151
|
Kuhn T, Gullett JM, Boutzoukas AE, Bohsali A, Mareci TH, FitzGerald DB, Carney PR, Bauer RM. Temporal lobe epilepsy affects spatial organization of entorhinal cortex connectivity. Epilepsy Behav 2018; 88:87-95. [PMID: 30243111 PMCID: PMC6294293 DOI: 10.1016/j.yebeh.2018.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Evidence for structural connectivity patterns within the medial temporal lobe derives primarily from postmortem histological studies. In humans and nonhuman primates, the parahippocampal gyrus (PHg) is subdivided into parahippocampal (PHc) and perirhinal (PRc) cortices, which receive input from distinct cortical networks. Likewise, their efferent projections to the entorhinal cortex (ERc) are distinct. The PHc projects primarily to the medial ERc (M-ERc). The PRc projects primarily to the lateral portion of the ERc (L-ERc). Both M-ERc and L-ERc, via the perforant pathway, project to the dentate gyrus and hippocampal (HC) subfields. Until recently, these neural circuits could not be visualized in vivo. Diffusion tensor imaging algorithms have been developed to segment gray matter structures based on probabilistic connectivity patterns. However, these algorithms have not yet been applied to investigate connectivity in the temporal lobe or changes in connectivity architecture related to disease processes. In this study, this segmentation procedure was used to classify ERc gray matter based on PRc, ERc, and HC connectivity patterns in 7 patients with temporal lobe epilepsy (TLE) without hippocampal sclerosis (mean age, 14.86 ± 3.34 years) and 7 healthy controls (mean age, 23.86 ± 2.97 years). Within samples paired t-tests allowed for comparison of ERc connectivity between epileptogenic and contralateral hemispheres. In healthy controls, there were no significant within-group differences in surface area, volume, or cluster number of ERc connectivity-defined regions (CDR). Likewise, in line with histology results, ERc CDR in the control group were well-organized, uniform, and segregated via PRc/PHc afferent and HC efferent connections. Conversely, in TLE, there were significantly more PRc and HC CDR clusters in the epileptogenic than the contralateral hemisphere. The surface area of the PRc CDR was greater, and that of the HC CDRs was smaller, in the epileptogenic hemisphere as well. Further, there was no clear delineation between M-ERc and L-ERc connectivity with PRc, PHc or HC in TLE. These results suggest a breakdown of the spatial organization of PHg-ERc-HC connectivity in TLE. Whether this breakdown is the cause or result of epileptic activity remains an exciting research question.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America; Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America.
| | - Joseph M Gullett
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America; Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center Gainesville, FL, United States of America
| | - Angelique E Boutzoukas
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America
| | - Anastasia Bohsali
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - David B FitzGerald
- Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center Gainesville, FL, United States of America
| | - Paul R Carney
- Department of Pediatrics, University of Florida, Gainesville, FL, United States of America; Department of Neurology, University of Florida, Gainesville, FL, United States of America; Department of Neuroscience, University of Florida, Gainesville, FL, United States of America; J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America; B.J. and Eve Wilder Epilepsy Center Excellence, University of Florida, Gainesville, FL, United States of America
| | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America; Department of VA Brain Rehabilitation Research Center, Malcolm Randall VA Center Gainesville, FL, United States of America
| |
Collapse
|
152
|
Tang X, Ross CA, Johnson H, Paulsen JS, Younes L, Albin RL, Ratnanather JT, Miller MI. Regional subcortical shape analysis in premanifest Huntington's disease. Hum Brain Mapp 2018; 40:1419-1433. [PMID: 30376191 DOI: 10.1002/hbm.24456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 11/11/2022] Open
Abstract
Huntington's disease (HD) involves preferential and progressive degeneration of striatum and other subcortical regions as well as regional cortical atrophy. It is caused by a CAG repeat expansion in the Huntingtin gene, and the longer the expansion the earlier the age of onset. Atrophy begins prior to manifest clinical signs and symptoms, and brain atrophy in premanifest expansion carriers can be studied. We employed a diffeomorphometric pipeline to contrast subcortical structures' morphological properties in a control group with three disease groups representing different phases of premanifest HD (far, intermediate, and near to onset) as defined by the length of the CAG expansion and the participant's age (CAG-Age-Product). A total of 1,428 magnetic resonance image scans from 694 participants from the PREDICT-HD cohort were used. We found significant region-specific atrophies in all subcortical structures studied, with the estimated abnormality onset time varying from structure to structure. Heterogeneous shape abnormalities of caudate nuclei were present in premanifest HD participants estimated furthest from onset and putaminal shape abnormalities were present in participants intermediate to onset. Thalamic, hippocampal, and amygdalar shape abnormalities were present in participants nearest to onset. We assessed whether the estimated progression of subcortical pathology in premanifest HD tracked specific pathways. This is plausible for changes in basal ganglia circuits but probably not for changes in hippocampus and amygdala. The regional shape analyses conducted in this study provide useful insights into the effects of HD pathology in subcortical structures.
Collapse
Affiliation(s)
- Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Christopher A Ross
- Division of Neurobiology, Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hans Johnson
- Departments of Neurology and Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jane S Paulsen
- Departments of Neurology and Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland.,Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Roger L Albin
- Neurology Service and GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
153
|
Dorsal striatum does not mediate feedback-based, stimulus-response learning: An event-related fMRI study in patients with Parkinson's disease tested on and off dopaminergic therapy. Neuroimage 2018; 185:455-470. [PMID: 30394326 DOI: 10.1016/j.neuroimage.2018.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/22/2018] [Accepted: 10/17/2018] [Indexed: 01/31/2023] Open
Abstract
Learning associations between stimuli and responses is essential to everyday life. Dorsal striatum (DS) has long been implicated in stimulus-response learning, though recent results challenge this contention. We have proposed that discrepant findings arise because stimulus-response learning methodology generally confounds learning and response selection processes. In 19 patients with Parkinson's disease (PD) and 18 age-matched controls, we found that dopaminergic therapy decreased the efficiency of stimulus-response learning, with corresponding attenuation of ventral striatum (VS) activation. In contrast, exogenous dopamine improved response selection accuracy related to enhanced DS BOLD signal. Contrasts between PD patients and controls fully support these within-subject patterns. These double dissociations in terms of behaviour and neural activity related to VS and DS in PD and in response to dopaminergic therapy, strongly refute the view that DS mediates stimulus-response learning through feedback. Our findings integrate with a growing literature favouring a role for DS in decision making rather than learning, and unite two literature that have been evolving independently.
Collapse
|
154
|
Cheng C, Fan L, Xia X, Eickhoff SB, Li H, Li H, Chen J, Jiang T. Rostro-caudal organization of the human posterior superior temporal sulcus revealed by connectivity profiles. Hum Brain Mapp 2018; 39:5112-5125. [PMID: 30273447 DOI: 10.1002/hbm.24349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
The posterior superior temporal sulcus (pSTS) plays an important role in biological motion perception but is also thought to be essential for speech and facial processing. However, although there are many previous investigations of distinct functional modules within the pSTS, the functional organization of the pSTS in its full functional heterogeneity has not yet been established. Here we applied a connectivity-based parcellation strategy to delineate the human pSTS subregions based on distinct anatomical connectivity profiles and divided it into rostral and caudal subregions using diffusion tensor imaging. Subsequent multimodal connection pattern analyses revealed distinct subregional connectivity profiles. From this we inferred that the two subregions are involved in distinct functional circuits, the language processing loop and the cognition attention network. These results indicate a convergent functional architecture of the pSTS that can be revealed based on different types of connectivity and is reflected in different functions and interactions. In addition, when the subregions were performing their processing in the different functional circuits, we found asymmetry in the bilateral pSTS. Our findings may improve the understanding of the functional organization of the pSTS and provide new insights into its interactions and integration of information at the subregional level.
Collapse
Affiliation(s)
- Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Hai Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
155
|
Dedifferentiation of caudate functional connectivity and striatal dopamine transporter density predict memory change in normal aging. Proc Natl Acad Sci U S A 2018; 115:10160-10165. [PMID: 30224467 DOI: 10.1073/pnas.1804641115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Age-related changes in striatal function are potentially important for predicting declining memory performance over the adult life span. Here, we used fMRI to measure functional connectivity of caudate subfields with large-scale association networks and positron emission tomography to measure striatal dopamine transporter (DAT) density in 51 older adults (age 65-86 years) who received annual cognitive testing for up to 7 years (mean = 5.59, range 2-7 years). Analyses showed that cortical-caudate functional connectivity was less differentiated in older compared with younger adults (n = 63, age 18-32 years). Unlike in younger adults, the central lateral caudate was less strongly coupled with the frontal parietal control network in older adults. Older adults also showed less "decoupling" of the caudate from other networks, including areas of the default network (DN) and the hippocampal complex. Contrary to expectations, less decoupling between caudate and the DN was not associated with an age-related reduction of striatal DAT, suggesting that neurobiological changes in the cortex may drive dedifferentiation of cortical-caudate connectivity. Reduction of specificity in functional coupling between caudate and regions of the DN predicted memory decline over subsequent years at older ages. The age-related reduction in striatal DAT density also predicted memory decline, suggesting that a relation between striatal functions and memory decline in aging is multifaceted. Collectively, the study provides evidence highlighting the association of age-related differences in striatal function to memory decline in normal aging.
