151
|
Targeted Sequencing Identifies the Genetic Variants Associated with High-altitude Polycythemia in the Tibetan Population. Indian J Hematol Blood Transfus 2021; 38:556-565. [PMID: 35747576 PMCID: PMC9209555 DOI: 10.1007/s12288-021-01474-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
High-altitude polycythemia (HAPC) is characterized by excessive proliferation of erythrocytes, resulting from the hypobaric hypoxia condition in high altitude. The genetic variants and molecular mechanisms of HAPC remain unclear in highlanders. We recruited 141 Tibetan dwellers, including 70 HAPC patients and 71 healthy controls, to detect the possible genetic variants associated with the disease; and performed targeted sequencing on 529 genes associated with the oxygen metabolism and erythrocyte regulation, utilized unconditional logistic regression analysis and GO (gene ontology) analysis to investigate the genetic variations of HAPC. We identified 12 single nucleotide variants, harbored in 12 genes, associated with the risk of HAPC (4.7 ≤ odd ratios ≤ 13.6; 7.6E − 08 ≤ p-value ≤ 1E − 04). The pathway enrichment study of these genes indicated the three pathways, the PI3K-AKT pathway, JAK-STAT pathway, and HIF-1 pathway, are essential, which p-values as 3.70E − 08, 1.28 E − 07, and 3.98 E − 06, respectively. We are hopeful that our results will provide a reference for the etiology research of HAPC. However, additional genetic risk factors and functional investigations are necessary to confirm our results further.
Collapse
|
152
|
Jiang P, Wang Z, Yu X, Qin Y, Shen Y, Yang C, Liu F, Ye S, Du X, Ma L, Cao H, Sun P, Su N, Lin F, Zhang R, Li C. Effects of long-term high-altitude exposure on fibrinolytic system. ACTA ACUST UNITED AC 2021; 26:503-509. [PMID: 34238131 DOI: 10.1080/16078454.2021.1946265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE High altitude (HA), with the main feature of hypobaric hypoxia, is an independent risk factor for thrombosis. However, little is known on the alterations of fibrinolytic system in adaptation to HA. In this study, we investigated changes of fibrinolytic system parameters between individuals permanently living at HA and low altitude (LA) regions, and provided data for further studies on HA-induced thrombotic disease. MATERIAL AND METHODS A total of 226 eligible participants, including 103 LA participants, 100 healthy HA subjects and 23 high altitude polycythemia (HAPC) patients, were recruited in this study. Six fibrinolytic parameters, i.e. fibrinogen (Fbg), D-dimer (DDi), antithrombin III (AT-III), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA) and plasminogen (PLG) were analyzed respectively. PAI-1 and tPA were performed by using bio-immuno-assays and an automated coagulation analyzer was used to conduct Fbg, DDi, AT-III and PLG tests. RESULTS Plasma levels of Fbg, DDi, PAI-1 and PLG were significantly higher in healthy HA group than in LA group (all p < 0.05), whereas tPA was significantly lower in healthy HA group. No significant difference in AT-III was observed between healthy HA and LA groups (p > 0.05). All these fibrinolytic parameters showed no significant distinctions between healthy HA subjects and HAPC patients (all p > 0.05). HGB showed no relationship with fibrinolytic parameters in HA cohort. CONCLUSION This study demonstrates that HA environment has a significant effect on fibrinolytic system and provides a foundation for further studies on HA hypobaric hypoxia-induced thrombotic disease.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Xiaochuan Yu
- Department of Transfusion, People's Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Barkam, People's Republic of China
| | - Yuyan Qin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Yuanzhen Shen
- Department of Transfusion, People's Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Barkam, People's Republic of China
| | - Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, People's Republic of China
| |
Collapse
|
153
|
Hansen AB, Moralez G, Amin SB, Simspon LL, Hofstaetter F, Anholm JD, Gasho C, Stembridge M, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte F, Romero SA, Hearon CM, Lawley JS. Global REACH 2018: the adaptive phenotype to life with chronic mountain sickness and polycythaemia. J Physiol 2021; 599:4021-4044. [PMID: 34245004 DOI: 10.1113/jp281730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Humans suffering from polycythaemia undergo multiple circulatory adaptations including changes in blood rheology and structural and functional vascular adaptations to maintain normal blood pressure and vascular shear stresses, despite high blood viscosity. During exercise, several circulatory adaptations are observed, especially involving adrenergic and non-adrenergic mechanisms within non-active and active skeletal muscle to maintain exercise capacity, which is not observed in animal models. Despite profound circulatory stress, i.e. polycythaemia, several adaptations can occur to maintain exercise capacity, therefore making early identification of the disease difficult without overt symptomology. Pharmacological treatment of the background heightened sympathetic activity may impair the adaptive sympathetic response needed to match local oxygen delivery to active skeletal muscle oxygen demand and therefore inadvertently impair exercise capacity. ABSTRACT Excessive haematocrit and blood viscosity can increase blood pressure, cardiac work and reduce aerobic capacity. However, past clinical investigations have demonstrated that certain human high-altitude populations suffering from excessive erythrocytosis, Andeans with chronic mountain sickness, appear to have phenotypically adapted to life with polycythaemia, as their exercise capacity is comparable to healthy Andeans and even with sea-level inhabitants residing at high altitude. By studying this unique population, which has adapted through natural selection, this study aimed to describe how humans can adapt to life with polycythaemia. Experimental studies included Andeans with (n = 19) and without (n = 17) chronic mountain sickness, documenting exercise capacity and characterizing the transport of oxygen through blood rheology, including haemoglobin mass, blood and plasma volume and blood viscosity, cardiac output, blood pressure and changes in total and local vascular resistances through pharmacological dissection of α-adrenergic signalling pathways within non-active and active skeletal muscle. At rest, Andeans with chronic mountain sickness had a substantial plasma volume contraction, which alongside a higher red blood cell volume, caused an increase in blood viscosity yet similar total blood volume. Moreover, both morphological and functional alterations in the periphery normalized vascular shear stress and blood pressure despite high sympathetic nerve activity. During exercise, blood pressure, cardiac work and global oxygen delivery increased similar to healthy Andeans but were sustained by modifications in both non-active and active skeletal muscle vascular function. These findings highlight widespread physiological adaptations that can occur in response to polycythaemia, which allow the maintenance of exercise capacity.
Collapse
Affiliation(s)
- Alexander B Hansen
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA
| | - Sachin B Amin
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simspon
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstaetter
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA.,Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Justin S Lawley
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
154
|
A 1H NMR spectroscopic metabolomic study of the protective effects of irbesartan in a rat model of chronic mountain sickness. J Pharm Biomed Anal 2021; 204:114235. [PMID: 34252817 DOI: 10.1016/j.jpba.2021.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Chronic mountain sickness (CMS) is a significant pathology in most high-altitude regions globally, affecting the cardiopulmonary system and its mechanism is largely unknown. A metabonomic approach using 1H nuclear magnetic resonance spectroscopy allows for detecting differential metabolites, which provides a global view and mechanisms during CMS development. In this study, we simulated a high-altitude environment to establish a rat model of CMS. Irbesartan was administered to CMS rats at three doses (6.75, 13.5, and 27 mg/kg) once a day for 15 days. HE staining and transmission electron microscopy were used to evaluate the effect of changes on the lung. Based on 1H NMR spectra obtained from serum samples, partial least squares-discriminant analysis (PLS-DA) and its variant orthogonal PLS-DA (OPLS-DA) models were applied to distinguish the different groups. Histopathological sections showed that the alveolar structure was abnormal, inflammatory infiltration occurred in CMS rats, and CMS induced notable metabolic disorder according to the 1H NMR result. However, irbesartan reversed the imbalanced metabolites via energy metabolism, amino acid metabolism, and taurine metabolism pathways, and its effect was also confirmed by the general signs and morphology of the lung. The results revealed that irbesartan as an effective therapeutic agent to improve CMS is warranted.
Collapse
|
155
|
Nijiati Y, Yang T, Aimaiti M, Maimaitiyiming D, Aikemu A. Irbesartan ameliorates chronic mountain sickness in a rat model via the cholesterol metabolism: An iTRAQ -based proteomics analysis. Biomed Pharmacother 2021; 141:111802. [PMID: 34147903 DOI: 10.1016/j.biopha.2021.111802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To study the effects of irbesartan on pulmonary artery lesions in a rat model with chronic mountain sickness (CMS) and identify the biomarkers involved. METHODS In this study, we used a rat model of CMS to evaluate the therapeutic effect of irbesartan by measuring pulmonary artery pressure and evaluating the histopathology of the pulmonary artery. We also used proteomics technology to identify differentially expressed proteins (DEPs) in the serum and performed bioinformatics analysis. Results were then verified by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). RESULTS Irbesartan treatment induced a significant decrease (P < 0.05) in the pulmonary artery pressure of CMS rats. Histopathological and electron microscope further confirmed that high altitude hypoxia induced changes in the structure of the pulmonary artery tissue and caused ultrastructural lesions. Proteomics analysis identified 40 DEPs; bioinformatics analysis further revealed that the cholesterol metabolism pathway plays a crucial role in the occurrence of CMS. ELISA and IHC verified that several DEPs (Apo-A1, Apo-C1, Apo-E, IGF-1, Profilin1, and Col1a1) represent critical biological markers in pulmonary artery disease caused by CMS. CONCLUSIONS Irbesartan significantly improved pulmonary artery damage in a rat model of CMS possibly by impacting on the cholesterol metabolism pathway and by reducing damage to vascular endothelial cells. Irbesartan also inhibited the expression levels of IGF-1, Profilin1 and Col1a1 to relieve pulmonary artery pressure and improve lung function by inhibiting vascular remodeling. Several proteins were identified as potential biomarkers of CMS, including Apo-A1, Apo-C1, Apo-E, IGF-1, Profilin1, and Col1a1.
Collapse
Affiliation(s)
- Yiliyaer Nijiati
- Department of Drug Analysis, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, Xinjiang, China; Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Tao Yang
- Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mutalifu Aimaiti
- Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Dilinuer Maimaitiyiming
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Ainiwaer Aikemu
- Department of Drug Analysis, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, Xinjiang, China; Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
156
|
Mallet RT, Burtscher J, Richalet JP, Millet GP, Burtscher M. Impact of High Altitude on Cardiovascular Health: Current Perspectives. Vasc Health Risk Manag 2021; 17:317-335. [PMID: 34135590 PMCID: PMC8197622 DOI: 10.2147/vhrm.s294121] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, about 400 million people reside at terrestrial altitudes above 1500 m, and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The interactions between the low barometric pressure and partial pressure of O2, climate, individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclimatization processes at high elevations are extremely complex. It is challenging to decipher the effects of these myriad factors on the cardiovascular health in high altitude residents, and even more so in those ascending to high altitudes with or without preexisting diseases. This review aims to interpret epidemiological observations in high-altitude populations; present and discuss cardiovascular responses to acute and subacute high-altitude exposure in general and more specifically in people with preexisting cardiovascular diseases; the relations between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric hypoxia.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Jean-Paul Richalet
- Laboratoire Hypoxie & Poumon, UMR Inserm U1272, Université Sorbonne Paris Nord 13, Bobigny Cedex, F-93017, France
| | - Gregoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria
- Austrian Society for Alpine and High-Altitude Medicine, Mieming, Austria
| |
Collapse
|
157
|
Pham K, Parikh K, Heinrich EC. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front Physiol 2021; 12:676782. [PMID: 34122145 PMCID: PMC8188852 DOI: 10.3389/fphys.2021.676782] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
The key regulators of the transcriptional response to hypoxia and inflammation (hypoxia inducible factor, HIF, and nuclear factor-kappa B, NF-κB, respectively) are evolutionarily conserved and share significant crosstalk. Tissues often experience hypoxia and inflammation concurrently at the site of infection or injury due to fluid retention and immune cell recruitment that ultimately reduces the rate of oxygen delivery to tissues. Inflammation can induce activity of HIF-pathway genes, and hypoxia may modulate inflammatory signaling. While it is clear that these molecular pathways function in concert, the physiological consequences of hypoxia-induced inflammation and how hypoxia modulates inflammatory signaling and immune function are not well established. In this review, we summarize known mechanisms of HIF and NF-κB crosstalk and highlight the physiological consequences that can arise from maladaptive hypoxia-induced inflammation. Finally, we discuss what can be learned about adaptive regulation of inflammation under chronic hypoxia by examining adaptive and maladaptive inflammatory phenotypes observed in human populations at high altitude. We aim to provide insight into the time domains of hypoxia-induced inflammation and highlight the importance of hypoxia-induced inflammatory sensitization in immune function, pathologies, and environmental adaptation.
