151
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
152
|
Sarmah D, Sengupta R. A Review on the Role of Phytoconstituents Chrysin on the Protective Effect on Liver and Kidney. Curr Drug Discov Technol 2024; 21:e251023222716. [PMID: 37921185 DOI: 10.2174/0115701638242317231018144944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The chance of contracting significant diseases increases due to an unhealthy and contemporary lifestyle. Chrysin is a flavonoid of the flavone class in numerous plants, including Passiflora and Pelargonium. Chrysin has long been used to treat a variety of illnesses. Chrysin, an essential flavonoid, has many pharmacological actions, including anticancer, antiviral, anti-inflammatory, anti-arthritic, depressive, hypolipidemic, hepatoprotective, and nephroprotective activity. PURPOSE This explorative review was commenced to provide a holistic review of flavonoids confirming that Chrysin has a therapeutic potential on the liver and kidney and reduces the hepatotoxicity and nephrotoxicity induced by diverse toxicants, which can be helpful for the toxicologists, pharmacologists, and chemists to develop new safer pharmaceutical products with chrysin and other toxicants. STUDY DESIGN The most relevant studies that were well-explained and fit the chosen topic best were picked. The achieved information was analyzed to determine the outcome by screening sources by title, abstract, and whole work. Between themselves, the writers decided on the studies to be considered. The necessary details were systematically organized into titles and subtitles and compressively discussed. METHOD The information presented in this review is obtained using targeted searches on several online platforms, including Google Scholar, Scifinder, PubMed, Science Direct, ACS publications, and Wiley Online Library. The works were chosen based on the inclusion criteria agreed upon by all authors. RESULTS Chrysin is a promising bioactive flavonoid with significant health benefits, and its synthetic replacements are being utilized as pharmaceuticals to treat various diseases. Findings revealed that Chrysin exhibits hepatoprotective actions against several hepatotoxicants like 2,3,7,8 tetrachlorodibenzo- p-dioxin, carbon tetrachloride (CCl4), cisplatin, and others by lowering the levels of liver toxicity biomarkers and enhancing antioxidant levels. Additionally, chrysin has potential nephroprotective properties against various nephrotoxicants, like Cisplatin, Doxorubicin, Paracetamol, Gentamicin, Streptazosin, and others by dropping kidney toxicity marker levels, reducing oxidative stress, and improving the antioxidant level. CONCLUSION According to this revised study, chrysin is a promising phytoconstituent that can be utilized as an alternate treatment for various medications that cause hepatotoxicity and nephrotoxicity. With active chrysin, several dosage forms targeting the liver and kidneys can be formulated.
Collapse
Affiliation(s)
- Debika Sarmah
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara Azara, Guwahati, 17, India
| | - Rupa Sengupta
- Department of Pharmacognosy, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara Azara, Guwahati, 17, India
| |
Collapse
|
153
|
Patel N, Dinesh S, Sharma S. From Gut to Glucose: A Comprehensive Review on Functional Foods and Dietary Interventions for Diabetes Management. Curr Diabetes Rev 2024; 20:e111023222081. [PMID: 37861021 DOI: 10.2174/0115733998266653231005072450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In the realm of diabetes research, considerable attention has been directed toward elucidating the intricate interplay between the gastrointestinal tract and glucose regulation. The gastrointestinal tract, once exclusively considered for its role in digestion and nutrient assimilation, is presently acknowledged as a multifaceted ecosystem with regulatory supremacy over metabolic homeostasis and glucose metabolism. Recent studies indicate that alterations in the composition and functionality of the gut microbiota could potentially influence the regulation of glucose levels and glucose homeostasis in the body. Dysbiosis, characterized by perturbations in the equilibrium of gut microbial constituents, has been irrevocably linked to an augmented risk of diabetes mellitus (DM). Moreover, research has revealed the potential influence of the gut microbiota on important factors, like inflammation and insulin sensitivity, which are key contributors to the onset and progression of diabetes. The key protagonists implicated in the regulation of glucose encompass the gut bacteria, gut barrier integrity, and the gut-brain axis. A viable approach to enhance glycemic control while concurrently mitigating the burden of comorbidities associated with diabetes resides in the strategic manipulation of the gut environment through adapted dietary practices. OBJECTIVE This review aimed to provide a deep understanding of the complex relationship between gut health, glucose metabolism, and diabetes treatment. CONCLUSION This study has presented an exhaustive overview of dietary therapies and functional foods that have undergone extensive research to explore their potential advantages in the management of diabetes. It looks into the role of gut health in glucose regulation, discusses the impact of different dietary elements on the course of diabetes, and evaluates how well functional foods can help with glycemic control. Furthermore, it investigates the mechanistic aspects of these therapies, including their influence on insulin sensitivity, β-cell activity, and inflammation. It deliberates on the limitations and potential prospects associated with integrating functional foods into personalized approaches to diabetes care.
Collapse
Affiliation(s)
- Nirali Patel
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| |
Collapse
|
154
|
Babbar R, Kaur A, Vanya, Arora R, Gupta JK, Wal P, Tripathi AK, Koparde AA, Goyal P, Ramniwas S, Gulati M, Behl T. Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Curr Pharm Des 2024; 30:1880-1893. [PMID: 38818920 DOI: 10.2174/0113816128299615240513174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arpanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | | | - Akshada Amit Koparde
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy, Malkapur, Karad 415110, Maharashtra, India
| | - Pradeep Goyal
- Department of Pharmacology, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
155
|
Farhadi F, Eghbali S, Parizi ST, Jamialahmadi T, Gumpricht E, Sahebkar A. Polyphenolic Nano-formulations: A New Avenue against Bacterial Infection. Curr Med Chem 2024; 31:6154-6171. [PMID: 37287289 DOI: 10.2174/0929867330666230607125432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
The gradual emergence of new bacterial strains impervious to one or more antibiotics necessitates discovering and applying natural alternatives. Among natural products, various polyphenols exhibit antibacterial activity. However, polyphenols with biocompatible and potent antibacterial characteristics are limited due to low aqueous solubility and bioavailability; therefore, recent studies are considering new polyphenol formulations. Nanoformulations of polyphenols, especially metal nanoparticles, are currently being investigated for their potential antibacterial activity. Nanonization of such products increases their solubility and helps attain a high surface-to-volume ratio and, therefore, a higher reactivity of the nanonized products with better remedial potential than nonnanonized products. Polyphenolic compounds with catechol and pyrogallol moieties efficiently bond with many metal ions, especially Au and Ag. These synergistic effects exhibit antibacterial pro-oxidant ROS generation, membrane damage, and biofilm eradication. This review discusses various nano-delivery systems for considering polyphenols as antibacterial agents.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Samira Eghbali
- Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birgand University of Medical Science, Birjand, Iran
| | - Sousan Torabi Parizi
- Department of Biochemistry, Shahrood Branch Islamic Azad University, Shahrood, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
156
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
157
|
Jafarinejad S, Martin WHC, Ras BA, Isreb M, Jacob B, Aziz A, Adoul Z, Lagnado R, Bowen RD, Najafzadeh M. The anticancer/cytotoxic effect of a novel gallic acid derivative in non-small cell lung carcinoma A549 cells and peripheral blood mononuclear cells from healthy individuals and lung cancer patients. Biofactors 2024; 50:201-213. [PMID: 37768028 DOI: 10.1002/biof.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023]
Abstract
Gallic acid (GA) is a naturally occurring polyphenol with a strong antioxidant capacity. GA stimulates the apoptosis of cancer cells, thereby suppressing cancer cell invasion. However, the low oral permeability of GA limits its therapeutic use. In order to enhance the antioxidant capacity and oral permeability of GA, a series of compounds analogous to GA were synthesized: 4-methoxybenzenesulfonamide (MBS), 3,4-dimethoxybenzenesulfonamide (DMBS) and 3,4,5-trimethoxybenzenesulfonamide (TMBS). In the new compounds, hydroxyl groups were replaced with various numbers of methoxy groups (stronger electron-donating groups), to increase hydrophobicity and oral permeability compared to GA. In addition, the carboxylic group was replaced with a sulfonyl group (a stronger electron-withdrawing group), to increase the molecular polarity and antioxidative activities of the compounds. The cell counting kit-8 (CCK-8) assay was used to detect the effect of GA, MBS, DMBS, and TMBS on cell proliferation and apoptosis in peripheral blood mononuclear cells (PBMCs) from healthy individuals and non-small cell lung carcinoma A549 cells. Additionally, the comet assay was used to assess the genotoxicity of these compounds in PBMCs from healthy individuals, lung cancer patients, and A549 cells. Compared to untreated cells, TMBS reduced DNA damage more effectively than GA in PBMCs from lung cancer patients and healthy donors. Furthermore, in comparison to GA, TMBS was more cytotoxic in A549 cells. Moreover, TMBS was not cytotoxic in healthy PBMCs, suggesting that TMBS demonstrates therapeutic potential in cancer.