Collapse
|
156
|
Hanssen H, Heldmann M, Prasuhn J, Tronnier V, Rasche D, Diesta CC, Domingo A, Rosales RL, Jamora RD, Klein C, Münte TF, Brüggemann N. Basal ganglia and cerebellar pathology in X-linked dystonia-parkinsonism. Brain 2018; 141:2995-3008. [DOI: 10.1093/brain/awy222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Cid C Diesta
- Asian Hospital and Medical Center, Filinvest Corporate City, Alabang, Muntinlupa City, Philippines
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Raymond L Rosales
- Department of Neurology and Psychiatry, University of Santo Tomas Hospital, Manila, Philippines
| | - Roland D Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
157
|
Ide JS, Nedic S, Wong KF, Strey SL, Lawson EA, Dickerson BC, Wald LL, La Camera G, Mujica-Parodi LR. Oxytocin attenuates trust as a subset of more general reinforcement learning, with altered reward circuit functional connectivity in males. Neuroimage 2018; 174:35-43. [DOI: 10.1016/j.neuroimage.2018.02.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/24/2018] [Accepted: 02/17/2018] [Indexed: 12/12/2022] Open
|
158
|
Van Hedger K, Keedy SK, Mayo LM, Heilig M, de Wit H. Neural responses to cues paired with methamphetamine in healthy volunteers. Neuropsychopharmacology 2018; 43:1732-1737. [PMID: 29463908 PMCID: PMC6006246 DOI: 10.1038/s41386-017-0005-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
Drug cues, or conditioned responses to stimuli paired with drugs, are widely believed to promote drug use. The acquisition of these conditioned responses has been well characterized in laboratory animals: neutral stimuli paired with drugs elicit conditioned responses resembling the motivational and incentive properties of the drug itself. However, few studies have examined acquisition of conditioning, or the nature of the conditioned response, in humans. In this study, we used fMRI to examine neural responses to stimuli that had been paired with methamphetamine or placebo in healthy young adults. Participants first underwent four conditioning sessions in which visual-auditory stimuli were paired with either methamphetamine (20 mg, oral) or placebo. Then on a drug-free test day, the stimuli were presented during an fMRI scan to assess neural responses to the stimuli. We hypothesized that the stimuli would elicit drug-like brain activity, especially in regions related to reward. Instead, we found that the methamphetamine-paired stimuli, compared to placebo-paired stimuli, produced greater activation in regions related to visual and auditory processing, consistent with the drug's unconditioned effects on sensory processing. This is the first study to demonstrate conditioned neural responses to drug-paired stimuli after just two pairings of methamphetamine in healthy adults. The study also illustrates that conditioned responses may develop to unexpected components of the drug's effects.
Collapse
Affiliation(s)
- Kathryne Van Hedger
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
159
|
Jakabek D, Power BD, Macfarlane MD, Walterfang M, Velakoulis D, van Westen D, Lätt J, Nilsson M, Looi JCL, Santillo AF. Regional structural hypo- and hyperconnectivity of frontal-striatal and frontal-thalamic pathways in behavioral variant frontotemporal dementia. Hum Brain Mapp 2018; 39:4083-4093. [PMID: 29923666 DOI: 10.1002/hbm.24233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) has been predominantly considered as a frontotemporal cortical disease, with limited direct investigation of frontal-subcortical connections. We aim to characterize the grey and white matter components of frontal-thalamic and frontal-striatal circuits in bvFTD. Twenty-four patients with bvFTD and 24 healthy controls underwent morphological and diffusion imaging. Subcortical structures were manually segmented according to published protocols. Probabilistic pathways were reconstructed separately from the dorsolateral, orbitofrontal and medial prefrontal cortex to the striatum and thalamus. Patients with bvFTD had smaller cortical and subcortical volumes, lower fractional anisotropy, and higher mean diffusivity metrics, which is consistent with disruptions in frontal-striatal-thalamic pathways. Unexpectedly, regional volumes of the striatum and thalamus connected to the medial prefrontal cortex were significantly larger in bvFTD (by 135% in the striatum, p = .032, and 217% in the thalamus, p = .004), despite smaller dorsolateral prefrontal cortex connected regional volumes (by 67% in the striatum, p = .002, and 65% in the thalamus, p = .020), and inconsistent changes in orbitofrontal cortex connected regions. These unanticipated findings may represent compensatory or maladaptive remodeling in bvFTD networks. Comparisons are made to other neuropsychiatric disorders suggesting a common mechanism of changes in frontal-subcortical networks; however, longitudinal studies are necessary to test this hypothesis.
Collapse
Affiliation(s)
- David Jakabek
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
| | - Brian D Power
- School of Medicine, The University of Notre Dame Australia, Fremantle, Australia; Clinical Research Centre, North Metropolitan Health Service - Mental Health, Perth, Australia
| | - Matthew D Macfarlane
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia.,Illawarra Shoalhaven Local Health District, Wollongong, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Danielle van Westen
- Centre for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Jimmy Lätt
- Centre for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden.,Department of Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jeffrey C L Looi
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia.,Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, Australian National University Medical School, Canberra Hospital, Canberra, Australia
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
160
|
Yokokawa K, Ito T, Takahata K, Takano H, Kimura Y, Ichise M, Ikoma Y, Isato A, Zhang MR, Kawamura K, Ito H, Takahashi H, Suhara T, Yamada M. Neuromolecular basis of faded perception associated with unreality experience. Sci Rep 2018; 8:8062. [PMID: 29795167 PMCID: PMC5966381 DOI: 10.1038/s41598-018-26382-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/09/2018] [Indexed: 12/02/2022] Open
Abstract
Perceptual changes in shape, size, or color are observed in patients with derealization symptoms; however, the underlying neural and molecular mechanisms are not well understood. The current study explored the relationship between neural activity associated with altered colorfulness perception assessed by fMRI and striatal dopamine D2 receptor availability measured by [11C]raclopride PET in healthy participants. Inside an fMRI scanner, participants performed the saturation adaptation task, where they rated how much vivid/faded visual objects looked like real/unreal ones using a visual analog scale. We found that participants experienced greater unreality when they perceived fadedness than vividness despite physically identical saturation. The combined fMRI and PET analyses revealed that the faded perception-related activities of the dorsolateral prefrontal and parietal cortex were positively correlated with striatal D2 receptor availability. This finding may help to understand the neuromolecular mechanisms of faded perception associated with feeling unreal in derealization symptoms.
Collapse
Affiliation(s)
- Keita Yokokawa
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan.,Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takehito Ito
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Harumasa Takano
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan.,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8551, Japan
| | - Yasuyuki Kimura
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Masanori Ichise
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Yoko Ikoma
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Ayako Isato
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan
| | - Hidehiko Takahashi
- Department of Neuropsychiatry, Kyoto University School of Medicine, 54 Shogoin Kwaramachi, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Makiko Yamada
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan. .,Group of Quantum and Cellular Systems Biology, QST Advanced Study Laboratory, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Chiba, 263-8555, Japan.
| |
Collapse
|
161
|
Chau BKH, Keuper K, Lo M, So KF, Chan CCH, Lee TMC. Meditation-induced neuroplastic changes of the prefrontal network are associated with reduced valence perception in older people. Brain Neurosci Adv 2018; 2:2398212818771822. [PMID: 32166138 PMCID: PMC7058252 DOI: 10.1177/2398212818771822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/21/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Neuroplastic underpinnings of meditation-induced changes in affective processing are largely unclear. Methods: We included healthy older participants in an active-controlled experiment. They were involved a meditation training or a control relaxation training of eight weeks. Associations between behavioral and neural morphometric changes induced by the training were examined. Results: The meditation group demonstrated a change in valence perception indexed by more neutral valence ratings of positive and negative affective images. These behavioral changes were associated with synchronous structural enlargements in a prefrontal network involving the ventromedial prefrontal cortex and the inferior frontal sulcus. In addition, these neuroplastic effects were modulated by the enlargement in the inferior frontal junction. In contrast, these prefrontal enlargements were absent in the active control group, which completed a relaxation training. Supported by a path analysis, we propose a model that describes how meditation may induce a series of prefrontal neuroplastic changes related to valence perception. These brain areas showing meditation-induced structural enlargements are reduced in older people with affective dysregulations. Conclusion: We demonstrated that a prefrontal network was enlarged after eight weeks of meditation training. Our findings yield translational insights in the endeavor to promote healthy aging by means of meditation.
Collapse
Affiliation(s)
- Bolton K H Chau
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong.,Laboratory of Social Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong.,Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Kati Keuper
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong.,Laboratory of Social Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Mandy Lo
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong.,Laboratory of Social Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong
| | - Kwok-Fai So
- Department of Ophthalmology, The University of Hong Kong, Hong Kong.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong.,GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Tatia M C Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong.,Laboratory of Social Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong.,Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong
| |
Collapse
|
162
|
Gahm JK, Shi Y. Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space. Med Image Anal 2018; 46:189-201. [PMID: 29574399 PMCID: PMC5910235 DOI: 10.1016/j.media.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/31/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra.
Collapse
Affiliation(s)
- Jin Kyu Gahm
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, 2025 Zonal Ave.,Los Angeles, CA 90033, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, 2025 Zonal Ave.,Los Angeles, CA 90033, USA.
| |
Collapse
|
163
|
Achterberg M, Bakermans-Kranenburg MJ, van Ijzendoorn MH, van der Meulen M, Tottenham N, Crone EA. Distinctive heritability patterns of subcortical-prefrontal cortex resting state connectivity in childhood: A twin study. Neuroimage 2018; 175:138-149. [PMID: 29614348 DOI: 10.1016/j.neuroimage.2018.03.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 01/25/2023] Open
Abstract
Connectivity between limbic/subcortical and prefrontal-cortical brain regions develops considerably across childhood, but less is known about the heritability of these networks at this age. We tested the heritability of limbic/subcortical-cortical and limbic/subcortical-subcortical functional brain connectivity in 7- to 9-year-old twins (N = 220), focusing on two key limbic/subcortical structures: the ventral striatum and the amygdala, given their combined influence on changing incentivised behavior during childhood and adolescence. Whole brain analyses with ventral striatum (VS) and amygdala as seeds in genetically independent groups showed replicable functional connectivity patterns. The behavioral genetic analyses revealed that in general VS and amygdala connectivity showed distinct influences of genetics and environment. VS-prefrontal cortex connections were best described by genetic and unique environmental factors (the latter including measurement error), whereas amygdala-prefrontal cortex connectivity was mainly explained by environmental influences. Similarities were also found: connectivity between both the VS and amygdala and ventral anterior cingulate cortex (vACC) showed influences of shared environment, while connectivity with the orbitofrontal cortex (OFC) showed heritability. These findings may inform future interventions that target behavioral control and emotion regulation, by taking into account genetic dispositions as well as shared and unique environmental factors such as child rearing.
