151
|
Zhao Y, Luan H, Gao H, Wu X, Zhang Y, Li R. Gegen Qinlian decoction maintains colonic mucosal homeostasis in acute/chronic ulcerative colitis via bidirectionally modulating dysregulated Notch signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153182. [PMID: 32065953 DOI: 10.1016/j.phymed.2020.153182] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium. PURPOSE This study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models. METHODS Acute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4-/-) acute UC mice were also used in this study. RESULTS GQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4-/- UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells. CONCLUSIONS GQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.
Collapse
Affiliation(s)
- Yaxing Zhao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Haofan Luan
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hui Gao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
152
|
Liu W, Tang S, Zhao Q, Zhang W, Li K, Yao W, Gao X. The α-D-glucan from marine fungus Phoma herbarum YS4108 ameliorated mice colitis by repairing mucosal barrier and maintaining intestinal homeostasis. Int J Biol Macromol 2020; 149:1180-1188. [PMID: 32014479 DOI: 10.1016/j.ijbiomac.2020.01.303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology with increasing incidence world widely. Previous studies have indicated that the α-D-glucan YCP purified from the mycelium of the marine fungus Phoma herbarum YS4108 had certain immunomodulatory activities in animal and cell models. In the study, the therapeutic effect and intestinal regulatory activity of YCP (40 mg/kg, intraperitoneal injection) on UC were investigated in dextran sulfate sodium (DSS)-induced colitis mice. The results showed YCP could improve the general symptoms, reestablish the intestinal immune balance, and repair the mucosal barrier in colitis mice. The administration of YCP also significantly increased butyrate and isovaleric acid levels. In addition, YCP resulted in prominent alterations on specific microbiota including Firmicutes, Bacteroidetes, Proteobacteria, Clostridiales, and Lachnospiraceae which are closely related to immune regulation and mucus repair. Therefore, YCP may be a candidate for curing UC because of its conspicuous effects comparable to 5-aminosalicylic acid (5-ASA).
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shuai Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qianqian Zhao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wanyue Zhang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Kaidong Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
153
|
Yamamoto EA, Jørgensen TN. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front Immunol 2020; 10:3141. [PMID: 32038645 PMCID: PMC6985452 DOI: 10.3389/fimmu.2019.03141] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing recognition of the role the microbiome plays in states of health and disease. Microbiome studies in systemic autoimmune diseases demonstrate unique microbial patterns in Inflammatory Bowel Disease, Rheumatoid Arthritis, and Systemic Lupus Erythematosus to a lesser extent, whereas there is no single bug or pattern that characterizes Multiple Sclerosis. Autoimmune diseases tend to share a predisposition for vitamin D deficiency, which alters the microbiome and integrity of the gut epithelial barrier. In this review, we summarize the influence of intestinal bacteria on the immune system, explore the microbial patterns that have emerged from studies on autoimmune diseases, and discuss how vitamin D deficiency may contribute to autoimmunity via its effects on the intestinal barrier function, microbiome composition, and/or direct effects on immune responses.
Collapse
Affiliation(s)
- Erin A Yamamoto
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Trine N Jørgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
154
|
Manca C, Boubertakh B, Leblanc N, Deschênes T, Lacroix S, Martin C, Houde A, Veilleux A, Flamand N, Muccioli GG, Raymond F, Cani PD, Di Marzo V, Silvestri C. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res 2020; 61:70-85. [PMID: 31690638 PMCID: PMC6939599 DOI: 10.1194/jlr.ra119000424] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Indexed: 01/10/2023] Open
Abstract
The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.
Collapse
Affiliation(s)
- Claudia Manca
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Nadine Leblanc
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Thomas Deschênes
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Sebastien Lacroix
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Cyril Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Alain Houde
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada
| | - Alain Veilleux
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Frédéric Raymond
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Metabolism and Nutrition Research Group, UCLouvain (Université Catholique de Louvain), Brussels, Belgium
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Québec, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, Canada; Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Québec, Canada.
| |
Collapse
|
155
|
Wang S, Qu Y, Chang L, Pu Y, Zhang K, Hashimoto K. Antibiotic-induced microbiome depletion is associated with resilience in mice after chronic social defeat stress. J Affect Disord 2020; 260:448-457. [PMID: 31539679 DOI: 10.1016/j.jad.2019.09.064] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The brain-gut axis plays a role in the pathogenesis of stress-related disorders such as depression. However, the role of brain-gut axis in the resilience versus susceptibility after stress remains unclear. Here, we examined the effects of antibiotic-induced microbiome depletion on an anhedonia-like phenotype in adult mice subjected to chronic social defeat stress (CSDS). METHODS Using CSDS paradigm, we investigated the effects of antibiotic-induced microbiome depletion on the resilience versus susceptibility in mice. RESULTS Treatment with an antibiotic cocktail for 14 days significantly decreased the diversity and composition of the microbiota in the host gut. Proteobacteria were markedly increased after treatment with the antibiotic cocktail. At the genus and species levels, the antibiotic-treated group exhibited marked alterations in the microbiota compared with a control group. CSDS was shown to significantly improve the abnormal composition of gut microbiota in the antibiotic-treated group. CSDS did not produce an anhedonia-like phenotype in the antibiotic-treated mice, but did induce an anhedonia-like phenotype in control mice, suggesting that gut bacteria are essential for the development of CSDS-induced anhedonia. CSDS treatment did not alter the plasma levels of interleukin-6 or the expression of synaptic proteins, such as PSD-95 and GluA1, in the prefrontal cortex of antibiotic-treated mice. LIMITATIONS Specific microbiome were not determined. CONCLUSIONS These findings suggest that antibiotic-induced microbiome depletion contributed to resilience to anhedonia in mice subjected to CSDS. Therefore, it is likely that the brain-gut axis plays a role in resilience versus susceptibility to stress.
Collapse
Affiliation(s)
- Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kai Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
156
|
Tran HQ, Ley RE, Gewirtz AT, Chassaing B. Flagellin-elicited adaptive immunity suppresses flagellated microbiota and vaccinates against chronic inflammatory diseases. Nat Commun 2019; 10:5650. [PMID: 31827095 PMCID: PMC6906489 DOI: 10.1038/s41467-019-13538-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
Alterations in gut microbiota composition are associated with metabolic syndrome and chronic inflammatory diseases such as inflammatory bowel disease. One feature of inflammation-associated gut microbiotas is enrichment of motile bacteria, which can facilitate microbiota encroachment into the mucosa and activate pro-inflammatory gene expression. Here, we set out to investigate whether elicitation of mucosal anti-flagellin antibodies by direct administration of purified flagellin might serve as a general vaccine against subsequent development of chronic gut inflammation. We show, in mice, that repeated injection of flagellin elicits increases in fecal anti-flagellin IgA and alterations in microbiota composition, reduces fecal flagellin concentration, prevents microbiota encroachment, protects against IL-10 deficiency-induced colitis, and ameliorates diet-induced obesity. Flagellin's impact on the microbiota is B-lymphocyte dependent and, in humans, obese subjects exhibit increased levels of fecal flagellin and reduced levels of fecal flagellin-specific IgA, relative to normal weight subjects. Thus, administration of flagellin, and perhaps other pathobiont antigens, may confer some protection against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hao Q Tran
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
- INSERM, U1016, team "Mucosal microbiota in chronic inflammatory diseases", Paris, France.
