151
|
Ezaki J, Shimada R, Shibuya M, Kibayashi K. Hippocampal neuronal degeneration in the traumatic brain injury mouse: non-trivial effect of scalp incision. Neurol Res 2016; 38:994-1002. [PMID: 27615406 DOI: 10.1080/01616412.2016.1228746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES In experimental models of traumatic brain injury (TBI), posttraumatic hippocampal neuronal degeneration in the cornu ammonis 1 (CA1), and/or the cornu ammonis 3 (CA3) regions are regarded as the most notable phenotypic appearances relating to the pathophysiology of human post-concussion syndrome. However, these morphological changes are often also seen in subjects without TBI, namely 'sham' groups. The frequencies and reasons of appearance of hippocampal neuronal degeneration in mice with TBI and/or sham are not clear. METHODS We compared the frequencies of hippocampal neuronal degeneration among three groups: TBI (mice with external force impact performed by Marmarou's weight drop model after scalp incision), sham (mice with scalp incision alone), and control (mice with neither external force impact nor scalp incision), using hematoxylin and eosin stain in day 6 (n = 5 in each group.) Isoflurane was used for anesthesia in all mice. RESULTS The frequencies were 80, 100, and 20% in CA1, and 20, 40, and 60% in CA3, for TBI, sham, and control, respectively. In CA1, a significant difference of the frequency was observed between sham and control (p = 0.048), but not, between TBI and sham (p = 1.000) in Fisher's exact test. In CA3, no significant difference in the frequency was observed between the three groups. CONCLUSION Scalp incision, rather than external impact force, might affect the CA1 hippocampal neuronal degeneration in mice with TBI. In addition, factor(s) other than external impact force or scalp incision may also cause hippocampal neuronal degeneration in both CA1 and CA3. Careful interpretation is needed concerning hippocampal neuronal degeneration induced by a weight drop device observed in mice with TBI.
Collapse
Affiliation(s)
- Jiro Ezaki
- a Department of Legal Medicine , School of Medicine, Tokyo Women's Medical University , Tokyo , Japan
| | - Ryo Shimada
- a Department of Legal Medicine , School of Medicine, Tokyo Women's Medical University , Tokyo , Japan
| | - Misato Shibuya
- a Department of Legal Medicine , School of Medicine, Tokyo Women's Medical University , Tokyo , Japan
| | - Kazuhiko Kibayashi
- a Department of Legal Medicine , School of Medicine, Tokyo Women's Medical University , Tokyo , Japan
| |
Collapse
|
152
|
Sigal I, Koletar MM, Ringuette D, Gad R, Jeffrey M, Carlen PL, Stefanovic B, Levi O. Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system. BIOMEDICAL OPTICS EXPRESS 2016; 7:3596-3609. [PMID: 27699123 PMCID: PMC5030035 DOI: 10.1364/boe.7.003596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 05/20/2023]
Abstract
We report on a miniature label-free imaging system for monitoring brain blood flow and blood oxygenation changes in awake, freely behaving rats. The device, weighing 15 grams, enables imaging in a ∼ 2 × 2 mm field of view with 4.4 μm lateral resolution and 1 - 8 Hz temporal sampling rate. The imaging is performed through a chronically-implanted cranial window that remains optically clear between 2 to > 6 weeks after the craniotomy. This imaging method is well suited for longitudinal studies of chronic models of brain diseases and disorders. In this work, it is applied to monitoring neurovascular coupling during drug-induced absence-like seizures 6 weeks following the craniotomy.
Collapse
Affiliation(s)
- Iliya Sigal
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Margaret M. Koletar
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
| | - Dene Ringuette
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
| | - Raanan Gad
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Melanie Jeffrey
- Krembil Research Institute, 60 Leonard Avenue, Toronto, ON M5T 2S1,
Canada
| | - Peter L. Carlen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- Krembil Research Institute, 60 Leonard Avenue, Toronto, ON M5T 2S1,
Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
- Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
| | - Ofer Levi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| |
Collapse
|
153
|
Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes. Neuropharmacology 2016; 108:382-93. [DOI: 10.1016/j.neuropharm.2016.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022]
|
154
|
Osier ND, Dixon CE. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Front Neurol 2016; 7:134. [PMID: 27582726 PMCID: PMC4987613 DOI: 10.3389/fneur.2016.00134] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Controlled cortical impact (CCI) is a mechanical model of traumatic brain injury (TBI) that was developed nearly 30 years ago with the goal of creating a testing platform to determine the biomechanical properties of brain tissue exposed to direct mechanical deformation. Initially used to model TBIs produced by automotive crashes, the CCI model rapidly transformed into a standardized technique to study TBI mechanisms and evaluate therapies. CCI is most commonly produced using a device that rapidly accelerates a rod to impact the surgically exposed cortical dural surface. The tip of the rod can be varied in size and geometry to accommodate scalability to difference species. Typically, the rod is actuated by a pneumatic piston or electromagnetic actuator. With some limits, CCI devices can control the velocity, depth, duration, and site of impact. The CCI model produces morphologic and cerebrovascular injury responses that resemble certain aspects of human TBI. Commonly observed are graded histologic and axonal derangements, disruption of the blood-brain barrier, subdural and intra-parenchymal hematoma, edema, inflammation, and alterations in cerebral blood flow. The CCI model also produces neurobehavioral and cognitive impairments similar to those observed clinically. In contrast to other TBI models, the CCI device induces a significantly pronounced cortical contusion, but is limited in the extent to which it models the diffuse effects of TBI; a related limitation is that not all clinical TBI cases are characterized by a contusion. Another perceived limitation is that a non-clinically relevant craniotomy is performed. Biomechanically, this is irrelevant at the tissue level. However, craniotomies are not atraumatic and the effects of surgery should be controlled by including surgical sham control groups. CCI devices have also been successfully used to impact closed skulls to study mild and repetitive TBI. Future directions for CCI research surround continued refinements to the model through technical improvements in the devices (e.g., minimizing mechanical sources of variation). Like all TBI models, publications should report key injury parameters as outlined in the NIH common data elements (CDEs) for pre-clinical TBI.
Collapse
Affiliation(s)
- Nicole D. Osier
- Department of Acute and Tertiary Care, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
155
|
Brain structure alterations and cognitive impairment following repetitive mild head impact: An in vivo MRI and behavioral study in rat. Behav Brain Res 2016; 340:41-48. [PMID: 27498246 DOI: 10.1016/j.bbr.2016.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/24/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
Mild traumatic brain injury (mTBI) or concussion is a common health issue. Several people repeatedly experience head impact milder than that causing concussion. The present study aimed to confirm the effects of such repeated impact on the brain structure and cognitive abilities. Rat models were established by closed skull weight-drop injury. The animals were anesthetized, subjected to single (s)-sham, s-mTBI, repetitive (r)-sham, and r-mTBI, and recovery times were recorded. MRI, including T2-weighted and diffusion tensor imaging (DTI), as well as, neurological severity scores (mNSS) were assessed for the dynamics of the brain structure and neurological function. Morris water maze (MWM) was used to evaluate the cognitive function. The histological examination of r-mTBI rats revealed the basis of structural changes in the brain. There was no significant difference in the recovery time, MRI, mNSS, and MWM between the s-sham and the s-mTBI groups. Compared with r-sham, r-mTBI induced significant differences in the following aspects. The recovery time was prolonged and beam balance test (BBT) in mNSS increased from day 5. MWM performances were worse even after the BBT was recovered. The volumes of the cortex (CT), hippocampus (HP), and lateral ventricle had changed from day 5, which reached a maximum at day 14. Abnormal DTI parameters were observed in CT, corpus callosum, and HP. Histological analyses showed that both in CT and HP, neuron counts reduced at the end of the experiment. Altogether, these findings indicate that non-symptomatic head injury may result in brain atrophy and cognitive impairment when occurred repeatedly.
Collapse
|
156
|
Wright DK, Trezise J, Kamnaksh A, Bekdash R, Johnston LA, Ordidge R, Semple BD, Gardner AJ, Stanwell P, O'Brien TJ, Agoston DV, Shultz SR. Behavioral, blood, and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury. Sci Rep 2016; 6:28713. [PMID: 27349514 PMCID: PMC4923906 DOI: 10.1038/srep28713] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Repeated mild traumatic brain injuries (mTBI) may lead to serious neurological consequences, especially if re-injury occurs within the period of increased cerebral vulnerability (ICV) triggered by the initial insult. MRI and blood proteomics might provide objective measures of pathophysiological changes in mTBI, and indicate when the brain is no longer in a state of ICV. This study assessed behavioral, MRI, and blood-based markers in a rat model of mTBI. Rats were given a sham or mild fluid percussion injury (mFPI), and behavioral testing, MRI, and blood collections were conducted up to 30 days post-injury. There were cognitive impairments for three days post-mFPI, before normalizing by day 5 post-injury. In contrast, advanced MRI (i.e., tractography) and blood proteomics (i.e., vascular endothelial growth factor) detected a number of abnormalities, some of which were still present 30 days post-mFPI. These findings suggest that MRI and blood proteomics are sensitive measures of the molecular and subtle structural changes following mTBI. Of particular significance, this study identified novel tractography measures that are able to detect mTBI and may be more sensitive than traditional diffusion-tensor measures. Furthermore, the blood and MRI findings may have important implications in understanding ICV and are translatable to the clinical setting.
Collapse
Affiliation(s)
- David K Wright
- Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Jack Trezise
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ramsey Bekdash
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Leigh A Johnston
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Roger Ordidge
- Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Andrew J Gardner
- Centre for Stroke and Brain Injury, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Peter Stanwell
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
157
|
Song J, Li N, Xia Y, Gao Z, Zou SF, Kong L, Yao YJ, Jiao YN, Yan YH, Li SH, Tao ZY, Lian G, Yang JX, Kang TG. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion. Front Pharmacol 2016; 7:182. [PMID: 27445818 PMCID: PMC4916177 DOI: 10.3389/fphar.2016.00182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022] Open
Abstract
Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers neuroprotection of brain tissue through anti-inflammatory and anti-apoptotic effects in a mouse model of SWI. These results suggest a new strategy for promoting neuronal survival and function after CED to improve long-term patient outcome.