Collapse
Affiliation(s)
- Shohreh Jafarinejad
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - William H C Martin
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Bayan Abu Ras
- School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Mohammad Isreb
- School of Pharmacy, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Badie Jacob
- Bradford Royal Infirmary, Bradford Teaching Hospitals NHS. Foundation Trust, Bradford, West Yorkshire, UK
| | - Abid Aziz
- Bradford Royal Infirmary, Bradford Teaching Hospitals NHS. Foundation Trust, Bradford, West Yorkshire, UK
| | - Zahra Adoul
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Ruby Lagnado
- Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, UK
| | - Richard D Bowen
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Mojgan Najafzadeh
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
158
|
Singh B, Semwal BC. A Compressive Review on Source, Toxicity and Biological Activity of Flavonoid. Curr Top Med Chem 2024; 24:2093-2116. [PMID: 39108008 DOI: 10.2174/0115680266316032240718050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Flavonoids are biologically active chemicals in various fruits, plants, vegetables, and leaves, which have promising uses in medicinal science. The health properties of these natural chemicals are widely accepted, and efforts are underway to extract the specific components referred to as flavonoids. Flavonoids demonstrate a diverse range of bio-activities, anticancer, antioxidant activity, anti-cholinesterase activity, antiinflammatory activity, antimalarial activity, antidiabetic activity, neurodegenerative disease, cardiovascular effect, hepatoprotective effects, and antiviral and antimicrobial activity. This study aims to examine the prevailing trends in flavonoid investigation studies, elucidate the activity of flavonoids, examine their various functions and uses, assess the potential of flavonoids as preventive medications for chronic diseases, and outline future research opportunities in this field. This review explores the diverse functions of flavonoids in preventing and managing various diseases.
Collapse
Affiliation(s)
- Bhoopendra Singh
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| | - Bhupesh Chander Semwal
- Department of Pharmacology, GLA University, NH#2 Delhi Mathura Highway, Uttar Pradesh, India
| |
Collapse
|
159
|
Grover P, Thakur K, Bhardwaj M, Mehta L, Raina SN, Rajpal VR. Phytotherapeutics in Cancer: From Potential Drug Candidates to Clinical Translation. Curr Top Med Chem 2024; 24:1050-1074. [PMID: 38279745 DOI: 10.2174/0115680266282518231231075311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
Annually, a significant number of individuals succumb to cancer, an anomalous cellular condition characterized by uncontrolled cellular proliferation and the emergence of highly perilous tumors. Identifying underlying molecular mechanism(s) driving disease progression has led to various inventive therapeutic approaches, many of which are presently under pre-clinical and/or clinical trials. Over the recent years, numerous alternative strategies for addressing cancer have also been proposed and put into practice. This article delineates the modern therapeutic drugs employed in cancer treatment and their associated toxicity. Due to inherent drug toxicity associated with most modern treatments, demand rises for alternative therapies and phytochemicals with minimal side effects and proven efficacy against cancer. Analogs of taxol, Vinca alkaloids like vincristine and vinblastine, and podophyllotoxin represent a few illustrative examples in this context. The phytochemicals often work by modifying the activity of molecular pathways that are thought to be involved in the onset and progression of cancer. The principal objective of this study is to provide an overview of our current understanding regarding the pharmacologic effects and molecular targets of the active compounds found in natural products for cancer treatment and collate information about the recent advancements in this realm. The authors' interest in advancing the field of phytochemical research stems from both the potential of these compounds for use as drugs as well as their scientific validity. Accordingly, the significance of herbal formulations is underscored, shedding light on anticancer phytochemicals that are sought after at both pre-clinical and clinical levels, with discussion on the opportunities and challenges in pre-clinical and clinical cancer studies.
Collapse
Affiliation(s)
- Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | | | - Monika Bhardwaj
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
| | - Lovekesh Mehta
- Amity Institute of Pharmacy, Amity University, Noida, 201301, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, Noida, 201301, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
160
|
Mori N, Murphy N, Sawada N, Achaintre D, Yamaji T, Scalbert A, Ishihara J, Takachi R, Nakamura K, Tanaka J, Iwasaki M, Iso H, Inoue M, Gunter MJ, Tsugane S. Reproducibility and dietary correlates of plasma polyphenols in the JPHC-NEXT Protocol Area study. Eur J Clin Nutr 2024; 78:34-42. [PMID: 37891229 DOI: 10.1038/s41430-023-01349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND In recent years, an increasing number of epidemiological studies have suggested a role of polyphenols in the prevention of chronic diseases. Prospective cohort studies have typically measured polyphenol concentrations in a single blood sample and the reproducibility of plasma polyphenol measurements is largely unknown. OBJECTIVE We evaluated the reproducibility of 35 plasma polyphenols collected at an interval of 1-year. We also examined correlations of these polyphenols with food group intakes calculated from weighed food records (WFR) and food frequency questionnaire (FFQ). METHODS The study included 227 middle-aged participants from the JPHC-NEXT Protocol Area in Japan. We measured 35 polyphenols in plasma collected at two points 1-year apart. Food group intakes were calculated from 12-day WFR and FFQ. For the reproducibility analysis, the intraclass correlation coefficient (ICC) of 35 polyphenol concentrations were examined between the two points. Pearson's partial correlations was used to assess the correlation between polyphenols and food groups. RESULTS Moderate- to high ICCs were observed for tea-originated polyphenols such as gallic acid, quercetin, epigallocatechin, and kaempferol - and coffee-derived polyphenols, such as caffeic acid, and ferulic acid. For the dietary analyses, moderate correlations were observed for non-alcoholic beverages intake and epigallocatechin, epicatechin, catechin, and gallic acid. For green tea, higher correlations were observed with these polyphenols. CONCLUSION Plasma concentrations of tea and coffee-related polyphenols, except for catechin, had good reproducibility over a 1-year period. The correlations between intake of non-alcoholic beverages, particularly green tea, and tea polyphenols, indicated moderate- to high correlations.
Collapse
Affiliation(s)
- Nagisa Mori
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan.
- Section of Nutritional Epidemiology, Department of Nutritional Epidemiology and Shokuiku, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - David Achaintre
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Junko Ishihara
- Graduate School of Environmental Health, Azabu University, Kanagawa, Japan
| | - Ribeka Takachi
- Department of Food Science and Nutrition, Nara Women's University Graduate School of Humanities and Sciences, Nara, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junta Tanaka
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Hiroyasu Iso
- Institute of Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Graduate School of Public Health, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
161
|
Aslam S, Iqbal R, Saeed RF, Akram N, Ijaz F, Liaqat I, Aslam AS. Nutritional Genomics and Cancer Prevention. Cancer Treat Res 2024; 191:217-244. [PMID: 39133410 DOI: 10.1007/978-3-031-55622-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The scientific innovations have emphasized the importance of diet for one's health and wellbeing. The genetic revolution has enhanced our understanding about the effect of nutrients on genomic and transcriptomic profiles and gene-nutrition interactions (nutritional genomics). Furthermore, the contribution of micronutrient insufficiencies and macronutrient excess is evident in the development and progression of many diseases, especially cancer. It is speculated that nutrients have capacity to implicitly affect the physiological and pathophysiological processes via gene expression various regulatory processes. Moreover, the nutrients are known to affect the cellular networks involved in cancer progression and cancer inhibitory mechanisms targeting apoptosis or impaired angiogenesis. The interplay of regulatory processes in physiological systems and nutrients provides basis for the nutrigenomics. The functional genomics data further argue that cellular and molecular processes involved in the cancer progression are possibly programed genes during early development which may persist into adulthood and become detrimental. The incorporation of the functional interactions between nutrients and the genome has revolutionized the field of personalized medicine and provided the foundation for targeted cancer therapy through nutrients. There is growing evidence on the beneficial impacts of eating habits on lowering the risk of cancer, even if it can be difficult to pinpoint the precise role of nutrients. The nutrigenomic information may provide bases to develop disease prevention and treatment via nutrition, at the molecular level.
Collapse
Affiliation(s)
- Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nuzhat Akram
- Hamdard College of Medicine, Hamdard University, Karachi, Pakistan
| | - Farhat Ijaz
- CMH Lahore Medical College & IOD (NUMS), Lahore, Pakistan
| | - Irfana Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
162
|
Dash JR, Kar B, Pattnaik G. In-silico, in-vitro and in-vivo Biological Activities of Flavonoids for the Management of Type 2 Diabetes. Curr Drug Discov Technol 2024; 21:e120124225551. [PMID: 38243931 DOI: 10.2174/0115701638290819231228081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
In spite of the fact that many medicinal plants have been truly utilized for the management of diabetes all through the world, very few of them have been reported scientifically. Recently, a diverse variety of animal models have been established to better understand the pathophysiology of diabetes mellitus, and new medications to treat the condition have been introduced in the market. Flavonoids are naturally occurring substances that can be found in plants and various foods and may have health benefits in the treatment of neuropathic pain. Flavonoids have also been shown to have an anti-inflammatory impact that is significant to neuropathic pain, as indicated by a decrease in several pro-inflammatory mediators such TNF-, NF-B IL-6, and IL-1. Flavonoids appear to be a viable novel therapy option for macrovasular complications in preclinical models; however, human clinical data is still inadequate. Recently, several in silico, in-vitro and in-vivo aproaches were made to evaluate mechanisms associated with the pathogenesis of diabetes in a better way. Screening of natural antidiabetic agents from plant sources can be analysed by utilizing advanced in-vitro techniques and animal models. Natural compounds, mostly derived from plants, have been studied in diabetes models generated by chemical agents in the majority of research. The aim of this work was to review the available in silico, in-vitro and animal models of diabetes for screening of natural antidiabetic agents. This review contributes to the scientist's design of new methodologies for the development of novel therapeutic agents having potential antihyperglycemic activity.