- Université de Paris, Paris, France.
| |
Collapse
|
157
|
Praveschotinunt P, Duraj-Thatte AM, Gelfat I, Bahl F, Chou DB, Joshi NS. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun 2019; 10:5580. [PMID: 31811125 PMCID: PMC6898321 DOI: 10.1038/s41467-019-13336-6] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Mucosal healing plays a critical role in combatting the effects of inflammatory bowel disease, fistulae and ulcers. While most treatments for such diseases focus on systemically delivered anti-inflammatory drugs, often leading to detrimental side effects, mucosal healing agents that target the gut epithelium are underexplored. We genetically engineer Escherichia coli Nissle 1917 (EcN) to create fibrous matrices that promote gut epithelial integrity in situ. These matrices consist of curli nanofibers displaying trefoil factors (TFFs), known to promote intestinal barrier function and epithelial restitution. We confirm that engineered EcN can secrete the curli-fused TFFs in vitro and in vivo, and is non-pathogenic. We observe enhanced protective effects of engineered EcN against dextran sodium sulfate-induced colitis in mice, associated with mucosal healing and immunomodulation. This work lays a foundation for the development of a platform in which the in situ production of therapeutic protein matrices from beneficial bacteria can be exploited.
Collapse
Affiliation(s)
- Pichet Praveschotinunt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Anna M Duraj-Thatte
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ilia Gelfat
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Franziska Bahl
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg im Breisgau, Germany
| | - David B Chou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Neel S Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
158
|
Li Y, Pan H, Liu JX, Li T, Liu S, Shi W, Sun C, Fan M, Xue L, Wang Y, Nie C, Zhang H, Qian H, Ying H, Wang L. l-Arabinose Inhibits Colitis by Modulating Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13299-13306. [PMID: 31674784 DOI: 10.1021/acs.jafc.9b05829] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
l-Arabinose is a monosaccharide extracted from plants or fibers, which is known to have a variety of functional properties. In this study, we aim to investigate whether l-arabinose could inhibit colitis by modulating gut microbiota. l-Arabinose was administered in mice daily in a dextran sodium sulfate (DSS)-induced colitis model. The histological analysis, disease index, and the expression of inflammatory genes were measured. 16S-rRNA sequence analysis was performed to investigate gut microbiota. Intriguingly, we found that l-arabinose could repress DSS-induced colitis and inhibit p38-/p65-dependent inflammation activation. Besides that, our data revealed that l-arabinose-modulated DSS-induced gut microbiota were disturbed. Additionally, the perturbed gut microbiota was responsible for the suppressive effects of l-arabinose on DSS-induced colitis treated with antibiotics. Lastly, Caco-2 cells were used to confirm the protective effects of l-arabinose in colitis or inflammatory bowel disease. As expected, the protein expression levels in Caco-2 cells of pro-inflammatory genes, which were treated with l-arabinose and incubated with or without tumor necrosis factor alpha. Our work suggested that l-arabinose exerts anti-inflammation effects in DSS-induced colitis. These beneficial effects have correlations with the composition, diversity, and abundance of the gut microbiota regulated by l-arabinose. l-Arabinose could be a remarkable candidate as a functional food or novel therapeutic strategy for intestinal health.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Haiou Pan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Jin-Xin Liu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , Jiangsu , China
| | - Shengnan Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Wenli Shi
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Chao Sun
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Mingcong Fan
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Lamei Xue
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Yu Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Chenzhipeng Nie
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Hui Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Haifeng Qian
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , Shanghai , China
| | - Li Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Nanjing 210037 , Jiangsu , China
| |
Collapse
|
159
|
Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y, Ye J, Fang D, Wu J, Jiang X, Shi D, Li L. Administration of Akkermansia muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front Microbiol 2019; 10:2259. [PMID: 31632373 PMCID: PMC6779789 DOI: 10.3389/fmicb.2019.02259] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) develop as a result of complex interactions among genes, innate immunity and environmental factors, which are related to the gut microbiota. Multiple clinical and animal data have shown that Akkermansia muciniphila is associated with a healthy mucosa. However, its precise role in colitis is currently unknown. Our study aimed to determine its protective effects and underlying mechanisms in a dextran sulfate sodium (DSS)-induced colitis mouse model. Twenty-four C57BL/6 male mice were administered A. muciniphila MucT or phosphate-buffered saline (PBS) once daily by oral gavage for 14 days. Colitis was induced by drinking 2% DSS from days 0 to 6, followed by 2 days of drinking normal water. Mice were weighed daily and then sacrificed on day 8. We found that A. muciniphila improved DSS-induced colitis, which was evidenced by reduced weight loss, colon length shortening and histopathology scores and enhanced barrier function. Serum and tissue levels of inflammatory cytokines and chemokines (TNF-α, IL1α, IL6, IL12A, MIP-1A, G-CSF, and KC) decreased as a result of A. muciniphila administration. Analysis of 16S rDNA sequences showed that A. muciniphila induced significant gut microbiota alterations. Furthermore, correlation analysis indicated that pro-inflammatory cytokines and other injury factors were negatively associated with Verrucomicrobia, Akkermansia, Ruminococcaceae, and Rikenellaceae, which were prominently abundant in A. muciniphila-treated mice. We confirmed that A. muciniphila treatment could ameliorate mucosal inflammation either via microbe-host interactions, which protect the gut barrier function and reduce the levels of inflammatory cytokines, or by improving the microbial community. Our findings suggest that A. muciniphila may be a potential probiotic agent for ameliorating colitis.
Collapse
Affiliation(s)
- Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
160
|
Zhan G, Yang N, Li S, Huang N, Fang X, Zhang J, Zhu B, Yang L, Yang C, Luo A. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY) 2019; 10:1257-1267. [PMID: 29886457 PMCID: PMC6046237 DOI: 10.18632/aging.101464] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease is characterized by cognitive dysfunction and aging is an important predisposing factor; however, the pathological and therapeutic mechanisms are not fully understood. Recently, the role of gut microbiota in Alzheimer’s disease has received increasing attention. The cognitive function in senescence-accelerated mouse prone 8 (SAMP8) mice was significantly decreased and the Chao 1 and Shannon indices, principal coordinates analysis, and principal component analysis results were notably abnormal compared with that of those in senescence-accelerated mouse resistant 1 (SAMR1) mice. Moreover, 27 gut bacteria at six phylogenetic levels differed between SAMP8 and SAMR1 mice. In a separate study, we transplanted fecal bacteria from SAMP8 or SAMR1 mice into pseudo germ-free mice. Interestingly, the pseudo germ-free mice had significantly lower cognitive function prior to transplant. Pseudo germ-free mice that received fecal bacteria transplants from SAMR1 mice but not from SAMP8 mice showed improvements in behavior and in α-diversity and β-diversity indices. In total, 14 bacteria at six phylogenetic levels were significantly altered by the gut microbiota transplant. These results suggest that cognitive dysfunction in SAMP8 mice is associated with abnormal composition of the gut microbiota. Thus, improving abnormal gut microbiota may provide an alternative treatment for cognitive dysfunction and Alzheimer’s disease.