Collapse
Affiliation(s)
- Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Na Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Yang Xia
- Department of Engineering, St. Cross College, University of Oxford Oxford, UK
| | - Zhong Gao
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital Dalian, China
| | - Sa-Feng Zou
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Ying-Jia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Ya-Nan Jiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Yu-Hui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Shao-Heng Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Zhen-Yu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Guan Lian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| | - Ting-Guo Kang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine Dalian, China
| |
Collapse
|
158
|
Herrera JJ, Bockhorst K, Kondraganti S, Stertz L, Quevedo J, Narayana PA. Acute White Matter Tract Damage after Frontal Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:291-299. [PMID: 27138134 DOI: 10.1089/neu.2016.4407] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our understanding of mild traumatic brain injury (mTBI) is still in its infancy and to gain a greater understanding, relevant animal models should replicate many of the features seen in human mTBI. These include changes to diffusion tensor imaging (DTI) parameters, absence of anatomical lesions on conventional neuroimaging, and neurobehavioral deficits. The Maryland closed head TBI model causes anterior-posterior plus sagittal rotational acceleration of the brain, frequently observed with motor vehicle and sports-related TBI injuries. The injury reflects a concussive injury model without skull fracture. The goal of our study was to characterize the acute (72 h) pathophysiological changes occurring following a single mTBI using magnetic resonance imaging (MRI), behavioral assays, and histology. We assessed changes in fractional anisotropy (FA), mean (MD), longitudinal (LD), and radial (RD) diffusivities relative to pre-injury baseline measures. Significant differences were observed in both the longitudinal and radial diffusivities in the fimbria compared with baseline. A significant difference in radial diffusivity was also observed in the splenium of the corpus callosum compared with baseline. The exploratory activity of the mTBI animals was also assessed using computerized activity monitoring. A significant decrease was observed in ambulatory distance, average velocity, stereotypic counts, and vertical counts compared with baseline. Histological examination of the mTBI brain sections indicated a significant decrease in the expression of myelin basic protein in the fimbria, splenium, and internal capsule. Our findings demonstrate the vulnerability of the white matter tracts, specifically the fimbria and splenium, and the ability of DTI to identify changes to the integrity of the white matter tracts following mTBI.
Collapse
Affiliation(s)
- Juan J Herrera
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Kurt Bockhorst
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Shakuntala Kondraganti
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Laura Stertz
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - João Quevedo
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas.,3 Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Ponnada A Narayana
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| |
Collapse
|
159
|
Harrison EB, Hochfelder CG, Lamberty BG, Meays BM, Morsey BM, Kelso ML, Fox HS, Yelamanchili SV. Traumatic brain injury increases levels of miR-21 in extracellular vesicles: implications for neuroinflammation. FEBS Open Bio 2016; 6:835-46. [PMID: 27516962 PMCID: PMC4971839 DOI: 10.1002/2211-5463.12092] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI) is an important health concern and effective treatment strategies remain elusive. Understanding the complex multicellular response to TBI may provide new avenues for intervention. In the context of TBI, cell–cell communication is critical. One relatively unexplored form of cell–cell communication in TBI is extracellular vesicles (EVs). These membrane‐bound vesicles can carry many different types of cargo between cells. Recently, miRNA in EVs have been shown to mediate neuroinflammation and neuronal injury. To explore the role of EV‐associated miRNA in TBI, we isolated EVs from the brain of injured mice and controls, purified RNA from brain EVs, and performed miRNA sequencing. We found that the expression of miR‐212 decreased, while miR‐21, miR‐146, miR‐7a, and miR‐7b were significantly increased with injury, with miR‐21 showing the largest change between conditions. The expression of miR‐21 in the brain was primarily localized to neurons near the lesion site. Interestingly, adjacent to these miR‐21‐expressing neurons were activated microglia. The concurrent increase in miR‐21 in EVs with the elevation of miR‐21 in neurons, suggests that miR‐21 is secreted from neurons as potential EV cargo. Thus, this study reveals a new potential mechanism of cell–cell communication not previously described in TBI.
Collapse
Affiliation(s)
- Emily B Harrison
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA
| | - Colleen G Hochfelder
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA; Present address: Albert Einstein College of Medicine 1300 Morris Park Ave Bronx NY 10461 USA
| | - Benjamin G Lamberty
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA
| | - Brittney M Meays
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA
| | - Brenda M Morsey
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA
| | - Matthew L Kelso
- Department of Cellular and Integrative Physiology University of Nebraska Medical Center Omaha NE USA; Present address: Medpace Reference Laboratories 5365 Medpace Way Cincinnati OH USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA
| | - Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center Omaha NE USA
| |
Collapse
|
160
|
Yarnell AM, Barry ES, Mountney A, Shear D, Tortella F, Grunberg NE. The Revised Neurobehavioral Severity Scale (NSS-R) for Rodents. CURRENT PROTOCOLS IN NEUROSCIENCE 2016; 75:9.52.1-9.52.16. [PMID: 27063788 DOI: 10.1002/cpns.10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Motor and sensory deficits are common following traumatic brain injury (TBI). Although rodent models provide valuable insight into the biological and functional outcomes of TBI, the success of translational research is critically dependent upon proper selection of sensitive, reliable, and reproducible assessments. Published literature includes various observational scales designed to evaluate post-injury functionality; however, the heterogeneity in TBI location, severity, and symptomology can complicate behavioral assessments. The importance of choosing behavioral outcomes that can be reliably and objectively quantified in an efficient manner is becoming increasingly important. The Revised Neurobehavioral Severity Scale (NSS-R) is a continuous series of specific, sensitive, and standardized observational tests that evaluate balance, motor coordination, and sensorimotor reflexes in rodents. The tasks follow a specific order designed to minimize interference: balance, landing, tail raise, dragging, righting reflex, ear reflex, eye reflex, sound reflex, tail pinch, and hindpaw pinch. The NSS-R has proven to be a reliable method differentiating brain-injured rodents from non-brain-injured rodents across many brain injury models.
Collapse
Affiliation(s)
| | - Erin S Barry
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Andrea Mountney
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Deborah Shear
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Frank Tortella
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Neil E Grunberg
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
161
|
Changes in Binding of [(123)I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury. Neuromolecular Med 2016; 18:158-69. [PMID: 26969181 DOI: 10.1007/s12017-016-8385-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 01/01/2023]
Abstract
After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [(123)I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [(123)I]CLINDE has been employed in human studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague-Dawley rats were subjected to moderate controlled cortical impact injury and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [(123)I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [(123)I]CLINDE binding in the ipsilateral motor, somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [(123)I]CLINDE binding, restricted to the ipsilateral hemisphere. Radioligand binding was consistent with an increase in TSPO mRNA expression and CD11b immunoreactivity at the contusion site. This study demonstrates the applicability of [(123)I]CLINDE for detailed regional and quantitative assessment of glial activity in experimental models of TBI.
Collapse
|
162
|
Ekmark-Lewén S, Flygt J, Fridgeirsdottir GA, Kiwanuka O, Hånell A, Meyerson BJ, Mir AK, Gram H, Lewén A, Clausen F, Hillered L, Marklund N. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β. Eur J Neurosci 2016; 43:1016-33. [PMID: 27091435 DOI: 10.1111/ejn.13190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/06/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022]
Abstract
Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI.
Collapse
Affiliation(s)
- Sara Ekmark-Lewén
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Johanna Flygt
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Olivia Kiwanuka
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Bengt J Meyerson
- Department of Neuroscience, Pharmacology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anis K Mir
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Hermann Gram
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Anders Lewén
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Fredrik Clausen
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.,Department of Neurosurgery, Uppsala University Hospital, Ing 85, 2 tr, SE-756 55, Uppsala, Sweden
| |
Collapse
|
163
|
Park AH, Lee SH, Lee C, Kim J, Lee HE, Paik SB, Lee KJ, Kim D. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. ACS NANO 2016; 10:2791-802. [PMID: 26735496 DOI: 10.1021/acsnano.5b07889] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Spatiotemporal mapping of neural interactions through electrocorticography (ECoG) is the key to understanding brain functions and disorders. For the entire brain cortical areas, this approach has been challenging, especially in freely moving states, owing to the need for extensive craniotomy. Here, we introduce a flexible microelectrode array system, termed iWEBS, which can be inserted through a small cranial slit and stably wrap onto the curved cortical surface. Using iWEBS, we measured dynamic changes of signals across major cortical domains, namely, somatosensory, motor, visual and retrosplenial areas, in freely moving mice. iWEBS robustly displayed somatosensory evoked potentials (SEPs) in corresponding cortical areas to specific somatosensory stimuli. We also used iWEBS for mapping functional interactions between cortical areas in the propagation of spike-and-wave discharges (SWDs), the neurological marker of absence seizures, triggered by optogenetic inhibition of a specific thalamic nucleus. This demonstrates that iWEBS represents a significant improvement over conventional ECoG recording methodologies and, therefore, is a competitive recording system for mapping wide-range brain connectivity under various behavioral conditions.
Collapse
Affiliation(s)
- Ah Hyung Park
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Hyun Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changju Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Han Eol Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, ‡Department of Materials Science and Engineering, and §Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
164
|
Novel pharmaceutical treatments for minimal traumatic brain injury and evaluation of animal models and methodologies supporting their development. J Neurosci Methods 2016; 272:69-76. [PMID: 26868733 DOI: 10.1016/j.jneumeth.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The need for effective pharmaceuticals within animal models of traumatic brain injury (TBI) continues to be paramount, as TBI remains the major cause of brain damage for children and young adults. While preventative measures may act to reduce the incidence of initial blunt trauma, well-tolerated drugs are needed to target the neurologically damaging internal cascade of molecular mechanisms that follow. Such processes, known collectively as the secondary injury phase, include inflammation, excitotoxicity, and apoptosis among other changes still subject to research. In this article positive treatment findings to mitigate this secondary injury in rodent TBI models will be overviewed, and include recent studies on Exendin-4, N-Acetyl-l-cycteine, Salubrinal and Thrombin. CONCLUSIONS These studies provide representative examples of methodologies that can be combined with widely available in vivo rodent models to evaluate therapeutic approaches of translational relevance, as well as drug targets and biochemical cascades that may slow or accelerate the degenerative processes induced by TBI. They employ well-characterized tests such as the novel object recognition task for assessing cognitive deficits. The application of such methodologies provides both decision points and a gateway for implementation of further translational studies to establish the feasibility of clinical efficacy of potential therapeutic interventions.
