151
|
Lin L, Lai Z, Yang H, Zhang J, Qi W, Xie F, Mao S. Genome-centric investigation of bile acid metabolizing microbiota of dairy cows and associated diet-induced functional implications. THE ISME JOURNAL 2023; 17:172-184. [PMID: 36261508 PMCID: PMC9750977 DOI: 10.1038/s41396-022-01333-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Although the importance of bile acid (BA)-related microbial strains and enzymes is increasingly recognized for monogastric animals, a lack of knowledge about BA metabolism in dairy cows limits functional applications aimed at the targeted modulation of microbe-host interactions for animal production and health. In the present study, 108 content samples from six intestinal regions of dairy cows were used for shotgun metagenomic sequencing. Overall, 372 high-quality metagenome-assembled genomes (MAGs) were involved in BA deconjugation, oxidation, and dehydroxylation pathways. Furthermore, the BA-metabolizing microbiome predominately occurred in the large intestine, resulting in the accumulation of secondary unconjugated BAs. Comparative genomic analysis revealed that the bile salt hydrolase (BSH)-carrying microbial populations managed with the selective environment of the dairy cow intestine by adopting numerous host mucin glycan-degrading abilities. A sequence similarity network analysis classified 439 BSH homologs into 12 clusters and identified different clusters with diverse evolution, taxonomy, signal peptides, and ecological niches. Our omics data further revealed that the strains of Firmicutes bacterium CAG-110 processed the increased abundance of BSHs from Cluster 1, coinciding with the changes in the colon cholic acid concentration after grain introduction, and were intricately related to intestinal inflammation. This study is the first to use a genome-centric approach and whole intestine-targeted metabolomics to reveal microbial BA metabolism and its diet-induced functional implications in dairy cows. These findings provide insight into the manipulation of intestinal microorganisms for improving host health.
Collapse
Affiliation(s)
- Limei Lin
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zheng Lai
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Huisheng Yang
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiyou Zhang
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weibiao Qi
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fei Xie
- grid.27871.3b0000 0000 9750 7019Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China ,grid.27871.3b0000 0000 9750 7019Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. .,Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
152
|
Teefy BB, Adler A, Xu A, Hsu K, Singh PP, Benayoun BA. Dynamic regulation of gonadal transposon control across the lifespan of the naturally short-lived African turquoise killifish. Genome Res 2023; 33:141-153. [PMID: 36577520 PMCID: PMC9977155 DOI: 10.1101/gr.277301.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Although germline cells are considered to be functionally "immortal," both the germline and supporting somatic cells in the gonad within an organism experience aging. With increased age at parenthood, the age-related decline in reproductive success has become an important biological issue for an aging population. However, molecular mechanisms underlying reproductive aging across sexes in vertebrates remain poorly understood. To decipher molecular drivers of vertebrate gonadal aging across sexes, we perform longitudinal characterization of the gonadal transcriptome throughout the lifespan in the naturally short-lived African turquoise killifish (Nothobranchius furzeri). By combining mRNA-seq and small RNA-seq from 26 individuals, we characterize the aging gonads of young-adult, middle-aged, and old female and male fish. We analyze changes in transcriptional patterns of genes, transposable elements (TEs), and piRNAs. We find that testes seem to undergo only marginal changes during aging. In contrast, in middle-aged ovaries, the time point associated with peak female fertility in this strain, PIWI pathway components are transiently down-regulated, TE transcription is elevated, and piRNA levels generally decrease, suggesting that egg quality may already be declining at middle-age. Furthermore, we show that piRNA ping-pong biogenesis declines steadily with age in ovaries, whereas it is maintained in aging testes. To our knowledge, this data set represents the most comprehensive transcriptomic data set for vertebrate gonadal aging. This resource also highlights important pathways that are regulated during reproductive aging in either ovaries or testes, which could ultimately be leveraged to help restore aspects of youthful reproductive function.
Collapse
Affiliation(s)
- Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Ari Adler
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Alan Xu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Katelyn Hsu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA.,Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California 90089, USA.,USC Stem Cell Initiative, Los Angeles, California 90089, USA
| |
Collapse
|
153
|
Li H, Yin S, Wang L, Xu N, Liu L. Transcription factor PagLBD21 functions as a repressor of secondary xylem development in Populus. FORESTRY RESEARCH 2022; 2:19. [PMID: 39525408 PMCID: PMC11524276 DOI: 10.48130/fr-2022-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 11/16/2024]
Abstract
During secondary growth in trees, xylem cells differentiated from cambium cells begin to synthesize secondary cell walls that are primarily composed of cellulose, hemicellulose and lignin, and are deposited between primary cell walls and plasma membranes, leading to wood formation. Identification of regulatory genes functioning during this developmental process is valuable for increasing wood production. In this study, we functionally characterized an LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factor PagLBD21 as a repressor of secondary xylem development in Populus. Compared to wild type plants, transgenic plants overexpressing PagLBD21 (PagLBD21OE) exhibited decreased xylem widths in cross-sections. Consistent with the functional analysis, RNA sequencing (RNA-seq) analysis revealed that genes functioning in xylem development and secondary cell wall biosynthesis pathways were significantly down-regulated in PagLBD21OE plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genome-wide target genes of PagLBD21. Furthermore, we compared the RNA-seq and DAP-seq datasets of PagLBD21 and PagLBD3, and the results showed that there was a significant overlap between their target genes, suggesting these two LBD transcription factors are functionally redundant during secondary growth.
Collapse
Affiliation(s)
- Hao Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shiguang Yin
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Linjing Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Na Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Lijun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian 271018, Shandong, China
| |
Collapse
|
154
|
Immonen E, Sayadi A, Stojković B, Savković U, Đorđević M, Liljestrand-Rönn J, Wiberg RAW, Arnqvist G. Experimental Life History Evolution Results in Sex-specific Evolution of Gene Expression in Seed Beetles. Genome Biol Evol 2022; 15:6948356. [PMID: 36542472 PMCID: PMC9830990 DOI: 10.1093/gbe/evac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The patterns of reproductive timing and senescence vary within and across species owing to differences in reproductive strategies, but our understanding of the molecular underpinnings of such variation is incomplete. This is perhaps particularly true for sex differences. We investigated the evolution of sex-specific gene expression associated with life history divergence in replicated populations of the seed beetle Acanthoscelides obtectus, experimentally evolving under (E)arly or (L)ate life reproduction for >200 generations which has resulted in strongly divergent life histories. We detected 1,646 genes that were differentially expressed in E and L lines, consistent with a highly polygenic basis of life history evolution. Only 30% of differentially expressed genes were similarly affected in males and females. The evolution of long life was associated with significantly reduced sex differences in expression, especially in non-reproductive tissues. The expression differences were overall more pronounced in females, in accordance with their greater phenotypic divergence in lifespan. Functional enrichment analysis revealed differences between E and L beetles in gene categories previously implicated in aging, such as mitochondrial function and defense response. The results show that divergent life history evolution can be associated with profound changes in gene expression that alter the transcriptome in a sex-specific way, highlighting the importance of understanding the mechanisms of aging in each sex.
Collapse
Affiliation(s)
| | - Ahmed Sayadi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Biljana Stojković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, Serbia
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - R Axel W Wiberg
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
155
|
Eliash N, Suenaga M, Mikheyev AS. Vector-virus interaction affects viral loads and co-occurrence. BMC Biol 2022; 20:284. [PMID: 36527054 PMCID: PMC9758805 DOI: 10.1186/s12915-022-01463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology. RESULTS Using a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector's transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector's gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load. CONCLUSIONS Combined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course.
Collapse
Affiliation(s)
- Nurit Eliash
- grid.18098.380000 0004 1937 0562Shamir Research Institute, University of Haifa, Katzrin, Israel ,grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Miyuki Suenaga
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Alexander S. Mikheyev
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan ,grid.1001.00000 0001 2180 7477Australian National University, Canberra, ACT, 2600 Australia
| |
Collapse
|
156
|
Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas. Nat Commun 2022; 13:7637. [PMID: 36496409 PMCID: PMC9741628 DOI: 10.1038/s41467-022-35262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Although mitochondrial activity is critical for angiogenesis, its mechanism is not entirely clear. Here we show that mice with endothelial deficiency of any one of the three nuclear genes encoding for mitochondrial proteins, transcriptional factor (TFAM), respiratory complex IV component (COX10), or redox protein thioredoxin 2 (TRX2), exhibit retarded retinal vessel growth and arteriovenous malformations (AVM). Single-cell RNA-seq analyses indicate that retinal ECs from the three mutant mice have increased TGFβ signaling and altered gene expressions associated with vascular maturation and extracellular matrix, correlating with vascular malformation and increased basement membrane thickening in microvesels of mutant retinas. Mechanistic studies suggest that mitochondrial dysfunction from Tfam, Cox10, or Trx2 depletion induces a mitochondrial localization and MAPKs-mediated phosphorylation of SMAD2, leading to enhanced ALK5-SMAD2 signaling. Importantly, pharmacological blockade of ALK5 signaling or genetic deficiency of SMAD2 prevented retinal vessel growth retardation and AVM in all three mutant mice. Our studies uncover a novel mechanism whereby mitochondrial dysfunction via the ALK5-SMAD2 signaling induces retinal vascular malformations, and have therapeutic values for the alleviation of angiogenesis-associated human retinal diseases.
