. J Biol Chem 2000; 275:40561-7. [PMID: 11007794 DOI: 10.1074/jbc.m007694200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cells (HSC) undergo activation toward myofibroblast-like cells during early stages of liver injury associated with fibrogenesis. Platelet-derived growth factor (PDGF), particularly its BB isoform, has been identified as the most potent mitogen for HSC. 4-Hydroxy-2,3-nonenal and related 4-hydroxy-2, 3-alkenals (HAKs) have been suggested to modulate the process of HSC activation. In this study we investigated the relationship between HAKs and PDGF receptor activation in human HSC. By employing noncytotoxic concentrations (10(-6) m) of HAKs, we observed a significant inhibition of PDGF-BB-dependent DNA synthesis. HAKs inhibited relevant pathways of PDGF-BB-dependent mitogenic signaling, including autophosphorylation of PDGF receptor (PDGF-R) beta subunits and activation of phosphatidylinositol 3-kinase and extracellular regulated kinases 1/2. Inhibition of DNA synthesis was reversible, and recovery of PDGF-mediated mitogenic signaling occurred within 24-48 h and was associated with HAKs-induced up-regulation of PDGF-R beta gene expression. 4-Hydroxy-2,3-nonenal, used as a model HAK, inhibited the intrinsic tyrosine kinase activity associated with the PDGF-R beta subunit, whereas binding of PDGF to its receptor was unaffected. This study identifies a novel regulatory mechanism of reactive aldehydes on PDGF receptor signaling and biologic actions, which may be relevant in several pathophysiological conditions, including liver fibrosis.
Collapse
Affiliation(s)
- G Robino
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|