Collapse
Affiliation(s)
| | | | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
158
|
Basak N, Norboo T, Mustak MS, Thangaraj K. Heterogeneity in Hematological Parameters of High and Low Altitude Tibetan Populations. J Blood Med 2021; 12:287-298. [PMID: 34040473 PMCID: PMC8139737 DOI: 10.2147/jbm.s294564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction High altitude hypoxia is believed to be experienced at elevations of more than 2500 meters above sea level. Several studies have shed light on the biochemical aspects of high altitude acclimatization, where participants were sojourners to the high altitude from low altitude areas. However, information regarding the difference between the high altitude adapted Tibetans living at high altitude and their counterparts who reside at low altitude are lacking. To understand this, we have measured various hematological parameters in the Tibetan populations, who are residing in both high and low altitudes in India. Methods A total of 168 individuals (79 from high altitude (≥4500 meters) and 89 from low altitude (~850 meters) were recruited for this study. Hematological parameters such as red blood cells (RBC) count, hematocrit (HCT), hemoglobin concentration (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were measured from the individuals from high and low altitudes. Serum erythropoietin (EPO) was measured by ELISA. Statistical analyses were performed to compare data from both of the altitudes. Gender-wise comparison of data was reported. Correlation analysis was performed within relevant parameters. Results Highly significant differences (p <0.0001) between high and low altitude Tibetans were detected in RBC count, HCT, Hb, MCHC in both males and females and in MCV in females. In the case of MCHC, however, age and BMI were potential confounders. Nominally significant differences (p <0.05) were detected in MCV and MCH within males. No significant difference in serum EPO level was found between altitude groups, in any gender. No significant correlation was found between serum EPO with Hb as well as serum EPO with HCT. Discussion Our study explores significantly lower RBC count, HCT, Hb, MCH, MCHC and higher MCV in long-term Tibetan residents living at low altitude compared to their high altitude counterparts, which is likely due to the outcome of hematological adaptation to a relatively hyperoxic environment in low altitude areas.
Collapse
Affiliation(s)
- Nipa Basak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,DBT-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
159
|
Chen K, Li N, Fan F, Geng Z, Zhao K, Wang J, Zhang Y, Tang C, Wang X, Meng X. Tibetan Medicine Duoxuekang Capsule Ameliorates High-Altitude Polycythemia Accompanied by Brain Injury. Front Pharmacol 2021; 12:680636. [PMID: 34045970 PMCID: PMC8144525 DOI: 10.3389/fphar.2021.680636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: Duoxuekang (DXK) capsule is an empirical prescription for Tibetan medicine in the treatment of hypobaric hypoxia (HH)-induced brain injury in the plateau. This study aimed to investigate the protective effects and underlying molecular mechanisms of DXK on HH-induced brain injury. Methods: UPLC–Q-TOF/MS was performed for chemical composition analysis of DXK. The anti-hypoxia and anti-fatigue effects of DXK were evaluated by the normobaric hypoxia test, sodium nitrite toxicosis test, and weight-loaded swimming test in mice. Simultaneously, SD rats were used for the chronic hypobaric hypoxia (CHH) test. RBC, HGB, HCT, and the whole blood viscosity were evaluated. The activities of SOD and MDA in the brain, and EPO and LDH levels in the kidney were detected using ELISA. H&E staining was employed to observe the pathological morphology in the hippocampus and cortex of rats. Furthermore, immunofluorescence and Western blot were carried out to detect the protein expressions of Mapk10, RASGRF1, RASA3, Ras, and IGF-IR in the brain of rats. Besides, BALB/c mice were used for acute hypobaric hypoxia (AHH) test, and Western blot was employed to detect the protein expression of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 in the cerebral cortex of mice. Results: 23 different chemical compositions of DXK were identified by UPLC–Q-TOF/MS. The anti-hypoxia test verified that DXK can prolong the survival time of mice. The anti-fatigue test confirmed that DXK can prolong the swimming time of mice, decrease the level of LDH, and increase the hepatic glycogen level. Synchronously, DXK can decrease the levels of RBC, HGB, HCT, and the whole blood viscosity under the CHH condition. Besides, DXK can ameliorate CHH-induced brain injury, decrease the levels of EPO and LDH in the kidney, reduce MDA, and increase SOD in the hippocampus. Furthermore, DXK can converse HH-induced marked increase of Mapk10, RASGRF1, and RASA3, and decrease of Ras and IGF-IR. In addition, DXK can suppress the ratio of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 under the HH condition. Conclusion: Together, the cerebral protection elicited by DXK was due to the decrease of hematological index, suppressing EPO, by affecting the MAPK signaling pathway in oxidative damage, and regulating the RAS signaling pathway.
Collapse
Affiliation(s)
- Ke Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - ZangJia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Kehui Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
160
|
Improvement of Total Flavonoids from Dracocephalum moldavica L. in Rats with Chronic Mountain Sickness through 1H-NMR Metabonomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6695346. [PMID: 34007298 PMCID: PMC8110374 DOI: 10.1155/2021/6695346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Background We analyzed the effects of total flavonoids from Dracocephalum moldavica L. (D. moldavica L.) on improving chronic mountain sickness (CMS) in rats using the NMR hydrogen spectrum (1H-NMR) metabonomics technology. Method We extracted the total flavonoids of D. moldavica L with 60% ethanol reflux. A CMS model was established with 48 Sprague-Dawley (SD) rats, which were then randomly divided into six groups (n = 8): control group (normal saline, 0.4 mL/100 g/d, ig); model group (normal saline, 0.4 mL/100 g/d, ig); nifedipine group (nifedipine tablets, 2.7 mg/kg/d, ig); and high-, middle-, and low-dose groups of total flavonoids from D. moldavica L. (DML.H, DML.M, and DML.L, receiving total flavonoids from D. moldavica L. at 400, 200, and 100 mg/kg/d, ig, respectively). The sera of the rats in all the groups were determined, and NMR hydrogen spectrum metabolomics was analyzed. The serum contents of apolipoproteins A1 (Apo-A1) and E (Apo-E) were determined, and histopathological changes in the brain tissue of each group were observed. Results Serum tests showed that total flavonoids from D. moldavica L. significantly increased the Apo-A1 and Apo-E levels in rats with CMS (P < 0.05). The results of serum metabonomics showed that total flavonoids from D. moldavica L can alleviate amino acid, energy, and lipid metabolism disorders in rats with CMS. Pathohistological examination of brain tissue showed that these flavonoids improved pathological changes, such as meningeal vasodilation, hyperemia, edema of brain parenchyma, inflammatory cell infiltration, increase in perivascular space, and increase in pyramidal cells. Conclusion Total flavonoids from D. moldavica L. have potential therapeutic effects on CMS. The possible mechanism is the reduction of oxidative damage through the alleviation of metabolism disorder.
Collapse
|
161
|
Chen S, Xu K, Yao X, Zhu S, Zhang B, Zhou H, Guo X, Zhao B. Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas. Comput Biol Med 2021; 133:104413. [PMID: 33915363 DOI: 10.1016/j.compbiomed.2021.104413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Fatigue-induced human error is a leading cause of accidents. The purpose of this exploratory study in China was to perform field tests to measure fatigue psychophysiological parameters, such as electrocardiography (ECG), electromyography (EMG), pulse, blood pressure, reaction time and vital capacity (VC), in miners in high-altitude and cold areas and to perform multi-feature information fusion and fatigue identification. Forty-five miners were randomly selected as subjects for a field test, and feature signals were extracted from 90 psychophysiological features as basic signals for fatigue analysis. Fatigue sensitivity indices were obtained by Pearson correlation analysis, t-test and receiver operating characteristic (ROC) curve performance evaluation. The ECG time-domain, ECG frequency-domain, EMG, VC, systolic blood pressure (SBP), and pulse were significantly different after miner fatigue. The support vector machine (SVM) and random forest (RF) techniques were used to classify and identify fatigue by information fusion and factor combination. The optimal fatigue classification factors were ECG-FD (CV Accuracy = 85.0%) and EMG (CV Accuracy = 90.0%). The optimal combination of factors was ECG-TD + ECG-FD + EMG (CV accuracy = 80.0%). Furthermore, SVM machine learning had a good recognition effect. This study shows that SVM and RF can effectively identify miner fatigue based on fatigue-related factor combinations. ECG-FD and EMG are the best indicators of fatigue, and the best performance and robustness are obtained with three-factor combination classification. This study on miner fatigue identification provides a reference for research on clinical medicine and the identification of human fatigue under high-altitude, cold and low-oxygen conditions.
Collapse
Affiliation(s)
- Shoukun Chen
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Kaili Xu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xiwen Yao
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Siyi Zhu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Bohan Zhang
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Haodong Zhou
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xin Guo
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Bingfeng Zhao
- Yunnan Diqing Non-ferrous Metals Co., Ltd, Yunnan, 674400, China.
| |
Collapse
|
162
|
Venkat D, Dhillon K, Rowley JA. Effects of High Altitude on Sleep and Respiratory System. CURRENT PULMONOLOGY REPORTS 2021. [DOI: 10.1007/s13665-021-00276-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
163
|
Liu M, Yan M, Guo Y, Xie Z, Li R, Li J, Ren C, Ji X, Guo X. Acute Ischemic Stroke at High Altitudes in China: Early Onset and Severe Manifestations. Cells 2021; 10:cells10040809. [PMID: 33916503 PMCID: PMC8067425 DOI: 10.3390/cells10040809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
The detailed characteristics of strokes at high altitudes in diverse nations have not been extensively studied. We retrospectively enrolled 892 cases of first-ever acute ischemic strokes at altitudes of 20, 2550, and 4200 m in China (697 cases from Penglai, 122 cases from Huzhu, and 73 cases from Yushu). Clinical data and brain images were analyzed. Ischemic strokes at high altitudes were characterized by younger ages (69.14 ± 11.10 vs. 64.44 ± 11.50 vs. 64.45 ± 14.03, p < 0.001) and larger infract volumes (8436.37 ± 29,615.07 mm3 vs. 17,213.16 ± 47,044.74 mm3 vs. 42,459 ± 84,529.83 mm3, p < 0.001). The atherosclerotic factors at high altitude, including diabetes mellitus (28.8% vs. 17.2% vs. 9.6%, p < 0.001), coronary heart disease (14.3% vs. 1.6% vs. 4.1%, p < 0.001), and hyperlipidemia (20.2% vs. 17.2% vs. 8.2%, p = 0.031), were significantly fewer than those in plain areas. Polycythemia and hemoglobin levels (138.22 ± 18.04 g/L vs. 172.87 ± 31.57 g/L vs. 171.81 ± 29.55 g/L, p < 0.001), diastolic pressure (89.98 ± 12.99 mmHg vs. 93.07 ± 17.79 mmHg vs. 95.44 ± 17.86 mmHg, p = 0.016), the percentage of hyperhomocysteinemia (13.6% in Penglai vs. 41.8% in Huzhu, p < 0.001), and the percentage of smoking (33.1% in Penglai vs. 50.0% in Huzhu, p = 0.023) were significantly elevated at high altitudes. We concluded that ischemic stroke occurred earlier and more severely in the Chinese plateau. While the atherosclerotic factors were not prominent, the primary prevention of strokes at high altitudes should emphasize anticoagulation, reducing diastolic pressure, adopting a healthy diet, and smoking cessation.
Collapse
Affiliation(s)
- Moqi Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (M.L.); (R.L.); (J.L.)
| | - Mingzong Yan
- Department of Neurology, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai 622110, China;
| | - Yong Guo
- Department of Neurology, Yushu People’s Hospital, Yushu 815000, China;
| | - Zhankui Xie
- Department of Neurology, Huzhu People’s Hospital, Haidong 810500, China;
| | - Rui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (M.L.); (R.L.); (J.L.)
| | - Jialu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (M.L.); (R.L.); (J.L.)
| | - Changhong Ren
- Laboratory of Hypoxia, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Xiuhai Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (M.L.); (R.L.); (J.L.)