Collapse
Affiliation(s)
- Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Yang
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
161
|
Schmidt F, Dahlke K, Batra A, Keye J, Wu H, Friedrich M, Glauben R, Ring C, Loh G, Schaubeck M, Hackl H, Trajanoski Z, Schumann M, Kühl AA, Blaut M, Siegmund B. Microbial Colonization in Adulthood Shapes the Intestinal Macrophage Compartment. J Crohns Colitis 2019; 13:1173-1185. [PMID: 30938416 DOI: 10.1093/ecco-jcc/jjz036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Contact with distinct microbiota early in life has been shown to educate the mucosal immune system, hence providing protection against immune-mediated diseases. However, the impact of early versus late colonization with regard to the development of the intestinal macrophage compartment has not been studied so far. METHODS Germ-free mice were colonized with specific-pathogen-free [SPF] microbiota at the age of 5 weeks. The ileal and colonic macrophage compartment were analysed by immunohistochemistry, flow cytometry, and RNA sequencing 1 and 5 weeks after colonization and in age-matched SPF mice, which had had contact with microbiota since birth. To evaluate the functional differences, dextran sulfate sodium [DSS]-induced colitis was induced, and barrier function analyses were undertaken. RESULTS Germ-free mice were characterized by an atrophied intestinal wall and a profoundly reduced number of ileal macrophages. Strikingly, morphological restoration of the intestine occurred within the first week after colonization. In contrast, ileal macrophages required 5 weeks for complete restoration, whereas colonic macrophages were numerically unaffected. However, following DSS exposure, the presence of microbiota was a prerequisite for colonic macrophage infiltration. One week after colonization, mild colonic inflammation was observed, paralleled by a reduced inflammatory response after DSS treatment, in comparison with SPF mice. This attenuated inflammation was paralleled by a lack of TNFα production of LPS-stimulated colonic macrophages from SPF and colonized mice, suggesting desensitization of colonized mice by the colonization itself. CONCLUSIONS This study provides the first data indicating that after colonization of adult mice, the numeric, phenotypic, and functional restoration of the macrophage compartment requires the presence of intestinal microbiota and is time dependent.
Collapse
Affiliation(s)
- Franziska Schmidt
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Katja Dahlke
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Arvind Batra
- Neuroimmunology, Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Jacqueline Keye
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Hao Wu
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Marie Friedrich
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Rainer Glauben
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christiane Ring
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Gunnar Loh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Monika Schaubeck
- Neuroimmunology, Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schumann
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Britta Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
162
|
Yao D, Dong M, Dai C, Wu S. Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer. Inflamm Bowel Dis 2019; 25:1595-1602. [PMID: 31287863 DOI: 10.1093/ibd/izz149] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/12/2022]
Abstract
Dysregulated inflammatory responses play a pivotal role in the initiation, development, and progression of tumors, as demonstrated by the association between ulcerative colitis and the increased risk of colon carcinoma. In this review, the underlying mechanisms for the initiation and development of ulcerative colitis and colitis-associated cancer are described, mainly focusing on the inflammation and inflammatory cytokine. Disruption of the intestinal mucosal barrier and bacterial invasion resulted in intestinal inflammation; and further TLR4/NF-κB stimulation in intestinal epithelial cells, inflammatory cell infiltration, and inflammatory cytokine release all confer survival advantages to or promote abnormal proliferation in susceptible cells. Importantly, the respective roles of TLR4/NF-κB, TNF-α, and IL-6 in intestinal epithelial cells and inflammatory cells are summarized in detail. A thorough understanding of these molecular mechanisms may help researchers and clinicians to explore novel approaches for the prevention and treatment of colitis-associated cancer.
Collapse
Affiliation(s)
- Dianbo Yao
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
163
|
Bayer F, Ascher S, Pontarollo G, Reinhardt C. Antibiotic Treatment Protocols and Germ-Free Mouse Models in Vascular Research. Front Immunol 2019; 10:2174. [PMID: 31572384 PMCID: PMC6751252 DOI: 10.3389/fimmu.2019.02174] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota influence host vascular physiology locally in the intestine, but also evoke remote effects that impact distant organ functions. Amongst others, the microbiota affect intestinal vascular remodeling, lymphatic development, cardiac output and vascular function, myelopoiesis, prothrombotic platelet function, and immunovigilance of the host. Experimentally, host-microbiota interactions are investigated by working with animals devoid of symbiotic bacteria, i.e., by the decimation of gut commensals by antibiotic administration, or by taking advantage of germ-free mouse isolator technology. Remarkably, some of the vascular effects that were unraveled following antibiotic treatment were not observed in the germ-free animal models and vice versa. In this review, we will dissect the manifold influences that antibiotics have on the cardiovascular system and their effects on thromboinflammation.
Collapse
Affiliation(s)
- Franziska Bayer
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefanie Ascher
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
164
|
Neil JA, Cadwell K. The Intestinal Virome and Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 201:1615-1624. [PMID: 30181300 DOI: 10.4049/jimmunol.1800631] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
The composition of the human microbiome is considered a major source of interindividual variation in immunity and, by extension, susceptibility to diseases. Intestinal bacteria have been the major focus of research. However, diverse communities of viruses that infect microbes and the animal host cohabitate the gastrointestinal tract and collectively constitute the gut virome. Although viruses are typically investigated as pathogens, recent studies highlight a relationship between the host and animal viruses in the gut that is more akin to host-microbiome interactions and includes both beneficial and detrimental outcomes for the host. These viruses are likely sources of immune variation, both locally and extraintestinally. In this review, we describe the components of the gut virome, in particular mammalian viruses, and their ability to modulate host responses during homeostasis and disease.
Collapse
Affiliation(s)
- Jessica A Neil
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Ken Cadwell
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016; and Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
165
|
Parolini C. Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Mar Drugs 2019; 17:E374. [PMID: 31234533 PMCID: PMC6627897 DOI: 10.3390/md17060374] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Studies over several decades have documented the beneficial actions of n-3 polyunsaturated fatty acids (PUFAs), which are plentiful in fish oil, in different disease states. Mechanisms responsible for the efficacy of n-3 PUFAs include: (1) Reduction of triglyceride levels; (2) anti-arrhythmic and antithrombotic effects, and (3) resolution of inflammatory processes. The human microbiota project and subsequent studies using next-generation sequencing technology have highlighted that thousands of different microbial species are present in the human gut, and that there has been a significant variability of taxa in the microbiota composition among people. Several factors (gestational age, mode of delivery, diet, sanitation and antibiotic treatment) influence the bacterial community in the human gastrointestinal tract, and among these diet habits play a crucial role. The disturbances in the gut microbiota composition, i.e., gut dysbiosis, have been associated with diseases ranging from localized gastrointestinal disorders to neurologic, respiratory, metabolic, ocular, and cardiovascular illnesses. Many studies have been published about the effects of probiotics and prebiotics on the gut microbiota/microbioma. On the contrary, PUFAs in the gut microbiota have been less well defined. However, experimental studies suggested that gut microbiota, n-3 PUFAs, and host immune cells work together to ensure the intestinal wall integrity. This review discussed current evidence concerning the links among gut microbiota, n-3 PUFAs intake, and human inflammatory disease.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20122 Milano, Italy.
| |
Collapse
|
166
|
Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A 2019; 116:15140-15149. [PMID: 31182588 PMCID: PMC6660755 DOI: 10.1073/pnas.1814558116] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Functional loss of gut barrier integrity with subsequent increased antigen trafficking and occurrence of low-grade intestinal inflammation precede the onset of type 1 diabetes (T1D) in patients and preclinical models, thus suggesting that these events are mechanistically linked to the autoimmune pathogenesis of the disease. However, a causal relationship between increased intestinal permeability and autoimmune diabetes was never demonstrated. Our data show that breakage of gut barrier continuity leads to activation of islet-reactive T cells in the intestine, thus triggering autoimmune diabetes. An important implication of our findings is that restoration of a healthy gut barrier through microbiota and diet modulation in diabetes-prone individuals could reduce intestinal activation of islet-reactive T cells and prevent T1D occurrence. Low-grade intestinal inflammation and alterations of gut barrier integrity are found in patients affected by extraintestinal autoimmune diseases such as type 1 diabetes (T1D), but a direct causal link between enteropathy and triggering of autoimmunity is yet to be established. Here, we found that onset of autoimmunity in preclinical models of T1D is associated with alterations of the mucus layer structure and loss of gut barrier integrity. Importantly, we showed that breakage of the gut barrier integrity in BDC2.5XNOD mice carrying a transgenic T cell receptor (TCR) specific for a beta cell autoantigen leads to activation of islet-reactive T cells within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota by antibiotic treatment. Our results indicate that loss of gut barrier continuity can lead to activation of islet-specific T cells within the intestinal mucosa and to autoimmune diabetes and provide a strong rationale to design innovative therapeutic interventions in “at-risk” individuals aimed at restoring gut barrier integrity to prevent T1D occurrence.