Collapse
Affiliation(s)
- Jyoshna Rani Dash
- Department of Pharmacy, Centurion University of Technology and Management, Bhubaneswar, Odisha, 751050, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Gurudutta Pattnaik
- Department of Pharmacy, Centurion University of Technology and Management, Bhubaneswar, Odisha, 751050, India
| |
Collapse
|
163
|
Zhu YY, Wang ZJ, Zhu M, Zhou ZS, Hu BY, Wei MZ, Zhao YL, Dai Z, Luo XD. A dual mechanism with H 2S inhibition and membrane damage of morusin from Morus alba Linn. against MDR-MRSA. Bioorg Med Chem 2024; 97:117544. [PMID: 38071943 DOI: 10.1016/j.bmc.2023.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
It's urgent to discover new antibiotics along with the increasing emergence and dissemination of multidrug resistant (MDR) bacterial pathogens. In the present investigation, morusin exhibited rapid bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) by targeting the phospholipid of bacterial inner membrane, increasing membrane rigidity and disrupting bacterial homeostasis together with the membrane permeability, which caused fundamental metabolic disorders. Furthermore, morusin can also accumulate ROS, suppress H2S production, and aggravate oxidative damage in bacteria. Importantly, morusin also inhibited the spread of wounds and reduced the bacterial burden in the mouse model of skin infection caused by MRSA. It's a chance to meet the challenge of existing antibiotic resistance and avoid the development of bacterial resistance, given the multiple targets of morusin.
Collapse
Affiliation(s)
- Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Meng Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Bin-Yuan Hu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Mei-Zhen Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Zhi Dai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
164
|
Cao Y, Wang Q, Lin J, Ding YY, Han J. Modulating in vitro digestion of whey protein cold-set emulsion gels via gel properties modification with gallic acid and EGCG. Food Res Int 2024; 175:113686. [PMID: 38129029 DOI: 10.1016/j.foodres.2023.113686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Gallic acid (GA) and epigallocatechin gallate (EGCG), cooperated at varied ratios (1:0, 3:1, 1:1, 1:3, and 0:1), were employed to modify gel properties of calcium induced-whey protein emulsion gel. The effects of GA/EGCG on emulsion morphology, as well as gel properties and in vitro digestive behavior of the emulsion gels were investigated. Compared with emulsions without phenolics, GA/EGCG induced slightly smaller particle size and stronger electrostatic repulsion between emulsion droplets. Moreover, GA/EGCG, notably at a ratio of 3:1, promoted electrostatic and hydrophobic interactions between protein molecules and the formation of a compact and filamentous gel microstructure, resulting in a remarkable increment in the gel strength (up to 106 %). Furthermore, in vitro oral digestion, dynamic gastric digestion (using an artificial gastric digestive system, AGDS), and intestinal digestion of the emulsion gels were simulated. Particle size and protein hydrolysis results revealed that GA/EGCG was prone to weaken the physical disintegration of gels, reduce protein hydrolysis, and enhance the stability of emulsified oil droplets during dynamic gastric digestion. As a consequence, delayed release of oil droplets was observed in the gels and more free fatty acids were released in the intestinal digestion, particularly in the gel with GA/EGCG (3:1). These findings would provide novel strategies for application of phenolic compounds in developing protein gel-based delivery systems.
Collapse
Affiliation(s)
- Yanyun Cao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jinou Lin
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yin-Yi Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
165
|
Singh NK, Singh A, Mayank. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Comb Chem High Throughput Screen 2024; 27:2062-2077. [PMID: 38243959 DOI: 10.2174/0113862073295568240105025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Mayank
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
166
|
Qabaha K, Abbadi J, Yaghmour R, Hijawi T, Naser SA, Al-Rimawi F. Unveiling the antibacterial and antioxidant potential of Hedera helix leaf extracts: recent findings. Can J Physiol Pharmacol 2024; 102:26-32. [PMID: 37850568 DOI: 10.1139/cjpp-2023-0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Hedera helix L., a member of the Araliaceae family, is a commonly known decorative plant with recognized medicinal activities. In this study, the ethanolic extract from H. helix leaves was investigated for its total polyphenolic and flavonoid contents, as well as its antioxidant and antibacterial properties. The aim was to evaluate its potential for controlling certain infections by screening its antibacterial activity against selected pathogenic bacteria. The total phenolic and flavonoid contents of the extract were determined using colorimetric methods. The antioxidant activity was assessed through two assay methods: the 1, 1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging activity and the reducing power ferric reducing/antioxidant power (FRAP). The antibacterial activity against different pathogenic bacteria, including Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa, was evaluated using the well diffusion method. The total phenolic and flavonoid contents of the H. helix extract were found to be 134.3 ± 4.9 mg gallic acid/g and 42.4 ± 3.6 mg catechin/g, respectively. The extract exhibited antioxidant activity, with a reducing power represented by an FRAP value of 9.5 ± 0.9 mmol Fe+2/g DW and a percentage inhibition of DPPH of 64.7 ± 3.8 at 80 µg/mL. The extract demonstrated antibacterial activity, inhibiting the growth of K. pneumoniae and S. aureus with zone of inhibition values of 18.5 and 23.2 mm, respectively, using 25 mg/well. However, E. coli and P. aeruginosa exhibited resistance to the extract. The findings of this study highlight the antibacterial and antioxidant properties of the ethanolic extract from H. helix leaves. The extract exhibited significant phenolic and flavonoid contents, as well as antioxidant activity. It also demonstrated antibacterial activity against selected pathogenic bacteria, suggesting its potential for controlling certain infections. Further research is warranted to identify the active compounds responsible for these activities and to explore their mechanisms of action.
Collapse
Affiliation(s)
- Khaled Qabaha
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Arab American University, Jenin, Palestine
| | - Jehad Abbadi
- Biology Department, Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, Jerusalem, Palestine
| | - Reem Yaghmour
- Biology Department, Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, Jerusalem, Palestine
| | - Thameen Hijawi
- Institute of Development Studies, Al-Quds University, P.O. Box 20002, Jerusalem, Palestine
| | - Saleh A Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Fuad Al-Rimawi
- Chemistry Department, Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, Jerusalem, Palestine
| |
Collapse
|
167
|
Giampaoli O, Messi M, Merlet T, Sciubba F, Canepari S, Spagnoli M, Astolfi ML. Landfill fire impact on bee health: beneficial effect of dietary supplementation with medicinal plants and probiotics in reducing oxidative stress and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31561-x. [PMID: 38158534 DOI: 10.1007/s11356-023-31561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Marcello Messi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Thomas Merlet
- Department of Chemistry, Toulouse INP - ENSIACET, 4 Allée Emile Monso, 31030, Toulouse, France
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St, 00015, Rome, Italy
| | - Mariangela Spagnoli
- Department of Medicine, Epidemiology, Environmental and Occupational Hygiene, INAIL, via Fontana Candida 1, 00078, Monte Porzio Catone, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
168
|
Alreqeb S, Ergüden B. Chalcone derivatives disrupt cell membrane integrity of Saccharomyces cerevisiae cells and alter their biochemical composition. Arch Microbiol 2023; 206:34. [PMID: 38133819 DOI: 10.1007/s00203-023-03747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Fungal infections can be serious or life threatening in severe cases, and the need to discover and find novel antifungal agents persists. Chalcones are plant-derived aromatic compounds that have been appealing synthons for pharmaceutical industry as they have good anticancer, antibacterial, antifungal and anti-inflammatory properties. Although there are few structure-activity relationship studies on chalcones, studies that link the structural features of these compounds to their mode of action are scant. Thus, in this study, we aim to clarify the relationship between chalcone derivatives and their cellular target within the yeast cell Saccharomyces cerevisiae. We observed that some chalcone compounds lead to disruption of cell membrane and cause ion leakage out of the cell. Moreover, chalcones alter the biochemical composition of yeast cells detectable by FTIR spectroscopy and bind to the DNA as shown by our titration experiments based on UV-Vis absorbance spectroscopy. Thus, their interaction with the DNA may be the major impact of these compounds on yeast cells.
Collapse
Affiliation(s)
- Sondos Alreqeb
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Bengü Ergüden
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey.
| |
Collapse
|
169
|
Konstantinou EK, Panagiotopoulos AA, Argyri K, Panoutsopoulos GI, Dimitriou M, Gioxari A. Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review. Nutrients 2023; 16:2. [PMID: 38201832 PMCID: PMC10780465 DOI: 10.3390/nu16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer is the most frequent type of cancer in women. Oncogenic transcription factors promote the overproduction of cellular adhesion molecules and inflammatory cytokines during cancer development. Cancer cells exhibit significant upregulation of antiapoptotic proteins, resulting in increased cell survival, tumor growth, and metastasis. Research on the cell cycle-mediated apoptosis pathway for drug discovery and therapy has shown promising results. In fact, dietary phytoconstituents have been extensively researched for anticancer activity, providing indirect protection by activating endogenous defense systems. The role of polyphenols in key cancer signaling pathways could shed light on the underlying mechanisms of action. For instance, Rosmarinic Acid, a polyphenol constituent of many culinary herbs, has shown potent chemoprotective properties. In this review, we present recent progress in the investigation of natural products as potent anticancer agents, with a focus on the effect of Rosmarinic Acid on triple-negative BC cell lines resistant to hormone therapy. We highlight a variety of integrated chemical biology approaches aimed at utilizing relevant mechanisms of action that could lead to significant clinical advances in BC treatment.