- Correspondence:
| |
Collapse
|
164
|
Macarlupu J, Marchant D, Jeton F, Villafuerte F, Richalet J, Voituron N. Effect of exercise training in rats exposed to chronic hypoxia: Application for Monge's disease. Physiol Rep 2021; 9:e14750. [PMID: 33904648 PMCID: PMC8077116 DOI: 10.14814/phy2.14750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/26/2022] Open
Abstract
Physical exercise may improve hematological conditions in high altitude dwellers suffering from Chronic Mountain Sickness (CMS), in reducing hemoglobin concentration. Therefore, the present study aimed to characterize the effects of 1-month exercise training session in a model of rats exposed to chronic hypoxia. Four groups of male rats were studied: normoxic sedentary (NS, n = 8), normoxic training (NT, n = 8), hypoxic sedentary (HS, n = 8), and hypoxic training group (HT, n = 8). Hypoxic groups were exposed to hypobaric hypoxia for one month (PB =433 Torr). Training intensity was progressively increased from a running speed of 10.4 to 17.8 m/min. Chronic hypoxia led to an increase in hematocrit (HCT) associated with a decrease in plasma volume despite an increase in water intake. Training led to a reduction in HCT (p < 0.01), with a non-significant increase in plasma volume and weight gain. Hypoxia and training had inhibitory effects on haptoglobin (NS group: 379 ± 92; HT: 239 ± 34 µg/ml, p < 0.01). Chronic hypoxia and exercise training increased SpO2 measured after acute hypoxic exposure. Training blunted the decrease in V ˙ O2 peak, time of exhaustion, and maximum speed associated with chronic exposure to hypoxia. Chronic hypoxia led to a right ventricular hypertrophy, which was not corrected by 1-month exercise training. Altogether, by decreasing hematocrit, reducing body weight, and limiting performance decrease, training in hypoxia may have a beneficial effect on excessive erythropoiesis in chronic hypoxia. Therefore, regular exercise training might be beneficial to avoid worsening of CMS symptoms in high altitude dwellers and to improve their quality of life.
Collapse
Affiliation(s)
- José‐Luis Macarlupu
- Laboratorio de Fisiología ComparadaLaboratorio de Adaptación a la Altura‐LIDUnidad de Transporte de Oxigeno‐IIAUniversidad Peruana Cayetano HerediaLimaPeru
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
| | - Dominique Marchant
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
| | - Florine Jeton
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
- Laboratory of Excellence GReXParisFrance
| | - Francisco Villafuerte
- Laboratorio de Fisiología ComparadaLaboratorio de Adaptación a la Altura‐LIDUnidad de Transporte de Oxigeno‐IIAUniversidad Peruana Cayetano HerediaLimaPeru
| | - Jean‐Paul Richalet
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
- Laboratory of Excellence GReXParisFrance
| | - Nicolas Voituron
- Laboratoire Hypoxie et PoumonUMR INSERM U1272Université Sorbonne Paris NordBobignyFrance
- Laboratory of Excellence GReXParisFrance
- Département STAPSUniversité Sorbonne Paris NordBobignyFrance
| |
Collapse
|
165
|
Zhou H, Tashi T, Zhao D, Tsring S, Liang H, Zhang J. CT assessment of the increased density of cerebral vessels in plateau region. Sci Rep 2021; 11:5851. [PMID: 33712677 PMCID: PMC7954789 DOI: 10.1038/s41598-021-85448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, the relationship between the brain parenchymal density, the cerebral vessel density, the mean corpuscular hemoglobin (MCH) content, the mean corpuscular hemoglobin concentration (MCHC), and the morbidity associated with lacunar infarction of residents living in either the plains or the plateau regions were analyzed and compared for their potential clinical implications. Clinical data from the brain CT scans of individuals living in either the plain or plateau regions (129 each) were collected. Specifically, the CT values for basal ganglia, the middle cerebral artery, and the superior sagittal sinus, along with the number of patients with lacunar infarction, were collected. In addition, the MCH and MCHC values were measured in blood samples collected within 48 h following the CT scans. For statistical analysis, an independent sample t-test, Pearson's correlation test (permutation test), and Chi-squared test were employed. The inhabitants of the plateau had a significantly higher CT value of basal ganglia, the middle cerebral artery, and superior sagittal sinus and also higher levels of MCH and MCHC in the blood (ps < 0.001) than the inhabitants of the plains region. Further, there was a significant positive correlation between the three aforementioned CT values and the MCH and MCHC findings. However, no significant differences were found in the morbidity of lacunar infarction between these two regions (p > 0.05). The inhabitants in the plateau have a significantly higher brain parenchymal density, higher CT value for cerebral vessels density, and higher blood MCH and MCHC levels in comparison with individuals occupying the plains. Concurrently, the parenchymal density and the CT values are shown to be positively correlated with the MCH and MCHC content in the blood.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Computed Tomography, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Tsering Tashi
- Department of Radiology, Rinbung County Health Service Center, Xigaze, Tibet, 857200, China
| | - Deli Zhao
- Department of Computed Tomography, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sonam Tsring
- Department of Radiology, Rinbung County Health Service Center, Xigaze, Tibet, 857200, China
| | - Hongwei Liang
- Department of Computed Tomography, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jinling Zhang
- Department of Computed Tomography, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
166
|
Brewster LM, Bain AR, Garcia VP, Fandl HK, Stone R, DeSouza NM, Greiner JJ, Tymko MM, Vizcardo-Galindo GA, Figueroa-Mujica RJ, Villafuerte FC, Ainslie PN, DeSouza CA. Global REACH 2018: dysfunctional extracellular microvesicles in Andean highlander males with excessive erythrocytosis. Am J Physiol Heart Circ Physiol 2021; 320:H1851-H1861. [PMID: 33710927 DOI: 10.1152/ajpheart.00016.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High altitude-related excessive erythrocytosis (EE) is associated with increased cardiovascular risk. The experimental aim of this study was to determine the effects of microvesicles isolated from Andean highlanders with EE on endothelial cell inflammation, oxidative stress, apoptosis, and nitric oxide (NO) production. Twenty-six male residents of Cerro de Pasco, Peru (4,340 m), were studied: 12 highlanders without EE (age: 40 ± 4 yr; BMI: 26.4 ± 1.7; Hb: 17.4 ± 0.5 g/dL, Spo2: 86.9 ± 1.0%) and 14 highlanders with EE (43 ± 4 yr; 26.2 ± 0.9; 24.4 ± 0.4 g/dL; 79.7 ± 1.6%). Microvesicles were isolated, enumerated, and collected from plasma by flow cytometry. Human umbilical vein endothelial cells were cultured and treated with microvesicles from highlanders without and with EE. Microvesicles from highlanders with EE induced significantly higher release of interleukin (IL)-6 (89.8 ± 2.7 vs. 77.1 ± 1.9 pg/mL) and IL-8 (62.0 ± 2.7 vs. 53.3 ± 2.2 pg/mL) compared with microvesicles from healthy highlanders. Although intracellular expression of total NF-κB p65 (65.3 ± 6.0 vs. 74.9 ± 7.8.9 AU) was not significantly affected in cells treated with microvesicles from highlanders without versus with EE, microvesicles from highlanders with EE resulted in an ∼25% higher (P < 0.05) expression of p-NF-κB p65 (173.6 ± 14.3 vs. 132.8 ± 12.2 AU). Cell reactive oxygen species production was significantly higher (76.4.7 ± 5.4 vs. 56.7 ± 1.7% of control) and endothelial nitric oxide synthase (p-eNOS) activation (231.3 ± 15.5 vs. 286.6 ± 23.0 AU) and NO production (8.3 ± 0.6 vs. 10.7 ± 0.7 μM/L) were significantly lower in cells treated with microvesicles from highlanders with versus without EE. Cell apoptotic susceptibility was not significantly affected by EE-related microvesicles. Circulating microvesicles from Andean highlanders with EE increased endothelial cell inflammation and oxidative stress and reduced NO production.NEW & NOTEWORTHY In this study, we determined the effects of microvesicles isolated from Andean highlanders with excessive erythrocytosis (EE) on endothelial cell inflammation, oxidative stress, apoptosis, and NO production. Microvesicles from highlanders with EE induced a dysfunctional response from endothelial cells characterized by increased cytokine release and expression of active nuclear factor-κB and reduced nitric oxide production. Andean highlanders with EE exhibit dysfunctional circulating extracellular microvesicles that induce a proinflammatory, proatherogenic endothelial phenotype.
Collapse
Affiliation(s)
- L Madden Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Anthony R Bain
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Rachel Stone
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado.,Faculty of Health and Social Development, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | | | | | | | | | - Philip N Ainslie
- Faculty of Health and Social Development, Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
167
|
Furian M, Latshang TD, Aeschbacher SS, Sheraliev U, Marazhapov NH, Mirrakhimov E, Ulrich S, Sooronbaev TM, Bloch KE. Markers of cardiovascular risk and their reversibility with acute oxygen therapy in Kyrgyz highlanders with high altitude pulmonary hypertension. Pulmonology 2021; 27:394-402. [PMID: 33674243 DOI: 10.1016/j.pulmoe.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND High altitude pulmonary hypertension (HAPH), a chronic altitude related illness, is associated with hypoxemia, dyspnea and reduced exercise performance. We evaluated ECG and pulse wave-derived markers of cardiovascular risk in highlanders with HAPH (HAPH+) in comparison to healthy highlanders (HH) and lowlanders (LL) and the effects of hyperoxia. METHODS We studied 34 HAPH+ and 54 HH at Aksay (3250m), and 34 LL at Bishkek (760m), Kyrgyzstan. Mean pulmonary artery pressure by echocardiography was mean±SD 34±3, 22±5, 16±4mmHg, respectively (p<0.05 all comparisons). During quiet rest, breathing room air or oxygen in randomized order, we measured heart-rate adjusted QT interval (QTc), an ECG-derived marker of increased cardiovascular mortality, and arterial stiffness index (SI), a marker of cardiovascular disease derived from pulse oximetry plethysmograms. RESULTS Pulse oximetry in HAPH+, HH and LL was, mean±SD, 88±4, 92±2 and 95±2%, respectively (p<0.05 vs HAPH+, both comparisons). QTc in HAPH+, HH and LL was 422±24, 405±27, 400±28ms (p<0.05 HAPH+ vs. others); corresponding SI was 10.5±1.9, 8.4±2.6, 8.5±2.0m/s, heart rate was 75±8, 68±8, 70±10 bpm (p<0.05, corresponding comparisons HAPH+ vs. others). In regression analysis, HAPH+ was an independent predictor of increased QTc and SI when controlled for several confounders. Oxygen breathing increased SI in HH but not in HAPH+, and reduced QTc in all groups. CONCLUSIONS Our data suggest that HAPH+ but not HH may be at increased risk of cardiovascular mortality and morbidity compared to LL. The lack of a further increase of the elevated SI during hyperoxia in HAPH+ may indicate dysfunctional control of vascular tone and/or remodelling.