Collapse
|
157
|
Zhang H, Li X, Zhang T, Zhou Q, Zhang C. Establishment and validation of a predictive model of preeclampsia based on transcriptional signatures of 43 genes in decidua basalis and peripheral blood. BMC Bioinformatics 2022; 23:527. [PMID: 36476092 PMCID: PMC9730617 DOI: 10.1186/s12859-022-05086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) has an increasing incidence worldwide, and there is no gold standard for prediction. Recent progress has shown that abnormal decidualization and impaired vascular remodeling are essential to PE pathogenesis. Therefore, it is of great significance to analyze the decidua basalis and blood changes of PE to explore new methods. Here, we performed weighted gene co-expression network analysis based on 9553 differentially expressed genes of decidua basalis data (GSE60438 includes 25 cases of PE and 23 non-cases) from Gene Expression Omnibus to screen relevant module-eigengenes (MEs). Among them, MEblue and MEgrey are the most correlated with PE, which contains 371 core genes. Subsequently, we applied the logistic least absolute shrinkage and selection operator regression, screened 43 genes most relevant to prediction from the intersections of the 371 genes and training set (GSE48424 includes 18 cases of PE and 18 non-cases) genes, and built a predictive model. The specificity and sensitivity are illustrated by receiver operating characteristic curves, and the stability was verified by two validation sets (GSE86200 includes 12 cases of PE and 48 non-cases, and GSE85307 includes 47 cases of PE and 110 non-cases). The results demonstrated that our predictive model shows good predictions, with an area under the curve of 0.991 for the training set, 0.874 and 0.986 for the validation sets. Finally, we found the 43 key marker genes in the model are closely associated with the clinically accepted predictive molecules, including FLT1, PIGF, ENG and VEGF. Therefore, this predictive model provides a potential approach for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Hongya Zhang
- grid.16821.3c0000 0004 0368 8293Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135 China ,grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China ,grid.452927.f0000 0000 9684 550XShanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135 China
| | - Xuexiang Li
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China
| | - Tianying Zhang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China
| | - Qianhui Zhou
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China
| | - Cong Zhang
- grid.16821.3c0000 0004 0368 8293Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135 China ,grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan, 250014 Shandong China ,grid.452927.f0000 0000 9684 550XShanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135 China
| |
Collapse
|
158
|
Kowallik V, Das A, Mikheyev AS. Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Front Microbiol 2022; 13:1030771. [PMID: 36532456 PMCID: PMC9751584 DOI: 10.3389/fmicb.2022.1030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 04/12/2024] Open
Abstract
Microbiomes can enhance the health, fitness and even evolutionary potential of their hosts. Many organisms propagate favorable microbiomes fully or partially via vertical transmission. In the long term, such co-propagation can lead to the evolution of specialized microbiomes and functional interdependencies with the host. However, microbiomes are vulnerable to environmental stressors, particularly anthropogenic disturbance such as antibiotics, resulting in dysbiosis. In cases where microbiome transmission occurs, a disrupted microbiome may then become a contagious pathology causing harm to the host across generations. We tested this hypothesis using the specialized socially transmitted gut microbiome of honey bees as a model system. By experimentally passaging tetracycline-treated microbiomes across worker 'generations' we found that an environmentally acquired dysbiotic phenotype is heritable. As expected, the antibiotic treatment disrupted the microbiome, eliminating several common and functionally important taxa and strains. When transmitted, the dysbiotic microbiome harmed the host in subsequent generations. Particularly, naïve bees receiving antibiotic-altered microbiomes died at higher rates when challenged with further antibiotic stress. Bees with inherited dysbiotic microbiomes showed alterations in gene expression linked to metabolism and immunity, among other pathways, suggesting effects on host physiology. These results indicate that there is a possibility that sublethal exposure to chemical stressors, such as antibiotics, may cause long-lasting changes to functional host-microbiome relationships, possibly weakening the host's progeny in the face of future ecological challenges. Future studies under natural conditions would be important to examine the extent to which negative microbiome-mediated phenotypes could indeed be heritable and what role this may play in the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Vienna Kowallik
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
| | - Ashutosh Das
- Australian National University, Canberra, ACT, Australia
- Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
- Australian National University, Canberra, ACT, Australia
| |
Collapse
|
159
|
Ares Á, Sakai S, Sasaki T, Shimamura S, Mitarai S, Nunoura T. Sequestration and efflux largely account for cadmium and copper resistance in the deep-sea Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Environ Microbiol 2022; 24:6144-6163. [PMID: 36284406 PMCID: PMC10092412 DOI: 10.1111/1462-2920.16255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments.
Collapse
Affiliation(s)
- Ángela Ares
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Sanae Sakai
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Toshio Sasaki
- Imaging section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Shigeru Shimamura
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
160
|
Gervais O, Papadopoulou A, Gratacap R, Hillestad B, Tinch AE, Martin SAM, Houston RD, Robledo D. Transcriptomic response to ISAV infection in the gills, head kidney and spleen of resistant and susceptible Atlantic salmon. BMC Genomics 2022; 23:775. [PMID: 36443659 PMCID: PMC9703674 DOI: 10.1186/s12864-022-09007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.
Collapse
Affiliation(s)
- Ophélie Gervais
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Athina Papadopoulou
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Remi Gratacap
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Alan E. Tinch
- Benchmark Genetics, Penicuik, UK ,The Center for Aquaculture Technologies, San Diego, USA
| | - Samuel A. M. Martin
- grid.7107.10000 0004 1936 7291School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ross D. Houston
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Diego Robledo
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
161
|
Martinez ME, Pinz I, Preda M, Norton CR, Gridley T, Hernandez A. DIO3 protects against thyrotoxicosis-derived cranio-encephalic and cardiac congenital abnormalities. JCI Insight 2022; 7:e161214. [PMID: 36166296 PMCID: PMC9675556 DOI: 10.1172/jci.insight.161214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Maternal hyperthyroidism is associated with an increased incidence of congenital abnormalities at birth, but it is not clear which of these defects arise from a transient developmental excess of thyroid hormone and which depend on pregnancy stage, antithyroid drug choice, or unwanted subsequent fetal hypothyroidism. To address this issue, we studied a mouse model of comprehensive developmental thyrotoxicosis secondary to a lack of type 3 deiodinase (DIO3). Dio3-/- mice exhibited reduced neonatal viability on most genetic backgrounds and perinatal lethality on a C57BL/6 background. Dio3-/- mice exhibited severe growth retardation during the neonatal period and cartilage loss. Mice surviving after birth manifested brain and cranial dysmorphisms, severe hydrocephalus, choanal atresia, and cleft palate. These abnormalities were noticeable in C57BL/6J Dio3-/- mice at fetal stages, in addition to a thyrotoxic heart with septal defects and thin ventricular walls. Our findings stress the protecting role of DIO3 during development and support the hypothesis that human congenital abnormalities associated with hyperthyroidism during pregnancy are caused by transient thyrotoxicosis before clinical intervention. Our results also suggest thyroid hormone involvement in the etiology of idiopathic pathologies including cleft palate, choanal atresia, Chiari malformations, Kaschin-Beck disease, and Temple and other cranio-encephalic and heart syndromes.
Collapse
Affiliation(s)
- M. Elena Martinez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Ilka Pinz
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Marilena Preda
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Christine R. Norton
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
| | - Thomas Gridley
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Arturo Hernandez
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
162
|
Cavalcante LTDF, da Fonseca GC, Amado Leon LA, Salvio AL, Brustolini OJ, Gerber AL, Guimarães APDC, Marques CAB, Fernandes RA, Ramos Filho CHF, Kader RL, Pimentel Amaro M, da Costa Gonçalves JP, Vieira Alves-Leon S, Vasconcelos ATR. Buffy Coat Transcriptomic Analysis Reveals Alterations in Host Cell Protein Synthesis and Cell Cycle in Severe COVID-19 Patients. Int J Mol Sci 2022; 23:13588. [PMID: 36362378 PMCID: PMC9659271 DOI: 10.3390/ijms232113588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2023] Open
Abstract
Transcriptome studies have reported the dysregulation of cell cycle-related genes and the global inhibition of host mRNA translation in COVID-19 cases. However, the key genes and cellular mechanisms that are most affected by the severe outcome of this disease remain unclear. For this work, the RNA-seq approach was used to study the differential expression in buffy coat cells of two groups of people infected with SARS-CoV-2: (a) Mild, with mild symptoms; and (b) SARS (Severe Acute Respiratory Syndrome), who were admitted to the intensive care unit with the severe COVID-19 outcome. Transcriptomic analysis revealed 1009 up-regulated and 501 down-regulated genes in the SARS group, with 10% of both being composed of long non-coding RNA. Ribosome and cell cycle pathways were enriched among down-regulated genes. The most connected proteins among the differentially expressed genes involved transport dysregulation, proteasome degradation, interferon response, cytokinesis failure, and host translation inhibition. Furthermore, interactome analysis showed Fibrillarin to be one of the key genes affected by SARS-CoV-2. This protein interacts directly with the N protein and long non-coding RNAs affecting transcription, translation, and ribosomal processes. This work reveals a group of dysregulated processes, including translation and cell cycle, as key pathways altered in severe COVID-19 outcomes.
Collapse
Affiliation(s)
| | | | - Luciane Almeida Amado Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Andreza Lemos Salvio
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Otávio José Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Carla Augusta Barreto Marques
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Renan Amphilophio Fernandes
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | | | - Rafael Lopes Kader
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Marisa Pimentel Amaro
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Soniza Vieira Alves-Leon
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| |
Collapse
|
163
|
Tarca AL, Romero R, Bhatti G, Gotsch F, Done B, Gudicha DW, Gallo DM, Jung E, Pique-Regi R, Berry SM, Chaiworapongsa T, Gomez-Lopez N. Human Plasma Proteome During Normal Pregnancy. J Proteome Res 2022; 21:2687-2702. [PMID: 36154181 PMCID: PMC10445406 DOI: 10.1021/acs.jproteome.2c00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human plasma proteome is underexplored despite its potential value for monitoring health and disease. Herein, using a recently developed aptamer-based platform, we profiled 7288 proteins in 528 plasma samples from 91 normal pregnancies (Gene Expression Omnibus identifier GSE206454). The coefficient of variation was <20% for 93% of analytes (median 7%), and a cross-platform correlation for selected key angiogenic and anti-angiogenic proteins was significant. Gestational age was associated with changes in 953 proteins, including highly modulated placenta- and decidua-specific proteins, and they were enriched in biological processes including regulation of growth, angiogenesis, immunity, and inflammation. The abundance of proteins corresponding to RNAs specific to populations of cells previously described by single-cell RNA-Seq analysis of the placenta was highly modulated throughout gestation. Furthermore, machine learning-based prediction of gestational age and of time from sampling to term delivery compared favorably with transcriptomic models (mean absolute error of 2 weeks). These results suggested that the plasma proteome may provide a non-invasive readout of placental cellular dynamics and serve as a blueprint for investigating obstetrical disease.