Collapse
Affiliation(s)
| | | | | | | | - Maria Dimitriou
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.A.P.); (K.A.); (G.I.P.)
| | - Aristea Gioxari
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.A.P.); (K.A.); (G.I.P.)
| |
Collapse
|
170
|
Lukhele BS, Bassey K, Witika BA. The Utilization of Plant-Material-Loaded Vesicular Drug Delivery Systems in the Management of Pulmonary Diseases. Curr Issues Mol Biol 2023; 45:9985-10017. [PMID: 38132470 PMCID: PMC10742082 DOI: 10.3390/cimb45120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Medicinal plants have been utilized to treat a variety of conditions on account of the bioactive properties that they contain. Most bioactive constituents from plants are of limited effectiveness, due to poor solubility, limited permeability, first-pass metabolism, efflux transporters, chemical instability, and food-drug interactions However, when combined with vesicular drug delivery systems (VDDS), herbal medicines can be delivered at a predetermined rate and can exhibit site-specific action. Vesicular drug delivery systems are novel pharmaceutical formulations that make use of vesicles as a means of encapsulating and transporting drugs to various locations within the body; they are a cutting-edge method of medication delivery that combats the drawbacks of conventional drug delivery methods. Drug delivery systems offer promising strategies to overcome the bioavailability limitations of bioactive phytochemicals. By improving their solubility, protecting them from degradation, enabling targeted delivery, and facilitating controlled release, drug delivery systems can enhance the therapeutic efficacy of phytochemicals and unlock their full potential in various health conditions. This review explores and collates the application of plant-based VDDS with the potential to exhibit protective effects against lung function loss in the interest of innovative and effective treatment and management of respiratory illnesses.
Collapse
Affiliation(s)
| | - Kokoette Bassey
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| |
Collapse
|
171
|
Choi S, Ko J, Park SB, Kim JY, Ha JH, Roh S, An YH, Hwang NS. Double Emulsion-Mediated Delivery of Polyphenol Mixture Alleviates Atopic Dermatitis. Adv Healthc Mater 2023; 12:e2300998. [PMID: 37677107 DOI: 10.1002/adhm.202300998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Although the polyphenols have been studied to alleviate inflammation, there are still challenges to delivering the polyphenols with stabilized formulation due to their low water solubility and susceptibility to oxidation. Herein, the transdermal delivery system of polyphenol mixture (PM), including quercetin (Q), phloretin (P), and ellagic acid (E), is developed using double emulsion for applying to atopic dermatitis (AD). Through the in vitro anti-degranulation assay, the optimal molar ratio of each polyphenol (Q:P:E = 5:1:1) is obtained, and the PM shows at most a 43.6% reduction of degranulation of immune cells, which is the primary factor of AD. Moreover, the water-in-oil-in-water double emulsion (W/O/W) enhances the PM's stability and has a higher anti-degranulation effect than the oil-in-water emulsion (O/W). In the in vivo 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice AD model, PM reduces more AD symptoms than every single polyphenol. The PM-encapsulated W/O/W (PM_W/O/W) shows the most effectiveness in AD by decreasing dermatitis score, i.e., skin/ear thickness, mast cells, and serum IgE level. Finally, this suggests that the findings on the optimal ratio of PM and double emulsion-based delivery would be beneficial in treating AD and can be applied to other allergic diseases.
Collapse
Affiliation(s)
- Subin Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su-Bin Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Hwa Ha
- Department of Social Welfare, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
172
|
Letsiou S, Trapali M, Tebbi SO, Benaida-Debbache N. A simple and robust LC-ESI single quadrupole MS-based method to analyze polyphenols in plant extracts using deep eutectic solvents. MethodsX 2023; 11:102303. [PMID: 37593413 PMCID: PMC10428130 DOI: 10.1016/j.mex.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Currently, the interest in polyphenols is increasing due to their significant properties in health. Polyphenols exist in a range of natural products, however their extraction as well as their characterization are important issues as they are mainly present in complex matrices. Therefore, sensitive and selective analytical methods based on liquid chromatography coupled to tandem mass spectrometry are essential. Nevertheless, access to such high-resolution techniques is quite rare. Thus, in this work we present a simple, selective and robust method based on a single-quadrupole (Q) MS technique) for the analysis of a wide range of polyphenols such as flavonoids, phenolic acids and anthocyanins. Specifically, we present:•A simple liquid chromatography electro-spray ionization (LC-ESI) single-quadrupole mass selective (MS) method for the analysis of 18 different polyphenols.•Application of the method to three plant-based extracts that are derived after green extraction methods.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of chemistry, biochemistry and cosmetic science, Department of Biomedical Science, University of West Attica, Agiou Spyridonos 28, Egaleo, Attiki, Greece
| | - Maria Trapali
- Laboratory of chemistry, biochemistry and cosmetic science, Department of Biomedical Science, University of West Attica, Agiou Spyridonos 28, Egaleo, Attiki, Greece
| | - Sara Oumenoune Tebbi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Nadjet Benaida-Debbache
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
173
|
Perna S, Rafique A, Rondanelli M, Allehdan S, Riso P, Marino M. Effect of caper fruit (Capparis spinosa L.) consumption on liver enzymes, lipid profile, fasting plasma glucose, and weight loss. A systematic review and a preliminary meta-analysis of randomized controlled trials. Biomed Pharmacother 2023; 168:115638. [PMID: 37806093 DOI: 10.1016/j.biopha.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
This systematic review and meta-analysis aimed to evaluate the overall effect of caper fruit on the modulation of glycemic, lipid profile, liver enzymes, and body mass. Google Scholar, PubMed, and Scopus were explored to collect relevant studies in the last 10 years. RCTs with caper fruit supplementation or consumption in different cohorts of subjects with non-alcoholic fatty liver disease (NAFLD), Type-2-Diabetes (T2D), metabolic syndrome, and hyperlipidemia were included in this systematic review with a mean intervention duration from 2 to 12 weeks. The outcomes measured in this meta-analysis were liver enzymes such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT), the lipid profile represented by triglycerides, total cholesterol (TC) with LDL and HDL and also, weight, and fasting blood glucose. Five randomized controlled trials, which involved a total of 178 adults, were included. According to the results, caper fruit seems to decrease liver enzymes ALT -12.29 U/L [-24.47, -0.11], AST -2.20 U/L [-4.70, 0.31]. Furthermore, the lipid profile seems to improve with a decrease in triglycerides. -11.89 mg/dL [-33.73, 9.95], LDL -4.80 mg/dL [-16.34, 6.74], HDL 0.72 mg/dL [0.10, 1.34], total cholesterol -7.83 mg/dL [-20.04, 4.38], FPG -17.93 [-42.66, 6.79], weight -1.00 kg [-1.44, -0.56]. Significant modulations were found only for ALT, HDL, and weight. In conclusion, this systematic review and meta-analysis showed the paucity of data available on the topic while showing the potential role of caper fruit as a promising food for improving the liver-lipid profile axis in patients with metabolic syndrome and diabetes. Further studies are required to confirm these results.
Collapse
Affiliation(s)
- Simone Perna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy.
| | - Ayesha Rafique
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P. O. Box 32038, Bahrain.
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy; Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Sabika Allehdan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P. O. Box 32038, Bahrain.
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
174
|
Yu Z, Zhang X, Zhao Q, Yan X, Wu C, Qing L, He Z, Chen Q, Huang M, Zhao J, Cao M. Urolithin B alleviates Helicobacter pylori-induced inflammation and oxidative stress in mice. Helicobacter 2023; 28:e13016. [PMID: 37623311 DOI: 10.1111/hel.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Helicobacter pylori is one of the most common chronic bacterial infections. Active eradication of H. pylori infection is rare due to the fact that most infected patients are asymptomatic and the use of large amounts of antibiotics in eradication therapy leads to severe side effects. Urolithin B (UB) is an additional major intestinal metabolite of ellagic acid (EA), which has been shown to possess anti-inflammatory, antioxidant, and antiapoptotic biological activities. Preventing the incidence of H. pylori-related gastric disease and reducing the damage to the host by H. pylori is a current approach to control H. pylori infection. In this study, we explored the effect of UB on H. pylori infection. MATERIALS AND METHODS The effects of UB on inflammation and oxidative stress induced by H. pylori in vivo and in vitro were investigated by qPCR, ELISA, HE staining, IHC staining, etc. RESULTS: UB reduced the adhesion and colonization of H. pylori and improved H. pylori-induced inflammation and oxidative stress in vivo and in vitro. Moreover, UB had better anti-inflammatory and antioxidant effects than clarithromycin (CLR) and metronidazole (MET). In addition to inhibiting the secretion of CagA, UB reduced tissue damage by H. pylori infection. CONCLUSIONS UB was effective in improving damage caused by H. pylori.