Collapse
Affiliation(s)
- M Furian
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - T D Latshang
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - S S Aeschbacher
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - U Sheraliev
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - N H Marazhapov
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - E Mirrakhimov
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - S Ulrich
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - T M Sooronbaev
- National Center for Cardiology and Internal Medicine, Department of Respiratory Medicine, 3 Togolok Moldo Str., Bishkek 720040, Kyrgyzstan
| | - K E Bloch
- Pulmonary Division and Sleep Disorders Center, University Hospital of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
168
|
Yang M, Cui S, Wuren T, Ma K, Ge RL, Ji L. Ureteral calculi associated with high-altitude polycythemia: A case report. Medicine (Baltimore) 2021; 100:e24621. [PMID: 33607796 PMCID: PMC7899882 DOI: 10.1097/md.0000000000024621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE High-altitude polycythemia (HAPC) is a common disease in high-altitude areas characterized by excessive erythrocyte proliferation and severe hypoxemia. Recently, the incidence of ureteral calculi has risen. However, cases of ureteral calculi associated with HAPC have not been reported. PATIENT CONCERNS We present the cases of 2 patients (26-year-old female, Case 1; 31-year-old male, Case 2) with HAPC who were born in the lowlands and worked in areas of high altitudes. Both patients were admitted to the hospital with acute severe pain in the ureter as the first symptom. DIAGNOSES Urological examinations confirmed the presence of a ureteral stone. Interestingly, the biochemical tests showed elevated serum uric acid levels, and the calculous component analysis suggested anhydrous uric acid. INTERVENTIONS In the first case, the patient underwent extracorporeal shock wave lithotripsy. In the second case, the patient underwent right ureteroscopy and right ureteral stenting. The patient received postoperative anti-inflammatory, hemostatic, and rehydration therapy. OUTCOMES Both patients recovered well with no recurrences observed upon regular re-examinations. LESSONS Recently, extensive research has demonstrated a significant correlation between hyperuricemia and HAPC. Therefore, we speculated that the occurrence of ureteral calculi among immigrants to the plateau might be related to hyperuricemia associated with HAPC. This case report and literature review highlights that the prevention of ureteral calculi in patients with polycythemia who immigrate to the plateaus from high-altitude areas should be considered. Additionally, the serum uric acid levels and urine pH should be monitored regularly.
Collapse
Affiliation(s)
- Min Yang
- Research Center for High Altitude Medicine, Qinghai University
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province
| | - Sen Cui
- Research Center for High Altitude Medicine, Qinghai University
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province
- Affiliated Hospital of Qinghai University, Xining
| | - Tanna Wuren
- Research Center for High Altitude Medicine, Qinghai University
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province
| | - Kexiong Ma
- Affiliated Hospital of Qinghai University, Xining
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province
| | - Linhua Ji
- Affiliated Huadu Hospital, Southern Medical University
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
169
|
Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041692. [PMID: 33578749 PMCID: PMC7916528 DOI: 10.3390/ijerph18041692] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Collapse
|
170
|
Richalet JP. [Adaption to chronic hypoxaemia by populations living at high altitude]. Rev Mal Respir 2021; 38:395-403. [PMID: 33541755 DOI: 10.1016/j.rmr.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Permanent life at high altitude induces important physiological stresses linked to the exposure to chronic hypoxia. Various strategies have been adopted by diverse populations living in the Andes, Tibet or East Africa. The main mechanism is an increase in red blood cell production, more marked in Andeans than in Tibetans or Ethiopians. Other changes are observed in the cardiovascular or respiratory systems, as well as in the utero-placental circulation. Sometimes, a de-adaptation process to hypoxia develops, when erythrocytosis becomes excessive and leads to haematological, vascular and cerebral complications (Monge's disease or chronic mountain sickness). Pulmonary hypertension may also appear. Therapeutic options are available but not sufficiently used. Genetic studies have recently been undertaken to try to better understand the evolution of the human genome in populations living in various high altitude regions of the world, as well as the genetic risk factors for chronic diseases. A new model has appeared, intermittent chronic hypoxia, due to the development of economic activities (mainly mining) in desert regions of the Altiplano.
Collapse
Affiliation(s)
- J-P Richalet
- Laboratoire « Hypoxie & Poumon », UMR Inserm U1272, Université Sorbonne Paris Nord 13, 74, rue Marcel-Cachin, 93017 Bobigny cedex, France.
| |
Collapse
|
171
|
Novel insights into plasma biomarker candidates in patients with chronic mountain sickness based on proteomics. Biosci Rep 2021; 41:227462. [PMID: 33393624 PMCID: PMC7816071 DOI: 10.1042/bsr20202219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic mountain sickness (CMS) is a progressive incapacitating syndrome induced by lifelong exposure to hypoxia. In the present study, proteomic analysis was used to identify the differentially expressed proteins (DEPs) and then evaluate the potential plasma biomarkers between CMS and non-CMS groups. A total of 145 DEPs were detected in CMS Han Chinese people who live in the plateau (CMS-HPu), among which 89 were significantly up-regulated and 56 were significantly down-regulated. GO enrichment analysis showed that various biological processes were enriched, including the hydrogen peroxide metabolic/catabolic process, reactive oxygen species (ROS) metabolic, and acute inflammatory response. Protein–protein interaction analysis showed that antioxidant activity, the hydrogen peroxide catabolic process and peroxidase activity were primarily mapped in interaction proteins. Nine modules showed significantly clustering based on WGCNA analysis, with two being the most significant, and GO analysis showed that proteins of both modules were primarily enriched in oxidative stress-related biological processes. Four DEPs increased in CMS patients were evaluated as the candidate biomarkers, and three showed significant AUC: hemoglobin β chain (HB-β), thioredoxin-1 (TRX1), and phosphoglycerate kinase 1 (PGK1). The present study provides insights into the pathogenesis of CMS and further evaluates the potentially biomarkers for its prevention and treatment of it.
Collapse
|
172
|
Sanabria Pérez ES, Ercilla Sánchez JG, Aguirre Zurita O. [Impact of variation in altitude above sea level on clinical and hemodynamic parameters in pulmonary arterial hypertension: case report]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2021; 2:68-71. [PMID: 37727259 PMCID: PMC10506571 DOI: 10.47487/apcyccv.v2i1.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 09/21/2023]
Abstract
Clinical monitoring of pulmonary arterial hypertension in our country, in which patients come from different altitudes above sea level, forces us to rule out pulmonary hypertension in relation to chronic exposure to high heights, described in third group of international classification. When reviewing the hemodynamic variations in pulmonary pressure with exercise at altitude with respect to sea level in healthy patients, this is greater in height, this would explain that the patient with pulmonary arterial hypertension is more symptomatic while living at a higher altitude above sea level.
Collapse
Affiliation(s)
- Enrique Saul Sanabria Pérez
- Servicio de cardiología clínica, Instituto Nacional Cardiovascular, INCOR-EsSalud. Lima, PerúServicio de cardiología clínicaInstituto Nacional Cardiovascular, INCOR-EsSaludLimaPerú
| | - José Guillermo Ercilla Sánchez
- Servicio de Hemodinámica, Instituto Nacional Cardiovascular, INCOR-EsSalud. Lima, PerúServicio de HemodinámicaInstituto Nacional Cardiovascular, INCOR-EsSaludLimaPerú
| | - Oscar Aguirre Zurita
- Servicio de cardiología clínica, Instituto Nacional Cardiovascular, INCOR-EsSalud. Lima, PerúServicio de cardiología clínicaInstituto Nacional Cardiovascular, INCOR-EsSaludLimaPerú
| |
Collapse
|
173
|
Azad P, Villafuerte FC, Bermudez D, Patel G, Haddad GG. Protective role of estrogen against excessive erythrocytosis in Monge's disease. Exp Mol Med 2021; 53:125-135. [PMID: 33473144 PMCID: PMC8080600 DOI: 10.1038/s12276-020-00550-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Monge's disease (chronic mountain sickness (CMS)) is a maladaptive condition caused by chronic (years) exposure to high-altitude hypoxia. One of the defining features of CMS is excessive erythrocytosis with extremely high hematocrit levels. In the Andean population, CMS prevalence is vastly different between males and females, being rare in females. Furthermore, there is a sharp increase in CMS incidence in females after menopause. In this study, we assessed the role of sex hormones (testosterone, progesterone, and estrogen) in CMS and non-CMS cells using a well-characterized in vitro erythroid platform. While we found that there was a mild (nonsignificant) increase in RBC production with testosterone, we observed that estrogen, in physiologic concentrations, reduced sharply CD235a+ cells (glycophorin A; a marker of RBC), from 56% in the untreated CMS cells to 10% in the treated CMS cells, in a stage-specific and dose-responsive manner. At the molecular level, we determined that estrogen has a direct effect on GATA1, remarkably decreasing the messenger RNA (mRNA) and protein levels of GATA1 (p < 0.01) and its target genes (Alas2, BclxL, and Epor, p < 0.001). These changes result in a significant increase in apoptosis of erythroid cells. We also demonstrate that estrogen regulates erythropoiesis in CMS patients through estrogen beta signaling and that its inhibition can diminish the effects of estrogen by significantly increasing HIF1, VEGF, and GATA1 mRNA levels. Taken altogether, our results indicate that estrogen has a major impact on the regulation of erythropoiesis, particularly under chronic hypoxic conditions, and has the potential to treat blood diseases, such as high altitude severe erythrocytosis.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Francisco C Villafuerte
- Laboratorio de Fisiologia del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru
| | - Daniela Bermudez
- Laboratorio de Fisiologia del Transporte de Oxigeno/Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima 31, Peru
| | - Gargi Patel
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gabriel G Haddad
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
174
|
Dong K, Wu K, Zheng T, Yue J, Wang W, Luo R, You L, He X, Li J, Hong Z, Zuo H, Pei X. Comparative Study of Oral Bacteria and Fungi Microbiota in Tibetan and Chinese Han Living at Different Altitude. TOHOKU J EXP MED 2021; 254:129-139. [PMID: 34193764 DOI: 10.1620/tjem.254.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Knowledge about the impact of altitude and ethnicity on human oral microbiota is currently limited. To obtain the baseline of normal salivary microbiota, we analyzed the bacteria and fungi composition in Tibetan (HY group) and Han population (CD group) living at different altitudes by using next-generation sequencing (NGS) technology combined with PICRUSt and FUNGuild analyses. There were significant differences in oral microbiota composition between the two groups at phylum and genus levels. At the phylum level, the HY group had higher relative abundances of Firmicutes and Ascomycota, whereas the Bacteroidetes and Basidiomycota in the CD group were richer. These changes at the phylum level reflected different dominant genus compositions. Compared with the Han population, Candida, Fusarium, Zopfiella, Streptococcus, Veillonella and Rothia in Tibetan were higher. Surprisingly, the Zopfiella was found almost exclusively in the Tibetan. The PICRUSt and FUNGuild analysis also indicated that the function of the bacterial and fungal communities was altered between the two groups. In conclusion, our results suggest that there are significant differences in oral microbial structure and metabolic characteristics and trophic modes among Tibetan and Han population living at different altitudes. We first established the oral microbiota framework and represented a critical step for determining the diversity of oral microbiota in the Tibetan and Han population.
Collapse
Affiliation(s)
- Ke Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Kunpeng Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Ji Yue
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Weipeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Ruocheng Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Lan You
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Xun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Jingjing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Zehui Hong
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| |
Collapse
|
175
|
Simpson LL, Steinback CD, Stembridge M, Moore JP. A sympathetic view of blood pressure control at high altitude: new insights from microneurographic studies. Exp Physiol 2020; 106:377-384. [PMID: 33345334 PMCID: PMC7898382 DOI: 10.1113/ep089194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the topic of the review? Sympathoexcitation and sympathetic control of blood pressure at high altitude. What advances does it highlight? Sustained sympathoexcitation is fundamental to integrative control of blood pressure in humans exposed to chronic hypoxia. The largest gaps in current knowledge are in understanding the complex mechanisms by which central sympathetic outflow is regulated at high altitude. ABSTRACT High altitude (HA) hypoxia is a potent activator of the sympathetic nervous system, eliciting increases in sympathetic vasomotor activity. Microneurographic evidence of HA sympathoexcitation dates back to the late 20th century, yet only recently have the characteristics and underpinning mechanisms been explored in detail. This review summarises recent findings and highlights the importance of HA sympathoexcitation for the regulation of blood pressure in lowlanders and indigenous highlanders. In addition, this review identifies gaps in our knowledge and corresponding avenues for future study.