Collapse
|
167
|
Li S, Wu B, Fu W, Reddivari L. The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. Int J Mol Sci 2019; 20:E2588. [PMID: 31137777 PMCID: PMC6567294 DOI: 10.3390/ijms20102588] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
Ulcerative colitis (UC), which is a major form of inflammatory bowel disease (IBD), is a chronic relapsing disorder of the gastrointestinal tract affecting millions of people worldwide. Alternative natural therapies, including dietary changes, are being investigated to manage or treat UC since current treatment options have serious negative side effects. There is growing evidence from animal studies and human clinical trials that diets rich in anthocyanins, which are pigments in fruits and vegetables, protect against inflammation and increased gut permeability as well as improve colon health through their ability to alter bacterial metabolism and the microbial milieu within the intestines. In this review, the structure and bioactivity of anthocyanins, the role of inflammation and gut bacterial dysbiosis in UC pathogenesis, and their regulation by the dietary anthocyanins are discussed, which suggests the feasibility of dietary strategies for UC mitigation.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Binning Wu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
- Department of Plant Science, Penn State University, University Park, PA 16802, USA.
| | - Wenyi Fu
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
168
|
Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran L, Mi J, Lu L, Zhang Z, Li X, Zeng X, Cao Y. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radic Biol Med 2019; 136:96-108. [PMID: 30959170 DOI: 10.1016/j.freeradbiomed.2019.04.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
In the present study, the therapeutic effects of crude anthocyanins (ACN) from the fruits of Lycium ruthenicum Murray and the main monomer of ACN, petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-[β-d-glucopyranoside] (P3G), on the dextran sodium sulfate (DSS)-induced colitis in mice were investigated. Both ACN and P3G showed intestinal anti-inflammatory effects, evidenced by restoration of various physical signs (body weight, feed quantity, solid fecal weight and colon length were increased, and DAI score was decreased), reduction of the expression of proinflammatory cytokines and related mRNA (such as TNF-α, IL-6, IL-1β and IFN-γ), and promotion of the intestinal barrier function by histological and immunofluorescence analysis (proteins such as ZO-1, occludin and claudin-1 were increased). Furthermore, the effects on gut microbiota community of DSS-induced colitis in mice have been investigated. It was found that Porphyromonadaceae, Helicobacter, Parasutterella, Parabacteroides, Oscillibacter and Lachnospiraceae were the key bacteria associated with inflammatory bowel disease. Taken together, P3G and ACN ameliorated DSS-induced colitis in mice through three aspects including blocking proinflammatory cytokines, increasing tight junction protein and modulating gut microbiota. What's more, P3G showed better anti-inflammatory effects than ACN.
Collapse
Affiliation(s)
- Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yamei Yan
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yu Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linwu Ran
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jia Mi
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Lu Lu
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Zhijuan Zhang
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Xiaoying Li
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan, 750002, Ningxia, China.
| |
Collapse
|
169
|
Campos-Acuña J, Elgueta D, Pacheco R. T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease. Front Immunol 2019; 10:239. [PMID: 30828335 PMCID: PMC6384270 DOI: 10.3389/fimmu.2019.00239] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting mainly the dopaminergic neurons of the nigrostriatal pathway, a neuronal circuit involved in the control of movements, thereby the main manifestations correspond to motor impairments. The major molecular hallmark of this disease corresponds to the presence of pathological protein inclusions called Lewy bodies in the midbrain of patients, which have been extensively associated with neurotoxic effects. Importantly, different research groups have demonstrated that CD4+ T-cells infiltrate into the substantia nigra of PD patients and animal models. Moreover, several studies have consistently demonstrated that T-cell deficiency results in a strong attenuation of dopaminergic neurodegeneration in animal models of PD, thus indicating a key role of adaptive immunity in the neurodegenerative process. Recent evidence has shown that CD4+ T-cell response involved in PD patients is directed to oxidised forms of α-synuclein, one of the main constituents of Lewy bodies. On the other hand, most PD patients present a number of non-motor manifestations. Among non-motor manifestations, gastrointestinal dysfunctions result especially important as potential early biomarkers of PD, since they are ubiquitously found among confirmed patients and occur much earlier than motor symptoms. These gastrointestinal dysfunctions include constipation and inflammation of the gut mucosa and the most distinctive pathologic features associated are the loss of neurons of the enteric nervous system and the generation of Lewy bodies in the gut. Moreover, emerging evidence has recently shown a pivotal role of gut microbiota in triggering the development of PD in genetically predisposed individuals. Of note, PD has been positively correlated with inflammatory bowel diseases, a group of disorders involving a T-cell driven inflammation of gut mucosa, which is strongly dependent in the composition of gut microbiota. Here we raised the hypothesis that T-cell driven inflammation, which mediates dopaminergic neurodegeneration in PD, is triggered in the gut mucosa. Accordingly, we discuss how structural components of commensal bacteria or how different mediators produced by gut-microbiota, including short-chain fatty acids and dopamine, may affect the behaviour of T-cells, triggering the development of T-cell responses against Lewy bodies, initially confined to the gut mucosa but later extended to the brain.