Collapse
Affiliation(s)
- Zhihao Yu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Microbiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangyue Zhang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiao Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chengmeng Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liting Qing
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zongyu He
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qian Chen
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, China
| | - Min Huang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
175
|
Benvenuti M, Piazza SD, Salis A, Cecchi G, Zotti M, Scarfì S, Damonte G. A novel method for the extraction and characterization of metabolites from Basidiomycota: Pleurotus ostreatus (Jacq.) P. Kumm., 1871 as a case study. SEPARATION SCIENCE PLUS 2023; 6. [DOI: 10.1002/sscp.202300116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 07/04/2024]
Abstract
AbstractIn recent years, the interest in the exploitation of fungal metabolites has grown considerably, given their application in numerous sectors involving human health. However, their identification and characterization by conventional analytical approaches is generally limited to single families of molecules per method of analysis. This constitutes a limiting factor of primary importance in the study of both the metabolic pattern of a single fungal sample and the discovery of its possible applications. In this work, a reverse‐phase high‐performance liquid chromatography coupled with mass spectrometry method for the profile determination of primary and secondary metabolites produced by the oyster‐mushroom Pleurotus ostreatus (Jacq.) P. Kumm., 1871, has been developed. By using a concomitant extraction in three different polarity‐decreasing solvents, namely methanol, ethanol, and acetonitrile, this method allowed the simultaneous analysis of all extracted metabolites belonging to the widest possible range of chemical families, giving an advantage for both qualitative and quantitative determination of known and unknown compounds. The method appears to be valuable and robust for the study of complex matrices like raw fungi extract such as those of Pleurotus ostreatus cultivated on different substrates and/or exposed to multiple stressors.
Collapse
Affiliation(s)
- Mirko Benvenuti
- Department of Experimental Medicine (DIMES) University of Genova Genova Italy
| | - Simone Di Piazza
- Department of Earth, Environment and Life Sciences (DISTAV) University of Genova Genova Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES) University of Genova Genova Italy
| | - Grazia Cecchi
- Department of Earth, Environment and Life Sciences (DISTAV) University of Genova Genova Italy
| | - Mirca Zotti
- Department of Earth, Environment and Life Sciences (DISTAV) University of Genova Genova Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV) University of Genova Genova Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES) University of Genova Genova Italy
| |
Collapse
|
176
|
Mehranfar S, Jalilpiran Y, Ejtahed HS, Seif E, Shahrestanaki E, Mahdavi-Gorabi A, Esmaeili-Abdar M, Larijani B, Qorbani M. Association of dietary phytochemical index with cardiometabolic risk factors. INT J VITAM NUTR RES 2023; 93:559-576. [PMID: 35997240 DOI: 10.1024/0300-9831/a000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Objective(s): Cardio-metabolic risk factors are becoming a global health concern. To address this problem, one of the proposed ways is to focus on phytochemical-rich foods consumption. Therefore, we aimed to summarize the results of observational studies (cohorts, case-control, and cross-sectional) that investigated the association between dietary phytochemical index (PI) as a new index for evaluating phytochemical-rich food intake and various risk factors of cardio-metabolic disorders. Methods: We conducted a comprehensive systematic review through PubMed, Scopus, and Web of Science databases. The literature search was performed up to August 2021 with no publication year restriction on observational studies investigating the association between PI and cardiometabolic risk factors on adults and children. A random-effect meta-analysis was used. Results: Overall, 16 articles (cross-sectional, case-control, cohort) were eligible for this systematic review and 8 studies with 99771 participants were included in the meta-analysis. Random effect meta-analysis showed that adherence to higher dietary PI decrease the odds of abdominal obesity (OR: 0.73, 95% CI: 0.58, 0.88, I2: 84.90), generalized obesity (OR: 0.84, 95% CI: 0.69, 0.98, I2: 68.10), hypertriglyceridemia (OR: 0.81, 95% CI: 0.73, 0.89, I2: 0.00), hypertension (OR: 0.86, 95% CI: 0.73, 0.99, I2: 7.02), and MetS (OR: 0.79, 95% CI: 0.69, 0.88, I2: 84.90). However, results considering the associations between dietary PI with glycemic indices, and low high-density lipoprotein cholesterol (HDL-C) were not significant (p<0.05). Conclusion: Evidence showed adverse associations between dietary PI and some cardio-metabolic risk factors such as obesity, hypertriglyceridemia, hypertension and metabolic syndrome.
Collapse
Affiliation(s)
- Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Iran
| | - Yahya Jalilpiran
- Student Research Committee, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Iran
| | - Ehsan Seif
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ehsan Shahrestanaki
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Esmaeili-Abdar
- Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Iran
| |
Collapse
|
177
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
178
|
Anirudhan A, Iryani MTM, Andriani Y, Sorgeloos P, Tan MP, Wong LL, Mok WJ, Ming W, Yantao L, Lau CC, Sung YY. The effects of Pandanus tectorius leaf extract on the resistance of White-leg shrimp Penaeus vannamei towards pathogenic Vibrio parahaemolyticus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100101. [PMID: 37397801 PMCID: PMC10313901 DOI: 10.1016/j.fsirep.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/08/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Pandanus tectorius leaf extract effect on the White-leg shrimp Penaeus vannamei tolerance against Vibrio parahaemolyticus were investigated in this study. Thirty shrimp post-larvae measured at approximately 1 cm were exposed for 24 h to 0.5, 1, 2, 3, 4, 5 and 6 g/L leaf extract and subsequently observed for survival and immune-related genes expression (Hsp70, ProPO, peroxinectin, penaeidin, crustin and transglutaminase), followed by determination of their tolerance and histological tissue profiles upon Vibrio challenge. Survival of shrimps treated with 6 g/L of leaf extract improved by up to 95% to controls. Hsp70, crustin, and prophenoloxidase mRNA levels were observed to be 8.5, 10.4, and 1.5-fold higher, respectively. Histopathological analysis of the hepatopancreas and the muscle tissues revealed major tissue degeneration in Vibrio-challenged shrimps but not in shrimps primed with P. tectorius leaf extract. Of all the dose examined, the best pathogen resistance results were obtained with a 24 h incubation of shrimp in 6 g/L P. tectorius methanolic leaf extract. The tolerance towards V. parahaemolyticus might be associated with the increased regulation of Hsp70, prophenoloxidase and crustin upon exposure to the extract, all immune-related proteins essential for pathogen elimination in Penaeid shrimp. The present study primarily demonstrated that P. tectorius leaf extract is a viable alternative for enhancing P. vannamei post-larvae resistance against V. parahaemolyticus, a major bacterial pathogen in aquaculture.
Collapse
Affiliation(s)
- Anupa Anirudhan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Mat Taib Mimi Iryani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yosie Andriani
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Patrick Sorgeloos
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Campus Coupure - Blok F, Ghent University, Coupure Links 653, Gent B-9000, Belgium
| | - Min Pau Tan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Wen Jye Mok
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Wang Ming
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Liang Yantao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Cher Chien Lau
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- UMT-OUC Joint Academic Center for Marine Studies, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| |
Collapse
|
179
|
Dutta BJ, Rakshe PS, Maurya N, Chib S, Singh S. Unlocking the therapeutic potential of natural stilbene: Exploring pterostilbene as a powerful ally against aging and cognitive decline. Ageing Res Rev 2023; 92:102125. [PMID: 37979699 DOI: 10.1016/j.arr.2023.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
The therapeutic potential of natural stilbenes, with a particular focus on pterostilbene (PTE), has emerged as a promising avenue of research targeting age-associated conditions encompassing cardiovascular diseases (CVD), diabetes mellitus (DM), and cognitive decline. This comprehensive investigation delves into the intricate mechanisms through which PTE, a polyphenolic compound abundant in grapes and blueberries, exerts its advantageous effects as an anti-aging agent. Central to its action is the modulation of hallmark aging processes, including oxidative damage, inflammatory responses, telomere attrition, and cellular senescence. PTE's ability to effectively penetrate the blood-brain barrier amplifies its potential for safeguarding neural health, thereby facilitating the regulation of neuronal signalling cascades, synaptic plasticity, and mitochondrial functionality. Through engagement with sirtuin proteins, it orchestrates cellular resilience, longevity, and metabolic equilibrium. Encouraging findings from preclinical studies portray PTE as a robust candidate for counteracting age-linked cognitive decline, augmenting memory consolidation, and potentially ameliorating neurodegenerative maladies such as Alzheimer's disease (AD). The synthesis of current scientific insights accentuates the promising translational prospects of PTE as a potent, naturally derived therapeutic agent against cognitive impairments associated with aging. Consequently, these collective findings lay a solid groundwork for forthcoming clinical inquiries and innovative therapeutic interventions in this realm.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
180
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
181
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
182
|
Macià A, Romero MP, Pedret A, Solà R, Clifford MN, Rubió-Piqué L. Assessment of human inter-individual variability of phloretin metabolites in urine after apple consumption. AppleCOR study. Food Funct 2023; 14:10387-10400. [PMID: 37933196 DOI: 10.1039/d3fo02985a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Purpose: This study aimed to assess the inter-individual variation in phloretin absorption and metabolism and to seek possible phloretin metabotypes following apple snack consumption. Methods: The excreted phloretin metabolites in 24 h urine samples were determined by UPLC-MS/MS in 62 volunteers after acute and sustained (6 weeks) interventions in a randomized and parallel study with a daily supplementation of 80 g of a low-phloretin (39.5 μmol) or a high-phloretin (103 μmol) freeze-dried apple snacks. Results: absorption estimated as phloridzin equivalents for 62 volunteers varied almost 70-fold ranging from 0.1% to 6.94% of phloretin glycoside intake. Volunteers were stratified into low, medium and high producers and by the balance between glucuronidation and sulphation. For 74% of the volunteers phloretin-O-glucuronide was the dominant urinary metabolite, especially at the higher phloretin glycoside intake and for higher producers. Sulphate conjugation assumed greater significance for the remaining volunteers especially for low producers. Females dominated glucuronide profile (64.1%) and males dominated the low excretion group. Analysis of plasma glucose and insulin at the start and end of the sustained study showed a trend towards modest reductions for high producers. Furthermore, plausible factors contributing to the inter-individual variation in phloretin uptake are discussed. Conclusions: extensive inter-individual variability exists in the excretion of phloretin phase-II conjugates following consumption of apple snacks, which could be related to oral microbiota phloridzin-hydrolysing activity, lactase non-persistence trait or the metabotype to which the subject belongs. There were inconsistent effects on post-prandial serum glucose concentrations but there was a tendency for decreases to be associated with higher excretion of phloretin phase-II conjugates. Trial registration: The acute and sustained studies were registered at ClinicalTrials.gov Identifier: NCT03795324.