Collapse
Affiliation(s)
- Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan48202, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan48103, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan48824, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
- Detroit Medical Center, Detroit, Michigan48201, United States
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, University of Valle 13, Cali, Valle del Cauca100-00, Colombia
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan48202, United States
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and, Detroit, Michigan48201, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan48201, United States
| |
Collapse
|
164
|
Chou EL, Chaffin M, Simonson B, Pirruccello JP, Akkad AD, Nekoui M, Cardenas CLL, Bedi KC, Nash C, Juric D, Stone JR, Isselbacher EM, Margulies KB, Klattenhoff C, Ellinor PT, Lindsay ME. Aortic Cellular Diversity and Quantitative Genome-Wide Association Study Trait Prioritization Through Single-Nuclear RNA Sequencing of the Aneurysmal Human Aorta. Arterioscler Thromb Vasc Biol 2022; 42:1355-1374. [PMID: 36172868 PMCID: PMC9613617 DOI: 10.1161/atvbaha.122.317953] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mural cells in ascending aortic aneurysms undergo phenotypic changes that promote extracellular matrix destruction and structural weakening. To explore this biology, we analyzed the transcriptional features of thoracic aortic tissue. METHODS Single-nuclear RNA sequencing was performed on 13 samples from human donors, 6 with thoracic aortic aneurysm, and 7 without aneurysm. Individual transcriptomes were then clustered based on transcriptional profiles. Clusters were used for between-disease differential gene expression analyses, subcluster analysis, and analyzed for intersection with genetic aortic trait data. RESULTS We sequenced 71 689 nuclei from human thoracic aortas and identified 14 clusters, aligning with 11 cell types, predominantly vascular smooth muscle cells (VSMCs) consistent with aortic histology. With unbiased methodology, we found 7 vascular smooth muscle cell and 6 fibroblast subclusters. Differentially expressed genes analysis revealed a vascular smooth muscle cell group accounting for the majority of differential gene expression. Fibroblast populations in aneurysm exhibit distinct behavior with almost complete disappearance of quiescent fibroblasts. Differentially expressed genes were used to prioritize genes at aortic diameter and distensibility genome-wide association study loci highlighting the genes JUN, LTBP4 (latent transforming growth factor beta-binding protein 1), and IL34 (interleukin 34) in fibroblasts, ENTPD1, PDLIM5 (PDZ and LIM domain 5), ACTN4 (alpha-actinin-4), and GLRX in vascular smooth muscle cells, as well as LRP1 in macrophage populations. CONCLUSIONS Using nuclear RNA sequencing, we describe the cellular diversity of healthy and aneurysmal human ascending aorta. Sporadic aortic aneurysm is characterized by differential gene expression within known cellular classes rather than by the appearance of novel cellular forms. Single-nuclear RNA sequencing of aortic tissue can be used to prioritize genes at aortic trait loci.
Collapse
Affiliation(s)
- Elizabeth L. Chou
- Division of Vascular and Endovascular Surgery,
Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Bridget Simonson
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - James P. Pirruccello
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Christian Lacks Lino Cardenas
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Kenneth C. Bedi
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Craig Nash
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
| | - Dejan Juric
- Cancer Center, Massachusetts General Hospital, Boston,
Massachusetts, USA
| | - James R. Stone
- Department of Pathology, Massachusetts General
Hospital, Boston, Massachusetts, USA
| | - Eric M. Isselbacher
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA 19104
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge,
MA, USA 02142
| | - Patrick T. Ellinor
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Precision Cardiology Laboratory, The Broad Institute,
Cambridge, MA, USA 02142
- Demoulas Center for Cardiac Arrhythmias, Massachusetts
General Hospital, Boston, Massachusetts, USA
| | - Mark E. Lindsay
- Cardiology Division, Massachusetts General Hospital,
Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General
Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute,
Cambridge, Massachusetts, USA
- Thoracic Aortic Center, Massachusetts General Hospital,
Boston, Massachusetts, USA
| |
Collapse
|
165
|
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol Ecol 2022; 31:5765-5783. [PMID: 36112081 PMCID: PMC9827990 DOI: 10.1111/mec.16696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes is central to our knowledge of adaptive responses to local conditions and environmental change, particularly in species with such low population genetic diversity that it is likely to limit their evolutionary potential. A first step towards uncovering the molecular mechanisms underlying population-specific responses to the environment is to carry out environmental association studies. We associated climatic variation with genetic, epigenetic and microbiome variation in populations of a social spider with extremely low standing genetic diversity. We identified genetic variants that are associated strongly with environmental variation, particularly with average temperature, a pattern consistent with local adaptation. Variation in DNA methylation in many genes was strongly correlated with a wide set of climate parameters, thereby revealing a different pattern of associations than that of genetic variants, which show strong correlations to a more restricted range of climate parameters. DNA methylation levels were largely independent of cis-genetic variation and of overall genetic population structure, suggesting that DNA methylation can work as an independent mechanism. Microbiome composition also correlated with environmental variation, but most strong associations were with precipitation-related climatic factors. Our results suggest a role for both genetic and nongenetic mechanisms in shaping phenotypic responses to local environments.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Shenglin Liu
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of BiosciencesUniversity of ExeterPenryn CampusUK
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Koen J. F. Verhoeven
- Terrestrial Ecology DepartmentNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Jesper Bechsgaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Trine Bilde
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
166
|
Arnqvist G, Sayadi A. A possible genomic footprint of polygenic adaptation on population divergence in seed beetles? Ecol Evol 2022; 12:e9440. [PMID: 36311399 PMCID: PMC9608792 DOI: 10.1002/ece3.9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Efforts to unravel the genomic basis of incipient speciation are hampered by a mismatch between our toolkit and our understanding of the ecology and genetics of adaptation. While the former is focused on detecting selective sweeps involving few independently acting or linked speciation genes, the latter states that divergence typically occurs in polygenic traits under stabilizing selection. Here, we ask whether a role of stabilizing selection on polygenic traits in population divergence may be unveiled by using a phenotypically informed integrative approach, based on genome‐wide variation segregating in divergent populations. We compare three divergent populations of seed beetles (Callosobruchus maculatus) where previous work has demonstrated a prominent role for stabilizing selection on, and population divergence in, key life history traits that reflect rate‐dependent metabolic processes. We derive and assess predictions regarding the expected pattern of covariation between genetic variation segregating within populations and genetic differentiation between populations. Population differentiation was considerable (mean FST = 0.23–0.26) and was primarily built by genes showing high selective constraints and an imbalance in inferred selection in different populations (positive Tajima's DNS in one and negative in one), and this set of genes was enriched with genes with a metabolic function. Repeatability of relative population differentiation was low at the level of individual genes but higher at the level of broad functional classes, again spotlighting metabolic genes. Absolute differentiation (dXY) showed a very different general pattern at this scale of divergence, more consistent with an important role for genetic drift. Although our exploration is consistent with stabilizing selection on polygenic metabolic phenotypes as an important engine of genome‐wide relative population divergence and incipient speciation in our study system, we note that it is exceedingly difficult to firmly exclude other scenarios.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Rheumatology, Department of Medical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
167
|
Sadovska L, Zayakin P, Bajo-Santos C, Endzeliņš E, Auders J, Keiša L, Jansons J, Lietuvietis V, Linē A. Effects of urinary extracellular vesicles from prostate cancer patients on the transcriptomes of cancer-associated and normal fibroblasts. BMC Cancer 2022; 22:1055. [PMID: 36224527 PMCID: PMC9555094 DOI: 10.1186/s12885-022-10107-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that cancer-derived extracellular vesicles (EVs) alter the phenotype and functions of fibroblasts and trigger the reprogramming of normal fibroblasts into cancer-associated fibroblasts (CAFs). Here, we for the first time studied the effects of urinary EVs from PC patients and healthy males on the transcriptional landscape of prostate CAFs and normal foreskin fibroblasts. METHODS Patient-derived prostate fibroblast primary cultures PCF-54 and PCF-55 were established from two specimens of PC tissues. EVs were isolated from urine samples of 3 patients with PC and 2 healthy males and used for the treatment of prostate fibroblast primary cultures and normal foreskin fibroblasts. The EV-treated fibroblasts were subjected to RNA sequencing analysis. RESULTS RNA sequencing analysis showed that the fibroblast cultures differed significantly in their response to urinary EVs. The transcriptional response of foreskin fibroblasts to the urinary EVs isolated from PC patients and healthy controls was very similar and mostly related to the normal functions of fibroblasts. On the contrary, PCF-54 cells responded very differently - EVs from PC patients elicited transcriptional changes related to the regulation of the cell division and chromosome segregation, whereas EVs from healthy males affected mitochondrial respiration. In PCF-55 cells, EVs from both, PC-patients and controls induced the expression of a number of chemokines such as CCL2, CCL13, CXCL1, CXCL8, whereas pathways related to regulation of apoptotic signaling and production of cell adhesion molecules were triggered specifically by EVs from PC patients. CONCLUSION This study demonstrates that urinary EVs from PC patients and healthy controls elicit distinct transcriptional responses in prostate CAFs and supports the idea that EVs contribute to the generation of functional heterogeneity of CAFs. Moreover, this study suggests that the changes in the gene expression pattern in EV recipient cells might serve as a novel type of functional cancer biomarkers.
Collapse
Affiliation(s)
- Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Cristina Bajo-Santos
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Jānis Auders
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Faculty of Medicine, University of Latvia, Raina blvd. 19, 1586, LV, Riga, Latvia
| | - Laura Keiša
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Faculty of Medicine, University of Latvia, Raina blvd. 19, 1586, LV, Riga, Latvia
| | - Juris Jansons
- Riga Stradiņš University, Dzirciema Str 16, LV-1007, Riga, Latvia
| | | | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.
| |
Collapse
|
168
|
Orf I, Tenenboim H, Omranian N, Nikoloski Z, Fernie AR, Lisec J, Brotman Y, Bromke MA. Transcriptomic and Metabolomic Analysis of a Pseudomonas-Resistant versus a Susceptible Arabidopsis Accession. Int J Mol Sci 2022; 23:ijms232012087. [PMID: 36292941 PMCID: PMC9603445 DOI: 10.3390/ijms232012087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.
Collapse
Affiliation(s)
- Isabel Orf
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hezi Tenenboim
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry, Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (Y.B.); (M.A.B.)
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, ul. Chałubińskiego 10, 50-367 Wrocław, Poland
- Correspondence: (Y.B.); (M.A.B.)
| |
Collapse
|
169
|
Beckstette M, Lu CW, Herppich S, Diem EC, Ntalli A, Ochel A, Kruse F, Pietzsch B, Neumann K, Huehn J, Floess S, Lochner M. Profiling of epigenetic marker regions in murine ILCs under homeostatic and inflammatory conditions. J Exp Med 2022; 219:213389. [PMID: 35938981 PMCID: PMC9386974 DOI: 10.1084/jem.20210663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node–derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology. Methylation levels of the marker regions and expression of the associated genes were strongly correlated, indicating their functional relevance. Comparison with T helper cell methylomes revealed clear lineage differences, despite partial similarities in the methylation of specific ILC marker regions. IL-33–mediated challenge affected methylation of ILC2 epigenetic marker regions in the liver, while remaining relatively stable in the lung. In our study, we identified a set of epigenetic markers that can serve as a tool to study phenotypic and functional properties of ILCs.