Collapse
|
165
|
Abstract
Traumatic brain injury (TBI) has been named the most complex disease in the most complex organ of the body. It is the most common cause of death and disability in the Western world in people <40 years old and survivors commonly suffer from persisting cognitive deficits, impaired motor function, depression and personality changes. TBI may vary in severity from uniformly fatal to mild injuries with rapidly resolving symptoms and without doubt, it is a markedly heterogeneous disease. Its different subtypes differs in their pathophysiology, treatment options and long-term consequences and to date, there are no pharmacological treatments with proven clinical benefit available to TBI patients. To enable development of novel treatment options for TBI, clinically relevant animal models are needed. Due to their availability and low costs, numerous rodent models have been developed which have substantially contributed to our current understanding of the pathophysiology of TBI. The most common animal models used in laboratories worldwide are likely the controlled cortical impact (CCI) model, the central and lateral fluid percussion injury (FPI) models, and weight drop/impact acceleration (I/A) models. Each of these models has inherent advantages and disadvantages; these need to be thoroughly considered when selecting the rodent TBI model according to the hypothesis and design of the study. Since TBI is not one disease, refined animal models must take into account the clinical features and complexity of human TBI. To enhance the possibility of establishing preclinical efficacy of a novel treatment, the preclinical use of several different experimental models is encouraged as well as varying the species, gender, and age of the animal. In this chapter, the methods, limitations, and challenges of the CCI and FPI models of TBI used in rodents are described.
Collapse
Affiliation(s)
- Niklas Marklund
- Division of Neurosurgery, Department of Neuroscience, Uppsala University Hospital, Uppsala University, Uppsala, 751 85, Sweden.
| |
Collapse
|
166
|
Osier N, Dixon CE. The Controlled Cortical Impact Model of Experimental Brain Trauma: Overview, Research Applications, and Protocol. Methods Mol Biol 2016; 1462:177-92. [PMID: 27604719 PMCID: PMC5271598 DOI: 10.1007/978-1-4939-3816-2_11] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlled cortical impact (CCI) is a commonly used and highly regarded model of brain trauma that uses a pneumatically or electromagnetically controlled piston to induce reproducible and well-controlled injury. The CCI model was originally used in ferrets and it has since been scaled for use in many other species. This chapter will describe the historical development of the CCI model, compare and contrast the pneumatic and electromagnetic models, and summarize key short- and long-term consequences of TBI that have been gleaned using this model. In accordance with the recent efforts to promote high-quality evidence through the reporting of common data elements (CDEs), relevant study details-that should be reported in CCI studies-will be noted.
Collapse
Affiliation(s)
- Nicole Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, 201 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA, 15213, USA
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, 201 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
167
|
Daiutolo BV, Tyburski A, Clark SW, Elliott MB. Trigeminal Pain Molecules, Allodynia, and Photosensitivity Are Pharmacologically and Genetically Modulated in a Model of Traumatic Brain Injury. J Neurotrauma 2015; 33:748-60. [PMID: 26472135 DOI: 10.1089/neu.2015.4087] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pain-signaling molecules, nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP), are implicated in the pathophysiology of post-traumatic headache (PTH) as they are for migraine. This study assessed the changes of inducible NOS (iNOS) and its cellular source in the trigeminal pain circuit, as well as the relationship between iNOS and CGRP after controlled cortical impact (CCI) injury in mice. The effects of a CGRP antagonist (MK8825) and sumatriptan on iNOS messenger RNA (mRNA) and protein were compared to vehicle at 2 weeks postinjury. Changes in CGRP levels in the trigeminal nucleus caudalis (TNC) in iNOS knockouts with CCI were compared to wild-type (WT) mice at 3 days and 2 weeks post injury. Trigeminal allodynia and photosensitivity were measured. MK8825 and sumatriptan increased allodynic thresholds in CCI groups compared to vehicle (p < 0.01), whereas iNOS knockouts were not different from WT. Photosensitivity was attenuated in MK8825 mice and iNOS knockouts compared to WT (p < 0.05). MK8825 and sumatriptan reduced levels of iNOS mRNA and iNOS immunoreactivity in the TNC and ganglia (p < 0.01). Differences in iNOS cellular localization were found between the trigeminal ganglia and TNC. Although the knockout of iNOS attenuated CGRP at 3 days (p < 0.05), it did not reduce CGRP at 2 weeks. CGRP immunoreactivity was found in the meningeal layers post-CCI, while negligible in controls. Findings support the importance of interactions between CGRP and iNOS in mediating allodynia, as well as the individual roles in photosensitivity. Mitigating prolonged increases in CGRP may be a promising intervention for treating acute PTH.
Collapse
Affiliation(s)
- Brittany V Daiutolo
- Department of Neurological Surgery, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Ashley Tyburski
- Department of Neurological Surgery, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Shannon W Clark
- Department of Neurological Surgery, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Melanie B Elliott
- Department of Neurological Surgery, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
168
|
Alder J, Fujioka W, Giarratana A, Wissocki J, Thakkar K, Vuong P, Patel B, Chakraborty T, Elsabeh R, Parikh A, Girn HS, Crockett D, Thakker-Varia S. Genetic and pharmacological intervention of the p75NTR pathway alters morphological and behavioural recovery following traumatic brain injury in mice. Brain Inj 2015; 30:48-65. [PMID: 26579945 DOI: 10.3109/02699052.2015.1088963] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PRIMARY OBJECTIVE Neurotrophin levels are elevated after TBI, yet there is minimal regeneration. It was hypothesized that the pro-neurotrophin/p75NTR pathway is induced more than the mature neurotrophin/Trk pathway and that interfering with p75 signalling improves recovery following TBI. RESEARCH DESIGN Lateral Fluid Percussion (LFP) injury was performed on wildtype and p75 mutant mice. In addition, TrkB agonist 7,8 Dihydroxyflavone or p75 antagonist TAT-Pep5 were tested. Western blot and immunohistochemistry revealed biochemical and cellular changes. Morris Water Maze and Rotarod tests demonstrated cognitive and vestibulomotor function. MAIN OUTCOMES AND RESULTS p75 was up-regulated and TrkB was down-regulated 1 day post-LFP. p75 mutant mice as well as mice treated with the p75 antagonist or the TrkB agonist exhibited reduced neuronal death and degeneration and less astrocytosis. The cells undergoing apoptosis appear to be neurons rather than glia. There was improved motor function and spatial learning in p75 mutant mice and mice treated with the p75 antagonist. CONCLUSIONS Many of the pathological and behavioural consequences of TBI might be due to activation of the pro-neurotrophin/p75 toxic pathway overriding the protective mechanisms of the mature neurotrophin/Trk pathway. Targeting p75 can be a novel strategy to counteract the damaging effects of TBI.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain Injuries, Traumatic/drug therapy
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Cognition/physiology
- Flavones/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Nerve Growth Factors/metabolism
- Receptor, trkB/agonists
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/antagonists & inhibitors
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/pathology
Collapse
Affiliation(s)
- Janet Alder
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Wendy Fujioka
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Anna Giarratana
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Jenna Wissocki
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Keya Thakkar
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Phung Vuong
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Bijal Patel
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | | - Rami Elsabeh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Ankit Parikh
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - Hartaj S Girn
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | - David Crockett
- a Rutgers Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | |
Collapse
|
169
|
Xia Y, Kong L, Yao Y, Jiao Y, Song J, Tao Z, You Z, Yang J. Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury. J Neuroinflammation 2015; 12:155. [PMID: 26337552 PMCID: PMC4559066 DOI: 10.1186/s12974-015-0373-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/16/2015] [Indexed: 12/31/2022] Open
Abstract
Background Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain injury and the underlying mechanism of action in a mouse model of stab wound injury. Methods A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were collected 3–21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays. Results Neurological function improved in mice treated with osthole and was accompanied by reduced brain water content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory cytokines interleukin-6 and tumor necrosis factor α in the lesioned cortex. Osthole-treated mice had fewer TUNEL+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function after neurosurgery to improve long-term patient outcome.
Collapse
Affiliation(s)
- Yang Xia
- Department of Engineering, University of Oxford, Oxford, OX1 3LZ, UK.
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Yingjia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Yanan Jiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Zhenyu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| | - Zhong You
- Department of Engineering, University of Oxford, Oxford, OX1 3LZ, UK.
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
170
|
Szczygielski J, Mautes AE, Müller A, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Decompressive Craniectomy Increases Brain Lesion Volume and Exacerbates Functional Impairment in Closed Head Injury in Mice. J Neurotrauma 2015; 33:122-31. [PMID: 26102497 DOI: 10.1089/neu.2014.3835] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Decompressive craniectomy has been widely used in patients with head trauma. The randomized clinical trial on an early decompression (DECRA) demonstrated that craniectomy did not improve the neurological outcome, in contrast to previous animal experiments. The goal of our study was to analyze the effect of decompressive craniectomy in a murine model of head injury. Male mice were assigned into the following groups: sham, decompressive craniectomy, closed head injury (CHI), and CHI followed by craniectomy. At 24 h post-trauma, animals underwent the Neurological Severity Score test (NSS) and Beam Balance Score test (BBS). At the same time point, magnetic resonance imaging was performed, and volume of edema and contusion was assessed, followed by histopathological analysis. According to NSS, animals undergoing both trauma and craniectomy presented the most severe neurological impairment. Also, balancing time was reduced in this group compared with sham animals. Both edema and contusion volume were increased in the trauma and craniectomy group compared with sham animals. Histopathological analysis showed that all animals that underwent trauma presented substantial neuronal loss. In animals treated with craniectomy after trauma, a massive increase of edema with hemorrhagic transformation of contusion was documented. Decompressive craniectomy applied after closed head injury in mice leads to additional structural and functional impairment. The surgical decompression via craniectomy promotes brain edema formation and contusional blossoming in our model. This additive effect of combined mechanical and surgical trauma may explain the results of the DECRA trial and should be explored further in experiments.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
171
|
Peng F, Muzik O, Gatson J, Kernie SG, Diaz-Arrastia R. Assessment of Traumatic Brain Injury by Increased 64Cu Uptake on 64CuCl2 PET/CT. J Nucl Med 2015; 56:1252-1257. [PMID: 26112025 PMCID: PMC4583785 DOI: 10.2967/jnumed.115.154575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Copper is a nutritional trace element required for cell proliferation and wound repair. METHODS To explore increased copper uptake as a biomarker for noninvasive assessment of traumatic brain injury (TBI), experimental TBI in C57BL/6 mice was induced by controlled cortical impact, and (64)Cu uptake in the injured cortex was assessed with (64)CuCl2 PET/CT. RESULTS At 24 h after intravenous injection of the tracer, uptake was significantly higher in the injured cortex of TBI mice (1.15 ± 0.53 percentage injected dose per gram of tissue [%ID/g]) than in the uninjured cortex of mice without TBI (0.53 ± 0.07 %ID/g, P = 0.027) or the cortex of mice that received an intracortical injection of zymosan A (0.62 ± 0.22 %ID/g, P = 0.025). Furthermore, uptake in the traumatized cortex of untreated TBI mice (1.15 ± 0.53 %ID/g) did not significantly differ from that in minocycline-treated TBI mice (0.93 ± 0.30 %ID/g, P = 0.33). CONCLUSION Overall, the data suggest that increased (64)Cu uptake in traumatized brain tissues holds potential as a new biomarker for noninvasive assessment of TBI with (64)CuCl2 PET/CT.