Collapse
Affiliation(s)
- Michelle Achterberg
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands.
| | - Marian J Bakermans-Kranenburg
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | | | - Mara van der Meulen
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York City, NY, USA
| | - Eveline A Crone
- Leiden Consortium on Individual Development, Leiden University, The Netherlands; Institute of Psychology, Leiden University, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, The Netherlands
| |
Collapse
|
164
|
Darki F, Klingberg T. Functional differentiation between convergence and non-convergence zones of the striatum in children. Neuroimage 2018; 173:384-393. [PMID: 29501552 DOI: 10.1016/j.neuroimage.2018.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
Most cortical areas send projections to the striatum. In some parts of the striatum, the connections converge from several cortical areas. It is unknown whether the convergence and non-convergence zones of the striatum differ functionally. Here, we used diffusion-weighted magnetic resonance imaging and probabilistic fiber tracking to parcellate the striatum based on its connections to dorsolateral prefrontal, parietal and orbitofrontal cortices in two different datasets (children aged 6-7 years and adults). In both samples, quantitative susceptibility mapping (QSM) values were significantly correlated with working memory (WM) in convergence zones, but not in non-convergence zones. In children, this was also true for mean diffusivity, MD. The association of MD to WM specifically in the convergent zone was replicated in the Pediatric Imaging, Neurocognition, and Genetics (PING) dataset for 135 children aged 6-9 years. QSM data was not available in the PING dataset, and the association to QSM still needs to be replicated. These results suggest that connectivity-based segments of the striatum exhibit functionally different characteristics. The association between convergence zones and WM performance might relate to a role in integrating and coordinating activity in different cortical areas.
Collapse
Affiliation(s)
- Fahimeh Darki
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | -
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
165
|
Vyas NS, Buchsbaum MS, Lehrer DS, Merrill BM, DeCastro A, Doninger NA, Christian BT, Mukherjee J. D2/D3 dopamine receptor binding with [F-18]fallypride correlates of executive function in medication-naïve patients with schizophrenia. Schizophr Res 2018; 192:442-456. [PMID: 28576546 DOI: 10.1016/j.schres.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 11/19/2022]
Abstract
Converging evidence indicates that the prefrontal cortex is critically involved in executive control and that executive dysfunction is implicated in schizophrenia. Reduced dopamine D2/D3 receptor binding potential has been reported in schizophrenia, and the correlations with neuropsychological test scores have been positive and negative for different tasks. The aim of this study was to examine the relation between dopamine D2/D3 receptor levels with frontal and temporal neurocognitive performance in schizophrenia. Resting-state 18F-fallypride positron emission tomography was performed on 20 medication-naïve and 5 previously medicated for brief earlier periods patients with schizophrenia and 19 age- and sex-matched healthy volunteers. Striatal and extra-striatal dopamine D2/D3 receptor levels were quantified as binding potential using fallypride imaging. Magnetic resonance images in standard Talairach position and segmented into gray and white matter were co-registered to the fallypride images, and the AFNI stereotaxic atlas was applied. Two neuropsychological tasks known to activate frontal and temporal lobe function were chosen, specifically the Wisconsin Card Sorting Test (WCST) and the California Verbal Learning Test (CVLT). Images of the correlation coefficient between fallypride binding and WCST and CVLT performance showed a negative correlation in contrast to positive correlations in healthy volunteers. The results of this study demonstrate that lower fallypride binding potential in patients with schizophrenia may be associated with better performance. Our findings are consistent with previous studies that failed to find cognitive improvements with typical dopamine-blocking medications.
Collapse
Affiliation(s)
- Nora S Vyas
- Kingston University London, Department of Psychology, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK; Imperial College Healthcare NHS Trust, Charing Cross Hospital, Department of Nuclear Medicine, Fulham Palace Road, W6 8RF, UK.
| | - Monte S Buchsbaum
- University of California, San Diego, NeuroPET Center, Department of Psychiatry, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA; University of California, San Diego, School of Medicine, Department of Radiology, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA
| | - Douglas S Lehrer
- Wright State University, Boonshoft School of Medicine, Department of Psychiatry, East Medical Plaza, Dayton, OH 45408, USA
| | - Brian M Merrill
- Wright State University, Boonshoft School of Medicine, Department of Psychiatry, East Medical Plaza, Dayton, OH 45408, USA
| | - Alex DeCastro
- University of California, San Diego, NeuroPET Center, Department of Psychiatry, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA
| | - Nicholas A Doninger
- Wright State University, Boonshoft School of Medicine, Department of Psychiatry, Wallace-Kettering Neuroscience Institute, Kettering, OH 45429, USA
| | - Bradley T Christian
- University of Wisconsin-Madison, Waisman Laboratory for Brain Imaging and Behavior, Madison, WI 53705, USA
| | - Jogeshwar Mukherjee
- University of California, Irvine, Preclinical Imaging, Department of Radiological Sciences, CA 92697-5000, USA
| |
Collapse
|
166
|
Li Y, Hu X, Yu Y, Zhao K, Saalmann YB, Wang L. Feedback from human posterior parietal cortex enables visuospatial category representations as early as primary visual cortex. Brain Behav 2018; 8:e00886. [PMID: 29568684 PMCID: PMC5853631 DOI: 10.1002/brb3.886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Categorization is a fundamental cognitive process, whereby the brain assigns meaning to sensory stimuli. Previous studies have found category representations in prefrontal cortex and posterior parietal cortex (PPC). However, these higher-order areas lack the fine-scale spatial representations of early sensory areas, and it remains unclear what mechanisms enable flexible categorization based on fine-scale features. METHODS In this study, we decoded functional MRI signals and measured causal influences, across visual, parietal, and prefrontal cortex from participants performing categorization based on coarse- or fine-scale spatial information in thirteen healthy adults. RESULTS We show that category information based on coarse discriminations was represented in the PPC, in the intraparietal sulcus region, IPS1/2, at an early stage of categorization trials, whereas representations of category information based on fine-scale discriminations formed later during interactions between IPS1/2 and primary visual cortex (V1). Specifically, when fine-scale discriminations were necessary, we decoded significant category information from V1 at an intermediate stage of trials and again from IPS1/2 at a late stage. IPS1/2 feedback was critical, because categorization performance improved as causal influence from IPS1/2 to V1 increased. Further, these mechanisms were plastic, as the selectivity of IPS1/2 and V1 responses shifted markedly with retraining to categorize the same stimuli into two new groups. CONCLUSIONS Our findings suggest that reentrant processing between the PPC and visual cortex enables flexible abstraction of category information.
Collapse
Affiliation(s)
- Yanyan Li
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China.,Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Xiaopeng Hu
- Department of Radiology First Affiliated Hospital of Anhui Medical University Hefei China
| | - Yongqiang Yu
- Department of Radiology First Affiliated Hospital of Anhui Medical University Hefei China
| | - Ke Zhao
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China.,Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Yuri B Saalmann
- Department of Psychology University of Wisconsin-Madison Madison WI USA
| | - Liang Wang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China.,Department of Psychology University of Chinese Academy of Sciences Beijing China.,CAS Center for Excellence in Brain Science and Intelligence Technology Shanghai China
| |
Collapse
|
167
|
du Plessis S, Bossert M, Vink M, van den Heuvel L, Bardien S, Emsley R, Buckle C, Seedat S, Carr J. Reward processing dysfunction in ventral striatum and orbitofrontal cortex in Parkinson's disease. Parkinsonism Relat Disord 2017; 48:82-88. [PMID: 29307561 DOI: 10.1016/j.parkreldis.2017.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Parkinson's disease is a growing concern as the longevity of the world's population steadily increases. Both ageing and Parkinson's disease have an impact on dopamine neurotransmission. It is therefore important to investigate their relative impact on the fronto-striatal reward system. There has been little investigation of reward processing in terms of anticipation and reward outcome in Parkinson's disease. Abnormal responses during reward processing have previously been demonstrated in whole-brain analysis of Parkinson's patients with mild lateralized disease, but the exact impact in regions specific to reward processing is still unknown. OBJECTIVE Here we aim to investigate the impact of Parkinson's disease on the orbitofrontal ventral striatal reward system in patients with moderate to severe clinical symptoms. METHODS We utilized a monetary incentive delay (MID) task in 17 Parkinson's patients who were compared to two control groups stratified by age. The MID paradigm reliably activates the ventral striatum during reward anticipation and the orbitofrontal cortex during reward outcome processing. RESULTS Relative to the two control groups, Parkinson's disease patients had abnormal task related activity during both reward anticipation in the ventral striatum and reward outcome in the orbitofrontal cortex. There were no effects of ageing. CONCLUSION These findings demonstrate abnormalities in anticipatory as well as reward outcome processing while treated primarily with levodopa. The orbitofrontal dysfunction during reward outcome processing may have specificity in Parkinson's disease, as it has been shown to be relatively unaffected by normal ageing.
Collapse
Affiliation(s)
| | | | - Matthijs Vink
- Departments of Developmental and Experimental Psychology, Utrecht University, The Netherlands.
| | | | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Stellenbosch University, South Africa.
| | - Robin Emsley
- Department of Psychiatry, Stellenbosch University, South Africa.
| | - Chanelle Buckle
- Department of Psychiatry, Stellenbosch University, South Africa.
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, South Africa.
| | - Jonathan Carr
- Department of Neurology, Stellenbosch University, South Africa.
| |
Collapse
|
168
|
A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains. eNeuro 2017; 4:eN-NWR-0200-17. [PMID: 29379873 PMCID: PMC5783269 DOI: 10.1523/eneuro.0200-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022] Open
Abstract
Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.
Collapse
|
169
|
Puckett AM, Bollmann S, Poser BA, Palmer J, Barth M, Cunnington R. Using multi-echo simultaneous multi-slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra-high field (7T). Neuroimage 2017; 172:886-895. [PMID: 29208571 DOI: 10.1016/j.neuroimage.2017.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
Abstract
The nuclei of the basal ganglia pose a special problem for functional MRI, especially at ultra-high field, because T2* variations between different regions result in suboptimal BOLD sensitivity when using gradient-echo echo-planar imaging (EPI). Specifically, the iron-rich lentiform nucleus of the basal ganglia, including the putamen and globus pallidus, suffers from substantial signal loss when imaging is performed using conventional single-echo EPI with echo times optimized for the cortex. Multi-echo EPI acquires several echoes at different echo times for every imaging slice, allowing images to be reconstructed with a weighting of echo times that is optimized individually for each voxel according to the underlying tissue or T2* properties. Here we show that multi-echo simultaneous multi-slice (SMS) EPI can improve functional activation of iron-rich subcortical regions while maintaining sensitivity within cortical areas. Functional imaging during a motor task known to elicit strong activations in the cortex and the subcortex (basal ganglia) was performed to compare the performance of multi-echo SMS EPI to single-echo SMS EPI. Notably within both the caudate nucleus and putamen of the basal ganglia, multi-echo SMS EPI yielded higher tSNR (an average 84% increase) and CNR (an average 58% increase), an approximate 3-fold increase in supra-threshold voxels, and higher t-values (an average 39% increase). The degree of improvement in the group level t-statistics was negatively correlated to the underlying T2* of the voxels, such that the shorter the T2*, as in the iron-rich nuclei of the basal ganglia, the higher the improvement of t-values in the activated region.