Collapse
Affiliation(s)
- Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, Bielefeld, Germany
| | - Chia-Wen Lu
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elia C Diem
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Anna Ntalli
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Lochner
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
170
|
Liberti J, Kay T, Quinn A, Kesner L, Frank ET, Cabirol A, Richardson TO, Engel P, Keller L. The gut microbiota affects the social network of honeybees. Nat Ecol Evol 2022; 6:1471-1479. [PMID: 35995848 PMCID: PMC7613669 DOI: 10.1038/s41559-022-01840-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/27/2022] [Indexed: 01/14/2023]
Abstract
The gut microbiota influences animal neurodevelopment and behaviour but has not previously been documented to affect group-level properties of social organisms. Here, we use honeybees to probe the effect of the gut microbiota on host social behaviour. We found that the microbiota increased the rate and specialization of head-to-head interactions between bees. Microbiota colonization was associated with higher abundances of one-third of the metabolites detected in the brain, including amino acids with roles in synaptic transmission and brain energetic function. Some of these metabolites were significant predictors of the number of social interactions. Microbiota colonization also affected brain transcriptional processes related to amino acid metabolism and epigenetic modifications in a brain region involved in sensory perception. These results demonstrate that the gut microbiota modulates the emergent colony social network of honeybees and suggest changes in chromatin accessibility and amino acid biosynthesis as underlying processes.
Collapse
Affiliation(s)
- Joanito Liberti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Andrew Quinn
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lucie Kesner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Erik T Frank
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thomas O Richardson
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
171
|
Claudin-6 increases SNAI1, NANOG and SOX2 gene expression in human gastric adenocarcinoma AGS cells. Mol Biol Rep 2022; 49:11663-11674. [PMID: 36169897 DOI: 10.1007/s11033-022-07976-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gastric cancer is a heterogeneous disease associated to deregulated gastric epithelia tight junction barrier function and di novo expression of claudin-6; these changes are associated with epithelial-mesenchymal transition, enhanced invasiveness, metastatic progression, resistance to chemotherapy, and poor prognosis. Gastric cancer stem cells represent a rare population of cells within the tumor implicated in tumor growth and higher tumorigenic capacity. The possible relation between claudin-6 expression and the expression of some markers associated to epithelial mesenchymal transition and cancer stem cells in gastric cancer cells have never been explored. METHODS AND RESULTS CD44, CD24, Twist, Villin, DCLK1, claudin-6, NANOG, E-Cadherin, SOX2, and SNAI1 expression was evaluated by immunofluorescence and cytofluorometry in wild type and Claudin-6 transfected AGS cells. Cell migration assays were also performed. Differentially expressed genes and biological processes analysis was performed to determine gene preponderance. The results showed that claudin-6 overexpression enriched the CD44 + /CD24- subpopulation with an overall increase in the expression and the number of CD44 + cells. A significant increase in NANOG, SOX2 and SNAI1 expression and enhanced cell migration was observed in claudin-6 transfected cells. Transcriptome analysis revealed 271 genes involved in enhanced biological processes with only 31 with a significantly p value; thirteen of those genes are closely associated to epithelial mesenchymal transition processes and folding and unfolding processes of proteins in the endoplasmic reticulum. CONCLUSIONS The pro-tumorigenic effect of claudin-6 in gastric cancer could be associated to dedifferentiation of epithelial cells and an increase in di novo cancer stem cell genesis.
Collapse
|
172
|
Spears BJ, McInturf SA, Collins C, Chlebowski M, Cseke LJ, Su J, Mendoza-Cózatl DG, Gassmann W. Class I TCP transcription factor AtTCP8 modulates key brassinosteroid-responsive genes. PLANT PHYSIOLOGY 2022; 190:1457-1473. [PMID: 35866682 PMCID: PMC9516767 DOI: 10.1093/plphys/kiac332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/01/2022] [Indexed: 05/17/2023]
Abstract
The plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family is most closely associated with regulating plant developmental programs. Recently, TCPs were also shown to mediate host immune signaling, both as targets of pathogen virulence factors and as regulators of plant defense genes. However, comprehensive characterization of TCP gene targets is still lacking. Loss of function of the class I TCP gene AtTCP8 attenuates early immune signaling and, when combined with mutations in AtTCP14 and AtTCP15, additional layers of defense signaling in Arabidopsis (Arabidopsis thaliana). Here, we focus on TCP8, the most poorly characterized of the three to date. We used chromatin immunoprecipitation and RNA sequencing to identify TCP8-bound gene promoters and differentially regulated genes in the tcp8 mutant; these datasets were heavily enriched in signaling components for multiple phytohormone pathways, including brassinosteroids (BRs), auxin, and jasmonic acid. Using BR signaling as a representative example, we showed that TCP8 directly binds and activates the promoters of the key BR transcriptional regulatory genes BRASSINAZOLE-RESISTANT1 (BZR1) and BRASSINAZOLE-RESISTANT2 (BZR2/BES1). Furthermore, tcp8 mutant seedlings exhibited altered BR-responsive growth patterns and complementary reductions in BZR2 transcript levels, while TCP8 protein demonstrated BR-responsive changes in subnuclear localization and transcriptional activity. We conclude that one explanation for the substantial targeting of TCP8 alongside other TCP family members by pathogen effectors may lie in its role as a modulator of BR and other plant hormone signaling pathways.
Collapse
Affiliation(s)
| | - Samuel A McInturf
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Carina Collins
- Department of Biology, Marian University, Indianapolis, Indiana, USA
| | - Meghann Chlebowski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Leland J Cseke
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Jianbin Su
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - David G Mendoza-Cózatl
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Walter Gassmann
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
173
|
Chakraborty S, Andrieux G, Kastl P, Adlung L, Altamura S, Boehm ME, Schwarzmüller LE, Abdullah Y, Wagner MC, Helm B, Gröne HJ, Lehmann WD, Boerries M, Busch H, Muckenthaler MU, Schilling M, Klingmüller U. Erythropoietin-driven dynamic proteome adaptations during erythropoiesis prevent iron overload in the developing embryo. Cell Rep 2022; 40:111360. [PMID: 36130519 DOI: 10.1016/j.celrep.2022.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes. In the absence of the Epo receptor (EpoR) in embryos, we observe a lack of hemoglobin in CFU-E cells and massive iron overload of the fetal liver pointing to a miscommunication between liver and placenta. A reduction of iron-sulfur cluster-containing proteins involved in oxidative phosphorylation in these embryos leads to a metabolic shift toward glycolysis. This link connecting erythropoiesis with the regulation of iron homeostasis and metabolic reprogramming suggests that balancing these interactions is crucial for protection from iron intoxication and for survival.
Collapse
Affiliation(s)
- Sajib Chakraborty
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Systems Cell-Signalling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Kastl
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lorenz Adlung
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine & Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandro Altamura
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin E Boehm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luisa E Schwarzmüller
- Division Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yomn Abdullah
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marie-Christine Wagner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Helm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolf D Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, University of Freiburg, 79106 Freiburg im Breisgau, Germany.
| | - Hauke Busch
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany.
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research (CeTBI), Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany; German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| |
Collapse
|
174
|
Nie LB, Cong W, He JJ, Zheng WB, Zhu XQ. Global proteomic profiling of multiple organs of cats (Felis catus) and proteome-transcriptome correlation during acute Toxoplasma gondii infection. Infect Dis Poverty 2022; 11:96. [PMID: 36104766 PMCID: PMC9473462 DOI: 10.1186/s40249-022-01022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Background Toxoplasma gondii is a protozoan parasite which can infect almost all warm-blooded animals and humans. Understanding the differential expression of proteins and transcripts associated with T. gondii infection in its definitive host (cat) may improve our knowledge of how the parasite manipulates the molecular microenvironment of its definitive host. The aim of this study was to explore the global proteomic alterations in the major organs of cats during acute T. gondii infection. Methods iTRAQ-based quantitative proteomic profiling was performed on six organs (brain, liver, lung, spleen, heart and small intestine) of cats on day 7 post-infection by cysts of T. gondii PRU strain (Genotype II). Mascot software was used to conduct the student’s t-test. Proteins with P values < 0.05 and fold change > 1.2 or < 0.83 were considered as differentially expressed proteins (DEPs). Results A total of 32,657 proteins were identified in the six organs, including 2556 DEPs; of which 1325 were up-regulated and 1231 were down-regulated. The brain, liver, lung, spleen, heart and small intestine exhibited 125 DEPs, 463 DEPs, 255 DEPs, 283 DEPs, 855 DEPs and 575 DEPs, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of all proteins and DEPs in all organs showed that many proteins were enriched in binding, cell part, cell growth and death, signal transduction, translation, sorting and degradation, extracellular matrix remodeling, tryptophan catabolism, and immune system. Correlations between differentially expressed proteins and transcripts were detected in the liver (n = 19), small intestine (n = 17), heart (n = 9), lung (n = 9) and spleen (n = 3). Conclusions The present study identified 2556 DEPs in six cat tissues on day 7 after infection by T. gondii PRU strain, and functional enrichment analyses showed that these DEPs were associated with various cellular and metabolic processes. These findings provide a solid base for further in-depth investigation of the complex proteotranscriptomic reprogramming that mediates the dynamic interplays between T. gondii and the different feline tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-01022-7.
Collapse
|
175
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
176
|
Shibai A, Kotani H, Sakata N, Furusawa C, Tsuru S. Purifying selection enduringly acts on the sequence evolution of highly expressed proteins in Escherichia coli. G3 GENES|GENOMES|GENETICS 2022; 12:6694045. [PMID: 36073932 PMCID: PMC9635659 DOI: 10.1093/g3journal/jkac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The evolutionary speed of a protein sequence is constrained by its expression level, with highly expressed proteins evolving relatively slowly. This negative correlation between expression levels and evolutionary rates (known as the E–R anticorrelation) has already been widely observed in past macroevolution between species from bacteria to animals. However, it remains unclear whether this seemingly general law also governs recent evolution, including past and de novo, within a species. However, the advent of genomic sequencing and high-throughput phenotyping, particularly for bacteria, has revealed fundamental gaps between the 2 evolutionary processes and has provided empirical data opposing the possible underlying mechanisms which are widely believed. These conflicts raise questions about the generalization of the E–R anticorrelation and the relevance of plausible mechanisms. To explore the ubiquitous impact of expression levels on molecular evolution and test the relevance of the possible underlying mechanisms, we analyzed the genome sequences of 99 strains of Escherichia coli for evolution within species in nature. We also analyzed genomic mutations accumulated under laboratory conditions as a model of de novo evolution within species. Here, we show that E–R anticorrelation is significant in both past and de novo evolution within species in E. coli. Our data also confirmed ongoing purifying selection on highly expressed genes. Ongoing selection included codon-level purifying selection, supporting the relevance of the underlying mechanisms. However, the impact of codon-level purifying selection on the constraints in evolution within species might be smaller than previously expected from evolution between species.