Collapse
Affiliation(s)
- Fangyu Peng
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, Michigan Department of Radiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Joshua Gatson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven G Kernie
- Department of Pediatrics and Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - Ramon Diaz-Arrastia
- Center for Neurosciences and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
172
|
Gao YR, Greene SE, Drew PJ. Mechanical restriction of intracortical vessel dilation by brain tissue sculpts the hemodynamic response. Neuroimage 2015; 115:162-76. [PMID: 25953632 PMCID: PMC4470397 DOI: 10.1016/j.neuroimage.2015.04.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/28/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Understanding the spatial dynamics of dilation in the cerebral vasculature is essential for deciphering the vascular basis of hemodynamic signals in the brain. We used two-photon microscopy to image neural activity and vascular dynamics in the somatosensory cortex of awake behaving mice during voluntary locomotion. Arterial dilations within the histologically-defined forelimb/hindlimb (FL/HL) representation were larger than arterial dilations in the somatosensory cortex immediately outside the FL/HL representation, demonstrating that the vascular response during natural behaviors was spatially localized. Surprisingly, we found that locomotion drove dilations in surface vessels that were nearly three times the amplitude of intracortical vessel dilations. The smaller dilations of the intracortical arterioles were not due to saturation of dilation. Anatomical imaging revealed that, unlike surface vessels, intracortical vessels were tightly enclosed by brain tissue. A mathematical model showed that mechanical restriction by the brain tissue surrounding intracortical vessels could account for the reduced amplitude of intracortical vessel dilation relative to surface vessels. Thus, under normal conditions, the mechanical properties of the brain may play an important role in sculpting the laminar differences of hemodynamic responses.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
173
|
Perez-Polo JR, Rea HC, Johnson KM, Parsley MA, Unabia GC, Xu GY, Prough D, DeWitt DS, Paulucci-Holthauzen AA, Werrbach-Perez K, Hulsebosch CE. Inflammatory cytokine receptor blockade in a rodent model of mild traumatic brain injury. J Neurosci Res 2015; 94:27-38. [PMID: 26172557 DOI: 10.1002/jnr.23617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
In rodent models of traumatic brain injury (TBI), both Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) levels increase early after injury to return later to basal levels. We have developed and characterized a rat mild fluid percussion model of TBI (mLFP injury) that results in righting reflex response times (RRRTs) that are less than those characteristic of moderate to severe LFP injury and yet increase IL-1α/β and TNFα levels. Here we report that blockade of IL-1α/β and TNFα binding to IL-1R and TNFR1, respectively, reduced neuropathology in parietal cortex, hippocampus, and thalamus and improved outcome. IL-1β binding to the type I IL-1 receptor (IL-1R1) can be blocked by a recombinant form of the endogenous IL-1R antagonist IL-1Ra (Kineret). TNFα binding to the TNF receptor (TNFR) can be blocked by the recombinant fusion protein etanercept, made up of a TNFR2 peptide fused to an Fc portion of human IgG1. There was no benefit from the combined blockades compared with individual blockades or after repeated treatments for 11 days after injury compared with one treatment at 1 hr after injury, when measured at 6 hr or 18 days, based on changes in neuropathology. There was also no further enhancement of blockade benefits after 18 days. Given that both Kineret and etanercept given singly or in combination showed similar beneficial effects and that TNFα also has a gliotransmitter role regulating AMPA receptor traffic, thus confounding effects of a TNFα blockade, we chose to focus on a single treatment with Kineret.
Collapse
Affiliation(s)
| | - H C Rea
- University of Texas Medical Branch, Galveston, Texas
| | - K M Johnson
- University of Texas Medical Branch, Galveston, Texas
| | - M A Parsley
- University of Texas Medical Branch, Galveston, Texas
| | - G C Unabia
- University of Texas Medical Branch, Galveston, Texas
| | - G-Y Xu
- University of Texas Medical Branch, Galveston, Texas
| | - D Prough
- University of Texas Medical Branch, Galveston, Texas
| | - D S DeWitt
- University of Texas Medical Branch, Galveston, Texas
| | | | | | | |
Collapse
|
174
|
Evaluation of gait impairment in mice subjected to craniotomy and traumatic brain injury. Behav Brain Res 2015; 286:33-8. [DOI: 10.1016/j.bbr.2015.02.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 01/11/2023]
|
175
|
Shein SL, Shellington DK, Exo JL, Jackson TC, Wisniewski SR, Jackson EK, Vagni VA, Bayır H, Clark RSB, Dixon CE, Janesko-Feldman KL, Kochanek PM. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice. J Neurotrauma 2015; 31:1386-95. [PMID: 24773520 DOI: 10.1089/neu.2013.2985] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25-27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile--specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.
Collapse
Affiliation(s)
- Steven L Shein
- 1 Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Turtzo LC, Budde MD, Dean DD, Gold EM, Lewis BK, Janes L, Lescher J, Coppola T, Yarnell A, Grunberg NE, Frank JA. Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat. PLoS One 2015; 10:e0126551. [PMID: 25946089 PMCID: PMC4422703 DOI: 10.1371/journal.pone.0126551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose) were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.
Collapse
Affiliation(s)
- L. Christine Turtzo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Matthew D. Budde
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dana D. Dean
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric M. Gold
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bobbi K. Lewis
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lindsay Janes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob Lescher
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiziana Coppola
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela Yarnell
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joseph A. Frank
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
177
|
Adkins DL, Ferguson L, Lance S, Pevtsov A, McDonough K, Stamschror J, Jones TA, Kozlowski DA. Combining Multiple Types of Motor Rehabilitation Enhances Skilled Forelimb Use Following Experimental Traumatic Brain Injury in Rats. Neurorehabil Neural Repair 2015; 29:989-1000. [PMID: 25761884 DOI: 10.1177/1545968315576577] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neuroplasticity and neurorehabilitation have been extensively studied in animal models of stroke to guide clinical rehabilitation of stroke patients. Similar studies focused on traumatic brain injury (TBI) are lacking. OBJECTIVE The current study was designed to examine the effects of individual and combined rehabilitative approaches, previously shown to be beneficial following stroke, in an animal model of moderate/severe TBI, the controlled cortical impact (CCI). METHODS Rats received a unilateral CCI, followed by reach training, voluntary exercise, or unimpaired forelimb constraint, alone or in combination. Forelimb function was assessed at different time points post-CCI by tests of skilled reaching, motor coordination, and asymmetrical limb use. RESULTS Following CCI, skilled reaching and motor coordination were significantly enhanced by combinations of rehabilitation strategies, not by individual approaches. The return of symmetrical limb use benefited from forelimb constraint alone. None of the rehabilitation strategies affected the size of injury, suggesting that enhanced behavioral function was not a result of neuroprotection. CONCLUSIONS The current study has provided evidence that individual rehabilitation strategies shown to be beneficial in animal models of stroke are not similarly sufficient to enhance behavioral outcome in a model of TBI. Motor rehabilitation strategies for TBI patients may need to be more intense and varied. Future basic science studies exploring the underlying mechanisms of combined rehabilitation approaches in TBI as well as clinical studies comparing rehabilitation approaches for stroke versus TBI would prove fruitful.
Collapse
Affiliation(s)
- DeAnna L Adkins
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Lindsay Ferguson
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Steven Lance
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Aleksandr Pevtsov
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Kevin McDonough
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Justin Stamschror
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
178
|
Letourneur A, Chen V, Waterman G, Drew PJ. A method for longitudinal, transcranial imaging of blood flow and remodeling of the cerebral vasculature in postnatal mice. Physiol Rep 2014; 2:2/12/e12238. [PMID: 25524276 PMCID: PMC4332216 DOI: 10.14814/phy2.12238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In the weeks following birth, both the brain and the vascular network that supplies it undergo dramatic alteration. While studies of the postnatal evolution of the pial vasculature and blood flow through its vessels have been previously done histologically or acutely, here we describe a neonatal reinforced thin‐skull preparation for longitudinally imaging the development of the pial vasculature in mice using two‐photon laser scanning microscopy. Starting with mice as young as postnatal day 2 (P2), we are able to chronically image cortical areas >1 mm2, repeatedly for several consecutive days, allowing us to observe the remodeling of the pial arterial and venous networks. We used this method to measure blood velocity in individual vessels over multiple days, and show that blood flow through individual pial venules was correlated with subsequent diameter changes. This preparation allows the longitudinal imaging of the developing mammalian cerebral vascular network and its physiology. We developed a technique to longitudinally image blood vessels in the neonatal mouse cortex transcranially using two‐photon microscopy. The blood vessels on the surface of the brain undergo substantial pruning after birth. Blood flow through a vessel was correlated with the subsequent diameter change of the vessel.