Collapse
Affiliation(s)
- Alba Macià
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| | - María-Paz Romero
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| | - Anna Pedret
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), C/Sant Llorenç 21, 4320-Reus, Spain
| | - Rosa Solà
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), C/Sant Llorenç 21, 4320-Reus, Spain
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Victoria, Australia
| | - Laura Rubió-Piqué
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| |
Collapse
|
183
|
Ulewicz-Magulska B, Wesolowski M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants (Basel) 2023; 12:2039. [PMID: 38136159 PMCID: PMC10740862 DOI: 10.3390/antiox12122039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Plant products, especially medicinal herbs and spices, have been used for centuries as a remedy to support human health and improve the flavor of food. Therefore, the purpose of this study was to identify plant species distinguished by their high content of phenolic compounds and high antioxidant activity using advanced multivariate statistical techniques such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). To realize the purpose of the study, the total phenolic (TPC) and flavonoids (FC) content, antioxidant activity (TAC) and Fe(II) ion chelating capacity (FIC) of medicinal herbs and spices from plants belonging to three botanical families, Lamiaceae, Apiaceae and Asteraceae were determined. The interpretation of the obtained data revealed that the studied samples are localized in the PCA and HCA plots according to their TPC, FC, TAC and FIC values. Chemometric analysis confirmed that medicinal herbs and spices from plants belonging to the Lamiaceae family are richer sources of phenolic compounds and exhibit stronger antioxidant activity than those raw materials from plants in the Apiaceae family. In addition, no significant differences were found in terms of TPC, FC, TAC and FIC values between medicinal herbs and spices from the same plant species, i.e., oregano (Origanum vulgare), common thyme (Thymus vulgaris), rosemary (Rosmarinus officinalis), caraway (Carum carvi) and lovage (Levisticum officinale). A close relationship between antioxidant properties and contents of phenolic compounds was also confirmed.
Collapse
Affiliation(s)
| | - Marek Wesolowski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland;
| |
Collapse
|
184
|
Pérez-Valero Á, Ye S, Magadán-Corpas P, Villar CJ, Lombó F. Metabolic engineering in Streptomyces albidoflavus for the biosynthesis of the methylated flavonoids sakuranetin, acacetin, and genkwanin. Microb Cell Fact 2023; 22:234. [PMID: 37964284 PMCID: PMC10648386 DOI: 10.1186/s12934-023-02247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Flavonoids are important plant secondary metabolites showing antioxidant, antitumor, anti-inflammatory, and antiviral activities, among others. Methylated flavonoids are particularly interesting compared to non-methylated ones due to their greater stability and intestinal absorption, which improves their oral bioavailability. In this work we have stablished a metabolic engineered strain of Streptomyces albidoflavus with enhanced capabilities for flavonoid production, achieving a 1.6-fold increase in the biosynthesis of naringenin with respect to the parental strain. This improved strain, S. albidoflavus UO-FLAV-004, has been used for the heterologous biosynthesis of the methylated flavonoids sakuranetin, acacetin and genkwanin. The achieved titers of sakuranetin and acacetin were 8.2 mg/L and 5.8 mg/L, respectively. The genkwanin titers were 0.8 mg/L, with a bottleneck identified in this producing strain. After applying a co-culture strategy, genkwanin production titers reached 3.5 mg/L, which represents a 4.4-fold increase. To our knowledge, this study presents the first biosynthesis of methylated flavonoids in not only any Streptomyces species, but also in any Gram-positive bacteria.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain.
| |
Collapse
|
185
|
Lessard-Lord J, Auger S, Demers S, Plante PL, Picard P, Desjardins Y. Automated High-Throughput Quantification of Phenyl-γ-valerolactones and Creatinine in Urine by Laser Diode Thermal Desorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16787-16796. [PMID: 37890868 PMCID: PMC10637324 DOI: 10.1021/acs.jafc.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023]
Abstract
Quantification of nutritional biomarkers is crucial to accurately assess the dietary intake of different classes of (poly)phenols in large epidemiological studies. High-throughput analysis is mandatory to apply this methodology in large cohorts. However, the current validated methods to quantify (poly)phenols metabolites in biological fluids use ultra performance liquid chromatography (UPLC), leading to analysis time of several minutes per sample. To significantly reduce the run time, we developed and validated a method to quantify in urine the flavan-3-ols biomarkers, phenyl-γ-valerolactones (PVLs), using laser diode thermal desorption (LDTD). This mass spectrometry source allows direct introduction of sample extracts, resulting in analysis time of less than 10 s per sample. Also, to encompass the problem associated with the cost and availability of sulfated and glucuronide analytical standards, urine samples were subjected to enzymatic hydrolysis. Creatinine was also quantified to normalize the results obtained from the urinary spot. Results obtained with LDTD-MS/MS were cross-validated by UPLC-MS/MS using 155 urine samples. Coefficient of correlation was above 0.975 for PVLs and creatinine. For all analytes, the accuracy was between 90% and 113% by LDTD-MS/MS. Altogether, sample preparation was fully automated to demonstrate the application potential of this method to large cohorts.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Québec G1V 0A6 Canada
| | - Serge Auger
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Sarah Demers
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Pier-Luc Plante
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
| | - Pierre Picard
- Phytronix
Technologies, 4535, Boulevard
Wilfrid-Hamel, Suite #120, Québec, Québec G1P 2J7, Canada
| | - Yves Desjardins
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440 boulevard Hochelaga, Québec, Québec G1V 0A6, Canada
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Québec G1V 0A6 Canada
| |
Collapse
|
186
|
Guelfi G, Pasquariello R, Anipchenko P, Capaccia C, Pennarossa G, Brevini TAL, Gandolfi F, Zerani M, Maranesi M. The Role of Genistein in Mammalian Reproduction. Molecules 2023; 28:7436. [PMID: 37959856 PMCID: PMC10647478 DOI: 10.3390/molecules28217436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERβ), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Georgia Pennarossa
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Tiziana A. L. Brevini
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| |
Collapse
|
187
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
188
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
189
|
Ardalan ZS, Livingstone KM, Polzella L, Avakian J, Rohani F, Sparrow MP, Gibson PR, Yao CK. Perceived dietary intolerances, habitual intake and diet quality of patients with an ileoanal pouch: Associations with pouch phenotype (and behaviour). Clin Nutr 2023; 42:2095-2108. [PMID: 37748240 DOI: 10.1016/j.clnu.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 07/23/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND AIMS Ileoanal pouch patients frequently attribute pouch-related symptoms and pouchitis with diet. We aimed to assess perceived food intolerance and habitual dietary intake and their relationship with pouch indication, symptoms and current or history of pouchitis. METHODS In this cross-sectional study, patients with an ileoanal pouch completed a dietary intolerance and a food frequency questionnaire, that specifically quantifies habitual intake of FODMAPs. Perceived dietary intolerance rates, nutrient intake and diet quality, and their differences based on pouch indication, symptom, and current or history of pouchitis were assessed. Associations between intolerances and intake, and between dietary intake with pouchitis risk were analysed using univariable and multivariable regression analysis. RESULTS Of the 58 (10 FAP and 48 UC) patients with complete data, 81% of UC and 80% of FAP patients reported dietary intolerances. Overall diet quality was good. Differences in dietary intake were limited to a few food groups. Patients with a history of pouchitis had a lower intake of fruits (p = 0.03) and nuts (p = 0.004). Patients with current pouchitis had a lower intake of nuts (p = 0.02). On multivariable logistic regression, intake of dietary fibre was associated negatively [OR 0.68(95%CI:0.51-0.92)] and of non-digestible oligosaccharides positively with pouchitis history [OR 5.5(95% CI:1.04-29.1)]. CONCLUSIONS In patients with an ileoanal pouch, perceived dietary intolerances are common but had minimal impact on nutritional adequacy and diet quality. Negative associations of the intakes of fruits, nuts and dietary fibre and positive association with non-digestible oligosaccharides with a history of pouchitis require further study to inform dietary recommendations.