Collapse
Affiliation(s)
- Atsushi Shibai
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
| | - Hazuki Kotani
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
| | - Natsue Sakata
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research (BDR), RIKEN , Osaka 565-0874, Japan
- Universal Biology Institute, School of Science, The University of Tokyo , Tokyo 113-0033, Japan
| | - Saburo Tsuru
- Universal Biology Institute, School of Science, The University of Tokyo , Tokyo 113-0033, Japan
| |
Collapse
|
177
|
Kramer BJ, Jankowiak JG, Nanjappa D, Harke MJ, Gobler CJ. Nitrogen and phosphorus significantly alter growth, nitrogen fixation, anatoxin-a content, and the transcriptome of the bloom-forming cyanobacterium, Dolichospermum. Front Microbiol 2022; 13:955032. [PMID: 36160233 PMCID: PMC9490380 DOI: 10.3389/fmicb.2022.955032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
While freshwater cyanobacteria are traditionally thought to be limited by the availability of phosphorus (P), fixed nitrogen (N) supply can promote the growth and/or toxin production of some genera. This study characterizes how growth on N2 (control), nitrate (NO3 -), ammonium (NH4 +), and urea as well as P limitation altered the growth, toxin production, N2 fixation, and gene expression of an anatoxin-a (ATX-A) - producing strain of Dolichospermum sp. 54. The transcriptomes of fixed N and P-limited cultures differed significantly from those of fixed N-deplete, P-replete (control) cultures, while the transcriptomes of P-replete cultures amended with either NH4 + or NO3 - were not significantly different relative to those of the control. Growth rates of Dolichospermum (sp. 54) were significantly higher when grown on fixed N relative to without fixed N; growth on NH4 + was also significantly greater than growth on NO3 -. NH4 + and urea significantly lowered N2 fixation and nifD gene transcript abundance relative to the control while cultures amended with NO3 - exhibited N2 fixation and nifD gene transcript abundance that was not different from the control. Cultures grown on NH4 + exhibited the lowest ATX-A content per cell and lower transcript abundance of genes associated ATX-A synthesis (ana), while the abundance of transcripts of several ana genes were highest under fixed N and P - limited conditions. The significant negative correlation between growth rate and cellular anatoxin quota as well as the significantly higher number of transcripts of ana genes in cultures deprived of fixed N and P relative to P-replete cultures amended with NH4 + suggests ATX-A was being actively synthesized under P limitation. Collectively, these findings indicate that management strategies that do not regulate fixed N loading will leave eutrophic water bodies vulnerable to more intense and toxic (due to increased biomass) blooms of Dolichospermum.
Collapse
Affiliation(s)
- Benjamin J. Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | | | - Deepak Nanjappa
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Matthew J. Harke
- Gloucester Marine Genomics Institute, Gloucester, MA, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
178
|
Yepes S, Tucker MA, Koka H, Xiao Y, Zhang T, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Hutchinson A, Yeager M, Hicks B, Brown KM, Freedman ND, Chanock SJ, Goldstein AM, Yang XR. Integrated Analysis of Coexpression and Exome Sequencing to Prioritize Susceptibility Genes for Familial Cutaneous Melanoma. J Invest Dermatol 2022; 142:2464-2475.e5. [PMID: 35181301 PMCID: PMC9378750 DOI: 10.1016/j.jid.2022.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The application of whole-exome sequencing has led to the identification of high- and moderate-risk variants that contribute to cutaneous melanoma susceptibility. However, confirming disease-causing variants remains challenging. We applied a gene coexpression network analysis to prioritize the candidate genes identified from whole-exome sequencing of 34 melanoma-prone families, with at least three affected members sequenced per family (N = 119 cases). A coexpression network was constructed from genotype-tissue expression project, skin melanoma from the cancer genome atlas, and primary melanocyte cultures. We performed module-specific enrichment and focused on modules associated with pigmentation processes because they are the best-studied and most well-known risk factors for melanoma susceptibility. We found that pigmentation-associated modules across the four expression datasets examined were enriched for well-known melanoma susceptibility genes plus genes associated with pigmentation. We also used network properties to prioritize genes within pigmentation modules as candidate susceptibility genes. Integrating information from coexpression network analysis and variant prioritization, we identified 36 genes (such as DCT, TPCN2, TRPM1, ATP10A, and EPHA5) as potential melanoma risk genes in the families. Our approach also allowed us to link families with private gene mutations on the basis of gene coexpression patterns and thereby may provide an innovative perspective in gene identification in high-risk families.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Margaret A Tucker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristine Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Wen Luo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
179
|
Breeschoten T, Schranz ME, Poelman EH, Simon S. Family dinner: Transcriptional plasticity of five Noctuidae (Lepidoptera) feeding on three host plant species. Ecol Evol 2022; 12:e9258. [PMID: 36091341 PMCID: PMC9448971 DOI: 10.1002/ece3.9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Polyphagous insects often show specialization in feeding on different host plants in terms of survival and growth and, therefore, can be considered minor or major pests of particular hosts. Whether polyphagous insects employ a common transcriptional response to cope with defenses from diverse host plants is under-studied. We focused on patterns of transcriptional plasticity in polyphagous moths (Noctuidae), of which many species are notorious pests, in relation to herbivore performance on different host plants. We compared the transcriptional plasticity of five polyphagous moth species feeding and developing on three different host plant species. Using a comparative phylogenetic framework, we evaluated if successful herbivory, as measured by larval performance, is determined by a shared or lineage-specific transcriptional response. The upregulated transcriptional activity, or gene expression pattern, of larvae feeding on the different host plants and artificial control diet was highly plastic and moth species-specific. Specialization, defined as high herbivore success for specific host plants, was not generally linked to a lower number of induced genes. Moths that were more distantly related and showing high herbivore success for certain host plants showed shared expression of multiple homologous genes, indicating convergence. We further observed specific transcriptional responses within phylogenetic lineages. These expression patterns for specific host plant species are likely caused by shared evolutionary histories, for example, symplesiomorphic patterns, and could therefore not be associated with herbivore success alone. Multiple gene families, with roles in plant digestion and detoxification, were widely expressed in response to host plant feeding but again showed highly moth species-specific. Consequently, high herbivore success for specific host plants is also driven by species-specific transcriptional plasticity. Thus, potential pest moths display a complex and species-specific transcriptional plasticity.
Collapse
Affiliation(s)
- Thijmen Breeschoten
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
180
|
Jakt LM, Dubin A, Johansen SD. Intron size minimisation in teleosts. BMC Genomics 2022; 23:628. [PMID: 36050638 PMCID: PMC9438311 DOI: 10.1186/s12864-022-08760-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Spliceosomal introns are parts of primary transcripts that are removed by RNA splicing. Although introns apparently do not contribute to the function of the mature transcript, in vertebrates they comprise the majority of the transcribed region increasing the metabolic cost of transcription. The persistence of long introns across evolutionary time suggests functional roles that can offset this metabolic cost. The teleosts comprise one of the largest vertebrate clades. They have unusually compact and variable genome sizes and provide a suitable system for analysing intron evolution. Results We have analysed intron lengths in 172 vertebrate genomes and show that teleost intron lengths are relatively short, highly variable and bimodally distributed. Introns that were long in teleosts were also found to be long in mammals and were more likely to be found in regulatory genes and to contain conserved sequences. Our results argue that intron length has decreased in parallel in a non-random manner throughout teleost evolution and represent a deviation from the ancestral state. Conclusion Our observations indicate an accelerated rate of intron size evolution in the teleosts and that teleost introns can be divided into two classes by their length. Teleost intron sizes have evolved primarily as a side-effect of genome size evolution and small genomes are dominated by short introns (<256 base pairs). However, a non-random subset of introns has resisted this process across the teleosts and these are more likely have functional roles in all vertebrate clades. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08760-w).
Collapse
Affiliation(s)
- Lars Martin Jakt
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway.
| | - Arseny Dubin
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway.,Currently at: Parental Investment and Immune Dynamics, GEOMAR Helmholtz Centre for Ocean Research, Düsternbrookerweg 20, Kiel, D-24105, Germany
| | - Steinar Daae Johansen
- Faculty for bioscience and aquaculture, Nord University, Universitetsalléen 11, Bodoe, 8026, Norway
| |
Collapse
|
181
|
Chaffin M, Papangeli I, Simonson B, Akkad AD, Hill MC, Arduini A, Fleming SJ, Melanson M, Hayat S, Kost-Alimova M, Atwa O, Ye J, Bedi KC, Nahrendorf M, Kaushik VK, Stegmann CM, Margulies KB, Tucker NR, Ellinor PT. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 2022; 608:174-180. [PMID: 35732739 DOI: 10.1038/s41586-022-04817-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022]
Abstract
Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFβ1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.
Collapse
Affiliation(s)
- Mark Chaffin
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Bridget Simonson
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Matthew C Hill
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Arduini
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
- Data Sciences Platform, The Broad Institute, Cambridge, MA, USA
| | - Michelle Melanson
- Center for the Development of Therapeutics, The Broad Institute, Cambridge, MA, USA
| | - Sikander Hayat
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, The Broad Institute, Cambridge, MA, USA
| | - Ondine Atwa
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Jiangchuan Ye
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA
| | - Kenneth C Bedi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthias Nahrendorf
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, The Broad Institute, Cambridge, MA, USA
| | | | - Kenneth B Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Patrick T Ellinor
- Precision Cardiology Laboratory and the Cardiovascular Disease Initiative, The Broad Institute, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
182
|
Zhang X, Liu H, Huang L, Zhou B. Identification of Chilling-Responsive Genes in Litchi chinensis by Transcriptomic Analysis Underlying Phytohormones and Antioxidant Systems. Int J Mol Sci 2022; 23:ijms23158424. [PMID: 35955559 PMCID: PMC9369065 DOI: 10.3390/ijms23158424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Litchi (Litchi chinensis Sonn.) is an important subtropical and tropical evergreen fruit tree that is seriously affected by chilling stress. In order to identify genes that may be involved in the response to chilling in litchi, we investigate the physiological and biochemical changes under chilling stress and construct 12 RNA-Seq libraries of leaf samples at 0, 4, 8, and 12 days of chilling. The results show that antioxidant enzymes are activated by chilling treatments. Comparing the transcriptome data of the four time points, we screen 2496 chilling-responsive genes (CRGs), from which we identify 63 genes related to the antioxidant system (AO-CRGs) and 54 ABA, 40 IAA, 37 CTK, 27 ETH, 21 BR, 13 GA, 35 JA, 29 SA, and 4 SL signal transduction-related genes. Expression pattern analysis shows that the expression trends of the 28 candidate genes detected by qRT-PCR are similar to those detected by RNA-Seq, indicating the reliability of our RNA-Seq data. Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis of the RNA-Seq data suggests a model for the litchi plants in response to chilling stress that alters the expression of the plant hormone signaling-related genes, the transcription factor-encoding genes LcICE1, LcCBFs, and LcbZIPs, and the antioxidant system-related genes. This study provides candidate genes for the future breeding of litchi cultivars with high chilling resistance, and elucidates possible pathways for litchi in response to chilling using transcriptomic data.