Collapse
Affiliation(s)
- Annelise Letourneur
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania CNRS, CEA, Université de Caen Basse-Normandie, UMR 6301 ISTCT, CERVOxy. GIP CYCERON, Caen, France
| | - Victoria Chen
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Gar Waterman
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania Department of Neurosurgery, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
179
|
Nichols J, Perez R, Wu C, Adelson PD, Anderson T. Traumatic brain injury induces rapid enhancement of cortical excitability in juvenile rats. CNS Neurosci Ther 2014; 21:193-203. [PMID: 25475223 DOI: 10.1111/cns.12351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022] Open
Abstract
AIMS Following a traumatic brain injury (TBI), 5-50% of patients will develop posttraumatic epilepsy (PTE) with children being particularly susceptible. Currently, PTE cannot be prevented and there is limited understanding of the underlying epileptogenic mechanisms. We hypothesize that early after TBI the brain undergoes distinct cellular and synaptic reorganization that facilitates cortical excitability and promotes the development of epilepsy. METHODS To examine the effect of pediatric TBI on cortical excitability, we performed controlled cortical impact (CCI) on juvenile rats (postnatal day 17). Following CCI, animals were monitored for the presence of epileptiform activity by continuous in vivo electroencephalography (EEG) and/or sacrificed for in vitro whole-cell patch-clamp recordings. RESULTS Following a short latent period, all animals subjected to CCI developed spontaneous recurrent epileptiform activity within 14 days. Whole-cell patch-clamp recordings of layer V pyramidal neurons showed no changes in intrinsic excitability or spontaneous excitatory postsynaptic currents (sEPSCs) properties. However, the decay of spontaneous inhibitory postsynaptic currents (sIPSCs) was significantly increased. In addition, CCI induced over a 300% increase in excitatory and inhibitory synaptic bursting. Synaptic bursting was prevented by blockade of Na(+)-dependent action potentials or select antagonism of glutamate or GABA-A receptors, respectively. CONCLUSION Our results demonstrate that CCI in juvenile rats rapidly induces epileptiform activity and enhanced cortical synaptic bursting. Detection of epileptiform activity early after injury suggests it may be an important pathophysiological component and potential indicator of developing PTE.
Collapse
Affiliation(s)
- Joshua Nichols
- University of Arizona, College of Medicine - Phoenix, Phoenix, AZ, USA; School of Life Sciences, Arizona State University, Phoenix, AZ, USA
| | | | | | | | | |
Collapse
|
180
|
Mayeux JP, Teng SX, Katz PS, Gilpin NW, Molina PE. Traumatic brain injury induces neuroinflammation and neuronal degeneration that is associated with escalated alcohol self-administration in rats. Behav Brain Res 2014; 279:22-30. [PMID: 25446758 DOI: 10.1016/j.bbr.2014.10.053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) affects millions of people each year and is characterized by direct tissue injury followed by a neuroinflammatory response. The post-TBI recovery period can be associated with a negative emotional state characterized by alterations in affective behaviors implicated in the development of Alcohol Use Disorder in humans. The aim of this study was to test the hypothesis that post-TBI neuroinflammation is associated with behavioral dysfunction, including escalated alcohol intake. METHODS Adult male Wistar rats were trained to self-administer alcohol prior to counterbalanced assignment into naïve, craniotomy, and TBI groups by baseline drinking. TBI was produced by lateral fluid percussion (LFP; >2 ATM; 25ms). Alcohol drinking and neurobehavioral function were measured at baseline and following TBI in all experimental groups. Markers of neuroinflammation (GFAP and ED1) and neurodegeneration (FJC) were determined by fluorescence histochemistry in brains excised at sacrifice 19 days post-TBI. RESULTS The cumulative increase in alcohol intake over the 15 days post-TBI was greater in TBI animals compared to naïve controls. A higher rate of pre-injury alcohol intake was associated with a greater increase in post-injury alcohol intake in both TBI and craniotomy animals. Immediately following TBI, both TBI and craniotomy animals exhibited greater neurobehavioral dysfunction compared to naïve animals. GFAP, IBA-1, ED1, and FJC immunoreactivity at 19 days post-TBI was significantly higher in brains from TBI animals compared to both craniotomy and naïve animals. CONCLUSIONS These results show an association between post-TBI escalation of alcohol drinking and marked localized neuroinflammation at the site of injury. Moreover, these results highlight the relevance of baseline alcohol preference in determining post-TBI alcohol drinking. Further investigation to determine the contribution of neuroinflammation to increased alcohol drinking post-TBI is warranted.
Collapse
Affiliation(s)
- Jacques P Mayeux
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Sophie X Teng
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Paige S Katz
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Nicholas W Gilpin
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Patricia E Molina
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| |
Collapse
|
181
|
Kelso ML, Elliott BR, Haverland NA, Mosley RL, Gendelman HE. Granulocyte-macrophage colony stimulating factor exerts protective and immunomodulatory effects in cortical trauma. J Neuroimmunol 2014; 278:162-73. [PMID: 25468272 DOI: 10.1016/j.jneuroim.2014.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 11/30/2022]
Abstract
Neurodegeneration after traumatic brain injury is facilitated by innate and adaptive immunity and can be harnessed to affect brain repair. In mice subjected to controlled cortical impact (CCI), we show that treatment with granulocyte macrophage colony stimulating factor (GM-CSF) affects regulatory T cell numbers in the cervical lymph nodes coincident with decreased lesion volumes and increased cortical tissue sparing. This paralleled increases in neurofilament and diminished reactive microglial staining. Transcriptomic analysis showed that GM-CSF induces robust immune neuroprotective responses seven days following CCI. Together, these results support the therapeutic potential of GM-CSF for TBI.
Collapse
Affiliation(s)
- Matthew L Kelso
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6045, USA
| | - Bret R Elliott
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Nicole A Haverland
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
182
|
Huo BX, Gao YR, Drew PJ. Quantitative separation of arterial and venous cerebral blood volume increases during voluntary locomotion. Neuroimage 2014; 105:369-79. [PMID: 25467301 DOI: 10.1016/j.neuroimage.2014.10.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022] Open
Abstract
Voluntary locomotion is accompanied by large increases in cortical activity and localized increases in cerebral blood volume (CBV). We sought to quantitatively determine the spatial and temporal dynamics of voluntary locomotion-evoked cerebral hemodynamic changes. We measured single vessel dilations using two-photon microscopy and cortex-wide changes in CBV-related signal using intrinsic optical signal (IOS) imaging in head-fixed mice freely locomoting on a spherical treadmill. During bouts of locomotion, arteries dilated rapidly, while veins distended slightly and recovered slowly. The dynamics of diameter changes of both vessel types could be captured using a simple linear convolution model. Using these single vessel measurements, we developed a novel analysis approach to separate out spatially and temporally distinct arterial and venous components of the location-specific hemodynamic response functions (HRF) for IOS. The HRF of each pixel of was well fit by a sum of a fast arterial and a slow venous component. The HRFs of pixels in the limb representations of somatosensory cortex had a large arterial contribution, while in the frontal cortex the arterial contribution to the HRF was negligible. The venous contribution was much less localized, and was substantial in the frontal cortex. The spatial pattern and amplitude of these HRFs in response to locomotion in the cortex were robust across imaging sessions. Separating the more localized arterial component from the diffuse venous signals will be useful for dealing with the dynamic signals generated by naturalistic stimuli.
Collapse
Affiliation(s)
- Bing-Xing Huo
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, United States
| | - Yu-Rong Gao
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, United States; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, United States; Neuroscience Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, United States; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
183
|
Osmanski BF, Pezet S, Ricobaraza A, Lenkei Z, Tanter M. Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution. Nat Commun 2014; 5:5023. [PMID: 25277668 PMCID: PMC4205893 DOI: 10.1038/ncomms6023] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/20/2014] [Indexed: 12/28/2022] Open
Abstract
Long-range coherences in spontaneous brain activity reflect functional connectivity. Here we propose a novel, highly resolved connectivity mapping approach, using ultrafast functional ultrasound (fUS), which enables imaging of cerebral microvascular haemodynamics deep in the anaesthetized rodent brain, through a large thinned-skull cranial window, with pixel dimensions of 100 μm × 100 μm in-plane. The millisecond-range temporal resolution allows unambiguous cancellation of low-frequency cardio-respiratory noise. Both seed-based and singular value decomposition analysis of spatial coherences in the low-frequency (<0.1 Hz) spontaneous fUS signal fluctuations reproducibly report, at different coronal planes, overlapping high-contrast, intrinsic functional connectivity patterns. These patterns are similar to major functional networks described in humans by resting-state fMRI, such as the lateral task-dependent network putatively anticorrelated with the midline default-mode network. These results introduce fUS as a powerful novel neuroimaging method, which could be extended to portable systems for three-dimensional functional connectivity imaging in awake and freely moving rodents.