Collapse
Affiliation(s)
- Alexander M Puckett
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jake Palmer
- School of Psychology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ross Cunnington
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
170
|
Froudist-Walsh S, Bloomfield MA, Veronese M, Kroll J, Karolis VR, Jauhar S, Bonoldi I, McGuire PK, Kapur S, Murray RM, Nosarti C, Howes O. The effect of perinatal brain injury on dopaminergic function and hippocampal volume in adult life. eLife 2017; 6. [PMID: 29179814 PMCID: PMC5705207 DOI: 10.7554/elife.29088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
Perinatal brain injuries, including hippocampal lesions, cause lasting changes in dopamine function in rodents, but it is not known if this occurs in humans. We compared adults who were born very preterm with perinatal brain injury to those born very preterm without perinatal brain injury, and age-matched controls born at full term using [18F]-DOPA PET and structural MRI. Dopamine synthesis capacity was reduced in the perinatal brain injury group relative to those without brain injury (Cohen’s d = 1.36, p=0.02) and the control group (Cohen’s d = 1.07, p=0.01). Hippocampal volume was reduced in the perinatal brain injury group relative to controls (Cohen’s d = 1.17, p=0.01) and was positively correlated with striatal dopamine synthesis capacity (r = 0.344, p=0.03). This is the first evidence in humans linking neonatal hippocampal injury to adult dopamine dysfunction, and provides a potential mechanism linking early life risk factors to adult mental illness. Thirteen million infants are born too early every year. Improved care allows many to survive, but these “preterm infants” still face an increased risk of death and many other complications. Infants born very early, before 32 weeks, are at risk of brain injury because the brain is normally still developing in the later stages of pregnancy. They also have an increased risk of developing mental health problems later in life. Early-life brain injuries in rats cause changes in the production of a chemical called dopamine. Dopamine is a chemical messenger in the brain that reinforces rewarding behaviour. People with schizophrenia and attention deficit hyperactivity disorder (ADHD) have abnormal levels of dopamine. Changes in brain dopamine levels may explain why early-life brain injury is linked to later mental illness. But first scientists must study whether similar changes occur in humans with an early-life brain injury. Now, Froudist-Walsh et al. use brain imaging to show that people born very early who suffered a brain injury have lower dopamine levels than other adults. Imaging techniques were used to scan the brains of 13 adults who were born before 32 weeks and who had a brain injury around birth, 13 adults born before 32 weeks without a brain injury, and 13 adults born at “full term” (around 39 to 40 weeks). Individuals with low dopamine levels reported difficulty concentrating and a lack of motivation and enjoyment in their lives. Both can be warning signs of mental health problems. People born prematurely without a brain injury had normal dopamine levels and did not report such symptoms. More studies may help scientists understand how early brain injuries may cause brain chemical differences later in life, and how these brain changes affect individual’s mental health. They may also help scientists develop treatments to prevent or treat mental illness in people who experienced a brain injury after a very early birth.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Friedman Brain Institute, Fishberg Department of Neuroscience, Icahn School of Medicine, New York, United States
| | - Michael Ap Bloomfield
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom.,Division of Psychiatry, University College London, London, United Kingdom.,Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Jasmin Kroll
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Vyacheslav R Karolis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Philip K McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners, King's College London, London, United Kingdom.,MRC Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
171
|
Choi EY, Ding SL, Haber SN. Combinatorial Inputs to the Ventral Striatum from the Temporal Cortex, Frontal Cortex, and Amygdala: Implications for Segmenting the Striatum. eNeuro 2017; 4:ENEURO.0392-17.2017. [PMID: 29279863 PMCID: PMC5740454 DOI: 10.1523/eneuro.0392-17.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022] Open
Abstract
The canonical striatal map, based predominantly on frontal corticostriatal projections, divides the striatum into ventromedial-limbic, central-association, and dorsolateral-motor territories. While this has been a useful heuristic, recent studies indicate that the striatum has a more complex topography when considering converging frontal and nonfrontal inputs from distributed cortical networks. The ventral striatum (VS) in particular is often ascribed a "limbic" role, but it receives diverse information, including motivation and emotion from deep brain structures, cognition from frontal cortex, and polysensory and mnemonic signals from temporal cortex. Using anatomical tract-tracing in 17 male adult monkeys (Macaca nemestrina, Macaca fascicularis, Macaca mulatta), we build upon this striatal map by systematically mapping inputs from frontal cortex, amygdala, temporal pole, and medial temporal cortex. We find that the VS contains heterogeneous subregions that become apparent when considering both the identities and strengths of inputs. We parcellated the VS into a ventromedial sector receiving motivation and emotion-related information from regions including area TG, ventromedial PFC, ACC, and amygdala; and a more functionally diverse dorsolateral sector that receives this information coupled to cognitive and sensorimotor information from dorsolateral PFC, ventrolateral PFC, premotor cortex, area TAr, and area TEr. Each sector was further parcellated into smaller regions that had different proportions of these inputs. Together, the striatum contains complex, selective input combinations, providing substrates for myriad associations. This VS parcellation provides a map that can guide and interpret functional interactions in healthy individuals and those with psychiatric disorders, and may be useful in targeting treatments for specific psychiatric conditions.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109
- Institute of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province 511436, P. R. China
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
172
|
Mick I, Ramos AC, Myers J, Stokes PR, Chandrasekera S, Erritzoe D, Mendez MA, Gunn RN, Rabiner EA, Searle GE, Galduróz JCF, Waldman AD, Bowden-Jones H, Clark L, Nutt DJ, Lingford-Hughes AR. Evidence for GABA-A receptor dysregulation in gambling disorder: correlation with impulsivity. Addict Biol 2017; 22:1601-1609. [PMID: 27739164 PMCID: PMC5697606 DOI: 10.1111/adb.12457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
As a behavioural addiction, gambling disorder (GD) provides an opportunity to characterize addictive processes without the potentially confounding effects of chronic excessive drug and alcohol exposure. Impulsivity is an established precursor to such addictive behaviours, and GD is associated with greater impulsivity. There is also evidence of GABAergic dysregulation in substance addiction and in impulsivity. This study therefore investigated GABAA receptor availability in 15 individuals with GD and 19 healthy volunteers (HV) using [11C]Ro15‐4513, a relatively selective α5 benzodiazepine receptor PET tracer and its relationship with impulsivity. We found significantly higher [11C]Ro15‐4513 total distribution volume (VT) in the right hippocampus in the GD group compared with HV. We found higher levels of the ‘Negative Urgency’ construct of impulsivity in GD, and these were positively associated with higher [11C]Ro15‐4513 VT in the amygdala in the GD group; no such significant correlations were evident in the HV group. These results contrast with reduced binding of GABAergic PET ligands described previously in alcohol and opiate addiction and add to growing evidence for distinctions in the neuropharmacology between substance and behavioural addictions. These results provide the first characterization of GABAA receptors in GD with [11C]Ro15‐4513 PET and show greater α5 receptor availability and positive correlations with trait impulsivity. This GABAergic dysregulation is potential target for treatment.