Collapse
|
183
|
Luo J, Zhang L, Shen F, Luo L, Chen L, Fan Z, Hou R, Yue B, Zhang X. Blood transcriptome analysis revealing aging gene expression profiles in red panda. PeerJ 2022; 10:e13743. [PMID: 35898935 PMCID: PMC9310792 DOI: 10.7717/peerj.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023] Open
Abstract
The red panda is an endangered forest species distributed on the edge of the Qinghai Tibet Plateau. The species has been conserved in ex-situ in many countries and its survival is threatened by many diseases. Its immune system is vulnerable to age-associated alterations, which accumulate and result in a progressive deterioration that leads to an increased incidence of diseases. We identified 2,219 differentially expressed genes (DEGs) between geriatric (11-16 years) and adult individuals (4-8 years), and 1690 DEGs between adults and juveniles (1 year). The gene expression and functional annotation results showed that the innate immunity of red pandas increases significantly in geriatric individuals, whereas its change remains unclear when comparing adults and juveniles. We found that the adaptive immunity of red pandas first increased and then decreased with age. We identified CXCR3, BLNK, and CCR4 as the hub genes in the age-related protein-protein interaction network, which showed their central role in age-related immune changes. Many DNA repair genes were down-regulated in geriatric red pandas, suggesting that the DNA repair ability of the blood tissue in geriatric red pandas is significantly reduced. The significantly up-regulated TLR5 in geriatric individuals also suggests the possibility of enhancing the vaccination immune response by incorporating flagellin, which could be used to address decreased vaccine responses caused by age-related declines in immune system function. This work provides an insight into gene expression changes associated with aging and paves the way for effective disease prevention and treatment strategies for red pandas in the future.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Li Luo
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Lei Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Rong Hou
- Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
184
|
A study of strong nucleosomes in the human genome. iScience 2022; 25:104593. [PMID: 35789840 PMCID: PMC9249913 DOI: 10.1016/j.isci.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/03/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Micrococcal nuclease (MNase) is widely used to map nucleosomes. However, nucleosomes are highly dynamic and susceptible to experimental conditions, resulting in extreme variability across nucleosome maps, which complicates the generation of accurate nucleosome organization data. We mapped nucleosomes from different individuals using improved MNase-seq. The improvements included setting different digestion levels (low, medium, high) and naked DNA correction to remove the noise caused by experimental manipulation and comparing maps to obtain the accurate position and occupancy of strong nucleosomes (SNs) in the whole genome. In addition, the characteristics of SNs were further excavated. SNs were enriched in Alu elements and near the centromere of Chr12. SNs contain some specific sequences, and the GC content of SNs is different from that of dynamic nucleosomes. The findings suggest that nucleosome location in the genome and the DNA sequence may affect nucleosome stability. Naked DNA correction improved the accuracy of nucleosome map in partial digestion Level of MNase digestion has effects on nucleosome organization A type of strong nucleosomes (SNs) exist across different nucleosome maps Nucleosome stability may be related to its location and the DNA sequence
Collapse
|
185
|
Nehme R, Pietiläinen O, Artomov M, Tegtmeyer M, Valakh V, Lehtonen L, Bell C, Singh T, Trehan A, Sherwood J, Manning D, Peirent E, Malik R, Guss EJ, Hawes D, Beccard A, Bara AM, Hazelbaker DZ, Zuccaro E, Genovese G, Loboda AA, Neumann A, Lilliehook C, Kuismin O, Hamalainen E, Kurki M, Hultman CM, Kähler AK, Paulo JA, Ganna A, Madison J, Cohen B, McPhie D, Adolfsson R, Perlis R, Dolmetsch R, Farhi S, McCarroll S, Hyman S, Neale B, Barrett LE, Harper W, Palotie A, Daly M, Eggan K. The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia. Nat Commun 2022; 13:3690. [PMID: 35760976 PMCID: PMC9237031 DOI: 10.1038/s41467-022-31436-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Mykyta Artomov
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Vera Valakh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Leevi Lehtonen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Christina Bell
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Aditi Trehan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - John Sherwood
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Danielle Manning
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Emily Peirent
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Rhea Malik
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ellen J Guss
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Anne M Bara
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Alexander A Loboda
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Christina Lilliehook
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Outi Kuismin
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Eija Hamalainen
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mitja Kurki
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Anna K Kähler
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Jon Madison
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Bruce Cohen
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - Donna McPhie
- Department of Psychiatry, McLean Hospital, Belmont, MA, 02478, USA
| | - Rolf Adolfsson
- Umea University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry, 901 85, Umea, Sweden
| | - Roy Perlis
- Psychiatry Dept., Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ricardo Dolmetsch
- Novartis Institutes for Biomedical Research, Novartis, Cambridge, MA, 02139, USA
| | - Samouil Farhi
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Steven Hyman
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ben Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Wade Harper
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark Daly
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Institute for Molecular Medicine Finland, University of Helsinki, FI-00014, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, and the Harvard Institute for Stem Cell Biology, Harvard University, Cambridge, MA, 02138, USA.
- BioMarin Pharmaceutical, San Rafael, CA, 94901, USA.
| |
Collapse
|
186
|
Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biol 2022; 54:102353. [PMID: 35777200 PMCID: PMC9287736 DOI: 10.1016/j.redox.2022.102353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.
Collapse
|
187
|
Huang Y, Shang R, Lu GA, Zeng W, Huang C, Zou C, Tang T. Spatiotemporal Regulation of a Single Adaptively Evolving Trans-Regulatory Element Contributes to Spermatogenetic Expression Divergence in Drosophila. Mol Biol Evol 2022; 39:6605656. [PMID: 35687719 PMCID: PMC9254010 DOI: 10.1093/molbev/msac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Due to extensive pleiotropy, trans-acting elements are often thought to be evolutionarily constrained. While the impact of trans-acting elements on gene expression evolution has been extensively studied, relatively little is understood about the contribution of a single trans regulator to interspecific expression and phenotypic divergence. Here, we disentangle the effects of genomic context and miR-983, an adaptively evolving young microRNA, on expression divergence between Drosophila melanogaster and D. simulans. We show miR-983 effects promote interspecific expression divergence in testis despite its antagonism with the often-predominant context effects. Single-cyst RNA-seq reveals that distinct sets of genes gain and lose miR-983 influence under disruptive or diversifying selection at different stages of spermatogenesis, potentially helping minimize antagonistic pleiotropy. At the round spermatid stage, the effects of miR-983 are weak and distributed, coincident with the transcriptome undergoing drastic expression changes. Knocking out miR-983 causes reduced sperm length with increased within-individual variation in D. melanogaster but not in D. simulans, and the D. melanogaster knockout also exhibits compromised sperm defense ability. Our results provide empirical evidence for the resolution of antagonistic pleiotropy and also have broad implications for the function and evolution of new trans regulators.
Collapse
Affiliation(s)
- Yumei Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Rui Shang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Weishun Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Chenglong Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong Province, China
| |
Collapse
|
188
|
Diaw SH, Ott F, Münchau A, Lohmann K, Busch H. Emerging role of a systems biology approach to elucidate factors of reduced penetrance: transcriptional changes in THAP1-linked dystonia as an example. MED GENET-BERLIN 2022; 34:131-141. [PMID: 38835919 PMCID: PMC11006298 DOI: 10.1515/medgen-2022-2126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pathogenic variants in THAP1 can cause dystonia with a penetrance of about 50 %. The underlying mechanisms are unknown and can be considered as means of endogenous disease protection. Since THAP1 encodes a transcription factor, drivers of this variability putatively act at the transcriptome level. Several transcriptome studies tried to elucidate THAP1 function in diverse cellular and mouse models, including mutation carrier-derived cells and iPSC-derived neurons, unveiling various differentially expressed genes and affected pathways. These include nervous system development, dopamine signalling, myelination, or cell-cell adhesion. A network diffusion analysis revealed mRNA splicing, mitochondria, DNA repair, and metabolism as significant pathways that may represent potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sokhna Haissatou Diaw
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
189
|
Crabtree JN, Caffrey DR, de Souza Silva L, Kurt-Jones EA, Dobbs K, Dent A, Fitzgerald KA, Golenbock DT. Lymphocyte crosstalk is required for monocyte-intrinsic trained immunity to Plasmodium falciparum. J Clin Invest 2022; 132:e139298. [PMID: 35642634 PMCID: PMC9151696 DOI: 10.1172/jci139298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/21/2022] [Indexed: 01/16/2023] Open
Abstract
Plasmodium falciparum (P. falciparum) induces trained innate immune responses in vitro, where initial stimulation of adherent PBMCs with P. falciparum-infected RBCs (iRBCs) results in hyperresponsiveness to subsequent ligation of TLR2. This response correlates with the presence of T and B lymphocytes in adherent PBMCs, suggesting that innate immune training is partially due to adaptive immunity. We found that T cell-depleted PBMCs and purified monocytes alone did not elicit hyperproduction of IL-6 and TNF-α under training conditions. Analysis of P. falciparum-trained PBMCs showed that DCs did not develop under control conditions, and IL-6 and TNF-α were primarily produced by monocytes and DCs. Transwell experiments isolating purified monocytes from either PBMCs or purified CD4+ T cells, but allowing diffusion of secreted proteins, enabled monocytes trained with iRBCs to hyperproduce IL-6 and TNF-α after TLR restimulation. Purified monocytes stimulated with IFN-γ hyperproduced IL-6 and TNF-α, whereas blockade of IFN-γ in P. falciparum-trained PBMCs inhibited trained responses. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) on monocytes from patients with malaria showed persistently open chromatin at genes that appeared to be trained in vitro. Together, these findings indicate that the trained immune response of monocytes to P. falciparum is not completely cell intrinsic but depends on soluble signals from lymphocytes.