Collapse
Affiliation(s)
- Javier Campos-Acuña
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Daniela Elgueta
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia and Vida, Ñuñoa, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
170
|
Burrello C, Pellegrino G, Giuffrè MR, Lovati G, Magagna I, Bertocchi A, Cribiù FM, Boggio F, Botti F, Trombetta E, Porretti L, Di Sabatino A, Vecchi M, Rescigno M, Caprioli F, Facciotti F. Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance 2019; 2:2/1/e201800229. [PMID: 30760554 PMCID: PMC6374994 DOI: 10.26508/lsa.201800229] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4+ T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo. Lamina propria iNKT cells, isolated from surgical specimens of active ulcerative colitis and Crohn's disease patients and non-IBD donors, were phenotypically and functionally analyzed ex vivo, and stable cell lines and clones were generated for in vitro functional assays. iNKT cells expressing a pro-inflammatory cytokine profile were enriched in the lamina propria of IBD patients, and their exposure to the mucosa-associated microbiota drives pro-inflammatory activation, inducing direct pathogenic activities against the epithelial barrier integrity. These observations suggest that iNKT cell pro-inflammatory functions may contribute to the fuelling of intestinal inflammation in IBD patients.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pellegrino
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rita Giuffrè
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Ilaria Magagna
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Alice Bertocchi
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Boggio
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
171
|
Khalil M, Zhang Z, Engel MA. Neuro-Immune Networks in Gastrointestinal Disorders. Visc Med 2019; 35:52-60. [PMID: 31312651 DOI: 10.1159/000496838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tissue homeostasis is controlled by multilateral cell interactions. Established in autoimmune diseases of the central nervous system, growing evidence shows a fundamental role of bidirectional communication between the nervous and immune systems in various gastrointestinal disorders. Primarily the primary sensory nervous system seems to play an important role in this cross talk because of its ability for transducing inflammatory signals and to convey them to the central nervous system, which in turn responds in an efferent manner (gut-brain axis vs. brain-gut axis). Moreover, sensory neurons that play a central role in pain processing immediately respond to inflammatory stimuli through releasing a myriad of immunomodulatory neuropeptides and neurotransmitters whose receptors are expressed in different immune cell populations. Thus, a better understanding of neuro-immune networks will pave the way to novel therapeutic strategies in inflammatory as well as functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Mohammad Khalil
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zehua Zhang
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias A Engel
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
172
|
Lee YP, Chiu CC, Lin TJ, Hung SW, Huang WC, Chiu CF, Huang YT, Chen YH, Chen TH, Chuang HL. The germ-free mice monocolonization with Bacteroides fragilis improves azoxymethane/dextran sulfate sodium induced colitis-associated colorectal cancer. Immunopharmacol Immunotoxicol 2019; 41:207-213. [PMID: 30706742 DOI: 10.1080/08923973.2019.1569047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated colorectal cancer (CAC). Previous studies have indicated that the composition of gut microflora may be involved in CAC induction and progress. Bacteroides fragilis (BF) is a Gram-negative anaerobe belonging to colonic symbiotic bacteria of the host. This study was aimed to investigate the protective role of BF in a colorectal cancer (CRC) model induced by azoxymethane (AOM) and dextran sulfate sodium (DSS) in germ-free (GF) mice. Materials and methods: Total 22 GF mice were divided into two groups: GF and BF group. Half of the GF mice were colonized with BF for 28 days before CRC induction by AOM/DSS. Results: BF colonization increased animal survival (100%). Cecum weight and cecum/body weight ratio significantly decreased in BF/AOM/DSS group. Interestingly, there was a significant decrease in tumor number and tumor incidence in the BF/AOM/DSS group as compared to the GF/AOM/DSS group. The adenocarcinoma/adenoma incidence and histologic score were also decreased in the BF/AOM/DSS group. In addition, immunohistochemistry staining found decreased numbers of cell proliferation (PCNA) and inflammatory cell (granulocytes) infiltration in the colon mucosa of the BF group. The β-catenin staining in the BF/AOM/DSS group had fewer and weaker positive signal expressions. Taking together, the BF colonization significantly ameliorated AOM/DSS-induced CRC by suppressing the activity of cell proliferation-related molecules and reducing the number of inflammatory cells. Conclusions: Symbiotic BF may play a pivotal role in maintaining the gastrointestinal immunophysiologic balance and regulating anti-tumorigenesis responses.
Collapse
Affiliation(s)
- Yen-Peng Lee
- a Graduate Institute of Veterinary Pathobiology , College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Chien-Chao Chiu
- b Division of Animal Industry, Animal Technology Laboratories , Agricultural Technology Research Institute , Miaoli , Taiwan
| | - Tien-Jen Lin
- c Department of Neurosurgery , Wan Fang Hospital, Taipei Medical University , Taipei , Taiwan.,d Graduate Institute of Sports Science , College of Exercise and Health Sciences, National Taiwan Sport University , Taoyuan , Taiwan.,e Graduate Institute of Injury Prevention and Control , Taipei Medical University , Taipei , Taiwan
| | - Shao-Wen Hung
- b Division of Animal Industry, Animal Technology Laboratories , Agricultural Technology Research Institute , Miaoli , Taiwan
| | - Wen-Ching Huang
- f Department of Exercise and Health Science , National Taipei University of Nursing and Health Sciences , Taipei , Taiwan
| | - Ching-Feng Chiu
- g Graduate Institute of Metabolism and Obesity Sciences , College of Nutrition, Taipei Medical University , Taipei , Taiwan
| | - Yen-Te Huang
- h National Laboratory Animal Center , National Applied Research Laboratories , Taipei , Taiwan
| | - Yi-Hsun Chen
- a Graduate Institute of Veterinary Pathobiology , College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Ter-Hsin Chen
- a Graduate Institute of Veterinary Pathobiology , College of Veterinary Medicine, National Chung Hsing University , Taichung , Taiwan
| | - Hsiao-Li Chuang
- h National Laboratory Animal Center , National Applied Research Laboratories , Taipei , Taiwan
| |
Collapse
|
173
|
Yang C, Fang X, Zhan G, Huang N, Li S, Bi J, Jiang R, Yang L, Miao L, Zhu B, Luo A, Hashimoto K. Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Transl Psychiatry 2019; 9:57. [PMID: 30705252 PMCID: PMC6355832 DOI: 10.1038/s41398-019-0379-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Patients with chronic neuropathic pain frequently suffer from symptoms of anhedonia, which is a core symptom of depression. Accumulating studies suggest that gut microbiota may play a role in depression via gut-microbiota-brain axis. However, it is unknown whether gut microbiota plays a role in neuropathic pain-associated anhedonia. Here, we used a rat model of spared nerve injury (SNI). Hierarchical cluster analysis of sucrose preference test (SPT) results was used to classify the SNI rats with or without anhedonia-like phenotype. The 16S ribosomal RNA sequencing analysis showed abnormal composition of gut microbiota in the anhedonia susceptible compared to sham-operated rats and resilient rats. Furthermore, antibiotics-treated mice showed pain as well as depression-like and anhedonia-like phenotypes, suggesting a role of gut microbiota in these abnormal behaviors. Transplantation of fecal microbiota from anhedonia susceptible rats into antibiotics-treated pseudo-germ-free mice significantly exaggerated pain and depression-like phenotypes, including anhedonia. In contrast, transplantation of fecal microbiota from resilient rats into antibiotics-treated pseudo-germ-free mice significantly improved pain and depression-like phenotypes, including anhedonia. In conclusion, this study suggests that abnormal composition of gut microbiota may contribute to anhedonia susceptibility post SNI surgery, and that gut microbiota also plays a role in the pain as well as depression-like phenotypes. Interestingly, fecal microbiota transplantation from SNI rats with or without anhedonia can alter pain, depression-like and anhedonia-like phenotypes in the pseudo-germ-free mice. Therefore, it is likely that gut microbiota plays a key role in the pain as well as depression-like phenotypes including anhedonia in rodents with neuropathic pain.
