151
|
Venkatesh J, Park SW. Role of L-ascorbate in alleviating abiotic stresses in crop plants. BOTANICAL STUDIES 2014; 55:38. [PMID: 28510969 PMCID: PMC5432849 DOI: 10.1186/1999-3110-55-38] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/16/2013] [Indexed: 05/21/2023]
Abstract
L-ascorbic acid (vitamin C) is a major antioxidant in plants and plays a significant role in mitigation of excessive cellular reactive oxygen species activities caused by number of abiotic stresses. Plant ascorbate levels change differentially in response to varying environmental stress conditions, depending on the degree of stress and species sensitivity. Successful modulation of ascorbate biosynthesis through genetic manipulation of genes involved in biosynthesis, catabolism and recycling of ascorbate has been achieved. Recently, role of ascorbate in alleviating number of abiotic stresses has been highlighted in crop plants. In this article, we discuss the current understanding of ascorbate biosynthesis and its antioxidant role in order to increase our comprehension of how ascorbate helps plants to counteract or cope with various abiotic stresses.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| | - Se Won Park
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| |
Collapse
|
152
|
Hasanuzzaman M, Nahar K, Alam MM, Fujita M. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 2014; 161:297-307. [PMID: 25249068 DOI: 10.1007/s12011-014-0120-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan,
| | | | | | | |
Collapse
|
153
|
Dolferus R. To grow or not to grow: a stressful decision for plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:247-261. [PMID: 25443851 DOI: 10.1016/j.plantsci.2014.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Progress in improving abiotic stress tolerance of crop plants using classic breeding and selection approaches has been slow. This has generally been blamed on the lack of reliable traits and phenotyping methods for stress tolerance. In crops, abiotic stress tolerance is most often measured in terms of yield-capacity under adverse weather conditions. "Yield" is a complex trait and is determined by growth and developmental processes which are controlled by environmental signals throughout the life cycle of the plant. The use of model systems has allowed us to gradually unravel how plants grow and develop, but our understanding of the flexibility and opportunistic nature of plant development and its capacity to adapt growth to environmental cues is still evolving. There is genetic variability for the capacity to maintain yield and productivity under abiotic stress conditions in crop plants such as cereals. Technological progress in various domains has made it increasingly possible to mine that genetic variability and develop a better understanding about the basic mechanism of plant growth and abiotic stress tolerance. The aim of this paper is not to give a detailed account of all current research progress, but instead to highlight some of the current research trends that may ultimately lead to strategies for stress-proofing crop species. The focus will be on abiotic stresses that are most often associated with climate change (drought, heat and cold) and those crops that are most important for human nutrition, the cereals.
Collapse
Affiliation(s)
- Rudy Dolferus
- CSIRO, Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| |
Collapse
|
154
|
Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BIOMED RESEARCH INTERNATIONAL 2014; 2014:757219. [PMID: 24991566 PMCID: PMC4065706 DOI: 10.1155/2014/757219] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/03/2023]
Abstract
The present study investigates the roles of exogenous proline (Pro, 5 mM) and glycine betaine (GB, 5 mM) in improving salt stress tolerance in salt sensitive (BRRI dhan49) and salt tolerant (BRRI dhan54) rice (Oryza sativa L.) varieties. Salt stresses (150 and 300 mM NaCl for 48 h) significantly reduced leaf relative water (RWC) and chlorophyll (chl) content and increased endogenous Pro and increased lipid peroxidation and H2O2 levels. Ascorbate (AsA), glutathione (GSH) and GSH/GSSG, ascorbate peroxidae (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and glyoxalase I (Gly I) activities were reduced in sensitive variety and these were increased in tolerant variety due to salt stress. The glyoxalase II (Gly II), glutathione S-transferase (GST), and superoxide dismutase (SOD) activities were increased in both cultivars by salt stress. Exogenous Pro and GB application with salt stress improved physiological parameters and reduced oxidative damage in both cultivars where BRRI dhan54 showed better tolerance. The result suggests that exogenous application of Pro and GB increased rice seedlings' tolerance to salt-induced oxidative damage by upregulating their antioxidant defense system where these protectants rendered better performance to BRRI dhan54 and Pro can be considered as better protectant than GB.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Md. Mahabub Alam
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Anisur Rahman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
155
|
Wang HS, Yu C, Tang XF, Zhu ZJ, Ma NN, Meng QW. A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. PLANT CELL REPORTS 2014; 33:131-42. [PMID: 24129846 DOI: 10.1007/s00299-013-1517-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/15/2013] [Accepted: 09/27/2013] [Indexed: 05/25/2023]
Abstract
Transgenic tomato plants overexpressing LeFAD3 sense and antisense sequences were generated. Salt stress suppressed the growth of WT and antisense plants to a higher extent than that in sense plants. In this study, we investigated the role of the LeFAD3-encoding ER-type omega-3 fatty acid desaturase in salt tolerance in tomato plants. We created transgenic tomato plants by overexpressing its sense and antisense sequences under the control of the cauliflower mosaic virus 35S promoter. Based on the results of northern and western blotting as well as quantitative reverse transcription-polymerase chain reaction, sense plants expressed more desaturase than wild-type (WT) plants, whereas antisense plants expressed less desaturase than WT. Salt stress suppressed the growth of both WT and antisense plants to a higher extent than that in sense plants, which can be attributed to the fact that sense plants performed better in maintaining the integrity of the membrane system, as revealed by electron microscopy. The concomitant increase in superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.7) may have alleviated the photoinhibition caused by the increased level of ROS in sense plants. Our results suggest that LeFAD3 overexpression can enhance the tolerance of early seedlings to salinity stress.