Collapse
Affiliation(s)
- Juliet N. Crabtree
- Program in Innate Immunity and
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Daniel R. Caffrey
- Program in Innate Immunity and
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Leandro de Souza Silva
- Program in Innate Immunity and
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Evelyn A. Kurt-Jones
- Program in Innate Immunity and
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Arlene Dent
- Case Western University, Cleveland, Ohio, USA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity and
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Douglas T. Golenbock
- Program in Innate Immunity and
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
190
|
Differential cofactor dependencies define distinct types of human enhancers. Nature 2022; 606:406-413. [PMID: 35650434 PMCID: PMC7613064 DOI: 10.1038/s41586-022-04779-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/20/2022] [Indexed: 12/24/2022]
Abstract
All multicellular organisms rely on differential gene transcription regulated by genomic enhancers, which function through cofactors that are recruited by transcription factors1,2. Emerging evidence suggests that not all cofactors are required at all enhancers3-5, yet whether these observations reflect more general principles or distinct types of enhancers remained unknown. Here we categorized human enhancers by their cofactor dependencies and show that these categories provide a framework to understand the sequence and chromatin diversity of enhancers and their roles in different gene-regulatory programmes. We quantified enhancer activities along the entire human genome using STARR-seq6 in HCT116 cells, following the rapid degradation of eight cofactors. This analysis identified different types of enhancers with distinct cofactor requirements, sequences and chromatin properties. Some enhancers were insensitive to the depletion of the core Mediator subunit MED14 or the bromodomain protein BRD4 and regulated distinct transcriptional programmes. In particular, canonical Mediator7 seemed dispensable for P53-responsive enhancers, and MED14-depleted cells induced endogenous P53 target genes. Similarly, BRD4 was not required for the transcription of genes that bear CCAAT boxes and a TATA box (including histone genes and LTR12 retrotransposons) or for the induction of heat-shock genes. This categorization of enhancers through cofactor dependencies reveals distinct enhancer types that can bypass broadly utilized cofactors, which illustrates how alternative ways to activate transcription separate gene expression programmes and provide a conceptual framework to understand enhancer function and regulatory specificity.
Collapse
|
191
|
Yoshida Y, Satoh T, Ota C, Tanaka S, Horikawa DD, Tomita M, Kato K, Arakawa K. Time-series transcriptomic screening of factors contributing to the cross-tolerance to UV radiation and anhydrobiosis in tardigrades. BMC Genomics 2022; 23:405. [PMID: 35643424 PMCID: PMC9145152 DOI: 10.1186/s12864-022-08642-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tardigrades are microscopic animals that are capable of tolerating extreme environments by entering a desiccated state of suspended animation known as anhydrobiosis. While antioxidative stress proteins, antiapoptotic pathways and tardigrade-specific intrinsically disordered proteins have been implicated in the anhydrobiotic machinery, conservation of these mechanisms is not universal within the phylum Tardigrada, suggesting the existence of overlooked components. RESULTS Here, we show that a novel Mn-dependent peroxidase is an important factor in tardigrade anhydrobiosis. Through time-series transcriptome analysis of Ramazzottius varieornatus specimens exposed to ultraviolet light and comparison with anhydrobiosis entry, we first identified several novel gene families without similarity to existing sequences that are induced rapidly after stress exposure. Among these, a single gene family with multiple orthologs that is highly conserved within the phylum Tardigrada and enhances oxidative stress tolerance when expressed in human cells was identified. Crystallographic study of this protein suggested Zn or Mn binding at the active site, and we further confirmed that this protein has Mn-dependent peroxidase activity in vitro. CONCLUSIONS Our results demonstrated novel mechanisms for coping with oxidative stress that may be a fundamental mechanism of anhydrobiosis in tardigrades. Furthermore, localization of these sets of proteins mainly in the Golgi apparatus suggests an indispensable role of the Golgi stress response in desiccation tolerance.
Collapse
Affiliation(s)
- Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
| | - Chise Ota
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
| | - Sae Tanaka
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Daiki D Horikawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho, Nagoya, 467-8603, Japan
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Nihonkoku, 403-1, Daihouji, Tsuruoka, Yamagata, 997-0017, Japan.
- Systems Biology Program, Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa, Kanagawa, 252-0882, Japan.
- Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
192
|
Tian L, Li Z, Ma G, Zhang X, Tang Z, Wang S, Kang J, Liang D, Yu T. Metapone: a Bioconductor package for joint pathway testing for untargeted metabolomics data. Bioinformatics 2022; 38:3662-3664. [PMID: 35639952 PMCID: PMC9272804 DOI: 10.1093/bioinformatics/btac364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023] Open
Abstract
MOTIVATION Testing for pathway enrichment is an important aspect in the analysis of untargeted metabolomics data. Due to the unique characteristics of untargeted metabolomics data, some key issues have not been fully addressed in existing pathway testing algorithms: (1) matching uncertainty between data features and metabolites; (2) lacking of method to analyze positive mode and negative mode LC/MS data simultaneously on the same set of subjects; (3) the incompleteness of pathways in individual software packages. RESULTS We developed an innovative R/Bioconductor package: metabolic pathway testing with positive and negative mode data (metapone), which can perform two novel statistical tests that take matching uncertainty into consideration - (1) a weighted GSEA-type test, and (2) a permutation-based weighted hypergeometric test. The package is capable of combining positive and negative ion mode results in a single testing scheme. For comprehensiveness, the built-in pathways were manually curated from three sources: KEGG, Mummichog, and SMPDB. AVAILABILITY The package is available at https://bioconductor.org/packages/devel/bioc/html/metapone.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leqi Tian
- Shenzhen Research Institute of Big Data.,School of Data Science, The Chinese University of Hong Kong-Shenzhen
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Emory University
| | - Guoxuan Ma
- School of Data Science, The Chinese University of Hong Kong-Shenzhen.,Department of Biostatistics, University of Michigan
| | - Xiaoyue Zhang
- Gangarosa Department of Environmental Health, Emory University
| | - Ziyin Tang
- Gangarosa Department of Environmental Health, Emory University
| | - Siheng Wang
- School of Data Science, The Chinese University of Hong Kong-Shenzhen
| | - Jian Kang
- Department of Biostatistics, University of Michigan
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Emory University
| | - Tianwei Yu
- Shenzhen Research Institute of Big Data.,School of Data Science, The Chinese University of Hong Kong-Shenzhen.,Warshel Institute, Shenzhen, Guangdong, China
| |
Collapse
|
193
|
Guvenek A, Shin J, De Filippis L, Zheng D, Wang W, Pang ZP, Tian B. Neuronal Cells Display Distinct Stability Controls of Alternative Polyadenylation mRNA Isoforms, Long Non-Coding RNAs, and Mitochondrial RNAs. Front Genet 2022; 13:840369. [PMID: 35664307 PMCID: PMC9159357 DOI: 10.3389/fgene.2022.840369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
RNA stability plays an important role in gene expression. Here, using 3' end sequencing of newly made and pre-existing poly(A)+ RNAs, we compare transcript stability in multiple human cell lines, including HEK293T, HepG2, and SH-SY5Y. We show that while mRNA stability is generally conserved across the cell lines, specific transcripts having a high GC content and possibly more stable secondary RNA structures are relatively more stable in SH-SY5Y cells compared to the other 2 cell lines. These features also differentiate stability levels of alternative polyadenylation (APA) 3'UTR isoforms in a cell type-specific manner. Using differentiation of a neural stem cell line as a model, we show that mRNA stability difference could contribute to gene expression changes in neurogenesis and confirm the neuronal identity of SH-SY5Y cells at both gene expression and APA levels. In addition, compared to transcripts using 3'-most exon cleavage/polyadenylation sites (PASs), those using intronic PASs are generally less stable, especially when the PAS-containing intron is large and has a strong 5' splice site, suggesting that intronic polyadenylation mostly plays a negative role in gene expression. Interestingly, the differential mRNA stability among APA isoforms appears to buffer PAS choice in these cell lines. Moreover, we found that several other poly(A)+ RNA species, including promoter-associated long noncoding RNAs and transcripts encoded by the mitochondrial genome, are more stable in SH-SY5Y cells than the other 2 cell lines, further highlighting distinct RNA metabolism in neuronal cells. Together, our results indicate that distinct RNA stability control in neuronal cells may contribute to the gene expression and APA programs that define their cell identity.
Collapse
Affiliation(s)
- Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
- Rutgers School of Graduate Studies, Newark, NJ, United States
| | - Jihae Shin
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lidia De Filippis
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wei Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
- Program in Gene Expression and Regulation, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
194
|
Mei H, Zhao T, Dong Z, Han J, Xu B, Chen R, Zhang J, Zhang J, Hu Y, Zhang T, Fang L. Population-Scale Polymorphic Short Tandem Repeat Provides an Alternative Strategy for Allele Mining in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:916830. [PMID: 35599867 PMCID: PMC9120961 DOI: 10.3389/fpls.2022.916830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Short tandem repeats (STRs), which vary in size due to featuring variable numbers of repeat units, are present throughout most eukaryotic genomes. To date, few population-scale studies identifying STRs have been reported for crops. Here, we constructed a high-density polymorphic STR map by investigating polymorphic STRs from 911 Gossypium hirsutum accessions. In total, we identified 556,426 polymorphic STRs with an average length of 21.1 bp, of which 69.08% were biallelic. Moreover, 7,718 (1.39%) were identified in the exons of 6,021 genes, which were significantly enriched in transcription, ribosome biogenesis, and signal transduction. Only 5.88% of those exonic STRs altered open reading frames, of which 97.16% were trinucleotide. An alternative strategy STR-GWAS analysis revealed that 824 STRs were significantly associated with agronomic traits, including 491 novel alleles that undetectable by previous SNP-GWAS methods. For instance, a novel polymorphic STR consisting of GAACCA repeats was identified in GH_D06G1697, with its (GAACCA)5 allele increasing fiber length by 1.96-4.83% relative to the (GAACCA)4 allele. The database CottonSTRDB was further developed to facilitate use of STR datasets in breeding programs. Our study provides functional roles for STRs in influencing complex traits, an alternative strategy STR-GWAS for allele mining, and a database serving the cotton community as a valuable resource.