Collapse
Affiliation(s)
- Lydia L Simpson
- Institute for Sport Science, Division of Physiology, Innsbruck University, Innsbruck, Austria
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
176
|
The Effects of On-Field Heat Index and Altitude on Concussion Assessments and Recovery Among NCAA Athletes. Sports Med 2020; 51:825-835. [PMID: 33332015 DOI: 10.1007/s40279-020-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Recent literature has indicated altitude may be a protective factor for concussion but it is unknown whether altitude or heat index affects recovery. OBJECTIVE To examine whether on-field heat index and altitude at the time of injury alter acute (< 48 h) concussion assessments, days-to-asymptomatic, and days-to-return-to-play in collegiate athletes following concussion. METHODS Collegiate athletes (n = 187; age = 19.7 ± 1.4 years; male = 70.6%) underwent baseline assessments across 30 universities and experienced a concussion in this retrospective cohort study. Altitude (m) and heat index (°C) at the time and location of injury were determined using valid online database tools. Acute concussion assessments included the Sport Concussion Assessment Tool (SCAT) symptom inventory, Balance Error Scoring System (BESS), and the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). We used multiple linear regression models to determine whether heat index and altitude predicted each acute assessment outcome, days-to-asymptomatic, and days-to-return-to-play. RESULTS Collegiate athletes were concussed at a 181.1 m (range - 0.6 to 2201.9 m) median altitude and 17.8 °C (range - 6.1 to 35.6 °C) median heat index. Altitude did not predict (p ≥ 0.265) any outcomes. Every one-degree increase in heat index reduced days-to-asymptomatic (p = 0.047; R2 = 0.06) and days-to-return-to-play (p = 0.006; R2 = 0.09) by 0.05 and 0.14 days, respectively. Heat index and altitude did not explain significant variance in SCAT, BESS, and ImPACT composite scores (p's = 0.20-0.922). CONCLUSION Our findings suggest that on-field altitude and heat index at the time of injury do not contribute to clinically meaningful changes on acute assessments or concussion recovery. On-field altitude and heat index do not appear to significantly alter assessment outcomes or clinical recovery, suggesting that environmental factors at altitudes below < 2500 m are negligible outcomes for researchers and clinicians to consider post-concussion.
Collapse
|
177
|
Effects of Myeloid Hif-1β Deletion on the Intestinal Microbiota in Mice under Environmental Hypoxia. Infect Immun 2020; 89:IAI.00474-20. [PMID: 33106294 DOI: 10.1128/iai.00474-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
External environmental factors can cause an imbalance in intestinal flora. For people living in the extremes of a plateau climate, lack of oxygen is a primary health challenge that leads to a series of reactions. We wondered how intestinal microorganisms might change in a simulated plateau environment and what changes might occur in the host organism and intestinal microorganisms in the absence of hypoxia-related factors. In this study, mice carrying a knockout of hypoxia-inducible factor 1β (Hif-1β) in myeloid cells and wild-type mice were raised in a composite hypoxic chamber to simulate a plateau environment at 5,000 m of elevation for 14 days. The mice carrying the myeloid Hif-1β deletion displayed aggravated hypoxic phenotypes in comparison to and significantly greater weight loss and significantly higher cardiac index values than the wild-type group. The levels of some cytokines increased in the hypoxic environment. Analysis of 16S rRNA sequencing results showed that hypoxia had a significant effect on the gut microbiota in both wild-type and Hif-1β-deficient mice, especially on the first day. The levels of members of the Bacteroidaceae family increased continuously from day 1 to day 14 in Hif-1β deletion mice, and they represented an obviously different group of bacteria at day 14 compared with the wild-type mice. Butyrate-producing bacteria, such as Butyricicoccus, were found in wild-type mice only after 14 days in the hypoxic environment. In conclusion, hypoxia caused heart enlargement, greater weight loss, and obvious microbial imbalance in myeloid Hif-1β-deficient mice. This study revealed genetic and microecological pathways for research on mechanisms of hypoxia.
Collapse
|
178
|
Yang M, Zhu M, Song K, Wuren T, Yan J, Ge RL, Ji L, Cui S. VHL gene methylation contributes to excessive erythrocytosis in chronic mountain sickness rat model by upregulating the HIF-2α/EPO pathway. Life Sci 2020; 266:118873. [PMID: 33309718 DOI: 10.1016/j.lfs.2020.118873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
AIMS Hypoxia-inducible factors (HIFs) play important roles in the pathogenesis of erythrocytosis in chronic mountain sickness (CMS). von Hippel-Lindau (VHL) is a key regulator of hypoxia that can direct the poly-ubiquitylation and degradation of HIFs. Epigenetic mechanisms are believed to contribute toward adaption to chronic hypoxia. Here, we investigated the contribution and mechanism of VHL methylation in rats with erythrocytosis in CMS. MAIN METHODS The methylation status of VHL was measured via bisulfite sequencing PCR, while VHL, DNMT1, DNMT3α, and DNMT3β expression were assessed using real-time reverse transcription PCR and western blotting. HIF-2α and EPO expression levels in bone marrow were determined via immunohistochemical staining, and erythroid hyperplasia in bone marrow sections were observed with hematoxylin and eosin staining. KEY FINDINGS We found that chronic hypoxia triggered erythroid hyperplasia in the bone marrow and increased the quantity of peripheral red blood cells in CMS rats. Chronic hypoxia significantly induced methylation at the CpG site in the VHL promoter, decreased VHL expression, and increased HIF-2α and EPO expression. Chronic hypoxia increased DNMT3α and DNMT3β expression, consistent with the decrease in VHL expression. The DNA methyltransferase inhibitor 5-azacytidine reduced chronic hypoxia-induced erythroid proliferation in the bone marrow of rats with CMS by suppressing VHL methylation and DNMTs expression. SIGNIFICANCE Our study suggests that VHL methylation contributes toward excessive erythrocytosis in CMS by upregulating the HIF-2α/EPO pathway in the bone marrow of rats. We demonstrated that the DNMT inhibitor 5-azacytidine can attenuate erythroid hyperplasia in the bone marrow by demethylating the VHL promoter.
Collapse
Affiliation(s)
- Min Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Mingming Zhu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Kang Song
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Qinghai Provincial People's Hospital, Xining 810001, China
| | - Tanna Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Jun Yan
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China
| | - Linhua Ji
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Sen Cui
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China; Affiliated Hospital of Qinghai University, Xining 810001, China.
| |
Collapse
|
179
|
Wang Y, Duo D, Yan Y, He R, Wang S, Wang A, Wu X. Bioactive constituents of Salvia przewalskii and the molecular mechanism of its antihypoxia effects determined using quantitative proteomics. PHARMACEUTICAL BIOLOGY 2020; 58:469-477. [PMID: 32476549 PMCID: PMC7336993 DOI: 10.1080/13880209.2020.1762668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/27/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Context: Environmental hypobaric hypoxia induces several physiological or pathological responses in individuals in high-altitude regions. Salvia przewalskii Maxim (Labiatae) (SPM) is a traditional Chinese herbal medicine and has known antibacterial, antiviral, antioxidant, anti-thrombotic, and anti-depressant activities.Objective: This study examined the antihypoxia effects of SPM in vivo.Materials and methods: The dried and pulverised of SPM was extracted from root crude drug with 70% ethanol with ultrasound. Male Sprague-Dawley rats were divided into three groups (n = 10): normal group, hypoxia group (altitude of 4260 m), and hypoxia + SPM group (altitude of 4260 m, SPM of 1.0 g/kg/day). The experiment persisted for 4 weeks. The mean pulmonary arterial pressure (mPAP), hypoxia-inducible factor-1α (HIF-1α) mRNA, and lung pathology were analysed using pulmonary artery pressure recorder, quantitative polymerase chain reaction, and histopathological analysis. Moreover, the effects of SPM on lung proteomes during hypoxia were observed by a TMT-based proteomic approach.Results: Pre-treatment with SPM decreased mPAP (24.86%) and HIF-1α (31.24%), and attenuated the pathological changes in lung tissues. In addition, a total of 28 proteins were differentially expressed in lung of hypoxia + SPM group (fold change > ± 1.2 and p < 0.05). The differentially altered proteins were primarily associated with antioxidative stress, as evidenced by the downregulated expression of Adh7, Cyp2d1, Plod2, Selenow, ND3, and Fabp1, and fructose metabolism, as evidenced by the downregulated expression of Khk and Aldob.Discussion and conclusions: These results suggested that SPM is a promising drug for antihypoxia. The mechanism of action might be related to increasing antioxidant capacity and inhibiting fructose metabolism.
Collapse
Affiliation(s)
- Yafeng Wang
- People’s Hospital of Qinghai Province, Xining, China
| | - Delong Duo
- People’s Hospital of Qinghai Province, Xining, China
| | - Yingjun Yan
- People’s Hospital of Qinghai Province, Xining, China
| | - Rongyue He
- People’s Hospital of Qinghai Province, Xining, China
| | | | - Aixia Wang
- People’s Hospital of Qinghai Province, Xining, China
| | - Xinan Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
180
|
Nox2 Upregulation and p38α MAPK Activation in Right Ventricular Hypertrophy of Rats Exposed to Long-Term Chronic Intermittent Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21228576. [PMID: 33202984 PMCID: PMC7698046 DOI: 10.3390/ijms21228576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats developed RVH and showed an upregulation of LOX-1, Nox2 and p22phox and an increase in lipid peroxidation, HIF-1α stabilization and p38α activation. Rats with long-term CIH-induced RVH clearly showed Nox2, p22phox and LOX-1 upregulation and increased lipid peroxidation, HIF-1α stabilization and p38α activation. Therefore, these molecules may be considered new targets in CIH-induced RVH.
Collapse
|
181
|
Bilo G, Acone L, Anza-Ramírez C, Macarlupú JL, Soranna D, Zambon A, Vizcardo-Galindo G, Pengo MF, Villafuerte FC, Parati G. Office and Ambulatory Arterial Hypertension in Highlanders: HIGHCARE-ANDES Highlanders Study. Hypertension 2020; 76:1962-1970. [PMID: 33175629 DOI: 10.1161/hypertensionaha.120.16010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Millions of people worldwide live at high altitude, being chronically exposed to hypobaric hypoxia. Hypertension is a major cardiovascular risk factor but data on its prevalence and determinants in highlanders are limited, and systematic studies with ambulatory blood pressure monitoring are not available. Aim of this study was to assess the prevalence of clinic and ambulatory hypertension and the associated factors in a sample of Andean highlanders. Hypertension prevalence and phenotypes were assessed with office and ambulatory blood pressure measurement in a sample of adults living in Cerro de Pasco, Peru (altitude 4340 m). Basic clinical data, blood oxygen saturation, hematocrit, and Qinghai Chronic Mountain Sickness score were obtained. Participants were classified according to the presence of excessive erythrocytosis and chronic mountain sickness diagnosis. Data of 289 participants (143 women, 146 men, mean age 38.3 years) were analyzed. Office hypertension was present in 20 (7%) participants, while ambulatory hypertension was found in 58 (20%) participants. Masked hypertension was common (15%), and white coat hypertension was rare (2%). Among participants with ambulatory hypertension, the most prevalent phenotypes included isolated nocturnal hypertension, isolated diastolic hypertension, and systodiastolic hypertension. Ambulatory hypertension was associated with male gender, age, overweight/obesity, 24-hour heart rate, and excessive erythrocytosis. Prevalence of hypertension among Andean highlanders may be significantly underestimated when based on conventional blood pressure measurements, due to the high prevalence of masked hypertension. In highlanders, ambulatory hypertension may be independently associated with excessive erythrocytosis.