Collapse
Affiliation(s)
- Hua-Sen Wang
- School of Agriculture and Food Science, Research Center of Bio-Breeding Industry, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Lin'an, 311300, Zhejiang, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
156
|
Wei A, Xin X, Wang Y, Zhang C, Cao D. Signal regulation involved in sulfur dioxide-induced guard cell apoptosis in Hemerocallis fulva. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:41-45. [PMID: 24125868 DOI: 10.1016/j.ecoenv.2013.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 06/02/2023]
Abstract
Chronic and acute exposure to SO₂ is associated with increased risks of various damages to plants. In the present study, epidermal strip experiment was employed to investigate SO₂-induced guard cells apoptosis and the signal regulation in Hemerocallis fulva. The results showed that with the increase of treatment concentrate of SO₂ derivates (a mixture of sodium sulfite and sodium bisulfite, 3:1, mmol L⁻¹/mmol L⁻¹, 1.0-5.0 mmol L⁻¹), the physiological activity of the guard cells declined and cell death occurred. While the concentration of SO₂ derivatives exceeded 2.0 mmol L⁻¹, the percentage of cell death increased significantly (P<0.05). Typical features of apoptosis including nuclear condensation, nuclear elongation, fragmentation etc. were found. Meanwhile, concomitant presence of nitric oxide (NO), reactive oxygen species (ROS) and Ca²⁺ level increment appeared. However, SO₂-induced cell death can be effectively blocked by either of the following substances with their respective optimal concentrations: antioxidant ascorbic acid (Asc; 0.05 mmol L⁻¹) or catalase (CAT; 200 U mL⁻¹), nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5- tetramethylmidiazoline-1-oxyl-3-oxide (c-PTIO; 0.20 mmol L⁻¹), nitrate reductase inhibitor NaN₃ (0.20 mmol L⁻¹), Ca²⁺ chelating agent EGTA (0.05 mmol L⁻¹) or plasma membrane Ca²⁺ channel blocker LaCl₃ (0.05 mmol L⁻¹). In addition to a significant decrease in cell death rate, a reduction in the levels of reactive oxygen species (ROS), NO and Ca²⁺ was observed. Further study showed that compared to treatment with SO₂ alone, Asc treatment led to a decrease in NO and Ca²⁺ levels and NaN₃ treatment led to a decrease in ROS and Ca²⁺ levels, but the NO and ROS levels of the LaCl₃ treatment changed little. All results suggested that NO, ROS and Ca²⁺ were involved in the apoptosis induced by SO₂ in H. fulva. The process might be related to the burst of NO or ROS, which would activate the plasma Ca²⁺ channel and result in the increase of intercellular Ca²⁺.
Collapse
Affiliation(s)
- Aili Wei
- Department of Biology, Taiyuan Normal University, Taiyuan 030031, China.