Collapse
Affiliation(s)
- Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangjiang Bi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Riyue Jiang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ling Yang
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Liying Miao
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
174
|
Zhang J, Bi JJ, Guo GJ, Yang L, Zhu B, Zhan GF, Li S, Huang NN, Hashimoto K, Yang C, Luo AL. Abnormal composition of gut microbiota contributes to delirium-like behaviors after abdominal surgery in mice. CNS Neurosci Ther 2019; 25:685-696. [PMID: 30680947 PMCID: PMC6515708 DOI: 10.1111/cns.13103] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/02/2018] [Accepted: 12/22/2018] [Indexed: 01/12/2023] Open
Abstract
Aims Anesthesia and surgery can cause delirium‐like symptoms postoperatively. Increasing evidence suggests that gut microbiota is a physiological regulator of the brain. Herein, we investigated whether gut microbiota plays a role in postoperative delirium (POD). Methods Mice were separated into non‐POD and POD phenotypes after abdominal surgery by applying hierarchical clustering analysis to behavioral tests. Fecal samples were collected, and 16S ribosomal RNA gene sequencing was performed to detect differences in gut microbiota composition among sham, non‐POD, and POD mice. Fecal bacteria from non‐POD and POD mice were transplanted into antibiotics‐induced pseudo‐germ‐free mice to investigate the effects on behaviors. Results α‐diversity and β‐diversity indicated differences in gut microbiota composition between the non‐POD and POD mice. At the phylum level, the non‐POD mice had significantly higher levels of Tenericutes, which were not detected in the POD mice. At the class level, levels of Gammaproteobacteria were higher in the POD mice, whereas the non‐POD mice had significantly higher levels of Mollicutes, which were not detected in the POD mice. A total of 20 gut bacteria differed significantly between the POD and non‐POD mice. Interestingly, the pseudo‐germ‐free mice showed abnormal behaviors prior to transplant. The pseudo‐germ‐free mice that received fecal bacteria transplants from non‐POD mice but not from POD mice showed improvements in behaviors. Conclusions Abnormal gut microbiota composition after abdominal surgery may contribute to the development of POD. A therapeutic strategy that targets gut microbiota could provide a novel alterative for POD treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang-Jiang Bi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Jun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Gao-Feng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian-Nian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
175
|
Kamus LJ, Theoret C, Costa MC. Use of next generation sequencing to investigate the microbiota of experimentally induced wounds and the effect of bandaging in horses. PLoS One 2018; 13:e0206989. [PMID: 30475922 PMCID: PMC6261015 DOI: 10.1371/journal.pone.0206989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022] Open
Abstract
Objectives To use next generation sequencing to characterize the microbiota of horses during healing of skin wounds in two anatomical locations (body and limb) known to present different healing patterns; and to investigate the impact of bandaging on bacterial communities of skin wounds located on the limbs of horses. Methods Full-thickness skin wounds were created on the distal extremity of both thoracic limbs and on one lateral mid-thoracic wall of four healthy horses. Limb wounds were randomly assigned to bandaging or not. A full-thickness sample was collected with a biopsy punch from intact thorax and limb skin (T0) and from the margin of one wound per site (thorax, unbandaged limb, bandaged limb) 1 week (T1) and 2 weeks (T2) postoperatively, and at full healing (T3). Thoracic skin samples obtained from three healthy horses were included in the analysis as controls. Results Anatomic location (thorax vs. limb) significantly influenced bacterial composition of equine skin and healing wounds. Fusobacterium and Actinobacillus were strongly associated with limb wounds during the initial phases of healing. Bandaging had a significant impact on the microbiota during the healing process. The skin microbiota after healing was more similar to samples from controls, demonstrating the resilience and stability of the environment. Conclusions Equine skin microbiota is a rich and stable environment that is disturbed by wounding, but returns to its previous stage after full healing. Anatomic location significantly influences bacterial composition of the equine skin during wound healing. Bandaging has a significant impact on the skin microbiota of horses during the healing process. Results of this study provide new insight for a better understanding of the contribution of bacteria to wound healing in horses and may facilitate the future development of therapeutic strategies using commensal bacteria.
Collapse
Affiliation(s)
- Louis J. Kamus
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Christine Theoret
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcio C. Costa
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
- * E-mail:
| |
Collapse
|
176
|
Yu LCH. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci 2018; 25:79. [PMID: 30413188 PMCID: PMC6234774 DOI: 10.1186/s12929-018-0483-8] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease which arises as a result of the interaction of genetic, environmental, barrier and microbial factors leading to chronic inflammation in the intestine. Patients with IBD had a higher risk of developing colorectal carcinoma (CRC), of which the subset was classified as colitis-associated cancers. Genetic polymorphism of innate immune receptors had long been considered a major risk factor for IBD, and the mutations were also recently observed in CRC. Altered microbial composition (termed microbiota dybiosis) and dysfunctional gut barrier manifested by epithelial hyperpermeability and high amount of mucosa-associated bacteria were observed in IBD and CRC patients. The findings suggested that aberrant immune responses to penetrating commensal microbes may play key roles in fueling disease progression. Accumulative evidence demonstrated that mucosa-associated bacteria harbored colitogenic and protumoral properties in experimental models, supporting an active role of bacteria as pathobionts (commensal-derived opportunistic pathogens). Nevertheless, the host factors involved in bacterial dysbiosis and conversion mechanisms from lumen-dwelling commensals to mucosal pathobionts remain unclear. Based on the observation of gut leakiness in patients and the evidence of epithelial hyperpermeability prior to the onset of mucosal histopathology in colitic animals, it was postulated that the epithelial barrier dysfunction associated with mucosal enrichment of specific bacterial strains may predispose the shift to disease-associated microbiota. The speculation of leaky gut as an initiating factor for microbiota dysbiosis that eventually led to pathological consequences was proposed as the "common ground hypothesis", which will be highlighted in this review. Overall, the understanding of the core interplay between gut microbiota and epithelial barriers at early subclinical phases will shed light to novel therapeutic strategies to manage chronic inflammatory disorders and colitis-associated cancers.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Suite 1020, #1 Jen-Ai Rd. Sec. 1, Taipei, 100, Taiwan, Republic of China.
| |
Collapse
|
177
|
Weichselbaum L, Klein OD. The intestinal epithelial response to damage. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1205-1211. [PMID: 30194677 DOI: 10.1007/s11427-018-9331-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
Abstract
The constant renewal of the intestinal epithelium is fueled by intestinal stem cells (ISCs) lying at the base of crypts, and these ISCs continuously give rise to transit-amplifying progenitor cells during homeostasis. Upon injury and loss of ISCs, the epithelium has the ability to regenerate by the dedifferentiation of progenitor cells that then regain stemness and repopulate the pool of ISCs. Epithelial cells receive cues from immune cells, mesenchymal cells and the microbiome to maintain homeostasis. This review focuses on the response of the epithelium to damage and the interplay between the different intestinal compartments.
Collapse
Affiliation(s)
- Laura Weichselbaum
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA.,Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, 6041, Belgium.,Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, 1070, Belgium
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA. .,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
178
|
Johnston DGW, Williams MA, Thaiss CA, Cabrera-Rubio R, Raverdeau M, McEntee C, Cotter PD, Elinav E, O'Neill LAJ, Corr SC. Loss of MicroRNA-21 Influences the Gut Microbiota, Causing Reduced Susceptibility in a Murine Model of Colitis. J Crohns Colitis 2018; 12:835-848. [PMID: 29608690 DOI: 10.1093/ecco-jcc/jjy038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/27/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS microRNAs regulate gene expression and influence the pathogenesis of human diseases. The present study investigated the role of microRNA-21 [miR-21] in the pathogenesis of intestinal inflammation, because miR-21 is highly expressed in inflammatory bowel disease. Inflammatory bowel disease is associated with intestinal barrier dysfunction and an altered gut microbiota. Recent studies have demonstrated that host microRNAs can shape the microbiota. Thus, we determined the influence of miR-21 on the gut microbiota and observed the subsequent impact in a dextran sodium sulphate [DSS]-induced colitis model. METHODS The influence of miR-21 on the gut microbiota and inflammation was assessed in wild-type [WT] and miR-21-/- mice, in co-housed mice, following antibiotic depletion of the microbiota, or by colonization of germ-free [GF] mice with fecal homogenate, prior to DSS administration. We carried out 16S rRNA sequencing on WT and miR-21-/- mice to dissect potential differences in the gut microbiota. RESULTS miR-21-/- mice have reduced susceptibility to DSS-induced colitis compared with WT mice. Co-housing conferred some protection to WT mice, while GF mice colonized with fecal homogenate from miR-21-/- were protected from DSS colitis compared with those colonized with WT homogenate. Further supporting a role for the microbiota in the observed phenotype, the protection afforded by miR-21 depletion was lost when mice were pre-treated with antibiotics. The 16S rRNA sequencing revealed significant differences in the composition of WT and miR-21-/- intestinal microbiota. CONCLUSIONS These findings suggest that miR-21 influences the pathogenesis of intestinal inflammation by causing propagation of a disrupted gut microbiota.