Collapse
Affiliation(s)
- Inge Mick
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
| | - Anna C. Ramos
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
- Department of Psychobiology; Universidade Federal de São Paulo; Brazil
| | - Jim Myers
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
| | - Paul R. Stokes
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
- Centre for Affective Disorders, Department of Psychological Medicine; Institute of Psychiatry, Psychology and Neuroscience, King's College London; UK
| | - Samantha Chandrasekera
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
| | - David Erritzoe
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
| | - Maria A. Mendez
- Forensic and Neurodevelopmental Sciences; Institute of Psychiatry, King's College; UK
| | - Roger N. Gunn
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
- Imanova Ltd.; Centre for Imaging Sciences; UK
| | - Eugenii A. Rabiner
- Imanova Ltd.; Centre for Imaging Sciences; UK
- Department of Neuroimaging; Institute of Psychiatry, King's College; UK
| | | | | | - Adam D. Waldman
- Department of Imaging, Division of Experimental Medicine, Department of Medicine; Imperial College; UK
| | - Henrietta Bowden-Jones
- National Problem Gambling Clinic, CNWL NHS Foundation Trust; Imperial College London; UK
| | - Luke Clark
- Centre for Gambling Research at UBC, Department of Psychology; University of British Columbia; Canada
| | - David J. Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
| | - Anne R. Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine; Imperial College London; UK
| |
Collapse
|
173
|
Graff-Radford J, Williams L, Jones DT, Benarroch EE. Caudate nucleus as a component of networks controlling behavior. Neurology 2017; 89:2192-2197. [PMID: 29070661 DOI: 10.1212/wnl.0000000000004680] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Lindsy Williams
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | - David T Jones
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
174
|
Tang X, Chen N, Zhang S, Jones JA, Zhang B, Li J, Liu P, Liu H. Predicting auditory feedback control of speech production from subregional shape of subcortical structures. Hum Brain Mapp 2017; 39:459-471. [PMID: 29058356 DOI: 10.1002/hbm.23855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Although a growing body of research has focused on the cortical sensorimotor mechanisms that support auditory feedback control of speech production, much less is known about the subcortical contributions to this control process. This study examined whether subregional anatomy of subcortical structures assessed by statistical shape analysis is associated with vocal compensations and cortical event-related potentials in response to pitch feedback errors. The results revealed significant negative correlations between the magnitudes of vocal compensations and subregional shape of the right thalamus, between the latencies of vocal compensations and subregional shape of the left caudate and pallidum, and between the latencies of cortical N1 responses and subregional shape of the left putamen. These associations indicate that smaller local volumes of the basal ganglia and thalamus are predictive of slower and larger neurobehavioral responses to vocal pitch errors. Furthermore, increased local volumes of the left hippocampus and right amygdala were predictive of larger vocal compensations, suggesting that there is an interplay between the memory-related subcortical structures and auditory-vocal integration. These results, for the first time, provide evidence for differential associations of subregional morphology of the basal ganglia, thalamus, hippocampus, and amygdala with neurobehavioral processing of vocal pitch errors, suggesting that subregional shape measures of subcortical structures can predict behavioral outcome of auditory-vocal integration and associated neural features. Hum Brain Mapp 39:459-471, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoying Tang
- Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Shunde International Joint Research Institute, Shunde, 528300, China.,School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 15213, Pennsylvania
| | - Na Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Baofeng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyuan Li
- Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 15213, Pennsylvania
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
175
|
Hiebert NM, Owen AM, Seergobin KN, MacDonald PA. Dorsal striatum mediates deliberate decision making, not late-stage, stimulus-response learning. Hum Brain Mapp 2017; 38:6133-6156. [PMID: 28945307 DOI: 10.1002/hbm.23817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 11/09/2022] Open
Abstract
We investigated a controversy regarding the role of the dorsal striatum (DS) in deliberate decision-making versus late-stage, stimulus-response learning to the point of automatization. Participants learned to associate abstract images with right or left button presses explicitly before strengthening these associations through stimulus-response trials with (i.e., Session 1) and without (i.e., Session 2) feedback. In Session 1, trials were divided into response-selection and feedback events to separately assess decision versus learning processes. Session 3 evaluated stimulus-response automaticity using a location Stroop task. DS activity correlated with response-selection and not feedback events in Phase 1 (i.e., Blocks 1-3), Session 1. Longer response times (RTs), lower accuracy, and greater intertrial variability characterized Phase 1, suggesting deliberation. DS activity extinguished in Phase 2 (i.e., Blocks 4-12), Session 1, once RTs, response variability, and accuracy stabilized, though stimulus-response automatization continued. This was signaled by persisting improvements in RT and accuracy into Session 2. Distraction between Sessions 1 and 2 briefly reintroduced response uncertainty, and correspondingly, significant DS activity reappeared in Block 1 of Session 2 only. Once stimulus-response associations were again refamiliarized and deliberation unnecessary, DS activation disappeared for Blocks 2-8, Session 2. Interference from previously learned right or left button responses with incongruent location judgments in a location Stroop task provided evidence that automaticity of stimulus-specific button-press responses had developed by the end of Session 2. These results suggest that DS mediates decision making and not late-stage learning, reconciling two, independently evolving and well-supported literatures that implicate DS in different cognitive functions. Hum Brain Mapp 38:6133-6156, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nole M Hiebert
- Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Adrian M Owen
- Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Ken N Seergobin
- Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Penny A MacDonald
- Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, N6A 5C1, Canada.,Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, N6A 5A5, Canada
| |
Collapse
|
176
|
Abstract
In brain shape analysis, the striatum is typically divided into three parts: the caudate, putamen, and accumbens nuclei for its analysis. Recent connectivity and animal studies, however, indicate striatum-cortical inter-connections do not always follow such subdivisions. For the holistic mapping of striatum surfaces, conventional spherical registration techniques are not suitable due to the large metric distortions in spherical parameterization of striatal surfaces. To overcome this difficulty, we develop a novel striatal surface mapping method using the recently proposed Riemannian metric optimization techniques in the Laplace-Beltrami (LB) embedding space. For the robust resolution of sign ambiguities in the LB spectrum, we also devise novel anatomical contextual features to guide the surface mapping in the embedding space. In our experimental results, we compare with spherical registration tools from FreeSurfer and FSL to demonstrate that our novel method provides a superior solution to the striatal mapping problem. We also apply our method to map the striatal surfaces from 211 subjects of the Human Connectome Project (HCP), and use the surface maps to construct a cortical connectivity atlas. Our atlas results show that the striato-cortical connectivity is not distinctive according to traditional structural subdivision of the striatum, and further confirms the holistic approach for mapping striatal surfaces.
Collapse
|
177
|
Cherkasova MV, Faridi N, Casey KF, Larcher K, O'Driscoll GA, Hechtman L, Joober R, Baker GB, Palmer J, Evans AC, Dagher A, Benkelfat C, Leyton M. Differential Associations between Cortical Thickness and Striatal Dopamine in Treatment-Naïve Adults with ADHD vs. Healthy Controls. Front Hum Neurosci 2017; 11:421. [PMID: 28878639 PMCID: PMC5572420 DOI: 10.3389/fnhum.2017.00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
Alterations in catecholamine signaling and cortical morphology have both been implicated in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). However, possible links between the two remain unstudied. Here, we report exploratory analyses of cortical thickness and its relation to striatal dopamine transmission in treatment-naïve adults with ADHD and matched healthy controls. All participants had one magnetic resonance imaging (MRI) and two [11C]raclopride positron emission tomography scans. Associations between frontal cortical thickness and the magnitude of d-amphetamine-induced [11C]raclopride binding changes were observed that were divergent in the two groups. In the healthy controls, a thicker cortex was associated with less dopamine release; in the ADHD participants the converse was seen. The same divergence was seen for baseline D2/3 receptor availability. In healthy volunteers, lower D2/3 receptor availability was associated with a thicker cortex, while in the ADHD group lower baseline D2/3 receptor availability was associated with a thinner cortex. Individual differences in cortical thickness in these regions correlated with ADHD symptom severity. Together, these findings add to the evidence of associations between dopamine transmission and cortical morphology, and suggest that these relationships are altered in treatment-naïve adults with ADHD.
Collapse
Affiliation(s)
- Mariya V Cherkasova
- Division of Neurology, Department of Medicine, University of British ColumbiaVancouver, BC, Canada
| | - Nazlie Faridi
- Department of Medicine, Stanford UniversityStanford, CA, United States
| | - Kevin F Casey
- Centre Hospitalier Universitaire Sainte-JustineMontréal, QC, Canada
| | - Kevin Larcher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Gillian A O'Driscoll
- Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Lily Hechtman
- Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | | | - Glen B Baker
- Department of Psychiatry, University of AlbertaMontréal, QC, Canada
| | | | - Alan C Evans
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada
| | - Chawki Benkelfat
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada
| | - Marco Leyton
- Department of Neurology and Neurosurgery, McGill UniversityMontréal, QC, Canada.,Department of Psychology, McGill UniversityMontréal, QC, Canada.,Department of Psychiatry, McGill UniversityMontréal, QC, Canada.,Center for Studies in Behavioral Neurobiology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
178
|
Smittenaar P, Kurth-Nelson Z, Mohammadi S, Weiskopf N, Dolan RJ. Local striatal reward signals can be predicted from corticostriatal connectivity. Neuroimage 2017; 159:9-17. [PMID: 28736307 PMCID: PMC5678290 DOI: 10.1016/j.neuroimage.2017.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/24/2017] [Accepted: 07/19/2017] [Indexed: 12/23/2022] Open
Abstract
A defining feature of the basal ganglia is their anatomical organization into multiple cortico-striatal loops. A central tenet of this architecture is the idea that local striatal function is determined by its precise connectivity with cortex, creating a functional topography that is mirrored within cortex and striatum. Here we formally test this idea using both human anatomical and functional imaging, specifically asking whether within striatal subregions one can predict between-voxel differences in functional signals based on between-voxel differences in corticostriatal connectivity. We show that corticostriatal connectivity profiles predict local variation in reward signals in bilateral caudate nucleus and putamen, expected value signals in bilateral caudate nucleus, and response effector activity in bilateral putamen. These data reveal that, even within individual striatal regions, local variability in corticostriatal anatomical connectivity predicts functional differentiation. We use diffusion imaging to predict striatal reinforcement learning BOLD responses. Structural cortico-striatal connectivity can explain intra-regional BOLD variability. These results suggest a fine functional parcellation based on afferent connectivity.
Collapse
Affiliation(s)
- Peter Smittenaar
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Zeb Kurth-Nelson
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK; Max Planck-University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK
| | - Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK; Max Planck-University College London Centre for Computational Psychiatry and Ageing Research, London, WC1B 5EH, UK
| |
Collapse
|
179
|
Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning. J Neurosci 2017; 36:11682-11692. [PMID: 27852776 DOI: 10.1523/jneurosci.1767-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/16/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
As one learns to dance or play tennis, the desired somatosensory state is typically unknown. Trial and error is important as motor behavior is shaped by successful and unsuccessful movements. As an experimental model, we designed a task in which human participants make reaching movements to a hidden target and receive positive reinforcement when successful. We identified somatic and reinforcement-based sources of plasticity on the basis of changes in functional connectivity using resting-state fMRI before and after learning. The neuroimaging data revealed reinforcement-related changes in both motor and somatosensory brain areas in which a strengthening of connectivity was related to the amount of positive reinforcement during learning. Areas of prefrontal cortex were similarly altered in relation to reinforcement, with connectivity between sensorimotor areas of putamen and the reward-related ventromedial prefrontal cortex strengthened in relation to the amount of successful feedback received. In other analyses, we assessed connectivity related to changes in movement direction between trials, a type of variability that presumably reflects exploratory strategies during learning. We found that connectivity in a network linking motor and somatosensory cortices increased with trial-to-trial changes in direction. Connectivity varied as well with the change in movement direction following incorrect movements. Here the changes were observed in a somatic memory and decision making network involving ventrolateral prefrontal cortex and second somatosensory cortex. Our results point to the idea that the initial stages of motor learning are not wholly motor but rather involve plasticity in somatic and prefrontal networks related both to reward and exploration. SIGNIFICANCE STATEMENT In the initial stages of motor learning, the placement of the limbs is learned primarily through trial and error. In an experimental analog, participants make reaching movements to a hidden target and receive positive feedback when successful. We identified sources of plasticity based on changes in functional connectivity using resting-state fMRI. The main finding is that there is a strengthening of connectivity between reward-related prefrontal areas and sensorimotor areas in the basal ganglia and frontal cortex. There is also a strengthening of connectivity related to movement exploration in sensorimotor circuits involved in somatic memory and decision making. The results indicate that initial stages of motor learning depend on plasticity in somatic and prefrontal networks related to reward and exploration.