Collapse
Affiliation(s)
- Zaid S Ardalan
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia.
| | - Katherine M Livingstone
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Louise Polzella
- Department of Nutrition and Dietetics, Monash University, Victoria, Australia
| | - Julia Avakian
- Department of Nutrition and Dietetics, Monash University, Victoria, Australia
| | - Faran Rohani
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Miles P Sparrow
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Chu K Yao
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
190
|
Fraga CG, Oteiza PI, Hid EJ, Galleano M. (Poly)phenols and the regulation of NADPH oxidases. Redox Biol 2023; 67:102927. [PMID: 37857000 PMCID: PMC10587761 DOI: 10.1016/j.redox.2023.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are enzymes that generate superoxide anion (O2•-) and hydrogen peroxide (H2O2), and that are widely distributed in mammalian tissues. Many bioactives, especially plant (poly)phenols are being studied for their capacity to regulate NOXs. The modulation of these enzymes are of central relevance to maintain redox homeostasis and regulate cell signaling. In in vitro and ex vivo assays, and in experimental animal models, different (poly)phenols are able to modulate NOX-dependent generation of O2•- and H2O2. Mechanistically, most of the known effects of (poly)phenols and of their metabolites on NOX1, NOX2, and NOX4, include the modulation of: i) the expression of the different constituent subunits, and/or ii) posttranslational modifications involved in the assembly and translocation of the protein complexes. Very limited evidence is available on a direct action of (poly)phenols on NOX active site (electron-transferring protein). Moreover, it is suggested that the regulation by (poly)phenols of systemic events, e.g. inflammation, is frequently associated with their capacity to regulate NOX activation. Although of physiological significance, more studies are needed to understand the specific targets/mechanisms of NOX regulation by (poly)phenols, and the (poly)phenol chemical structures and moieties directly involved in the observed effects. It should be kept in mind the difficulties of NOX's studies associated with the complexity of NOXs biochemistry and the methodological limitations of O2•- and H2O2 the determinations. Studies relating human ingestion of specific (poly)phenols, with NOX activity and disease conditions, are guaranteed to better understand the health importance of (poly)phenol consumption and the involvement of NOXs as biological targets.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina; Department of Nutrition University of California, Davis, USA
| | - Patricia I Oteiza
- Department of Nutrition University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ezequiel J Hid
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
191
|
Miao L, Liu C, Cheong MS, Zhong R, Tan Y, Rengasamy KRR, Leung SWS, Cheang WS, Xiao J. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr 2023; 63:11640-11667. [PMID: 35821658 DOI: 10.1080/10408398.2022.2095349] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes, being the most widespread illness, poses a serious threat to global public health. It seems that inflammation plays a critical role in the pathophysiology of diabetes. This review aims to demonstrate a probable link between type 2 diabetes mellitus (T2DM) and chronic inflammation during its development. Additionally, the current review examined the bioactivity of natural flavones and the possible molecular mechanisms by which they influence diabetes and inflammation. While natural flavones possess remarkable anti-diabetic and anti-inflammatory bioactivities, their therapeutic use is limited by the low oral bioavailability. Several factors contribute to the low bioavailability, including poor water solubility, food interaction, and unsatisfied metabolic behaviors, while the diseases (diabetes, inflammation, etc.) causing even less bioavailability. Throughout the years, different strategies have been developed to boost flavones' bioavailability, including structural alteration, biological transformation, and innovative drug delivery system design. This review addresses current advancements in improving the bioavailability of flavonoids in general, and flavones in particular. Clinical trials were also analyzed to provide insight into the potential application of flavonoids in diabetes and inflammatory therapies.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meang Sam Cheong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruting Zhong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi Tan
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Kannan R R Rengasamy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
192
|
Zaa CA, Marcelo ÁJ, An Z, Medina-Franco JL, Velasco-Velázquez MA. Anthocyanins: Molecular Aspects on Their Neuroprotective Activity. Biomolecules 2023; 13:1598. [PMID: 38002280 PMCID: PMC10669056 DOI: 10.3390/biom13111598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Anthocyanins are a type of flavonoids that give plants and fruits their vibrant colors. They are known for their potent antioxidant properties and have been linked to various health benefits. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lower the risk of neurodegenerative diseases. Anthocyanins exhibit neuroprotective effects that could potentially alleviate symptoms associated with such diseases. In this review, we compiled and discussed a large body of evidence supporting the neuroprotective role of anthocyanins. Our examination encompasses human studies, animal models, and cell cultures. We delve into the connection between anthocyanin bioactivities and the mechanisms underlying neurodegeneration. Our findings highlight how anthocyanins' antioxidant, anti-inflammatory, and anti-apoptotic properties contribute to their neuroprotective effects. These effects are particularly relevant to key signaling pathways implicated in the development of Alzheimer's and Parkinson's diseases. In conclusion, the outcome of this review suggests that integrating anthocyanin-rich foods into human diets could potentially serve as a therapeutic approach for neurological conditions, and we identify promising avenues for further exploration in this area.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Álvaro J. Marcelo
- School of Biology, Universidad Nacional Federico Villarreal, Lima 15088, Peru;
| | - Zhiqiang An
- Texas Therapeutic Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutic Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| |
Collapse
|
193
|
Xu Y, Li Y, Hu J, Gibson R, Rodriguez-Mateos A. Development of a novel (poly)phenol-rich diet score and its association with urinary (poly)phenol metabolites. Food Funct 2023; 14:9635-9649. [PMID: 37840467 DOI: 10.1039/d3fo01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background: Estimating (poly)phenol intake is challenging due to inadequate dietary assessment tools and limited food content data. Currently, a priori diet scores to characterise (poly)phenol-rich diets are lacking. This study aimed to develop a novel (poly)phenol-rich diet score (PPS) and explore its relationship with circulating (poly)phenol metabolites. Methods: A total of 543 healthy free-living participants aged 18-80 years completed a food frequency questionnaire (FFQ) (EPIC-Norfolk) and provided 24 h urine samples. The PPS was developed based on the relative intake (quintiles) of 20 selected (poly)phenol-rich food items abundant in the UK diet, including tea, coffee, red wine, whole grains, chocolate and cocoa products, berries, apples and juice, pears, grapes, plums, citrus fruits and juice, potatoes and carrots, onions, peppers, garlic, green vegetables, pulses, soy and soy products, nuts, and olive oil. Foods included in the PPS were chosen based on their (poly)phenol content, main sources of (poly)phenols, and consumption frequencies in the UK population. Associations between the PPS and urinary phenolic metabolites were investigated using linear models adjusting energy intake and multiple testing (FDR adjusted p < 0.05). Result: The total PPS ranged from 25 to 88, with a mean score of 54. A total of 51 individual urinary metabolites were significantly associated with the PPS, including 39 phenolic acids, 5 flavonoids, 3 lignans, 2 resveratrol and 2 other (poly)phenol metabolites. The total (poly)phenol intake derived from FFQs also showed a positive association with PPS (stdBeta 0.32, 95% CI (0.24, 0.40), p < 0.01). Significant positive associations were observed in 24 of 27 classes and subclasses of estimated (poly)phenol intake and PPS, with stdBeta values ranging from 0.12 (0.04, 0.20) for theaflavins/thearubigins to 0.43 (0.34, 0.51) for flavonols (p < 0.01). Conclusion: High adherence to the PPS diet is associated with (poly)phenol intake and urinary biomarkers, indicating the utility of the PPS to characterise diets rich in (poly)phenols at a population level.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Yong Li
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Rachel Gibson
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
194
|
Sommer B, González-Ávila G, Flores-Soto E, Montaño LM, Solís-Chagoyán H, Romero-Martínez BS. Phytoestrogen-Based Hormonal Replacement Therapy Could Benefit Women Suffering Late-Onset Asthma. Int J Mol Sci 2023; 24:15335. [PMID: 37895016 PMCID: PMC10607548 DOI: 10.3390/ijms242015335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.
Collapse
Affiliation(s)
- Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City CP 14080, Mexico
| | - Georgina González-Ávila
- Laboratorio de Oncología Biomédica, Departamento de Enfermedades Crónico Degenerativas, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Mexico City CP 14080, Mexico;
| | - Edgar Flores-Soto
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Luis M. Montaño
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca CP 62209, Morelos, Mexico;
| | - Bianca S. Romero-Martínez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| |
Collapse
|
195
|
Timilsina AP, Raut BK, Huo C, Khadayat K, Budhathoki P, Ghimire M, Budhathoki R, Aryal N, Kim KH, Parajuli N. Metabolomics and molecular networking approach for exploring the anti-diabetic activity of medicinal plants. RSC Adv 2023; 13:30665-30679. [PMID: 37869390 PMCID: PMC10585453 DOI: 10.1039/d3ra04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolomics and molecular networking approaches have expanded rapidly in the field of biological sciences and involve the systematic identification, visualization, and high-throughput characterization of bioactive metabolites in natural products using sophisticated mass spectrometry-based techniques. The popularity of natural products in pharmaceutical therapies has been influenced by medicinal plants with a long history of ethnobotany and a vast collection of bioactive compounds. Here, we selected four medicinal plants Cleistocalyx operculatus, Terminalia chebula, Ficus lacor, and Ficus semicordata, the biochemical characteristics of which remain unclear owing to the inherent complexity of their plant metabolites. In this study, we aimed to evaluate the potential of these aforementioned plant extracts in inhibiting the enzymatic activity of α-amylase and α-glucosidase, respectively, followed by the annotation of secondary metabolites. The methanol extract of Ficus semicordata exhibited the highest α-amylase inhibition with an IC50 of 46.8 ± 1.8 μg mL-1, whereas the water fraction of Terminalia chebula fruits demonstrated the most significant α-glucosidase inhibition with an IC50 value of 1.07 ± 0.01 μg mL-1. The metabolic profiling of plant extracts was analyzed through Liquid Chromatography-Mass Spectrometry (LC-HRMS) of the active fractions, resulting in the annotation of 32 secondary metabolites. Furthermore, we applied the Global Natural Product Social Molecular Networking (GNPS) platform to evaluate the MS/MS data of Terminalia chebula (bark), revealing that there were 205 and 160 individual ion species observed as nodes in the methanol and ethyl acetate fractions, respectively. Twenty-two metabolites were tentatively identified from the network map, of which 11 compounds were unidentified during manual annotation.