Collapse
Affiliation(s)
- Grzegorz Bilo
- From the Department of Cardiovascular, Neural and Metabolic Sciences (G.B., M.F.P., G.P.), University of Milano-Bicocca, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Milan, Italy Department of Medicine and Surgery (G.B., L.A., G.P.), University of Milano-Bicocca, Milan, Italy
| | - Lorenzo Acone
- Istituto Auxologico Italiano, IRCCS, Milan, Italy Department of Medicine and Surgery (G.B., L.A., G.P.), University of Milano-Bicocca, Milan, Italy
| | - Cecilia Anza-Ramírez
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - José Luis Macarlupú
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - Davide Soranna
- Biostatistics Unit (D.S., A.Z.), University of Milano-Bicocca, Milan, Italy
| | - Antonella Zambon
- Biostatistics Unit (D.S., A.Z.), University of Milano-Bicocca, Milan, Italy.,Department of Statistics and Quantitative Methods (A.Z.), University of Milano-Bicocca, Milan, Italy
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - Martino F Pengo
- From the Department of Cardiovascular, Neural and Metabolic Sciences (G.B., M.F.P., G.P.), University of Milano-Bicocca, Milan, Italy
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno-LID. Universidad Peruana Cayetano Heredia, Lima, Perú (C.A.-R., J.L.M., G.V.-G., F.C.V.)
| | - Gianfranco Parati
- From the Department of Cardiovascular, Neural and Metabolic Sciences (G.B., M.F.P., G.P.), University of Milano-Bicocca, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Milan, Italy Department of Medicine and Surgery (G.B., L.A., G.P.), University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
182
|
Dong Y, Dun B, Wang Dui PB, Zhuo Ma LB, Fang J, Yang Zong CR, Ji Z, Xu P, Zheng Y, Yue F, Li J, Li X. Therapeutic Erythrocytapheresis Is Effective in Treating High Altitude Polycythemia on the Qinghai-Tibet Plateau. Wilderness Environ Med 2020; 31:426-430. [PMID: 33132033 DOI: 10.1016/j.wem.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION High altitude polycythemia (HAPC) is a common chronic disease at high altitudes. It is characterized by excessive erythrocytosis (≥190 g·L-1 in females or ≥210 g·L-1 in males). HAPC severely jeopardizes the health status of plateau dwellers. The Qinghai-Tibet plateau, with an elevation above 4000 m, is the highest plateau in the world. Both Han and Tibetan populations residing there face the threat of HAPC. Therapeutic erythrocytapheresis (TE) was introduced to Tibet as an alternative to phlebotomy in 2015. METHODS In this study, we retrospectively analyzed 155 patients with HAPC treated with TE in Tibet. Routine blood testing values before and after TE were compared to evaluate treatment efficacy. The efficiency rate, defined as the rate of increase in red blood cell depletion attained by TE compared with 450 mL whole blood phlebotomy, was calculated using whole blood volume and hematocrit before and after treatment and used to identify patients who maintained a normal hemoglobin level in the year after the TE procedure. RESULTS On average, TE reduced red blood cell levels by 1.5×1012·L-1, hemoglobin concentration by 52 g·L-1, and hematocrit by 14% (P<0.001 for each). Patients who underwent TE with an efficiency rate ≥1.9 were more likely to maintain a normal hemoglobin level in the following year than those who underwent TE with an efficiency rate <1.9 (90 vs 28%, P<0.01). CONCLUSIONS TE is a feasible therapeutic method to treat HAPC on the Qinghai-Tibet plateau. The efficiency rate is a useful tool to predict the expected interval between TE procedures.
Collapse
Affiliation(s)
- Yuexin Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ba Dun
- Shigatse People's Hospital, Tibet, China
| | | | | | - Jie Fang
- Shigatse People's Hospital, Tibet, China
| | | | - Zong Ji
- Shigatse People's Hospital, Tibet, China
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shigatse People's Hospital, Tibet, China
| | - Yu Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shigatse People's Hospital, Tibet, China
| | - Fei Yue
- Shigatse People's Hospital, Tibet, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shigatse People's Hospital, Tibet, China.
| |
Collapse
|
183
|
Chen S, Xu K, Zheng X, Li J, Fan B, Yao X, Li Z. Linear and nonlinear analyses of normal and fatigue heart rate variability signals for miners in high-altitude and cold areas. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105667. [PMID: 32712570 DOI: 10.1016/j.cmpb.2020.105667] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Fatigue is an important cause of operational errors, and human errors are the main cause of accidents. This study is an exploratory study in China. Field tests were conducted on heart rate variability (HRV) parameters and physiological indicators of fatigue among miners in high-altitude, cold and low-oxygen areas. This paper studies heart activity patterns during work fatigue in miners. METHODS Fatigue affects both the sympathetic and parasympathetic nervous systems, and it is expressed as an abnormal pattern of HRV parameters. Thirty miners were selected as subjects for a field test, and HRV was extracted from 60 groups of electrocardiography (ECG) datasets as basic signals for fatigue analysis. Then, we analyzed the HRV signals of the miners using linear (time domain and frequency domain) and nonlinear dynamics (Poincaré plot and sample entropy (SampEn)), and a Pearson's correlation coefficient analysis and t-tests were performed on the measured indices. RESULTS The results showed that the time-domain indices (SDNN, RMSSD, SDSD, pNN50, RRn, heart rate (HR), R-wave humps (RH)) and the coefficient of variation (CV)) and the frequency-domain indices (low frequency/high frequency (LF/HF), LFnorm and HFnorm) clearly changed after fatigue. These features were selected using a Poincaré plot, sample entropy, Pearson's correlation coefficient and a t-test for further analysis. The fatigue characteristics and sensitivity parameters of miners in a high-altitude, cold and hypoxic environment were obtained. CONCLUSIONS This study provides deep insight into the use of linear and nonlinear fatigue characteristics to effectively and reliably identify miner fatigue. Furthermore, the study provides a reference for clinical studies of acute mountain sickness in high-altitude, cold and hypoxic environments.
Collapse
Affiliation(s)
- Shoukun Chen
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaili Xu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Zheng
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Jishuo Li
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Bingjie Fan
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiwen Yao
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Zhengrong Li
- Yunnan Diqing Non-ferrous Metals Co., Ltd, Yunnan, 674400, China.
| |
Collapse
|
184
|
Li X, Shi R, Meng Q, Zhang X, Chen X. Does arterial stiffness affect orthostatic hypotension among high-altitude Tibetans? Postgrad Med 2020; 133:173-180. [PMID: 32926805 DOI: 10.1080/00325481.2020.1823683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to investigate the association between arterial stiffness and orthostatic hypotension (OH) and orthostatic blood pressure (BP) changes among Tibetans living at high altitude. METHODS A total of 630 high-altitude Tibetans were included (56.53 ± 10.16 years; 246 men). Arterial stiffness was assessed by brachial-ankle pulse wave velocity (baPWV). OH was defined as a decrease in systolic BP (SBP) >20 mmHg or a decrease in diastolic BP (DBP) >10 mmHg after 1 min or 3 min of moving from supine to standing position. RESULTS The prevalence of OH in this population was 6.3%. Compared with subjects without OH, the subjects with OH had a higher baPWV (P < 0.001). Multiple logistical regression found that baPWV was significantly associated with the occurrence of OH (OR 1.147, CI 95% 1.028-1.280, P = 0.014). Spearman correlation analysis showed that baPWV was negatively associated with orthostatic changes in SBP and DBP(r = -0.256, P < 0.001 and r = -0.194, P < 0.001, respectively). Further multiple stepwise linear regression analysis showed that baPWV was independently correlated with orthostatic BP changes (SBP: β = -0.599, P < 0.001; DBP: β = -0.333, P < 0.001). Moreover, increased baPWV was correlated with attenuation of orthostatic heart rate changes. No significant association was observed between hematocrit or hemoglobin concentration and OH. CONCLUSION BaPWV was significantly associated with the occurrence of OH and orthostatic changes in the SBP and DBP, which suggests that arterial stiffness may be a potential mechanism of impaired hemodynamic response to orthostatic challenges among high-altitude Tibetans.
Collapse
Affiliation(s)
- Xinran Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
185
|
Oberholzer L, Lundby C, Stauffer E, Ulliel-Roche M, Hancco I, Pichon A, Lundby AKM, Villafuerte FC, Verges S, Robach P. Reevaluation of excessive erythrocytosis in diagnosing chronic mountain sickness in men from the world's highest city. Blood 2020; 136:1884-1888. [PMID: 32614941 DOI: 10.1182/blood.2019004508] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
The diagnosis of chronic mountain sickness (CMS) is based on a score including 7 clinical features (breathlessness, sleep disturbance, cyanosis, venous dilatation, paresthesia, headache, and tinnitus) in the setting of extreme erythrocytosis. Examining individuals in La Rinconada, Peru, the highest city in the world, the authors demonstrated that CMS at extreme altitude is not linked to elevation of hemoglobin, since CMS+ and CMS− individuals had similar levels of erythrocytosis.
Collapse
Affiliation(s)
- Laura Oberholzer
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Lundby
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Innland Norway University of Applied Sciences, Lillehammer, Norway
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Team "Vascular Biology and Red Blood Cell," Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre de Médecine du Sommeil et des Maladies Respiratoires, Hôpital Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Mathilde Ulliel-Roche
- HP2 Laboratory, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Aurélien Pichon
- Laboratory Mobility, Aging & Exercise-EA 6314, Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | | | - Francisco C Villafuerte
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru; and
| | - Samuel Verges
- HP2 Laboratory, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Paul Robach
- HP2 Laboratory, University Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering, Chamonix, France
| |
Collapse
|
186
|
Gratsianskaya SE, Valieva ZS, Martynyuk TV. [The achievements of the modern specific therapy of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: focus on the stimulator of soluble guanylate cyclase riociguat]. TERAPEVT ARKH 2020; 92:77-84. [PMID: 33346435 DOI: 10.26442/00403660.2020.09.000717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Currently, treatment of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) is focused on three signaling pathways: the NO pathway, the endothelin pathway, and the prostacyclin pathway. Riociguat is the only representative of stimulators of the soluble guanylate cyclase (sGC) class that is approved for the treatment of PAH and inoperable and persistent/recurrent CTEPH. The review presents data from clinical trials showing a positive effect of riociguat on the functional and hemodynamic profile of patients with PAH and CTEPH. In recent years there has been much discussion about the possibility of optimizing therapy by switching to drugs that affect a single pathogenesis target. Thus, sGC stimulants have obvious advantages over phosphodiesterase type 5 (PDE-5) inhibitors, including the ability of riociguat to exert pharmacological effects (due to a NO-independent mechanism of action) even in conditions of reduced NO production. Switching from PDE-5 to riociguat may be safe and appropriate, according to clinical trials presented in the review. In accordance with the guidelines for the diagnosis and treatment of pulmonary hypertension of the Eurasian Association of cardiologists from 2019, this strategy is approved when PDE5 therapy is ineffective in patients with PAH FC III (WHO).
Collapse
Affiliation(s)
- S E Gratsianskaya
- Myasnikov Institute of Clinical Cardiology, National Medical Research Center for Cardiology
| | - Z S Valieva
- Myasnikov Institute of Clinical Cardiology, National Medical Research Center for Cardiology
| | - T V Martynyuk
- Myasnikov Institute of Clinical Cardiology, National Medical Research Center for Cardiology.,Pirogov Russian National Research Medical University
| |
Collapse
|
187
|
Siques P, Brito J, Ordenes S, Pena E. Involvement of overweight and lipid metabolism in the development of pulmonary hypertension under conditions of chronic intermittent hypoxia. Pulm Circ 2020; 10:42-49. [PMID: 33110496 PMCID: PMC7557786 DOI: 10.1177/2045894020930626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence that exposure to hypoxia, regardless of the source,
elicits several metabolic responses in individuals. These responses are
constitutive and are usually observed under hypoxia but vary according to the
type of exposure. The aim of this review was to describe the involvement of
obesity and lipid metabolism in the development of high-altitude pulmonary
hypertension and in the development of acute mountain sickness under chronic
intermittent hypoxia. Overweight or obesity, which are common in individuals
with long-term chronic intermittent hypoxia exposure (high-altitude miners,
shift workers, and soldiers), are thought to play a major role in the
development of acute mountain sickness and high-altitude pulmonary hypertension.
This association may be rooted in the interactions between obesity-related
metabolic and physical alterations, such as increased waist circumference and
neck circumference, among others, which lead to critical ventilation
impairments; these impairments aggravate hypoxemia at high altitude, thereby
triggering high-altitude diseases. Overweight and obesity are strongly
associated with higher mean pulmonary artery pressure in the context of
long-term chronic intermittent hypoxia. Remarkably, de novo synthesis of
triglycerides by the sterol regulatory element-binding protein-1c pathway has
been demonstrated, mainly due to the upregulation of stearoyl-CoA desaturase-1,
which is also associated with the same outcomes. Therefore, overweight, obesity,
and other metabolic conditions may hinder proper acclimatization. The involved
mechanisms include respiratory impairment, alteration of the nitric oxide
pathways, inflammatory status, reactive oxygen species imbalance, and other
metabolic changes; however, further studies are required.