Collapse
|
180
|
Avissar M, Powell F, Ilieva I, Respino M, Gunning FM, Liston C, Dubin MJ. Functional connectivity of the left DLPFC to striatum predicts treatment response of depression to TMS. Brain Stimul 2017; 10:919-925. [PMID: 28747260 DOI: 10.1016/j.brs.2017.07.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/03/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (TMS) is a non-invasive, safe, and efficacious treatment for depression. TMS has been shown to normalize abnormal functional connectivity of cortico-cortical circuits in depression and baseline functional connectivity of these circuits predicts treatment response. Less is known about the relationship between functional connectivity of frontostriatal circuits and treatment response. OBJECTIVE/HYPOTHESIS We investigated whether baseline functional connectivity of distinct frontostriatal circuits predicted response to TMS. METHODS Resting-state fMRI (rsfMRI) was acquired in 27 currently depressed subjects with treatment resistant depression and 27 healthy controls. Depressed subjects were treated with 5 weeks of daily TMS over the left dorsolateral prefrontal cortex (DLPFC). The functional connectivity between limbic, executive, rostral motor, and caudal motor regions of frontal cortex and their corresponding striatal targets were determined at baseline using an existing atlas based on diffusion tensor imaging. TMS treatment response was measured by percent reduction in the 24-item Hamilton Depression Rating Scale (HAMD24). In an exploratory analysis, correlations were determined between baseline functional connectivity and TMS treatment response. RESULTS Seven cortical clusters belonging to the executive and rostral motor frontostriatal projections had reduced functional connectivity in depression compared to healthy controls. No frontostriatal projections showed increased functional connectivity in depression (voxel-wise p < 0.01, family-wise α < 0.01). Only baseline functional connectivity between the left DLPFC and the striatum predicted TMS response. Higher baseline functional connectivity correlated with greater reductions in HAMD24 (Pearson's R = 0.58, p = 0.002). CONCLUSION(S) In an exploratory analysis, higher functional connectivity between the left DLPFC and striatum predicted better treatment response. Our findings suggest that the antidepressant mechanism of action of TMS may require connectivity from cortex proximal to the stimulation site to the striatum.
Collapse
Affiliation(s)
- Michael Avissar
- Division of Experimental Therapeutics, New York State Psychiatric Institute/Columbia University Medical Center, 1051 Riverside Drive, New York, NY 10032, USA
| | - Fon Powell
- Department of Radiology, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Irena Ilieva
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Matteo Respino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Institute of Geriatric Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA
| | - Marc J Dubin
- Department of Psychiatry, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College-New York Presbyterian Hospital, 525 East 68th Street, New York, NY 10065, USA.
| |
Collapse
|
181
|
Kübler D, Schroll H, Buchert R, Kühn AA. Cognitive performance correlates with the degree of dopaminergic degeneration in the associative part of the striatum in non-demented Parkinson's patients. J Neural Transm (Vienna) 2017. [PMID: 28643101 DOI: 10.1007/s00702-017-1747-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) patients show cognitive deficits that are relevant in terms of prognosis and quality of life. Degeneration of striatal dopaminergic afferents proceeds from dorsal/caudal to anterior/ventral and is discussed to account for some of these symptoms. Treatment with dopamine (DA) has differential effects on cognitive dysfunctions, improving some and worsening others. We hypothesized that cognitive performance during the dopaminergic OFF state correlates with DAT availability in the associative striatum. 16 PD patients underwent motor and cognitive examination ON and OFF DA. Global cognition was measured using the Montréal Cognitive Assessment (MoCA) test and executive functioning using a Stroop test. Nigrostriatal dopaminergic innervation was characterized with [123I]FP-CIT SPECT. A connectivity atlas of the striatum was used to assess DAT availability in functionally defined striatal subregions. Correlations between imaging data and behavioral data OFF medication were calculated. Correlations between DAT availability and MoCA performance in the dopaminergic OFF state was strongest in the associative part of the striatum (r = 0.674, p = 0.004). MoCA test performance did not differ between the ON and the OFF state. There was no correlation of DAT availability with Stroop performance in the OFF state but performance was significantly better during the ON state. Not only motor but also cognitive dysfunctions in PD are associated with striatal dopaminergic depletion. Cognitive decline in non-demented PD patients goes along with nigrostriatal degeneration, most pronounced in the associative subdivision of the striatum. In addition, the present findings suggest that executive dysfunctions are ameliorated by DA whereas global cognition is not improved by dopaminergic medication.
Collapse
Affiliation(s)
- Dorothee Kübler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Henning Schroll
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Computer Science, Chemnitz University of Technology, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
182
|
Xia X, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation reveals a shell-core dichotomy of the human nucleus accumbens. Hum Brain Mapp 2017; 38:3878-3898. [PMID: 28548226 DOI: 10.1002/hbm.23636] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The subdifferentiation of the nucleus accumbens (NAc) has been extensively studied using neuroanatomy and histochemistry, yielding a well-accepted dichotomic shell/core architecture that reflects dissociable roles, such as in reward and aversion, respectively. However, in vivo parcellation of these structures in humans has been rare, potentially impairing future research into the structural and functional characteristics and alterations of putative NAc subregions. Here, we used three complementary parcellation schemes based on tractography, task-independent functional connectivity, and task-dependent co-activation to investigate the regional differentiation within the NAc. We found that a 2-cluster solution with shell-like and core-like subdivisions provided the best description of the data and was consistent with the earlier anatomical shell/core architecture. The consensus clusters from this optimal solution, which was based on the three schemes, were used as the final parcels for the subsequent connection analyses. The resulting connectivity patterns presented inter-hemispheric symmetry, convergence and divergence across the modalities, and, most importantly, clearly distinct patterns between the two subregions. This convergent connectivity patterns also confirmed the connections in animal models, supporting views that the two subregions could have antagonistic roles in some circumstances. Finally, the identified parcels should be helpful in further neuroimaging studies of the NAc. Hum Brain Mapp 38:3878-3898, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoluan Xia
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425 Juelich, Germany.,Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Junjie Chen
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Haifang Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
183
|
Dukart J, Sambataro F, Bertolino A. Distinct Role of Striatal Functional Connectivity and Dopaminergic Loss in Parkinson's Symptoms. Front Aging Neurosci 2017; 9:151. [PMID: 28588475 PMCID: PMC5441129 DOI: 10.3389/fnagi.2017.00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Degeneration of dopaminergic neurons is a hallmark of Parkinson's disease. However, its link to Parkinson's disease symptoms remains unclear. Striatal resting state functional connectivity differentiates between Parkinson's disease patients and healthy controls and might be a potential mediator of the effects of striatal dopaminergic degeneration onto Parkinson's disease symptoms. Here, we evaluated the relationship between dopaminergic deficits, striatal functional connectivity (SFC) at rest and different Parkinson's disease clinical symptoms in the largest currently established cohort of de novo Parkinson's disease patients. We show that SFC is an independent predictor of symptom severity in Parkinson's disease in addition to striatal dopaminergic deficits. Furthermore, we find that distinct SFC networks are associated with symptoms reflecting the ability to perform daily routine automatized motor tasks and clinician-rated Parkinson's disease motor symptoms. We find that reduced SFC is a major and independent predictor of Parkinson's disease symptoms going beyond the mere reflection of striatal dopaminergic input loss. These findings indicate the high value of SFC as a clinically relevant biomarker in Parkinson's disease.
Collapse
Affiliation(s)
- Juergen Dukart
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Discovery and Translational Area, Roche Innovation Center BaselBasel, Switzerland
| | - Fabio Sambataro
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Discovery and Translational Area, Roche Innovation Center BaselBasel, Switzerland
- Department of Experimental and Clinical Medical Sciences, University of UdineUdine, Italy
| | - Alessandro Bertolino
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Discovery and Translational Area, Roche Innovation Center BaselBasel, Switzerland
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo MoroBari, Italy
| |
Collapse
|
184
|
Parkes L, Fulcher BD, Yücel M, Fornito A. Transcriptional signatures of connectomic subregions of the human striatum. GENES BRAIN AND BEHAVIOR 2017; 16:647-663. [DOI: 10.1111/gbb.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023]
Affiliation(s)
- L. Parkes
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| | - B. D. Fulcher
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| | - M. Yücel
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| | - A. Fornito
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences; Monash University; Victoria Australia
| |
Collapse
|
185
|
Caminiti SP, Tettamanti M, Sala A, Presotto L, Iannaccone S, Cappa SF, Magnani G, Perani D. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies. J Cereb Blood Flow Metab 2017; 37:1311-1325. [PMID: 27306756 PMCID: PMC5453453 DOI: 10.1177/0271678x16654497] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/24/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
Dementia with Lewy bodies is characterized by α-synuclein accumulation and degeneration of dopaminergic and cholinergic pathways. To gain an overview of brain systems affected by neurodegeneration, we characterized the [18F]FDG-PET metabolic connectivity in 42 dementia with Lewy bodies patients, as compared to 42 healthy controls, using sparse inverse covariance estimation method and graph theory. We performed whole-brain and anatomically driven analyses, targeting cholinergic and dopaminergic pathways, and the α-synuclein spreading. The first revealed substantial alterations in connectivity indexes, brain modularity, and hubs configuration. Namely, decreases in local metabolic connectivity within occipital cortex, thalamus, and cerebellum, and increases within frontal, temporal, parietal, and basal ganglia regions. There were also long-range disconnections among these brain regions, all supporting a disruption of the functional hierarchy characterizing the normal brain. The anatomically driven analysis revealed alterations within brain structures early affected by α-synuclein pathology, supporting Braak's early pathological staging in dementia with Lewy bodies. The dopaminergic striato-cortical pathway was severely affected, as well as the cholinergic networks, with an extensive decrease in connectivity in Ch1-Ch2, Ch5-Ch6 networks, and the lateral Ch4 capsular network significantly towards the occipital cortex. These altered patterns of metabolic connectivity unveil a new in vivo scenario for dementia with Lewy bodies underlying pathology in terms of changes in whole-brain metabolic connectivity, spreading of α-synuclein, and neurotransmission impairment.