Collapse
Affiliation(s)
- Daniel G W Johnston
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Genetics and Microbiology, Moyne Institute of Preventative Medicine, Trinity College Dublin, Dublin, Ireland
| | - Michelle A Williams
- School of Genetics and Microbiology, Moyne Institute of Preventative Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Institute, Cork, Ireland
| | - Mathilde Raverdeau
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Craig McEntee
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Institute, Cork, Ireland
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinéad C Corr
- School of Genetics and Microbiology, Moyne Institute of Preventative Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
179
|
Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci U S A 2018. [PMID: 29531080 DOI: 10.1073/pnas.1720696115] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is known to promote inflammatory bowel disease (IBD), but the underlying mechanism remains largely unresolved. Here, we found chronic stress to sensitize mice to dextran sulfate sodium (DSS)-induced colitis; to increase the infiltration of B cells, neutrophils, and proinflammatory ly6Chi macrophages in colonic lamina propria; and to present with decreased thymus and mesenteric lymph node (MLN) coefficients. Circulating total white blood cells were significantly increased after stress, and the proportion of MLN-associated immune cells were largely changed. Results showed a marked activation of IL-6/STAT3 signaling by stress. The detrimental action of stress was not terminated in IL-6-/- mice. Interestingly, the composition of gut microbiota was dramatically changed after stress, with expansion of inflammation-promoting bacteria. Furthermore, results showed stress-induced deficient expression of mucin-2 and lysozyme, which may contribute to the disorder of gut microbiota. Of note is that, in the case of cohousing, the stress-induced immune reaction and decreased body weight were abrogated, and transferred gut microbiota from stressed mice to control mice was sufficient to facilitate DSS-induced colitis. The important role of gut microbiota was further reinforced by broad-spectrum antibiotic treatment. Taken together, our results reveal that chronic stress disturbs gut microbiota, triggering immune system response and facilitating DSS-induced colitis.
Collapse
|
180
|
Rodriguez-Palacios A, Aladyshkina N, Ezeji JC, Erkkila HL, Conger M, Ward J, Webster J, Cominelli F. 'Cyclical Bias' in Microbiome Research Revealed by A Portable Germ-Free Housing System Using Nested Isolation. Sci Rep 2018; 8:3801. [PMID: 29491439 PMCID: PMC5830500 DOI: 10.1038/s41598-018-20742-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/24/2022] Open
Abstract
Germ-Free (GF) research has required highly technical pressurized HEPA-ventilation anchored systems for decades. Herein, we validated a GF system that can be easily implemented and portable using Nested Isolation (NesTiso). GF-standards can be achieved housing mice in non-HEPA-static cages, which only need to be nested 'one-cage-inside-another' resembling 'Russian dolls'. After 2 years of monitoring ~100,000 GF-mouse-days, NesTiso showed mice can be maintained GF for life (>1.3 years), with low animal daily-contamination-probability risk (1 every 867 days), allowing the expansion of GF research with unprecedented freedom and mobility. At the cage level, with 23,360 GF cage-days, the probability of having a cage contamination in NesTiso cages opened in biosafety hoods was statistically identical to that of opening cages inside (the 'gold standard') multi-cage pressurized GF isolators. When validating the benefits of using NesTiso in mouse microbiome research, our experiments unexpectedly revealed that the mouse fecal microbiota composition within the 'bedding material' of conventional SPF-cages suffers cyclical selection bias as moist/feces/diet/organic content ('soiledness') increases over time (e.g., favoring microbiome abundances of Bacillales, Burkholderiales, Pseudomonadales; and cultivable Enterococcus faecalis over Lactobacillus murinus and Escherichia coli), which in turn cyclically influences the gut microbiome dynamics of caged mice. Culture 'co-streaking' assays showed that cohoused mice exhibiting different fecal microbiota/hemolytic profiles in clean bedding (high-within-cage individual diversity) 'cyclically and transiently appear identical' (less diverse) as bedding soiledness increases, and recurs. Strategies are proposed to minimize this novel functional form of cyclical bedding-dependent microbiome selection bias.
Collapse
Affiliation(s)
- Alexander Rodriguez-Palacios
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Natalia Aladyshkina
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jessica C Ezeji
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Hailey L Erkkila
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mathew Conger
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - John Ward
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Joshua Webster
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
181
|
Ma N, Guo P, Zhang J, He T, Kim SW, Zhang G, Ma X. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front Immunol 2018; 9:5. [PMID: 29416535 PMCID: PMC5787545 DOI: 10.3389/fimmu.2018.00005] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The intestine is the shared site of nutrient digestion, microbiota colonization and immune cell location and this geographic proximity contributes to a large extent to their interaction. The onset and development of a great many diseases, such as inflammatory bowel disease and metabolic syndrome, will be caused due to the imbalance of body immune. As competent assistants, the intestinal bacteria are also critical in disease prevention and control. Moreover, the gut commensal bacteria are essential for development and normal operation of immune system and the pathogens are also closely bound up with physiological disorders and diseases mediated by immune imbalance. Understanding how our diet and nutrient affect bacterial composition and dynamic function, and the innate and adaptive status of our immune system, represents not only a research need but also an opportunity or challenge to improve health. Herein, this review focuses on the recent discoveries about intestinal bacteria–immune crosstalk and nutritional regulation on their interplay, with an aim to provide novel insights that can aid in understanding their interactions.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
182
|
Young W, Jester T, Stoll ML, Izcue A. Inflammatory Bowel Disease. THE MICROBIOME IN RHEUMATIC DISEASES AND INFECTION 2018:251-274. [DOI: 10.1007/978-3-319-79026-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
183
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
184
|
Savage AK, Liang HE, Locksley RM. The Development of Steady-State Activation Hubs between Adult LTi ILC3s and Primed Macrophages in Small Intestine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1912-1922. [PMID: 28747343 PMCID: PMC5568484 DOI: 10.4049/jimmunol.1700155] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) are important for intestinal health, particularly in controlling inflammation in response to epithelial dysregulation, but their role during homeostasis remains less well understood. We generated IL-22 reporter mice to assess production of this key cytokine by ILC3s in the small intestine during development and under basal conditions. Although IL-22 is produced by a variety of lymphocyte populations, constitutively high IL-22 expression was limited to lymphoid-tissue inducer (LTi) cells residing in lymph node-like structures in the gut called solitary intestinal lymphoid tissues (SILT). Constitutive IL-22 expression was dependent on the microbiota and MyD88 signaling, appeared upon weaning, and was present across the spectrum of SILT, including in cryptopatches. Activated SILT LTi cells colocalized with a rare subpopulation of activated macrophages constitutively positive for IL-12/23 p40 and capable of activating neonatal LTi cells in response to TLR stimulus. Thus, weaning leads to the organization of innate immune activation hubs at SILT that mature and are continuously sustained by signals from the microbiota. This functional and anatomic organization constitutes a significant portion of the steady-state IL-23/IL-22 axis.
Collapse
Affiliation(s)
- Adam K Savage
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158;
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143; and
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115
| |
Collapse
|
185
|
Initial gut microbiota structure affects sensitivity to DSS-induced colitis in a mouse model. SCIENCE CHINA-LIFE SCIENCES 2017; 61:762-769. [PMID: 28842897 DOI: 10.1007/s11427-017-9097-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
The dextran sulfate sodium (DSS)-induced colitis model is a widely applied mouse model, but controversial results have been obtained from experiments using the same mouse strain under the same conditions. Because the gut microbiota play an important role in DSS-induced colitis, it is essential to evaluate the influence of the initial gut microbiota in this model. Here, we identified significant variations in the initial gut microbiota of different batches of mice and found that the initial intestinal microbiota had a profound influence on DSS-induced colitis. We performed three independent trials using the same C57BL/6J mouse model with DSS treatment and used high-throughput 16S rRNA gene sequencing to analyze the gut microbiota. We found that the structure and composition of the gut microbiota in mice with severe colitis, as compared with mice with milder colon damage, had unique features, such as an increase in Akkermansia bacteria and a decrease in Barnesiella spp. Moreover, these varied gut bacteria in the different trials also showed different responses to DSS treatment. Our work suggests that, in studies using mouse models, the gut microbiota must be considered when examining mechanisms of diseases, to ensure that comparable results are obtained.