Collapse
Affiliation(s)
- Bruno-Félix Osmanski
- 1] Institut Langevin, ESPCI-ParisTech, 1 rue Cuvier, 75005 Paris, France [2] CNRS UMR 7587, 1 rue Cuvier, 75005 Paris, France [3] INSERM U979 'Wave Physics for Medicine' Lab, 1 rue Cuvier, 75005 Paris, France
| | - Sophie Pezet
- 1] Centre National pour la Recherche Scientifique, UMR 8249, 10 rue Vauquelin, 75005 Paris, France [2] Brain Plasticity Unit, ESPCI-ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Ana Ricobaraza
- 1] Centre National pour la Recherche Scientifique, UMR 8249, 10 rue Vauquelin, 75005 Paris, France [2] Brain Plasticity Unit, ESPCI-ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Zsolt Lenkei
- 1] Centre National pour la Recherche Scientifique, UMR 8249, 10 rue Vauquelin, 75005 Paris, France [2] Brain Plasticity Unit, ESPCI-ParisTech, 10 rue Vauquelin, 75005 Paris, France
| | - Mickael Tanter
- 1] Institut Langevin, ESPCI-ParisTech, 1 rue Cuvier, 75005 Paris, France [2] CNRS UMR 7587, 1 rue Cuvier, 75005 Paris, France [3] INSERM U979 'Wave Physics for Medicine' Lab, 1 rue Cuvier, 75005 Paris, France
| |
Collapse
|
184
|
Zhang H, Han M, Zhang X, Sun X, Ling F. The effect and mechanism of growth hormone replacement on cognitive function in rats with traumatic brain injury. PLoS One 2014; 9:e108518. [PMID: 25268832 PMCID: PMC4182486 DOI: 10.1371/journal.pone.0108518] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The effects of growth hormone on cognitive dysfunction were observed in a controlled cortical impact (CCI) rat model and the underlying mechanism was explored. METHOD Three-month-old male SD rats were randomly divided into sham (n = 10), control (n = 10), and CCI groups (n = 40) The parameters were set as follows: striking speed, 3.5 m/s; impact depth, 1.5 mm; and dwell time, 400 msec. Eight and ten weeks post-injury, the GH levels were measured the water maze test and novel object recognition test were performed. CCI rats were divided into normal and decreased GH groups, and further randomly divided into two sub-groups (rhGH treatment and saline vehicle groups). All rats were tested for SYN, BDNF, and TrkB mRNA in the prefrontal cortex and hippocampus by RT-PCR. RESULTS CCI rats 8 weeks post-injury had cognitive dysfunction regardless of the GH level (P<0.05). rhGH treatment improved cognitive function in CCI rats. There was a positive correlation between the expression of prefrontal BDNF and SYN mRNA in CCI rats after rhGH therapy and the water maze test score (r = 0.773 and 0.534, respectively; P<0.05). Furthermore, the expression of BDNF, TrkB, and SYN mRNA in the hippocampus was negatively correlated with the water maze test score (r = 0.602, 0.773, 0.672, and 0.783, respectively; P<0.05). There was a difference in the expression of hippocampal and prefrontal BDNF, TrkB, and SYN mRNA (P<0.05). CONCLUSION rhGH treatment had a positive effect on cognitive function, which was more evident in GH-deficient rats. The increased expression of hippocampal and prefrontal BDNF and TrkB mRNA is implicated in rhGH therapy to improve cognitive function. Changes in the expression of hippocampal SYN mRNA following rhGH therapy may also play a role in improving cognitive function.
Collapse
Affiliation(s)
- Hao Zhang
- China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Mengqi Han
- Beijing Jishuitan Hospital, Beijing, China
| | - Xiaonian Zhang
- China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Xinting Sun
- China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Feng Ling
- Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
185
|
Xing G, Ren M, Verma A. Divergent Temporal Expression of Hyaluronan Metabolizing Enzymes and Receptors with Craniotomy vs. Controlled-Cortical Impact Injury in Rat Brain: A Pilot Study. Front Neurol 2014; 5:173. [PMID: 25309501 PMCID: PMC4161003 DOI: 10.3389/fneur.2014.00173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/26/2014] [Indexed: 01/16/2023] Open
Abstract
Traumatic brain injury (TBI) triggers many secondary changes in tissue biology, which ultimately determine the extent of injury and clinical outcome. Hyaluronan [hyaluronic acid (HA)] is a protective cementing gel present in the intercellular spaces whose degradation has been reported as a causative factor in tissue damage. Yet little is known about the expression and activities of genes involved in HA catabolism after TBI. Young adult male Sprague-Dawley rats were assigned to three groups: naïve control, craniotomy, and controlled-cortical impact-induced TBI (CCI-TBI). Four animals per group were sacrificed at 4 h, 1, 3, and 7 days post-CCI. The mRNA expression of hyaluronan synthases (HAS1-3), hyaluronidases (enzymes for HA degradation, HYAL 1–4, and PH20), and CD44 and RHAMM (membrane receptors for HA signaling and removal) were determined using real-time PCR. Compared to the naïve controls, expression of HAS1 and HAS2 mRNA, but not HAS3 mRNA increased significantly following craniotomy alone and following CCI with differential kinetics. Expression of HAS2 mRNA increased significantly in the ipsilateral brain at 1 and 3 days post-CCI. HYAL1 mRNA expression also increased significantly in the craniotomy group and in the contralateral CCI at 1 and 3 days post-CCI. CD44 mRNA expression increased significantly in the ipsilateral CCI at 4 h, 1, 3, and 7 days post-CCI (up to 25-fold increase). These data suggest a dynamic regulation and role for HA metabolism in secondary responses to TBI.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Ming Ren
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Ajay Verma
- Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
186
|
Benromano T, Defrin R, Ahn AH, Zhao J, Pick CG, Levy D. Mild closed head injury promotes a selective trigeminal hypernociception: implications for the acute emergence of post-traumatic headache. Eur J Pain 2014; 19:621-8. [PMID: 25168788 DOI: 10.1002/ejp.583] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Headache is one of the most common symptoms following traumatic head injury. The mechanisms underlying the emergence of such post-traumatic headache (PTH) remain unknown but may be related to injury of deep cranial tissues or damage to central pain processing pathways, as a result of brain injury. METHODS A mild closed head injury in mice combined with the administration of cranial or hindpaw formalin tests was used to examine post-traumatic changes in the nociceptive processing from deep cranial tissues or the hindpaw. Histological analysis was used to examine post-traumatic pro-inflammatory changes in the calvarial periosteum, a deep cranial tissue. RESULTS At 48 h after head injury, mice demonstrated enhanced nociceptive responses following injection of formalin into the calvarial periosteum, a deep cranial tissue, but no facilitation of the nociceptive responses following injection of formalin into an extracranial tissue, the hindpaw. Mice also showed an increase in the number of activated periosteal mast cells 48 h following mild head trauma, suggesting an inflammatory response. CONCLUSION Our study demonstrates that mild closed head injury is associated with enhanced processing of nociceptive information emanating from trigeminal-innervated deep cranial tissues, but not from non-cranial tissues. Based on these finding as well as the demonstration of head injury-evoked degranulation of calvarial periosteal mast cells, we propose that inflammatory-evoked enhancement of peripheral cranial nociception, rather than changes in supraspinal pain mechanisms play a role in the initial emergence of PTH. Peripheral targeting of nociceptors that innervate the calvaria may be used to ameliorate PTH pain.
Collapse
Affiliation(s)
- T Benromano
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
187
|
Vonder Haar C, Maass WR, Jacobs EA, Hoane MR. Deficits in discrimination after experimental frontal brain injury are mediated by motivation and can be improved by nicotinamide administration. J Neurotrauma 2014; 31:1711-20. [PMID: 24934504 DOI: 10.1089/neu.2014.3459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Restorative Neuroscience Laboratory, Center for Integrated Research in Cognitive and Neural Sciences, Department of Psychology, Southern Illinois University , Carbondale, Illinois
| | | | | | | |
Collapse
|
188
|
Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MFM. Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One 2014; 9:e102627. [PMID: 25047645 PMCID: PMC4105413 DOI: 10.1371/journal.pone.0102627] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/20/2014] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health concern affecting a large number of athletes and military personnel. Individuals suffering from a TBI risk developing anxiety disorders, yet the pathophysiological alterations that result in the development of anxiety disorders have not yet been identified. One region often damaged by a TBI is the basolateral amygdala (BLA); hyperactivity within the BLA is associated with increased expression of anxiety and fear, yet the functional alterations that lead to BLA hyperexcitability after TBI have not been identified. We assessed the functional alterations in inhibitory synaptic transmission in the BLA and one mechanism that modulates excitatory synaptic transmission, the α7 containing nicotinic acetylcholine receptor (α7-nAChR), after mTBI, to shed light on the mechanisms that contribute to increased anxiety-like behaviors. Seven and 30 days after a mild controlled cortical impact (CCI) injury, animals displayed significantly greater anxiety-like behavior. This was associated with a significant loss of GABAergic interneurons and significant reductions in the frequency and amplitude of spontaneous and miniature GABAA-receptor mediated inhibitory postsynaptic currents (IPSCs). Decreases in the mIPSC amplitude were associated with reduced surface expression of α1, β2, and γ2 GABAA receptor subunits. However, significant increases in the surface expression and current mediated by α7-nAChR, were observed, signifying increases in the excitability of principal neurons within the BLA. These results suggest that mTBI causes not only a significant reduction in inhibition in the BLA, but also an increase in neuronal excitability, which may contribute to hyperexcitability and the development of anxiety disorders.
Collapse
Affiliation(s)
- Camila P. Almeida-Suhett
- Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience & Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Eric M. Prager
- Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Volodymyr Pidoplichko
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Taiza H. Figueiredo
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ann M. Marini
- Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience & Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Zheng Li
- Center for Neuroscience & Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Section on Clinical Studies, National Institute of Mental health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lee E. Eiden
- Center for Neuroscience & Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Section on Molecular Neuroscience, National Institute of Mental health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria F. M. Braga
- Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience & Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
189
|
Urban A, Mace E, Brunner C, Heidmann M, Rossier J, Montaldo G. Chronic assessment of cerebral hemodynamics during rat forepaw electrical stimulation using functional ultrasound imaging. Neuroimage 2014; 101:138-49. [PMID: 25008960 DOI: 10.1016/j.neuroimage.2014.06.063] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 01/29/2023] Open
Abstract
Functional ultrasound imaging is a method recently developed to assess brain activity via hemodynamics in rodents. Doppler ultrasound signals allow the measurement of cerebral blood volume (CBV) and red blood cells' (RBCs') velocity in small vessels. However, this technique originally requires performing a large craniotomy that limits its use to acute experiments only. Moreover, a detailed description of the hemodynamic changes that underlie functional ultrasound imaging has not been described but is essential for a better interpretation of neuroimaging data. To overcome the limitation of the craniotomy, we developed a dedicated thinned skull surgery for chronic imaging. This procedure did not induce brain inflammation nor neuronal death as confirmed by immunostaining. We successfully acquired both high-resolution images of the microvasculature and functional movies of the brain hemodynamics on the same animal at 0, 2, and 7 days without loss of quality. Then, we investigated the spatiotemporal evolution of the CBV hemodynamic response function (HRF) in response to sensory-evoked electrical stimulus (1 mA) ranging from 1 (200 μs) to 25 pulses (5s). Our results indicate that CBV HRF parameters such as the peak amplitude, the time to peak, the full width at half-maximum and the spatial extent of the activated area increase with stimulus duration. Functional ultrasound imaging was sensitive enough to detect hemodynamic responses evoked by only a single pulse stimulus. We also observed that the RBC velocity during activation could be separated in two distinct speed ranges with the fastest velocities located in the upper part of the cortex and slower velocities in deeper layers. For the first time, functional ultrasound imaging demonstrates its potential to image brain activity chronically in small animals and offers new insights into the spatiotemporal evolution of cerebral hemodynamics.