Collapse
Affiliation(s)
- Silvia P Caminiti
- Vita-Salute San Raffaele University, Faculty of Medicine and Surgery, Milan, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Tettamanti
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Arianna Sala
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Iannaccone
- Neurological Rehabilitation Department, San Raffaele Hospital, Milan, Italy
| | - Stefano F Cappa
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- IUSS Pavia, Piazza della Vittoria, Pavia, Italy
| | | | - Daniela Perani
- Vita-Salute San Raffaele University, Faculty of Medicine and Surgery, Milan, Italy
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
186
|
Jaworska N, Cox SM, Casey KF, Boileau I, Cherkasova M, Larcher K, Dagher A, Benkelfat C, Leyton M. Is there a relation between novelty seeking, striatal dopamine release and frontal cortical thickness? PLoS One 2017; 12:e0174219. [PMID: 28346539 PMCID: PMC5367687 DOI: 10.1371/journal.pone.0174219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Novelty-seeking (NS) and impulsive personality traits have been proposed to reflect an interplay between fronto-cortical and limbic systems, including the limbic striatum (LS). Although neuroimaging studies have provided some evidence for this, most are comprised of small samples and many report surprisingly large effects given the challenges of trying to relate a snapshot of brain function or structure to an entity as complex as personality. The current work tested a priori hypotheses about associations between striatal dopamine (DA) release, cortical thickness (CT), and NS in a large sample of healthy adults. METHODS Fifty-two healthy adults (45M/7F; age: 23.8±4.93) underwent two positron emission tomography scans with [11C]raclopride (specific for striatal DA D2/3 receptors) with or without amphetamine (0.3 mg/kg, p.o.). Structural magnetic resonance image scans were acquired, as were Tridimensional Personality Questionnaire data. Amphetamine-induced changes in [11C]raclopride binding potential values (ΔBPND) were examined in the limbic, sensorimotor (SMS) and associative (AST) striatum. CT measures, adjusted for whole brain volume, were extracted from the dorsolateral sensorimotor and ventromedial/limbic cortices. RESULTS BPND values were lower in the amphetamine vs. no-drug sessions, with the largest effect in the LS. When comparing low vs. high LS ΔBPND groups (median split), higher NS2 (impulsiveness) scores were found in the high ΔBPND group. Partial correlations (age and gender as covariates) yielded a negative relation between ASTS ΔBPND and sensorimotor CT; trends for inverse associations existed between ΔBPND values in other striatal regions and frontal CT. In other words, the greater the amphetamine-induced striatal DA response, the thinner the frontal cortex. CONCLUSIONS These data expand upon previously reported associations between striatal DA release in the LS and both NS related impulsiveness and CT in the largest sample reported to date. The findings add to the plausibility of these associations while suggesting that the effects are likely weaker than has been previously proposed.
Collapse
Affiliation(s)
- Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Institue of Mental Health Research, Ottawa, Ontario, Canada
| | - Sylvia M. Cox
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kevin F. Casey
- Le Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada
| | - Isabelle Boileau
- Centre for Addiction & Mental Health (CAMH), Toronto, Ontario, Canada
| | - Mariya Cherkasova
- University of British Columbia, Division of Neurology, Vancouver, British Columbia, Canada
| | - Kevin Larcher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
187
|
Anderkova L, Barton M, Rektorova I. Striato-cortical connections in Parkinson's and Alzheimer's diseases: Relation to cognition. Mov Disord 2017; 32:917-922. [DOI: 10.1002/mds.26956] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lubomira Anderkova
- Applied Neuroscience Research Group; Central European Institute of Technology, Masaryk University; Brno Czech Republic
- First Department of Neurology; St. Anne's University Hospital and School of Medicine, Masaryk University; Brno Czech Republic
| | - Marek Barton
- Multimodal and Functional Neuroimaging Research Group; Central European Institute of Technology, Masaryk University; Brno Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group; Central European Institute of Technology, Masaryk University; Brno Czech Republic
- First Department of Neurology; St. Anne's University Hospital and School of Medicine, Masaryk University; Brno Czech Republic
| |
Collapse
|
188
|
Comparison of manual and automatic techniques for substriatal segmentation in 11C-raclopride high-resolution PET studies. Nucl Med Commun 2017; 37:1074-87. [PMID: 27286237 DOI: 10.1097/mnm.0000000000000559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The striatum is the primary target in regional C-raclopride-PET studies, and despite its small volume, it contains several functional and anatomical subregions. The outcome of the quantitative dopamine receptor study using C-raclopride-PET depends heavily on the quality of the region-of-interest (ROI) definition of these subregions. The aim of this study was to evaluate subregional analysis techniques because new approaches have emerged, but have not yet been compared directly. MATERIALS AND METHODS In this paper, we compared manual ROI delineation with several automatic methods. The automatic methods used either direct clustering of the PET image or individualization of chosen brain atlases on the basis of MRI or PET image normalization. State-of-the-art normalization methods and atlases were applied, including those provided in the FreeSurfer, Statistical Parametric Mapping8, and FSL software packages. Evaluation of the automatic methods was based on voxel-wise congruity with the manual delineations and the test-retest variability and reliability of the outcome measures using data from seven healthy male participants who were scanned twice with C-raclopride-PET on the same day. RESULTS The results show that both manual and automatic methods can be used to define striatal subregions. Although most of the methods performed well with respect to the test-retest variability and reliability of binding potential, the smallest average test-retest variability and SEM were obtained using a connectivity-based atlas and PET normalization (test-retest variability=4.5%, SEM=0.17). CONCLUSION The current state-of-the-art automatic ROI methods can be considered good alternatives for subjective and laborious manual segmentation in C-raclopride-PET studies.
Collapse
|
189
|
McCloskey MC, Young TJ, Anderson SM. Research Article: The influence of acetylcholinesterase on anxiety- and depression-like behaviors in fluoxetine-treated male mice. ACTA ACUST UNITED AC 2017. [DOI: 10.1893/bios-d-15-00013.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Tyler J. Young
- Department of Biology, Saint Vincent College, Latrobe, PA 15650
| | | |
Collapse
|
190
|
Hampton WH, Alm KH, Venkatraman V, Nugiel T, Olson IR. Dissociable frontostriatal white matter connectivity underlies reward and motor impulsivity. Neuroimage 2017; 150:336-343. [PMID: 28189592 DOI: 10.1016/j.neuroimage.2017.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/24/2016] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of cognitive control often leads to impulsive decision-making in clinical and healthy populations. Some research suggests that a generalized cognitive control mechanism underlies the ability to modulate various types of impulsive behavior, while other evidence suggests different forms of impulsivity are dissociable, and rely on distinct neural circuitry. Past research consistently implicates several brain regions, such as the striatum and portions of the prefrontal cortex, in impulsive behavior. However the ventral and dorsal striatum are distinct in regards to function and connectivity. Nascent evidence points to the importance of frontostriatal white matter connectivity in impulsivity, yet it remains unclear whether particular tracts relate to different control behaviors. Here we used probabilistic tractography of diffusion imaging data to relate ventral and dorsal frontostriatal connectivity to reward and motor impulsivity measures. We found a double dissociation such that individual differences in white matter connectivity between the ventral striatum and the ventromedial prefrontal cortex and dorsolateral prefrontal cortex was associated with reward impulsivity, as measured by delay discounting, whereas connectivity between dorsal striatum and supplementary motor area was associated with motor impulsivity, but not vice versa. Our findings suggest that (a) structural connectivity can is associated with a large amount of behavioral variation; (b) different types of impulsivity are driven by dissociable frontostriatal neural circuitry.
Collapse
Affiliation(s)
- William H Hampton
- Department of Psychology, College of Liberal Arts, Temple University, USA; Decision Neuroscience, College of Liberal Arts, Temple University, USA
| | - Kylie H Alm
- Department of Psychology, College of Liberal Arts, Temple University, USA
| | - Vinod Venkatraman
- Department of Marketing & Supply Chain Management, Fox School of Business, Temple University, USA; Decision Neuroscience, College of Liberal Arts, Temple University, USA
| | - Tehila Nugiel
- Department of Psychology, College of Liberal Arts, Temple University, USA
| | - Ingrid R Olson
- Department of Psychology, College of Liberal Arts, Temple University, USA; Decision Neuroscience, College of Liberal Arts, Temple University, USA.
| |
Collapse
|
191
|
Connectivity-based parcellation reveals distinct cortico-striatal connectivity fingerprints in Autism Spectrum Disorder. Neuroimage 2017; 170:412-423. [PMID: 28188914 DOI: 10.1016/j.neuroimage.2017.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
Autism Spectrum Disorder (ASD) has been associated with abnormal synaptic development causing a breakdown in functional connectivity. However, when measured at the macro scale using resting state fMRI, these alterations are subtle and often difficult to detect due to the large heterogeneity of the pathology. Recently, we outlined a novel approach for generating robust biomarkers of resting state functional magnetic resonance imaging (RS-fMRI) using connectivity based parcellation of gross morphological structures to improve single-subject reproducibility and generate more robust connectivity fingerprints. Here we apply this novel approach to investigating the organization and connectivity strength of the cortico-striatal system in a large sample of ASD individuals and typically developed (TD) controls (N=130 per group). Our results showed differences in the parcellation of the striatum in ASD. Specifically, the putamen was found to be one single structure in ASD, whereas this was split into anterior and posterior segments in an age, IQ, and head movement matched TD group. An analysis of the connectivity fingerprints revealed that the group differences in clustering were driven by differential connectivity between striatum and the supplementary motor area, posterior cingulate cortex, and posterior insula. Our approach for analysing RS-fMRI in clinical populations has provided clear evidence that cortico-striatal circuits are organized differently in ASD. Based on previous task-based segmentations of the striatum, we believe that the anterior putamen cluster present in TD, but not in ASD, likely contributes to social and language processes.
Collapse
|
192
|
Canessa N, Crespi C, Baud-Bovy G, Dodich A, Falini A, Antonellis G, Cappa SF. Neural markers of loss aversion in resting-state brain activity. Neuroimage 2017; 146:257-265. [DOI: 10.1016/j.neuroimage.2016.11.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/28/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023] Open
|
193
|
Kimura Y, Maeda J, Yamada M, Takahata K, Yokokawa K, Ikoma Y, Seki C, Ito H, Higuchi M, Suhara T. Measurement of psychological state changes at low dopamine transporter occupancy following a clinical dose of mazindol. Psychopharmacology (Berl) 2017; 234:323-328. [PMID: 27766370 DOI: 10.1007/s00213-016-4464-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022]
Abstract
RATIONALE The beneficial effects of psychostimulant drugs in the treatment of psychiatric disorders occur because they increase the extracellular dopamine concentration by inhibiting re-uptake of extracellular dopamine at dopamine transporters. However, the psychological effects at low dopamine transporter occupancy have not been well demonstrated. OBJECTIVES The purpose of the study was to evaluate the psychological effects, dopamine transporter occupancy, and dopamine release induced by a single oral administration of a clinical dose of mazindol. METHODS Ten healthy male volunteers were orally administered a placebo and a clinical dose of mazindol (1.5 mg) on separate days. The psychological effects of mazindol were assessed using a visual analogue scale to detect alterations in the state of consciousness. The amount of blockade of dopamine transporters was assessed using positron emission tomography with [18F]FE-PE2I and extracellular dopamine release was measured as the amount of change in [11C]raclopride binding. RESULTS Following administration of a clinical dose of mazindol, the dopamine transporters were blocked by 24-25 %, and the binding potential of [11C]raclopride was reduced by 2.8-4.6 %. The differences of a score measuring derealisation and depersonalization associated with a positive basic mood were significantly correlated with the change in the [11C]raclopride binding in the limbic striatum. CONCLUSIONS A subtle alteration in the state of consciousness was detected with a correlation to the changes in the [11C]raclopride binding, which implies that a subtle alteration in extracellular dopamine concentration in the limbic striatum by a small amount of dopamine transporter occupancy can affect the state of consciousness. TRIAL REGISTRATION HTTPS://UPLOAD.UMIN.AC.JP/CGI-OPEN-BIN/CTR_E/CTR_VIEW.CGI?RECPTNO=R000009703 : UMIN000008232.