Collapse
Affiliation(s)
- Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Biyu Xu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
195
|
Cuevas-Caballé C, Ferrer Obiol J, Vizueta J, Genovart M, Gonzalez-Solís J, Riutort M, Rozas J. The First Genome of the Balearic Shearwater (Puffinus mauretanicus) Provides a Valuable Resource for Conservation Genomics and Sheds Light on Adaptation to a Pelagic lifestyle. Genome Biol Evol 2022; 14:evac067. [PMID: 35524941 PMCID: PMC9117697 DOI: 10.1093/gbe/evac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Balearic shearwater (Puffinus mauretanicus) is the most threatened seabird in Europe and a member of the most speciose group of pelagic seabirds, the order Procellariiformes, which exhibit extreme adaptations to a pelagic lifestyle. The fossil record suggests that human colonisation of the Balearic Islands resulted in a sharp decrease of the Balearic shearwater population size. Currently, populations of the species continue to be decimated mainly due to predation by introduced mammals and bycatch in longline fisheries, with some studies predicting its extinction by 2070. Here, using a combination of short and long reads, we generate the first high-quality reference genome for the Balearic shearwater, with a completeness amongst the highest across available avian species. We used this reference genome to study critical aspects relevant to the conservation status of the species and to gain insights into the adaptation to a pelagic lifestyle of the order Procellariiformes. We detected relatively high levels of genome-wide heterozygosity in the Balearic shearwater despite its reduced population size. However, the reconstruction of its historical demography uncovered an abrupt population decline potentially linked to a reduction of the neritic zone during the Penultimate Glacial Period (∼194-135 ka). Comparative genomics analyses uncover a set of candidate genes that may have played an important role into the adaptation to a pelagic lifestyle of Procellariiformes, including those for the enhancement of fishing capabilities, night vision, and the development of natriuresis. The reference genome obtained will be the crucial in the future development of genetic tools in conservation efforts for this Critically Endangered species.
Collapse
Affiliation(s)
- Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Department of Environmental Science and Policy, Università degli Studi di Milano (UniMi), Milan, Italy
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meritxell Genovart
- Mediterranean Institute for Advanced Studies (IMEDEA), CSIC-UIB & Centre for Advanced Studies of Blanes (CEAB), CSIC, Esporles, Spain
| | - Jacob Gonzalez-Solís
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|
196
|
Li Z, Zhang Y, Li W, Irwin AJ, Finkel ZV. Conservation and architecture of housekeeping genes in the model marine diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2022; 234:1363-1376. [PMID: 35179783 DOI: 10.1111/nph.18039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Housekeeping genes (HKGs) are constitutively expressed with low variation across tissues/conditions. They are thought to be highly conserved and fundamental to cellular maintenance, with distinctive genomic features. Here, we identify 1505 HKGs in the unicellular marine diatom Thalassiosira pseudonana based on an RNA-seq analysis of 232 samples taken under 12 experimental conditions over 0-72 h. We identify promising internal reference genes (IRGs) for T. pseudonana from the most stably expressed HKGs. A comparative analysis indicates < 18% of HKGs in T. pseudonana have orthologs in other eukaryotes, including other diatom species. Contrary to work on human tissues, T. pseudonana HKGs are longer than non-HKGs, due to elongated introns. More ancient HKGs tend to be shorter than more recent HKGs, and expression levels of HKGs decrease more rapidly with gene length relative to non-HKGs. Our results indicate that HKGs are highly variable across the tree of life and thus unlikely to be universally fundamental for cellular maintenance. We hypothesize that the distinct genomic features of HKGs of T. pseudonana may be a consequence of selection pressures associated with high expression and low variance across conditions.
Collapse
Affiliation(s)
- Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an, Shaanxi, 710021, China
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Yong Zhang
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, No. 8 Shangsan Road, Fuzhou, Fujian, 350007, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, 39 Xihai Road, Huangshan, Anhui, 245041, China
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
197
|
Brokesh AM, Cross LM, Kersey AL, Murali A, Richter C, Gregory CA, Singh I, Gaharwar AK. Dissociation of nanosilicates induces downstream endochondral differentiation gene expression program. SCIENCE ADVANCES 2022; 8:eabl9404. [PMID: 35476448 PMCID: PMC9045714 DOI: 10.1126/sciadv.abl9404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/11/2022] [Indexed: 05/16/2023]
Abstract
Bioactive materials harness the body's innate regenerative potential by directing endogenous progenitor cells to facilitate tissue repair. Dissolution products of inorganic biomaterials provide unique biomolecular signaling for tissue-specific differentiation. Inorganic ions (minerals) are vital to biological processes and play crucial roles in regulating gene expression patterns and directing cellular fate. However, mechanisms by which ionic dissolution products affect cellular differentiation are not well characterized. We demonstrate the role of the inorganic biomaterial synthetic two-dimensional nanosilicates and its ionic dissolution products on human mesenchymal stem cell differentiation. We use whole-transcriptome sequencing (RNA-sequencing) to characterize the contribution of nanosilicates and its ionic dissolution products on endochondral differentiation. Our study highlights the modulatory role of ions in stem cell transcriptome dynamics by regulating lineage-specific gene expression patterns. This work paves the way for leveraging biochemical characteristics of inorganic biomaterials to direct cellular processes and promote in situ tissue regeneration.
Collapse
Affiliation(s)
- Anna M. Brokesh
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Lauren M. Cross
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anna L. Kersey
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Murali
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Christopher Richter
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Carl A. Gregory
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
| | - Irtisha Singh
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Department of Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
198
|
Martínez-Absalón S, Guadarrama C, Dávalos A, Romero D. RdsA Is a Global Regulator That Controls Cell Shape and Division in Rhizobium etli. Front Microbiol 2022; 13:858440. [PMID: 35464952 PMCID: PMC9022086 DOI: 10.3389/fmicb.2022.858440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike other bacteria, cell growth in rhizobiales is unipolar and asymmetric. The regulation of cell division, and its coordination with metabolic processes is an active field of research. In Rhizobium etli, gene RHE_PE00024, located in a secondary chromosome, is essential for growth. This gene encodes a predicted hybrid histidine kinase sensor protein, participating in a, as yet undescribed, two-component signaling system. In this work, we show that a conditional knockdown mutant (cKD24) in RHE_PE00024 (hereby referred as rdsA, after rhizobium division and shape) generates a striking phenotype, where nearly 64% of the cells present a round shape, with stochastic and uncoordinated cell division. For rod-shaped cells, a large fraction (12 to 29%, depending on their origin) present growth from the old pole, a sector that is normally inactive for growth in a wild-type cell. A fraction of the cells (1 to 3%) showed also multiple ectopic polar growths. Homodimerization of RdsA appears to be required for normal function. RNAseq analysis of mutant cKD24 reveals global changes, with downregulated genes in at least five biological processes: cell division, wall biogenesis, respiration, translation, and motility. These modifications may affect proper structuring of the divisome, as well as peptidoglycan synthesis. Together, these results indicate that the hybrid histidine kinase RdsA is an essential global regulator influencing cell division and cell shape in R. etli.
Collapse
Affiliation(s)
- Sofía Martínez-Absalón
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carmen Guadarrama
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Araceli Dávalos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
199
|
Swindell WR, Bojanowski K, Chaudhuri RK. Transcriptomic Analysis of Fumarate Compounds Identifies Unique Effects of Isosorbide Di-(Methyl Fumarate) on NRF2, NF-kappaB and IRF1 Pathway Genes. Pharmaceuticals (Basel) 2022; 15:ph15040461. [PMID: 35455458 PMCID: PMC9026097 DOI: 10.3390/ph15040461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl fumarate (DMF) has emerged as a first-line therapy for relapsing-remitting multiple sclerosis (RRMS). This treatment, however, has been limited by adverse effects, which has prompted development of novel derivatives with improved tolerability. We compared the effects of fumarates on gene expression in astrocytes. Our analysis included diroximel fumarate (DRF) and its metabolite monomethyl fumarate (MMF), along with a novel compound isosorbide di-(methyl fumarate) (IDMF). Treatment with IDMF resulted in the largest number of differentially expressed genes. The effects of DRF and MMF were consistent with NRF2 activation and NF-κB inhibition, respectively. IDMF responses, however, were concordant with both NRF2 activation and NF-κB inhibition, and we confirmed IDMF-mediated NF-κB inhibition using a reporter assay. IDMF also down-regulated IRF1 expression and IDMF-decreased gene promoters were enriched with IRF1 recognition sequences. Genes altered by each fumarate overlapped significantly with those near loci from MS genetic association studies, but IDMF had the strongest overall effect on MS-associated genes. These results show that next-generation fumarates, such as DRF and IDMF, have effects differing from those of the MMF metabolite. Our findings support a model in which IDMF attenuates oxidative stress via NRF2 activation, with suppression of NF-κB and IRF1 contributing to mitigation of inflammation and pyroptosis.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH 45236, USA
- Correspondence:
| | - Krzysztof Bojanowski
- Sunny BioDiscovery Inc., Santa Paula, CA 93060, USA;
- Symbionyx Pharmaceuticals Inc., Boonton, NJ 07005, USA;
| | - Ratan K. Chaudhuri
- Symbionyx Pharmaceuticals Inc., Boonton, NJ 07005, USA;
- Sytheon Ltd., Boonton, NJ 07005, USA
| |
Collapse
|
200
|
Velappan Y, Chabikwa TG, Considine JA, Agudelo-Romero P, Foyer CH, Signorelli S, Considine MJ. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2061-2076. [PMID: 35022731 PMCID: PMC8982382 DOI: 10.1093/jxb/erac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/10/2022] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera L.) displays wide plasticity to climate; however, the physiology of dormancy along a seasonal continuum is poorly understood. Here we investigated the apparent disconnect between dormancy and the underlying respiratory physiology and transcriptome of grapevine buds, from bud set in summer to bud burst in spring. The establishment of dormancy in summer was pronounced and reproducible; however, this was coupled with little or no change in physiology, indicated by respiration, hydration, and tissue oxygen tension. The release of dormancy was biphasic; the depth of dormancy declined substantially by mid-autumn, while the subsequent decline towards spring was moderate. Observed changes in physiology failed to explain the first phase of dormancy decline, in particular. Transcriptome data contrasting development from summer through to spring also indicated that dormancy was poorly reflected by metabolic quiescence during summer and autumn. Gene Ontology and enrichment data revealed the prevailing influence of abscisic acid (ABA)-related gene expression during the transition from summer to autumn, and promoter motif analysis suggested that photoperiod may play an important role in regulating ABA functions during the establishment of dormancy. Transcriptomic data from later transitions reinforced the importance of oxidation and hypoxia as physiological cues to regulate the maintenance of quiescence and resumption of growth. Collectively these data reveal a novel disconnect between growth and metabolic quiescence in grapevine following bud set, which requires further experimentation to explain the phenology and dormancy relationships.
Collapse
Affiliation(s)
- Yazhini Velappan
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Tinashe G Chabikwa
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - John A Considine
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Santiago Signorelli
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|