Collapse
Affiliation(s)
- Alan Urban
- Université Paris Descartes Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France.
| | - Emilie Mace
- 1A Allée des bois de Gagny, 93340 Le Raincy, France
| | - Clément Brunner
- Université Paris Descartes Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France
| | - Marc Heidmann
- Université Paris Descartes Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France
| | - Jean Rossier
- Université Paris Descartes Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France
| | - Gabriel Montaldo
- Université Paris Descartes Sorbonne Paris Cité, Centre de Psychiatrie et Neurosciences, INSERM S894, Centre Hospitalier Sainte-Anne, Paris, France
| |
Collapse
|
190
|
Villapol S, Byrnes KR, Symes AJ. Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front Neurol 2014; 5:82. [PMID: 24926283 PMCID: PMC4044679 DOI: 10.3389/fneur.2014.00082] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in a loss of brain tissue at the moment of impact in the cerebral cortex. Subsequent secondary injury involves the release of molecular signals with dramatic consequences for the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The mechanisms behind the progression of tissue loss remain under investigation. In this study, we analyzed the spatial–temporal profile of blood flow, apoptotic, and astrocytic–vascular events in the cortical regions around the impact site at time points ranging from 5 h to 2 months after TBI. We performed a mild–moderate controlled cortical impact injury in young adult mice and analyzed the glial and vascular response to injury. We observed a dramatic decrease in perilesional cerebral blood flow (CBF) immediately following the cortical impact that lasted until days later. CBF finally returned to baseline levels by 30 days post-injury (dpi). The initial impact also resulted in an immediate loss of tissue and cavity formation that gradually increased in size until 3 dpi. An increase in dying cells localized in the pericontusional region and a robust astrogliosis were also observed at 3 dpi. A strong vasculature interaction with astrocytes was established at 7 dpi. Glial scar formation began at 7 dpi and seemed to be compact by 60 dpi. Altogether, these results suggest that TBI results in a progression from acute neurodegeneration that precedes astrocytic activation, reformation of the neurovascular unit to glial scar formation. Understanding the multiple processes occurring after TBI is critical to the ability to develop neuroprotective therapeutics to ameliorate the short and long-term consequences of brain injury.
Collapse
Affiliation(s)
- Sonia Villapol
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Pharmacology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Kimberly R Byrnes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Aviva J Symes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Department of Pharmacology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
191
|
Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice. ASN Neuro 2014; 6:159-70. [PMID: 24670035 PMCID: PMC4013687 DOI: 10.1042/an20130034] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
TBI (traumatic brain injury) triggers an inflammatory cascade, gliosis and cell proliferation following cell death in the pericontusional area and surrounding the site of injury. In order to better understand the proliferative response following CCI (controlled cortical impact) injury, we systematically analyzed the phenotype of dividing cells at several time points post-lesion. C57BL/6 mice were subjected to mild to moderate CCI over the left sensory motor cortex. At different time points following injury, mice were injected with BrdU (bromodeoxyuridine) four times at 3-h intervals and then killed. The greatest number of proliferating cells in the pericontusional region was detected at 3 dpi (days post-injury). At 1 dpi, NG2+ cells were the most proliferative population, and at 3 and 7 dpi the Iba-1+ microglial cells were proliferating more. A smaller, but significant number of GFAP+ (glial fibrillary acidic protein) astrocytes proliferated at all three time points. Interestingly, at 3 dpi we found a small number of proliferating neuroblasts [DCX+ (doublecortin)] in the injured cortex. To determine the cell fate of proliferative cells, mice were injected four times with BrdU at 3 dpi and killed at 28 dpi. Approximately 70% of proliferative cells observed at 28 dpi were GFAP+ astrocytes. In conclusion, our data suggest that the specific glial cell types respond differentially to injury, suggesting that each cell type responds to a specific pattern of growth factor stimulation at each time point after injury.
Collapse
|
192
|
Thakker-Varia S, Behnke J, Doobin D, Dalal V, Thakkar K, Khadim F, Wilson E, Palmieri A, Antila H, Rantamaki T, Alder J. VGF (TLQP-62)-induced neurogenesis targets early phase neural progenitor cells in the adult hippocampus and requires glutamate and BDNF signaling. Stem Cell Res 2014; 12:762-77. [PMID: 24747217 PMCID: PMC4991619 DOI: 10.1016/j.scr.2014.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
The neuropeptide VGF (non-acronymic), which has antidepressant-like effects, enhances adult hippocampal neurogenesis as well as synaptic activity and plasticity in the hippocampus, however the interaction between these processes and the mechanism underlying this regulation remain unclear. In this study, we demonstrate that VGF-derived peptide TLQP-62 specifically enhances the generation of early progenitor cells in nestin-GFP mice. Specifically, TLQP-62 significantly increases the number of Type 2a neural progenitor cells (NPCs) while reducing the number of more differentiated Type 3 cells. The effect of TLQP-62 on proliferation rather than differentiation was confirmed using NPCs in vitro; TLQP-62 but not scrambled peptide PEHN-62 increases proliferation in a cell line as well as in primary progenitors from adult hippocampus. Moreover, TLQP-62 but not scrambled peptide increases Cyclin D mRNA expression. The proliferation of NPCs induced by TLQP-62 requires synaptic activity, in particular through NMDA and metabotropic glutamate receptors. The activation of glutamate receptors by TLQP-62 activation induces phosphorylation of CaMKII through NMDA receptors and protein kinase D through metabotropic glutamate receptor 5 (mGluR5). Furthermore, pharmacological antagonists to CaMKII and PKD inhibit TLQP-62-induced proliferation of NPCs indicating that these signaling molecules downstream of glutamate receptors are essential for the actions of TLQP-62 on neurogenesis. We also show that TLQP-62 gradually activates Brain-Derived Neurotrophic Factor (BDNF)-receptor TrkB in vitro and that Trk signaling is required for TLQP-62-induced proliferation of NPCs. Understanding the precise molecular mechanism of how TLQP-62 influences neurogenesis may reveal mechanisms by which VGF-derived peptides act as antidepressant-like agents.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Joseph Behnke
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - David Doobin
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Vidhi Dalal
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Keya Thakkar
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Farah Khadim
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Elizabeth Wilson
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Alicia Palmieri
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Hanna Antila
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Tomi Rantamaki
- Neuroscience Center, University of Helsinki, P.O. Box 56, Viikinkaari 4, 00014 Helsinki, Finland.
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
193
|
Potter KA, Jorfi M, Householder KT, Foster EJ, Weder C, Capadona JR. Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability. Acta Biomater 2014; 10:2209-22. [PMID: 24468582 DOI: 10.1016/j.actbio.2014.01.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
Abstract
The cellular and molecular mechanisms by which neuroinflammatory pathways respond to and propagate the reactive tissue response to intracortical microelectrodes remain active areas of research. We previously demonstrated that both the mechanical mismatch between rigid implants and the much softer brain tissue, as well as oxidative stress, contribute to the neurodegenerative reactive tissue response to intracortical implants. In this study, we utilize physiologically responsive, mechanically adaptive polymer implants based on poly(vinyl alcohol) (PVA), with the capability to also locally administer the antioxidant curcumin. The goal of this study is to investigate if the combination of two independently effective mechanisms - softening of the implant and antioxidant release - leads to synergistic effects in vivo. Over the first 4weeks of the implantation, curcumin-releasing, mechanically adaptive implants were associated with higher neuron survival and a more stable blood-brain barrier at the implant-tissue interface than the neat PVA controls. 12weeks post-implantation, the benefits of the curcumin release were lost, and both sets of compliant materials (with and without curcumin) had no statistically significant differences in neuronal density distribution profiles. Overall, however, the curcumin-releasing softening polymer implants cause minimal implant-mediated neuroinflammation, and embody the new concept of localized drug delivery from mechanically adaptive intracortical implants.
Collapse
|
194
|
Turtzo LC, Lescher J, Janes L, Dean DD, Budde MD, Frank JA. Macrophagic and microglial responses after focal traumatic brain injury in the female rat. J Neuroinflammation 2014; 11:82. [PMID: 24761998 PMCID: PMC4022366 DOI: 10.1186/1742-2094-11-82] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/06/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND After central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains. METHODS The motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female Wistar rats (ages 8 to 10 weeks; N = 72) underwent histologically moderate to severe CCI with a 5-mm impactor tip. Separate cohorts of rats had their brains dissociated into cells for flow cytometry, perfusion-fixed for immunohistochemistry (IHC) and ex vivo magnetic resonance imaging or flash-frozen for RNA and protein analysis. For each analytical method used, separate postinjury times were included for 24 hours; 3 or 5 days; or 1, 2, 4 or 8 weeks. RESULTS By IHC, we found that the macrophagic and microglial responses peaked at 5 to 7 days post-TBI with characteristics of mixed populations of M1 and M2 phenotypes. Upon flow cytometry examination of immunological cells isolated from brain tissue, we observed that peak M2-associated staining occurred at 5 days post-TBI. Chemokine analysis by multiplex assay showed statistically significant increases in macrophage inflammatory protein 1α and keratinocyte chemoattractant/growth-related oncogene on the ipsilateral side within the first 24 hours after injury relative to controls and to the contralateral side. Quantitative RT-PCR analysis demonstrated expression of both M1- and M2-associated markers, which peaked at 5 days post-TBI. CONCLUSIONS The responses of macrophagic and microglial cells to histologically severe CCI in the female rat are maximal between days 3 and 7 postinjury. The response to injury is a mixture of M1 and M2 phenotypes.