Collapse
Affiliation(s)
- Y Kimura
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan. .,Department of Clinical and Experimental Neuroimaging Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.
| | - J Maeda
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - M Yamada
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - K Takahata
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - K Yokokawa
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Y Ikoma
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - C Seki
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - H Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
| | - M Higuchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - T Suhara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
194
|
van de Giessen E, Weinstein JJ, Cassidy CM, Haney M, Dong Z, Ghazzaoui R, Ojeil N, Kegeles LS, Xu X, Vadhan NP, Volkow ND, Slifstein M, Abi-Dargham A. Deficits in striatal dopamine release in cannabis dependence. Mol Psychiatry 2017; 22:68-75. [PMID: 27001613 PMCID: PMC5033654 DOI: 10.1038/mp.2016.21] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis-dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and 12 healthy controls (HC) completed two positron emission tomography scans with [11C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5-7 days prior to the scans to standardize abstinence. Magnetic resonance spectroscopy (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [11C]-(+)-PHNO-binding potential (ΔBPND) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBPND in the striatum (P=0.002, effect size (ES)=1.48), including the associative striatum (P=0.003, ES=1.39), sensorimotor striatum (P=0.003, ES=1.41) and the pallidus (P=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence-without the confounds of any comorbidity-is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology.
Collapse
Affiliation(s)
- Elsmarieke van de Giessen
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jodi J. Weinstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Clifford M. Cassidy
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Margaret Haney
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Rassil Ghazzaoui
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Najate Ojeil
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Lawrence S. Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Xiaoyan Xu
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Nehal P. Vadhan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
- Department of Psychiatry, Stony Brook University School of Medicine, New York
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Mark Slifstein
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York
- New York State Psychiatric Institute, New York
| |
Collapse
|
195
|
Karcher NR, Martin EA, Kerns JG. Examining associations between psychosis risk, social anhedonia, and performance of striatum-related behavioral tasks. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 124:507-18. [PMID: 26075968 DOI: 10.1037/abn0000067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Both psychosis and anhedonia have been associated to some extent with striatal functioning. The current study examined whether either psychosis risk or social anhedonia was associated with performance on 3 tasks related to striatal functioning. Psychosis risk participants had extremely elevated Perceptual Aberration/Magical Ideation (PerMag) scores (n = 69), with 43% of psychosis risk participants also having semistructured interview-assessed psychotic-like experiences which further heightens their risk of psychotic disorder (Chapman, Chapman, Kwapil, Eckblad, & Zinser, 1994). Compared with both extremely elevated social anhedonia (n = 60) and control (n = 68) groups, the PerMag group exhibited poorer performance on 2 of the striatum-related tasks, the Weather Prediction Task (WPT) and the Learned Irrelevance Paradigm, but not on Finger Tapping. In addition, PerMag participants with psychotic-like experiences were especially impaired on the WPT. Overall, this study arguably provides the first evidence that psychosis risk but not social anhedonia is associated with performance on the WPT, a task thought to be strongly associated with activation in the associative striatum, and also suggests that the WPT might be especially useful as a behavioral measure of psychosis risk.
Collapse
|
196
|
Chalavi S, Adab HZ, Pauwels L, Beets IAM, van Ruitenbeek P, Boisgontier MP, Monteiro TS, Maes C, Sunaert S, Swinnen SP. Anatomy of Subcortical Structures Predicts Age-Related Differences in Skill Acquisition. Cereb Cortex 2016; 28:459-473. [DOI: 10.1093/cercor/bhw382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sima Chalavi
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Hamed Zivari Adab
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Lisa Pauwels
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Iseult A M Beets
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- BrainCTR, Lilid bvba, 3290 Diest, Belgium
| | - Peter van Ruitenbeek
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Faculty of Psychology and Neuroscience, Department of Clinical Psychological Science, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthieu P Boisgontier
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Thiago Santos Monteiro
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Celine Maes
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, Biomedical Sciences Group, Translational MRI Unit, KU Leuven, 3000 Leuven, Belgium
| | - Stephan P Swinnen
- Department of Kinesiology, Biomedical Sciences Group, Movement Control and Neuroplasticity Research Center, KU Leuven, 3001 Leuven, Belgium
- Leuven Research Institute for Neuroscience & Disease (LIND), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
197
|
Jaspers E, Balsters JH, Kassraian Fard P, Mantini D, Wenderoth N. Corticostriatal connectivity fingerprints: Probability maps based on resting-state functional connectivity. Hum Brain Mapp 2016; 38:1478-1491. [PMID: 27859903 DOI: 10.1002/hbm.23466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/14/2016] [Accepted: 11/04/2016] [Indexed: 01/06/2023] Open
Abstract
Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ellen Jaspers
- Department of Health Sciences and Technology, Neural Control of Movement Lab, ETH Zurich, Switzerland
| | - Joshua H Balsters
- Department of Health Sciences and Technology, Neural Control of Movement Lab, ETH Zurich, Switzerland
| | - Pegah Kassraian Fard
- Department of Health Sciences and Technology, Neural Control of Movement Lab, ETH Zurich, Switzerland
| | - Dante Mantini
- Department of Health Sciences and Technology, Neural Control of Movement Lab, ETH Zurich, Switzerland.,Department of Kinesiology, Movement Control & Neuroplasticity Research Group, KU Leuven, Belgium
| | - Nicole Wenderoth
- Department of Health Sciences and Technology, Neural Control of Movement Lab, ETH Zurich, Switzerland.,Department of Kinesiology, Movement Control & Neuroplasticity Research Group, KU Leuven, Belgium
| |
Collapse
|
198
|
Hermans L, Beeckmans K, Michiels K, Lafosse C, Sunaert S, Coxon JP, Swinnen SP, Leunissen I. Proactive Response Inhibition and Subcortical Gray Matter Integrity in Traumatic Brain Injury. Neurorehabil Neural Repair 2016; 31:228-239. [DOI: 10.1177/1545968316675429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lize Hermans
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven, Belgium
| | - Kurt Beeckmans
- Center for Epilepsy and Acquired Brain Injury (CEPOS), Duffel, Belgium
| | - Karla Michiels
- Department of Physical Medicine and Rehabilitation, University Hospital Leuven - Campus Pellenberg, Belgium
| | | | - Stefan Sunaert
- Medical Imaging Center, Group Biomedical Sciences, KU Leuven, Belgium
| | - James P. Coxon
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven, Belgium
- Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| | - Inge Leunissen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, KU Leuven, Belgium
| |
Collapse
|
199
|
Striatum-Centered Fiber Connectivity Is Associated with the Personality Trait of Cooperativeness. PLoS One 2016; 11:e0162160. [PMID: 27755551 PMCID: PMC5068751 DOI: 10.1371/journal.pone.0162160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
Cooperativeness is an essential behavioral trait evolved to facilitate group living. Social and cognitive mechanisms involved in cooperation (e.g., motivation, reward encoding, action evaluation, and executive functions) are sub-served by the striatal-projected circuits, whose physical existence has been confirmed by animal studies, human postmortem studies, and in vivo human brain studies. The current study investigated the associations between Cooperativeness and fiber connectivities from the striatum to nine subcortical and cortical regions, including the amygdala, hippocampus, medial orbitofrontal cortex, lateral orbitofrontal cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, posterior cingulate cortex/retrosplenial cortex, dorsal cingulate cortex, and rostral cingulate cortex. Results showed that Cooperativeness was negatively correlated with fiber connectivity for the cognitive control system (from the dorsal caudate to the rostral cingulate cortex and ventrolateral prefrontal cortex), but not with fiber connectivity for the social cognitive system (e.g., connectivity with the medial prefrontal cortex and amygdala). These results partially supported Declerck et al.’s (2013) cognitive neural model of the role of cognitive control and social cognition in cooperation.
Collapse
|
200
|
Lei X, Han Z, Chen C, Bai L, Xue G, Dong Q. Sex Differences in Fiber Connection between the Striatum and Subcortical and Cortical Regions. Front Comput Neurosci 2016; 10:100. [PMID: 27721750 PMCID: PMC5034007 DOI: 10.3389/fncom.2016.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/07/2016] [Indexed: 01/31/2023] Open
Abstract
The striatum is an important subcortical structure with extensive connections to other regions of the brain. These connections are believed to play important roles in behaviors such as reward-related processes and impulse control, which show significant sex differences. However, little is known about sex differences in the striatum-projected fiber connectivity. The current study examined sex differences between 50 Chinese males and 79 Chinese females in their fiber connections between the striatum and nine selected cortical and subcortical regions. Despite overall similarities, males showed stronger fiber connections between the left caudate and rostral cingulate cortex, between the right putamen and the lateral orbitofrontal cortex, between the bilateral putamen and the ventro-lateral prefrontal cortex, and between the right caudate and the ventro-lateral prefrontal cortex, whereas females showed stronger fiber connections between the right putamen and the dorsolateral prefrontal cortex, between bilateral caudate and hippocampus, and between the left putamen and hippocampus. These findings help us to understand sex differences in the striatum-projected fiber connections and their implications for sex differences in behaviors.
Collapse
Affiliation(s)
- Xuemei Lei
- School of Psychology, Beijing Normal University Beijing, China
| | - Zhuo Han
- School of Psychology, Beijing Normal University Beijing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California Irvine, CA, USA
| | - Lu Bai
- School of Psychology, Beijing Normal University Beijing, China
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
| |
Collapse
|