Collapse
Affiliation(s)
- Patricia Siques
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| | - Julio Brito
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| | - Stefany Ordenes
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| | - Eduardo Pena
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Iquique (Chile)
| |
Collapse
|
188
|
Brito J, Siques P, Pena E. Long-term chronic intermittent hypoxia: a particular form of chronic high-altitude pulmonary hypertension. Pulm Circ 2020; 10:5-12. [PMID: 33110494 PMCID: PMC7557688 DOI: 10.1177/2045894020934625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
In some subjects, high-altitude hypobaric hypoxia leads to high-altitude pulmonary
hypertension. The threshold for the diagnosis of high-altitude pulmonary hypertension is a
mean pulmonary artery pressure of 30 mmHg, even though for general pulmonary hypertension
is ≥25 mmHg. High-altitude pulmonary hypertension has been associated with high hematocrit
findings (chronic mountain sickness), and although these are two separate entities, they
have a synergistic effect that should be considered. In recent years, a new condition
associated with high altitude was described in South America named long-term chronic
intermittent hypoxia and has appeared in individuals who commute to work at high altitude
but live and rest at sea level. In this review, we discuss the initial epidemiological
pattern from the early studies done in Chile, the clinical presentation and possible
molecular mechanism and a discussion of the potential management of this condition.
Collapse
Affiliation(s)
- Julio Brito
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| | - Patricia Siques
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| | - Eduardo Pena
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| |
Collapse
|
189
|
Mairbäurl H, Gassmann M, Muckenthaler MU. Geographical ancestry affects normal hemoglobin values in high-altitude residents. J Appl Physiol (1985) 2020; 129:1451-1459. [PMID: 33002380 DOI: 10.1152/japplphysiol.00025.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increasing the hemoglobin (Hb) concentration is a major mechanism adjusting arterial oxygen content to decreased oxygen partial pressure of inspired air at high altitude. Approximately 5% of the world's population living at altitudes higher than 1,500 m shows this adaptive mechanism. Notably, there is a wide variation in the extent of increase in Hb concentration among different populations. This short review summarizes available information on Hb concentrations of high-altitude residents living at comparable altitudes (3,500-4,500 m) in different regions of the world. An increased Hb concentration is found in all high-altitude populations. The highest mean Hb concentration was found in adult male Andean residents and in Han Chinese living at high altitude, whereas it was lowest in Ethiopians, Tibetans, and Sherpas. A lower plasma volume in Andean high-altitude natives may offer a partial explanation. Indeed, male Andean high-altitude natives have a lower plasma volume than Tibetans and Ethiopians. Moreover, Hb values were lower in adult, nonpregnant females than in males; differences between populations of different ancestry were less pronounced. Various genetic polymorphisms were detected in high-altitude residents thought to favor life in a hypoxic environment, some of which correlate with the relatively low Hb concentration in the Tibetans and Ethiopians, whereas differences in angiotensin-converting enzyme allele distribution may be related to elevated Hb in the Andeans. Taken together, these results indicate different sensitivity of oxygen dependent control of erythropoiesis or plasma volume among populations of different geographical ancestry, offering explanations for differences in the Hb concentration at high altitude.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Departmment of Translational Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Max Gassmann
- Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Martina U Muckenthaler
- Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany.,Departmment of Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.,German Centre for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
190
|
Berthelsen LF, Fraser GM, Simpson LL, Vanden Berg ER, Busch SA, Steele AR, Meah VL, Lawley JS, Figueroa-Mujíca RJ, Vizcardo-Galindo G, Villafuerte F, Gasho C, Willie CK, Tymko MM, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Highs and lows of sympathetic neurocardiovascular transduction: influence of altitude acclimatization and adaptation. Am J Physiol Heart Circ Physiol 2020; 319:H1240-H1252. [PMID: 32986967 DOI: 10.1152/ajpheart.00364.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-altitude (>2,500 m) exposure results in increased muscle sympathetic nervous activity (MSNA) in acclimatizing lowlanders. However, little is known about how altitude affects MSNA in indigenous high-altitude populations. Additionally, the relationship between MSNA and blood pressure regulation (i.e., neurovascular transduction) at high-altitude is unclear. We sought to determine 1) how high-altitude effects neurocardiovascular transduction and 2) whether differences exist in neurocardiovascular transduction between low- and high-altitude populations. Measurements of MSNA (microneurography), mean arterial blood pressure (MAP; finger photoplethysmography), and heart rate (electrocardiogram) were collected in 1) lowlanders (n = 14) at low (344 m) and high altitude (5,050 m), 2) Sherpa highlanders (n = 8; 5,050 m), and 3) Andean (with and without excessive erythrocytosis) highlanders (n = 15; 4,300 m). Cardiovascular responses to MSNA burst sequences (i.e., singlet, couplet, triplet, and quadruplet) were quantified using custom software (coded in MATLAB, v.2015b). Slopes were generated for each individual based on peak responses and normalized total MSNA. High altitude reduced neurocardiovascular transduction in lowlanders (MAP slope: high altitude, 0.0075 ± 0.0060 vs. low altitude, 0.0134 ± 0.080; P = 0.03). Transduction was elevated in Sherpa (MAP slope, 0.012 ± 0.007) compared with Andeans (0.003 ± 0.002, P = 0.001). MAP transduction was not statistically different between acclimatizing lowlanders and Sherpa (MAP slope, P = 0.08) or Andeans (MAP slope, P = 0.07). When resting MSNA is accounted for (ANCOVA), transduction was inversely related to basal MSNA (bursts/minute) independent of population (RRI, r = 0.578 P < 0.001; MAP, r = -0.627, P < 0.0001). Our results demonstrate that transduction is blunted in individuals with higher basal MSNA, suggesting that blunted neurocardiovascular transduction is a physiological adaptation to elevated MSNA rather than an effect or adaptation specific to chronic hypoxic exposure.NEW & NOTEWORTHY This study has identified that sympathetically mediated blood pressure regulation is reduced following ascent to high-altitude. Additionally, we show that high altitude Andean natives have reduced blood pressure responsiveness to sympathetic nervous activity (SNA) compared with Nepalese Sherpa. However, basal sympathetic activity is inversely related to the magnitude of SNA-mediated fluctuations in blood pressure regardless of population or condition. These data set a foundation to explore more precise mechanisms of blood pressure control under conditions of persistent sympathetic activation and hypoxia.
Collapse
Affiliation(s)
- Lindsey F Berthelsen
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lydia L Simpson
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Emily R Vanden Berg
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Andrew R Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Romulo J Figueroa-Mujíca
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Villafuerte
- Laboratorio de Fisiologia Comparada, Departamento de Ciencias Biologicas y Fisiologicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chris Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada.,Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff School of Sport and Health, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Alberta, Canada
| |
Collapse
|
191
|
Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21176421. [PMID: 32899304 PMCID: PMC7503689 DOI: 10.3390/ijms21176421] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1β, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.
Collapse
|
192
|
Hemostasis in highlanders with excessive erythrocytosis at 5100 m: Preliminary data from the highest city of the world. Respir Physiol Neurobiol 2020; 282:103535. [PMID: 32871284 DOI: 10.1016/j.resp.2020.103535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022]
Abstract
Little is known about hemostasis modifications induced by chronic hypoxic exposure in high-altitude residents, especially in those who develop excessive erythrocytosis (EE, i.e. hemoglobin concentration ≥ 21 g·dL-1 in male and ≥ 19 g·dL-1 in female). The aim of this preliminary study was to assess coagulation alterations in highlanders with or without EE using simple hemostatic tests such as bleeding (BT) and clotting (CT) times. Eighty-one male (43 ± 7 years), permanent residents from La Rinconada (Peru), the highest city in the world (5,100-5,300 m), were evaluated. Thirty-six subjects (44 %) presented with EE. EE subjects compared to non-EE subjects had lower BT (3.6 ± 1.2 vs. 7.0 ± 1.9 min, p < 0.001) and CT (11.7 ± 1.7 vs. 15.1 ± 2.3 min, p < 0.001). These results support the notion that highlanders with EE are in a state of hypercoagulability and call for further hemostasis investigations in this population using more detailed hemostatic methods.
Collapse
|
193
|
Gassmann M, Cowburn A, Gu H, Li J, Rodriguez M, Babicheva A, Jain PP, Xiong M, Gassmann NN, Yuan JXJ, Wilkins MR, Zhao L. Hypoxia-induced pulmonary hypertension-Utilizing experiments of nature. Br J Pharmacol 2020; 178:121-131. [PMID: 32464698 DOI: 10.1111/bph.15144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
An increase in pulmonary artery pressure is a common observation in adult mammals exposed to global alveolar hypoxia. It is considered a maladaptive response that places an increased workload on the right ventricle. The mechanisms initiating and maintaining the elevated pressure are of considerable interest in understanding pulmonary vascular homeostasis. There is an expectation that identifying the key molecules in the integrated vascular response to hypoxia will inform potential drug targets. One strategy is to take advantage of experiments of nature, specifically, to understand the genetic basis for the inter-individual variation in the pulmonary vascular response to acute and chronic hypoxia. To date, detailed phenotyping of highlanders has focused on haematocrit and oxygen saturation rather than cardiovascular phenotypes. This review explores what we can learn from those studies with respect to the pulmonary circulation. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,University Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Andrew Cowburn
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Hong Gu
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Martin R Wilkins
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Lan Zhao
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
194
|
Wang Y, Duo D, Yan Y, He R, Wu X. Magnesium lithospermate B ameliorates hypobaric hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and its potential targets. Biomed Pharmacother 2020; 130:110560. [PMID: 34321157 DOI: 10.1016/j.biopha.2020.110560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling leading to elevation of pulmonary artery pressure, right ventricular hypertrophy, and death. Currently, there are no cure exists for PAH. Magnesium lithospermate B (MLB) is the major component of Salvia przewalskii water extracts with treating angina and cardiovascular damage, anti-inflammation, anti-oxidation and anti-apoptosis. However, the effects of MLB on PAH still unclear. This study we investigated the efficacy of MLB in the hypobaric hypoxia-induced rat model of PAH. The results showed that MLB relieved mean pulmonary arterial pressure (mPAP) and right ventricular hypertrophy index (RVHI). Meanwhile, MLB significantly reduced pulmonary vascular remodeling. Additionally, MLB inhibited hypobaric hypoxia-induced α-smooth muscle actin (α-SMA) expression, cell apoptosis, and α-SMA and von Willebrand factor (vWF) co-expression in lung, suggesting that MLB could inhibit hypobaric hypoxia-induced endothelial-to-mesenchymal transition (EndMT). Furthermore, after treatment with MLB, the expression of hypoxia inducible factor-1α (HIF-1α), nuclear factor-kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 4 (CDK4), CyclinD1, RhoA, rho-associated protein kinase 1 (ROCK1) and ROCK2 was decreased. Further, CHK1, PIM1, STK6, LKHA4, PDE5A, BRAF1, PLK1, AKT1, PAK6, PAK7 and ELNE may be the potential targets of MLB. Taken together, our findings suggest that MLB ameliorates hypobaric hypoxia-induced PAH by inhibiting EndMT in rats, and has potential value in the preventment and treatment of PAH.