Collapse
|
186
|
Rescigno M. The microbiota revolution: Excitement and caution. Eur J Immunol 2017; 47:1406-1413. [PMID: 28675439 DOI: 10.1002/eji.201646576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/05/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Scientific progress is characterized by important technological advances. Next-generation DNA sequencing has, in the past few years, led to a major scientific revolution: the microbiome revolution. It has become possible to generate a fingerprint of the whole microbiota of any given environment. As it becomes clear that the microbiota affects several aspects of our lives, each new scientific finding should ideally be analyzed in light of these communities. For instance, animal experimentation should consider animal sources and husbandry; human experimentation should include analysis of microenvironmental cues that might affect the microbiota, including diet, antibiotic, and drug use, genetics. When analyzing the activity of a drug, we should remember that, according to the microbiota of the host, different drug activities might be observed, either due to modification or degradation by the microbiota, or because the microbiota changes the immune system of the host in a way that makes that drug more or less effective. This minireview will not be a comprehensive review on the interaction between the host and microbiota, but it will aim at creating awareness on why we should not forget the contribution of the microbiota in any single aspect of biology.
Collapse
Affiliation(s)
- Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Dipartimento di Scienze della Salute, Universita' di Milano, Milan, Italy
| |
Collapse
|
187
|
Abstract
Colorectal cancer, the fourth leading cause of cancer-related death worldwide, is a multifactorial disease involving genetic, environmental and lifestyle risk factors. In addition, increased evidence has established a role for the intestinal microbiota in the development of colorectal cancer. Indeed, changes in the intestinal microbiota composition in colorectal cancer patients compared to control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. This review will summarize the current knowledge about the potential links between the intestinal microbiota and colorectal cancer, with a focus on the pro-carcinogenic properties of bacterial microbiota such as induction of inflammation, the biosynthesis of genotoxins that interfere with cell cycle regulation and the production of toxic metabolites. Finally, we will describe the potential therapeutic strategies based on intestinal microbiota manipulation for colorectal cancer treatment.
Collapse
Affiliation(s)
- Cécily Lucas
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, University of Clermont Auvergne, INRA USC 2018, Clermont-Ferrand 63001, France.
| |
Collapse
|
188
|
Abstract
Inflammatory bowel diseases (IBDs) result in diarrhea and abdominal pain with further potential complications such as tissue fibrosis and stenosis. Animal models help in understanding the immunopathogenesis of IBDs and in the design of novel therapeutic concepts. Here we present an updated version of a protocol we published in 2007 for key models of acute and chronic forms of colitis induced by 2,4,6-trinitro-benzene sulfonic acid (TNBS), oxazolone and dextran sulfate sodium (DSS). This protocol update describes an adaptation of the existing protocol that modifies the technique. This protocol has been used to generate improved mouse models that better reflect the nature of IBDs in humans. In TNBS and oxazolone colitis models, topical administration of hapten reagents results in T-cell-mediated immunity against haptenized proteins and luminal antigens. By contrast, to generate DSS colitis models, mice orally receive DSS, causing death of epithelial cells, compromising barrier function and causing subsequent inflammation. The analysis of the acute colitis models can be performed within 1-2 weeks, whereas that of the chronic models may take 2-4 months. The strengths of the acute models are that they are based on the analysis of short-lasting barrier alterations, innate immune effects and flares. The advantages of the chronic models are that they may offer better insight into adaptive immunity and complications such as neoplasia and tissue fibrosis. The protocol requires basic skills in laboratory animal research.
Collapse
|
189
|
Ge X, Zhao W, Ding C, Tian H, Xu L, Wang H, Ni L, Jiang J, Gong J, Zhu W, Zhu M, Li N. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep 2017; 7:441. [PMID: 28348415 PMCID: PMC5428802 DOI: 10.1038/s41598-017-00612-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is involved in various physiological functions, and disturbances in the host-microbiome have been proven to contribute to the dysfunction of gut; however, whether microbiota participates in the pathogenesis of constipation remains unclear. In this study, we extracted and analyzed microbiota in feces from constipated donors who had undergone effective therapy with fecal microbiota transplantation, transplanted microbiota into pseudo-germ-free mice, and measured gut motility. These mice presented with lower pellet frequency and water percentage, smaller pellet size, delayed gastrointestinal transit time, and weaker spontaneous contractions of colonic smooth muscle. To determine the mechanism underlying delayed gut motility, microbial metabolites were measured. Short chain fatty acids and secondary bile acids were decreased in mice receiving microbiota from constipated donors. Moreover, the compositional changes of gut microbiota in constipated patients were identified, including the operational taxonomic unit, and the species richness and α diversity were much greater than those in healthy volunteers. These findings suggest that alterations of the microbiome might affect gut motility via altered microbial-derived metabolites in the development of constipation, and the restoration of disturbed microbiota might improve the clinical phenotype. This study indicates that regulating the intestinal environment may be a novel therapy strategy for constipation.
Collapse
Affiliation(s)
- Xiaolong Ge
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Wei Zhao
- Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Chao Ding
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hongliang Tian
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lizhi Xu
- Department of Medical Genetics, and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Hongkan Wang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Ling Ni
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jun Jiang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Minsheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, 210002, China
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
190
|
Qin X. Impaired inactivation of digestive proteases: The possible key factor for the high susceptibility of germ-free and antibiotic-treated animals to gut epithelial injury. World J Gastrointest Pathophysiol 2017; 8:1-2. [PMID: 28251033 PMCID: PMC5311466 DOI: 10.4291/wjgp.v8.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
Recent study shows that germ-free and antibiotic-treated animals are highly susceptible to gut epithelial injury. This paper addresses that impaired inactivation of digestive proteases may be the key factor for the increased susceptibility.
Collapse
|
191
|
Rothschild DE, Zhang Y, Diao N, Lee CK, Chen K, Caswell CC, Slade DJ, Helm RF, LeRoith T, Li L, Allen IC. Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-M. EBioMedicine 2016; 15:36-47. [PMID: 27939424 PMCID: PMC5233813 DOI: 10.1016/j.ebiom.2016.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022] Open
Abstract
Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD) and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m-/- mice to elucidate the role of IRAK-M in the modulation of gastrointestinal immune system homeostasis. In human patients, IRAK-M expression is up-regulated during IBD and colorectal cancer. Further functional studies in mice revealed that Irak-m-/- animals are protected against colitis and colitis associated tumorigenesis. Mechanistically, our data revealed that the gastrointestinal immune system of Irak-m-/- mice is highly efficient at eliminating microbial translocation following epithelial barrier damage. This attenuation of pathogenesis is associated with expanded areas of gastrointestinal associated lymphoid tissue (GALT), increased neutrophil migration, and enhanced T-cell recruitment. Further evaluation of Irak-m-/- mice revealed a splice variant that robustly activates NF-κB signaling. Together, these data identify IRAK-M as a potential target for future therapeutic intervention.
Collapse
Affiliation(s)
- Daniel E Rothschild
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Yao Zhang
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Na Diao
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Christina K Lee
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Keqiang Chen
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, United States.
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, Virginia 24061, United States.
| |
Collapse
|