Collapse
Affiliation(s)
- L Christine Turtzo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | | | | | |
Collapse
|
195
|
The WRAIR projectile concussive impact model of mild traumatic brain injury: re-design, testing and preclinical validation. Ann Biomed Eng 2014; 42:1618-30. [PMID: 24756867 DOI: 10.1007/s10439-014-1014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
The WRAIR projectile concussive impact (PCI) model was developed for preclinical study of concussion. It represents a truly non-invasive closed-head injury caused by a blunt impact. The original design, however, has several drawbacks that limit the manipulation of injury parameters. The present study describes engineering advancements made to the PCI injury model including helmet material testing, projectile impact energy/head kinematics and impact location. Material testing indicated that among the tested materials, 'fiber-glass/carbon' had the lowest elastic modulus and yield stress for providing an relative high percentage of load transfer from the projectile impact, resulting in significant hippocampal astrocyte activation. Impact energy testing of small projectiles, ranging in shape and size, showed the steel sphere produced the highest impact energy and the most consistent impact characteristics. Additional tests confirmed the steel sphere produced linear and rotational motions on the rat's head while remaining within a range that meets the criteria for mTBI. Finally, impact location testing results showed that PCI targeted at the temporoparietal surface of the rat head produced the most prominent gait abnormalities. Using the parameters defined above, pilot studies were conducted to provide initial validation of the PCI model demonstrating quantifiable and significant increases in righting reflex recovery time, axonal damage and astrocyte activation following single and multiple concussions.
Collapse
|
196
|
Rodgers KM, Deming YK, Bercum FM, Chumachenko SY, Wieseler JL, Johnson KW, Watkins LR, Barth DS. Reversal of established traumatic brain injury-induced, anxiety-like behavior in rats after delayed, post-injury neuroimmune suppression. J Neurotrauma 2014; 31:487-97. [PMID: 24041015 PMCID: PMC3934516 DOI: 10.1089/neu.2013.3090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract Traumatic brain injury (TBI) increases the risk of neuropsychiatric disorders, particularly anxiety disorders. Yet, there are presently no therapeutic interventions to prevent the development of post-traumatic anxiety or effective treatments once it has developed. This is because, in large part, of a lack of understanding of the underlying pathophysiology. Recent research suggests that chronic neuroinflammatory responses to injury may play a role in the development of post-traumatic anxiety in rodent models. Acute peri-injury administration of immunosuppressive compounds, such as Ibudilast (MN166), have been shown to prevent reactive gliosis associated with immune responses to injury and also prevent lateral fluid percussion injury (LFPI)-induced anxiety-like behavior in rats. There is evidence in both human and rodent studies that post-traumatic anxiety, once developed, is a chronic, persistent, and drug-refractory condition. In the present study, we sought to determine whether neuroinflammation is associated with the long-term maintenance of post-traumatic anxiety. We examined the efficacy of an anti-inflammatory treatment in decreasing anxiety-like behavior and reactive gliosis when introduced at 1 month after injury. Delayed treatment substantially reduced established LFPI-induced freezing behavior and reactive gliosis in brain regions associated with anxiety and continued neuroprotective effects were evidenced 6 months post-treatment. These results support the conclusion that neuroinflammation may be involved in the development and maintenance of anxiety-like behaviors after TBI.
Collapse
Affiliation(s)
- Krista M. Rodgers
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Yuetiva K. Deming
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Florencia M. Bercum
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Serhiy Y. Chumachenko
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Julie L. Wieseler
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | | | - Linda R. Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Daniel S. Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
197
|
Su Y, Fan W, Ma Z, Wen X, Wang W, Wu Q, Huang H. Taurine improves functional and histological outcomes and reduces inflammation in traumatic brain injury. Neuroscience 2014; 266:56-65. [PMID: 24530657 DOI: 10.1016/j.neuroscience.2014.02.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/13/2014] [Accepted: 02/05/2014] [Indexed: 01/17/2023]
Abstract
We investigated the effect of taurine on inflammatory cytokine expression, on astrocyte activity and cerebral edema and functional outcomes, following traumatic brain injury (TBI) in rats. 72 rats were randomly divided into sham, TBI and Taurine groups. Rats subjected to moderate lateral fluid percussion injury were injected intravenously with taurine (200mg/kg) or saline immediately after injury or daily for 7days. Functional outcome was evaluated using Modified Neurological Severity Score (mNSS). Glial fibrillary acidic protein (GFAP) of the brain was measured using immunofluorescence. Concentration of 23 cytokines and chemokines in the injured cortex at 1 and 7days after TBI was assessed by Luminex xMAP technology. The results showed that taurine significantly improved functional recovery except 1day, reduced accumulation of GFAP and water content in the penumbral region at 7days after TBI. Compared with the TBI group, taurine significantly suppressed growth-related oncogene (GRO/KC) and interleukin (IL)-1β levels while elevating the levels of regulated on activation, normal T cell expressed and secreted (RANTES) at 1day. And taurine markedly decreased the level of 17 cytokine: eotaxin, Granulocyte colony-stimulating factor (G-CSF), Granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-gamma (IFN-γ), IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-17, leptin, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and only increased the level of MIP-1α in a week. The results suggest that taurine effectively mitigates the severity of brain damage in TBI by attenuating the increase of astrocyte activity and edema as well as pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Y Su
- The Graduate School, Tianjin Medical University, Tianjin 300070, PR China
| | - W Fan
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - Z Ma
- Baoding NO. 1 Hospital, Baoding, Hebei 071000, PR China
| | - X Wen
- The Graduate School, Tianjin Medical University, Tianjin 300070, PR China
| | - W Wang
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - Q Wu
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - H Huang
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300060, PR China.
| |
Collapse
|
198
|
Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res 2014; 108:653-65. [PMID: 24636248 DOI: 10.1016/j.eplepsyres.2014.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/23/2022]
Abstract
In a subgroup of patients, traumatic brain injury (TBI) results in the occurrence of acute epileptic seizures or even status epilepticus, which are treated with antiepileptic drugs (AEDs). Recent experimental data, however, suggest that administration of AEDs at the early post-injury phase can compromise the recovery process. The present study was designed to assess the profile of a novel anticonvulsant, lacosamide (Vimpat) on post-TBI structural, motor and cognitive outcomes. Moderate TBI was induced by lateral fluid-percussion injury in adult rats. Treatment with 0.9% saline or lacosamide (30 mg/kg, i.p.) was started at 30 min post-injury and continued at 8h intervals for 3d (total daily dose 90 mg/kg/d). Rats were randomly assigned to 4 treatment groups: sham-operated controls treated with vehicle (Sham-Veh) or lacosamide (Sham-LCM) and injured animals treated with vehicle (TBI-Veh) or lacosamide (TBI-LCM). As functional outcomes we tested motor recovery with composite neuroscore and beam-walking at 2, 7, and 15 d post-injury. Cognitive recovery was tested with the Morris water-maze at 12-14 d post-TBI. To assess the structural outcome, animals underwent magnetic resonance imaging (MRI) at 2 d post-TBI. At 16d post-TBI, rats were perfused for histology to analyze cortical and hippocampal neurodegeneration and axonal damage. Our data show that at 2 d post-TBI, both the TBI-Veh and TBI-LCM groups were equally impaired in neuroscore. Thereafter, motor recovery occurred similarly during the first week. At 2 wk post-TBI, recovery of the TBI-LCM group lagged behind that in the TBI-VEH group (p<0.05). Performance in beam-walking did not differ between the TBI-Veh and TBI-LCM groups. Both TBI groups were similarly impaired in the Morris water-maze at 2 wk post-TBI. MRI and histology did not reveal any differences in the cortical or hippocampal damage between the TBI-Veh and TBI-LCM groups. Taken together, acute treatment with LCM had no protective effects on post-TBI structural or functional impairment. Composite neuroscore in the TBI-LCM group lagged behind that in the TBI-Veh group at 15 d post-injury, but no compromise was found in other indices of post-TBI recovery in the LCM treated animals.
Collapse
|
199
|
Watson WD, Buonora JE, Yarnell AM, Lucky JJ, D'Acchille MI, McMullen DC, Boston AG, Kuczmarski AV, Kean WS, Verma A, Grunberg NE, Cole JT. Impaired cortical mitochondrial function following TBI precedes behavioral changes. FRONTIERS IN NEUROENERGETICS 2014; 5:12. [PMID: 24550822 PMCID: PMC3912469 DOI: 10.3389/fnene.2013.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/09/2013] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) pathophysiology can be attributed to either the immediate, primary physical injury, or the delayed, secondary injury which begins minutes to hours after the initial injury and can persist for several months or longer. Because these secondary cascades are delayed and last for a significant time period post-TBI, they are primary research targets for new therapeutics. To investigate changes in mitochondrial function after a brain injury, both the cortical impact site and ipsilateral hippocampus of adult male rats 7 and 17 days after a controlled cortical impact (CCI) injury were examined. State 3, state 4, and uncoupler-stimulated rates of oxygen consumption, respiratory control ratios (RCRs) were measured and membrane potential quantified, and all were significantly decreased in 7 day post-TBI cortical mitochondria. By contrast, hippocampal mitochondria at 7 days showed only non-significant decreases in rates of oxygen consumption and membrane potential. NADH oxidase activities measured in disrupted mitochondria were normal in both injured cortex and hippocampus at 7 days post-CCI. Respiratory and phosphorylation capacities at 17 days post-CCI were comparable to naïve animals for both cortical and hippocampus mitochondria. However, unlike oxidative phosphorylation, membrane potential of mitochondria in the cortical lining of the impact site did not recover at 17 days, suggesting that while diminished cortical membrane potential at 17 days does not adversely affect mitochondrial capacity to synthesize ATP, it may negatively impact other membrane potential-sensitive mitochondrial functions. Memory status, as assessed by a passive avoidance paradigm, was not significantly impaired until 17 days after injury. These results indicate pronounced disturbances in cortical mitochondrial function 7 days after CCI which precede the behavioral impairment observed at 17 days.
Collapse
Affiliation(s)
- William D Watson
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - John E Buonora
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Angela M Yarnell
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Jessica J Lucky
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Michaela I D'Acchille
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - David C McMullen
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Andrew G Boston
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Andrew V Kuczmarski
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - William S Kean
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Ajay Verma
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Neil E Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Jeffrey T Cole
- Department of Neurology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| |
Collapse
|
200
|
Russell KL, Berman NEJ, Gregg PRA, Levant B. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury. Prostaglandins Leukot Essent Fatty Acids 2014; 90:5-11. [PMID: 24342130 PMCID: PMC3906920 DOI: 10.1016/j.plefa.2013.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022]
Abstract
The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9.
Collapse
Affiliation(s)
- K L Russell
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA.
| | - N E J Berman
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - P R A Gregg
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA.
| | - B Levant
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA.
| |
Collapse
|