Collapse
Affiliation(s)
- Yafeng Wang
- The First Hospital of Lanzhou University, Lanzhou 730000, China; Qinghai Provincial People's Hospital,Xining 810007,China.
| | - Delong Duo
- Qinghai Provincial People's Hospital,Xining 810007,China
| | - Yingjun Yan
- Qinghai Provincial People's Hospital,Xining 810007,China
| | - Rongyue He
- Qinghai Provincial People's Hospital,Xining 810007,China
| | - Xinan Wu
- The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
195
|
Aeschbacher SS, Latshang TD, Sheraliev U, Marazhapov NH, Ulrich S, Sooronbaev TM, Bloch KE, Furian M. Altered cardiac repolarisation in highlanders with high-altitude pulmonary hypertension during wakefulness and sleep. J Sleep Res 2020; 30:e13153. [PMID: 32776394 DOI: 10.1111/jsr.13153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
High-altitude pulmonary hypertension (HAPH) is an altitude-related illness associated with hypoxaemia that may promote sympathetic excitation and prolongation of the QT interval. The present case-control study tests whether QT intervals, markers of malignant cardiac arrhythmias, are prolonged in highlanders with HAPH (HAPH+) compared to healthy highlanders (HH) and healthy lowlanders (LL). The mean pulmonary artery pressure (mPAP) was measured by echocardiography in 18 HAPH+ (mPAP, 34 mmHg) and 18 HH (mPAP, 23 mmHg) at 3,250 m, and 18 LL (mPAP, 18 mmHg) at 760 m, Kyrgyzstan (p < .05 all mPAP comparisons). Groups were matched for age, sex and body mass index. Electrocardiography and pulse oximetry were continuously recorded during nocturnal polysomnography. The heart rate-adjusted QT interval, QTc, was averaged over consecutive 1-min periods. Overall, a total of 26,855 averaged 1-min beat-by-beat periods were semi-automatically analysed. In HAPH+, maximum nocturnal QTc was longer during sleep (median 456 ms) than wakefulness (432 ms, p < .05) and exceeded corresponding values in HH (437 and 419 ms) and LL (430 and 406 ms), p < .05, respectively. The duration of night-time QTc >440 ms was longer in HAPH+ (median 144 min) than HH and LL (46 and 14 min, p < .05, respectively). HAPH+ had higher night-time heart rate (median 78 beats/min) than HH and LL (66 and 65 beats/min, p < .05, respectively), lower mean nocturnal oxygen saturation than LL (88% versus 95%, p < .05) and more cyclic oxygen desaturations (median 24/hr) than HH and LL (13 and 3/hr, p < .05, respectively). In conclusion, HAPH was associated with higher night-time heart rate, hypoxaemia and longer QTc versus HH and LL, and may represent a substrate for increased risk of malignant cardiac arrhythmias.
Collapse
Affiliation(s)
- Sayaka S Aeschbacher
- Department of Respiratory Medicine, Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Tsogyal D Latshang
- Department of Respiratory Medicine, Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Ulan Sheraliev
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Nuriddin H Marazhapov
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Silvia Ulrich
- Department of Respiratory Medicine, Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Talant M Sooronbaev
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Konrad E Bloch
- Department of Respiratory Medicine, Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Furian
- Department of Respiratory Medicine, Sleep Disorders Center, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
196
|
Li S, Han C, Asmaro K, Quan S, Li M, Ren C, Zhang J, Zhao W, Xu J, Liu Z, Zhang P, Zhu L, Ding Y, Wang K, Ji X, Duan L. Remote Ischemic Conditioning Improves Attention Network Function and Blood Oxygen Levels in Unacclimatized Adults Exposed to High Altitude. Aging Dis 2020; 11:820-827. [PMID: 32765948 PMCID: PMC7390527 DOI: 10.14336/ad.2019.0605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Remote ischemic conditioning (RIC) confers protection on major organs from hypoxic/ischemic injuries; however, its impacts on attention network function and blood oxygen levels in unacclimatized adults exposed to high altitudes have yet to be elucidated. In this study, we recruited 120 healthy male volunteers, of which one was exposed to high altitude and the other was exposed to low altitude. The two cohorts were further divided into RIC and sham control groups. The attentional network test (ANT) was performed to evaluate cognitive function before and after RIC treatment. Other outcomes such as heart rate, blood pressure, blood oxygen saturation, cerebral tissue oxygenation index (CTOI), and cerebrovascular hemodynamic indices were also evaluated. Prior to RIC treatment, there were no significant differences in orienting or executive function between the treatment and control arms of either cohort. Alerting function was significantly lower in the high-altitude cohort than in the low-altitude cohort. There were significant reductions in both blood oxygen and CTOI in the high-altitude cohort relative to the low-altitude cohort, while the pulse index (PI) of the former cohort was significantly increased. After RIC treatment, there was a significant difference in alerting function between the high-altitude RIC group and its associated control. The CTOI of the treatment group increased from 60.39±3.40% to 62.78±4.40%, and blood oxygenation also improved. Furthermore, this group showed a significant reduction in its PI. Exposure to high-altitude environments had a significant impact on alerting function, blood oxygen, CTOI, and PI. RIC ameliorated changes in attentional function, as well as blood oxygen and CTOI, suggesting that it potentially alters cerebrovascular compliance upon exposure to high altitude.
Collapse
Affiliation(s)
- Sijie Li
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Department of Neurosurgery, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Karam Asmaro
- 3Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Shanyi Quan
- 4Department of Health, Xizang Military Region of PLA, Xizang, China
| | - Ming Li
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jun Zhang
- 5Laboratory of Neuropsychology, Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, China
| | - Wenbo Zhao
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiali Xu
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Liu
- 2Department of Neurosurgery, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Peng Zhang
- 2Department of Neurosurgery, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lingling Zhu
- 6Institute of Military Cognition and Brain Science, Academy of Military Medical Sciences, Beijing, China
| | - Yuchuan Ding
- 7Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kai Wang
- 5Laboratory of Neuropsychology, Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Province, China
| | - Xunming Ji
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lian Duan
- 1Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Department of Neurosurgery, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
197
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
198
|
Hancco I, Bailly S, Baillieul S, Doutreleau S, Germain M, Pépin JL, Verges S. Excessive Erythrocytosis and Chronic Mountain Sickness in Dwellers of the Highest City in the World. Front Physiol 2020; 11:773. [PMID: 32760289 PMCID: PMC7373800 DOI: 10.3389/fphys.2020.00773] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background While millions of people are living permanently at high altitude (>2,500 m) worldwide, the mechanisms underlying their tolerance to chronic hypoxia and those responsible for the occurrence of chronic mountain sickness (CMS) remain to be elucidated. Excessive erythrocytosis (EE) is thought to be the main mechanism responsible for CMS symptoms and is included in the definition of CMS, but the precise interplay between EE and symptoms of CMS requires further investigations. Methods The present study benefits from an exceptional dataset coming from 1,594 dwellers of La Rinconada, the highest city in the world (5,100-5,300 m). Based on individual clinical characteristics, subjects were categorized according to the presence of EE and CMS diagnosis, based on current guidelines. Results In this population of relatively young [32 (23; 39) years] highlanders residing in La Rinconada for only a few years [3 (2; 5) years], the internal prevalence of EE (44%) was high, whereas the internal prevalence of CMS (14%) was similar compared to previous reports in highlander populations living at lower altitude (∼4,000 m) in the Andes. Individuals with EE reported less symptoms compared to individuals with lower hematocrit values. Multivariable analysis revealed that age and sex are the main factors associated with EE, whereas age, hematocrit and number of years living at La Rinconada are factors associated with CMS symptoms. Conclusion In this specific population of La Rinconada, high hematocrit values were observed but were associated with limited symptoms. These results raise important questions regarding the definition of EE and CMS and their underlying mechanisms in high-altitude populations.
Collapse
Affiliation(s)
- Ivan Hancco
- HP2 Laboratory, Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| | - Sébastien Bailly
- HP2 Laboratory, Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| | - Sébastien Baillieul
- HP2 Laboratory, Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| | - Stéphane Doutreleau
- HP2 Laboratory, Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| | - Michèle Germain
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Jean-Louis Pépin
- HP2 Laboratory, Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| | - Samuel Verges
- HP2 Laboratory, Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
199
|
Sulaiman X, Xu WF, Cai LH, Huang XY, Cheng LF, Zhang YP. Hematologic and spirometric characteristics of Tajik and Kyrgyz highlanders in the Pamir Mountains. Am J Hum Biol 2020; 33:e23459. [PMID: 32643228 DOI: 10.1002/ajhb.23459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES In this study, we measured the hematologic and spirometric parameters of native Tajik and Kyrgyz highlanders in the Pamir Mountains to investigate adaptations to high altitude stressors. METHODS Hematological parameters including arterial oxygen saturation (SaO2 ), red blood cell (RBC) counts, and hemoglobin (Hb) concentration were measured on Sarikoli Tajik (n = 80; 3100 m), Wakhi Tajik (n = 48; 3500 m), and Kyrgyz (n = 64; 3250 m) in comparison to lowland Uyghurs (n = 50; 1300 m). Spirometric parameters including forced vital capacity (FVC), the first second of forced expiration (FEV1), and forced expiratory flow between 25% and 75% (FEF25-75) were measured. We also reported mountain sickness symptoms in these highlanders and conducted a multivariate regression analysis to analyze the association between these symptoms and the measured parameters. RESULTS SaO2 of Sarikoli Tajik, Wakhi Tajik, and Kyrgyz (91%-93.5%) are significantly lower than lowland Uyghurs, yet are comparable to other native highlanders at a similar altitude. RBC counts and Hb concentrations of all three highland populations are significantly increased compared to Uyghurs. FVC is lower in Sarikoli Tajik, Wakhi Tajik, and Kyrgyz (male: 3.48-3.86 L, female: 2.47-2.78 L) compared to Uyghurs. Combined with normal FEV1, elevated FEV1/FVC ratio, and FEF25-75, the spirometric patterns of these highlanders indicate restrictive lung disease. A high prevalence of mountain sickness symptoms such as headache and nausea was found in all three highland populations, and are attributed to low FVC and aging by regression analysis. CONCLUSION Tajik and Kyrgyz highlanders showed adaptation in SaO2 , RBC, and Hb level, but poor performance in spirometry, which causes mountain sickness.
Collapse
Affiliation(s)
- Xierzhatijiang Sulaiman
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei-Fang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | | | - Xiao-Yang Huang
- The People's Hospital of Shawan County, Shawan, Xinjiang, China
| | - Lu-Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
200
|
Gou Q, Shi R, Zhang X, Meng Q, Li X, Rong X, Gawa Z, Zhuoma N, Chen X. The Prevalence and Risk Factors of High-Altitude Pulmonary Hypertension Among Native Tibetans in Sichuan Province, China. High Alt Med Biol 2020; 21:327-335. [PMID: 32614250 DOI: 10.1089/ham.2020.0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gou, Qiling, Rufeng Shi, Xin Zhang, Qingtao Meng, Xinran Li, Xi Rong, Zhabu Gawa, Nage Zhuoma, and Xiaoping Chen. The prevalence and risk factors of high-altitude pulmonary hypertension among native Tibetans in Sichuan Province, China. High Alt Med Biol. 21:327-335, 2020. Background: Studies evaluating the prevalence and risk factors of high-altitude pulmonary hypertension (HAPH) are lacking. Objective: To determine the prevalence of HAPH and its correlated factors among highlanders living 3200 m above sea level in Ganzi Tibetan Autonomous Prefecture, Sichuan Province, China. Methods: This was a single-center, cross-sectional study involving 1129 subjects (mean age 46.6 ± 14 years, 39% men). In native Tibetans, HAPH was defined as a mean pulmonary artery pressure >30 mmHg as measured by transthoracic echocardiography. Results: HAPH had a crude prevalence of 6.2% and was more prevalent in men than in women (8.6% vs. 4.6%, p = 0.005). Elderly adults were more likely to develop HAPH than young adults (odds ratio [OR] = 5.308, 95% confidence interval [CI] = 2.562-10.993). Highlanders with HAPH had more severe metabolic abnormalities (including elevated blood pressure, blood glucose, blood lipids, BMI, etc., p < 0.05) and significantly increased hemoglobin and hematocrit levels (p < 0.01). In multivariate logistic regression analysis, independent risk factors for HAPH were metabolic syndrome (OR = 3.128, 95% CI = 1.110-8.818), age (>60 years vs. <40 years) (OR = 2.924, 95% CI = 1.282-6.669), and decreased SpO2 (OR = 1.072 per 1-unit decrease; 95% CI = 1.010-1.136). Conclusion: It could be concluded that HAPH was prevalent among 6.2% of native Tibetans in Sichuan Province, China. Increasing age, metabolic syndrome, and decreased SpO2 were independent predisposing factors for HAPH.
Collapse
Affiliation(s)
- Qiling Gou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinran Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xi Rong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhabu Gawa
- Luhuo County People's Hospital, Ganzi, People's Republic of China
| | - Nage Zhuoma
- Luhuo County People's Hospital, Ganzi, People's Republic of China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|