Collapse
Affiliation(s)
- Arjun Prasad Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Bimal Kumar Raut
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Karan Khadayat
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Prakriti Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Mandira Ghimire
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Rabin Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Niraj Aryal
- Department of Biology, University of Florida Gainesville FL 32611 USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| |
Collapse
|
196
|
Corona LRD, Rodríguez MEM, Pérez LMA, Yerena AR, Martínez Preciado AH, Reyes-Becerril M. Immunostimulant effects of diet supplementation with yellow (Pouteria campechiana), white (Casimiroa edulis), and black (Diospyros digyna) sapote nanocapsules on laying hens: in vitro and in vivo study. Trop Anim Health Prod 2023; 55:360. [PMID: 37851183 DOI: 10.1007/s11250-023-03778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Poultry is commonly infected by different bacteria and parasites in the environment, resulting in increased morbidity and mortality, but immunostimulants have been enhancing non-specific defense mechanisms conferring laying hens' protection. For this purpose, the pulp of yellow (Pouteria campechiana), white (Casimiroa edulis), and black (Diospyros digyna) sapotes were nanoencapsulated (YWB-SN) and evaluated in laying hens' peripheral blood leukocytes to test their addition to the experimental diets at a concentration of 0.5% (5g/kg of dry food) for 1 month (with two samples at days 15 and 30). The YWB-SN were safe when exposed to peripheral blood leukocytes (PBLs). The in vitro experiment showed that these nanocapsules enhanced reactive oxygen species production, and B-SN stimulated phagocytosis activity. Concerning the proinflammatory cytokine (TNF-α) transcription, this gene was upregulated after W-SN stimulation, while B-SN upregulated the IgG gene expression significantly. IgM was upregulated with any YBW-SN in PBLs after 24 h of stimulation. The in vivo study showed a notable B-SN immunostimulation in serum and an upregulation of TNF-α, IgM, and IgG mRNA transcription. Therefore, this study provides a new result of the yellow, white, and black sapote nanocapsules as a functional food for the poultry industry, highlighting the black sapote Diospyros digyna immunostimulant effect.
Collapse
Affiliation(s)
- Lenin Rodolfo Díaz Corona
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430, Guadalajara, Jalisco, Mexico
| | - María Esther Macías Rodríguez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingeniería (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430, Guadalajara, Jalisco, Mexico
| | - Lina Marisol Arellano Pérez
- Departamento Académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur, Carretera al Sur km. 5.5, Col. Mezquitito, 23080, La Paz, B.C.S., Mexico
| | - Armando Romero Yerena
- Departamento Académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur, Carretera al Sur km. 5.5, Col. Mezquitito, 23080, La Paz, B.C.S., Mexico
| | - Alma H Martínez Preciado
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430, Guadalajara, Jalisco, Mexico
| | - Martha Reyes-Becerril
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, 23096, La Paz, B.C.S., Mexico.
| |
Collapse
|
197
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
198
|
Zhou L, Lin XY, Xue RY, Yang JL, Zhang YS, Zhou D, Li HB. Mechanistic Insights into Effects of Different Dietary Polyphenol Supplements on Arsenic Bioavailability, Biotransformation, and Toxicity Based on a Mouse Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15422-15431. [PMID: 37797956 DOI: 10.1021/acs.est.3c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Arsenic (As) exposure has been related to many diseases, including cancers. Given the antioxidant and anti-inflammatory properties, the dietary supplementation of polyphenols may alleviate As toxicity. Based on a mouse bioassay, this study investigated the effects of chlorogenic acid (CA), quercetin (QC), tannic acid (TA), resveratrol (Res), and epigallocatechin gallate (EGCG) on As bioavailability, biotransformation, and toxicity. Intake of CA, QC, and EGCG significantly (p < 0.05) increased total As concentrations in liver (0.48-0.58 vs 0.27 mg kg-1) and kidneys (0.72-0.93 vs 0.59 mg kg-1) compared to control mice. Upregulated intestinal expression of phosphate transporters with QC and EGCG and proliferation of Lactobacillus in the gut of mice treated with CA and QC were observed, facilitating iAsV absorption via phosphate transporters and intestinal As solubility via organic acid metabolites. Although As bioavailability was elevated, serum levels of alpha fetoprotein and carcinoembryonic antigen of mice treated with all five polyphenols were reduced by 13.1-16.1% and 9.83-17.5%, suggesting reduced cancer risk. This was mainly due to higher DMAV (52.1-67.6% vs 31.4%) and lower iAsV contribution (4.95-10.7% vs 27.9%) in liver of mice treated with polyphenols. This study helps us develop dietary strategies to lower As toxicity.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
199
|
Chang SS, Chen LH, Huang KC, Huang SW, Chang CC, Liao KW, Hu EC, Chen YP, Chen YW, Hsu PC, Huang HY. Plant-based polyphenol rich protein supplementation attenuated skeletal muscle loss and lowered the LDL level via gut microbiota remodeling in Taiwan's community-dwelling elderly. Food Funct 2023; 14:9407-9418. [PMID: 37795525 DOI: 10.1039/d3fo02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Sarcopenia, characterized by muscle loss, negatively affects the elderly's physical activity and survival. Enhancing protein and polyphenol intake, possibly through the supplementation of fermented black soybean koji product (BSKP), may alleviate sarcopenia by addressing anabolic deficiencies and gut microbiota dysbiosis because of high contents of polyphenols and protein in BSKP. This study aimed to examine the effects of long-term supplementation with BSKP on mitigating sarcopenia in the elderly and the underlying mechanisms. BSKP was given to 46 participants over 65 years old with early sarcopenia daily for 10 weeks. The participants' physical condition, serum biochemistry, inflammatory cytokines, antioxidant activities, microbiota composition, and metabolites in feces were evaluated both before and after the intervention period. BSKP supplementation significantly increased the appendicular skeletal muscle mass index and decreased the low-density lipoprotein level. BSKP did not significantly alter the levels of inflammatory factors, but significantly increased the activity of antioxidant enzymes. BSKP changed the beta diversity of gut microbiota and enhanced the relative abundance of Ruminococcaceae_UCG_013, Lactobacillus_murinus, Algibacter, Bacillus, Gordonibacter, Porphyromonas, and Prevotella_6. Moreover, BSKP decreased the abundance of Akkermansia and increased the fecal levels of butyric acid. Positive correlations were observed between the relative abundance of BSKP-enriched bacteria and the levels of serum antioxidant enzymes and fecal short chain fatty acids (SCFAs), and Gordonibacter correlated negatively with serum low-density lipoprotein. In summary, BSKP attenuated age-related sarcopenia by inducing antioxidant enzymes and SCFAs via gut microbiota regulation. Therefore, BSKP holds potential as a high-quality nutrient source for Taiwan's elderly, especially in conditions such as sarcopenia.
Collapse
Affiliation(s)
- Shy-Shin Chang
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Li-Han Chen
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - En-Chi Hu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Po-Chi Hsu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Hui-Yu Huang
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
200
|
Shubina VS, Kozina VI, Shatalin YV. A Comparative Study of the Inhibitory Effect of Some Flavonoids and a Conjugate of Taxifolin with Glyoxylic Acid on the Oxidative Burst of Neutrophils. Int J Mol Sci 2023; 24:15068. [PMID: 37894747 PMCID: PMC10606308 DOI: 10.3390/ijms242015068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
During the storage, processing, and digestion of flavonoid-rich foods and beverages, a condensation of flavonoids with toxic carbonyl compounds occurs. The effect of the resulting products on cells remains largely unknown. The aim of the present study was to evaluate the effects of quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin, and a condensation product of taxifolin with glyoxylic acid on the oxidative burst of neutrophils. It was found that the flavonoids and the condensation product inhibited the total production of ROS. Flavonoids decreased both the intra and extracellular ROS production. The condensation product had no effect on intracellular ROS production but effectively inhibited the extracellular production of ROS. Thus, the condensation of flavonoids with toxic carbonyl compounds may lead to the formation of compounds exhibiting potent inhibitory effects on the oxidative burst of neutrophils. The data also suggest that, during these reactions, the influence of a fraction of flavonoids and their polyphenolic derivatives on cellular functions may change. On the whole, the results of the study provide a better understanding of the effects of polyphenols on human health. In addition, these results reveal the structure-activity relationship of these polyphenols and may be useful in a search for new therapeutic agents against diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Victoria S. Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | | | - Yuri V. Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|