| | | | | | | | | |
Collapse
|
157
|
Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2013; 49:643-655. [PMID: 25767369 PMCID: PMC4354779 DOI: 10.1007/s11627-013-9568-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
l-Ascorbic acid (vitamin C) is an abundant metabolite in plant cells and tissues. Ascorbate functions as an antioxidant, as an enzyme cofactor, and plays essential roles in multiple physiological processes including photosynthesis, photoprotection, control of cell cycle and cell elongation, and modulation of flowering time, gene regulation, and senescence. The importance of this key molecule in regulating whole plant morphology, cell structure, and plant development has been clearly established via characterization of low vitamin C mutants of Arabidopsis, potato, tobacco, tomato, and rice. However, the consequences of elevating ascorbate content in plant growth and development are poorly understood. Here we demonstrate that Arabidopsis lines over-expressing a myo-inositol oxygenase or an l-gulono-1,4-lactone oxidase, containing elevated ascorbate, display enhanced growth and biomass accumulation of both aerial and root tissues. To our knowledge this is the first study demonstrating such a marked positive effect in plant growth in lines engineered to contain elevated vitamin C content. In addition, we present evidence showing that these lines are tolerant to a wide range of abiotic stresses including salt, cold, and heat. Total ascorbate content of the transgenic lines remained higher than those of controls under the abiotic stresses tested. Interestingly, exposure to pyrene, a polycyclic aromatic hydrocarbon and known inducer of oxidative stress in plants, leads to stunted growth of the aerial tissue, reduction in the number of root hairs, and inhibition of leaf expansion in wild type plants, while these symptoms are less severe in the over-expressers. Our results indicate the potential of this metabolic engineering strategy to develop crops with enhanced biomass, abiotic stress tolerance, and phytoremediation capabilities.
Collapse
Affiliation(s)
- Katherine A Lisko
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Raquel Torres
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Rodney S Harris
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Melinda Belisle
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280, USA
| | - Martha M Vaughan
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Berangère Jullian
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Boris I Chevone
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pedro Mendes
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Craig L Nessler
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA
| |
Collapse
|
158
|
Wu TM, Lin WR, Kao YT, Hsu YT, Yeh CH, Hong CY, Kao CH. Identification and characterization of a novel chloroplast/mitochondria co-localized glutathione reductase 3 involved in salt stress response in rice. PLANT MOLECULAR BIOLOGY 2013; 83:379-390. [PMID: 23783412 DOI: 10.1007/s11103-013-0095-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Glutathione reductases (GRs) are important components of the antioxidant machinery that plants use to respond against abiotic stresses. In rice, one cytosolic and two chloroplastic GR isoforms have been identified. In this work, we describe the cloning and characterization of the full-length cDNA encoding OsGR3, a chloroplast-localized GR that up to now was considered as a non-functional enzyme because of assumed lack of N-terminal conserved domains. The expression of OsGR3 in E. coli validated that it can be translated as a protein with GR activity. OsGR3 shows 76 and 53 % identity with OsGR1 (chloroplastic) and OsGR2 (cytosolic), respectively. Phylogenetic analysis revealed 2 chloroplastic GRs in Poaceae species, including rice, sorghum and brachypodium, but only one chloroplastic GR in dicots. A plastid transit peptide is located at the N terminus of OsGR3, and genetic transformation of rice with a GR3-GFP fusion construct further confirmed its localization in chloroplasts. Furthermore, OsGR1 and OsGR3 are also targeted to mitochondria, which suggest a combined antioxidant mechanism in both chloroplasts and mitochondria. However, both isoforms showed a distinct response to salinity: the expression of OsGR3 but not OsGR1 was induced by salt stress. In addition, the transcript level of OsGR3 was greatly increased with salicylic acid treatment but was not significantly affected by methyl jasmonate, dehydration or heat shock stress. Our results provide new clues about the possible roles of functional OsGR3 in salt stress and biotic stress tolerance.
Collapse
Affiliation(s)
- Tsung-Meng Wu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | | | | | | | | | | |
Collapse
|
159
|
Li J, Liang D, Li M, Ma F. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. PLANTA 2013; 238:535-47. [PMID: 23775440 DOI: 10.1007/s00425-013-1915-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 05/03/2023]
Abstract
Ascorbic acid (AsA) plays an essential role in plants by protecting cells against oxidative damage. GDP-L-galactose phosphorylase (GGP) is the first committed gene for AsA synthesis. Our research examined AsA levels, regulation of GGP gene expression, and how these are related to abiotic stresses in two species of Actinidia (kiwifruit). When leaves were subjected to continuous darkness or light, ABA or MeJA, heat, or a hypoxic environment, we found some correlation between the relative levels of GGP mRNA and AsA concentrations. In transformed tobacco plants, activity of the GGP promoter was induced by all of these treatments. However, the degree of inducibility in the two kiwifruit species differed among the GGP promoter deletions. We deduced that the G-box motif, a light-responsive element, may have an important function in regulating GGP transcripts under various light conditions in both A. deliciosa and A. eriantha. Other elements such as ABRE, the CGTCA motif, and HSE might also control the promoter activities of GGP in kiwifruit. Altogether, these data suggest that GGP expression in the two kiwifruit species is regulated by light or abiotic stress via the relative cis-elements in their promoters. Furthermore, GGP has a critical role in modulating AsA concentrations in kiwifruit species under abiotic stresses.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | | | | | | |
Collapse
|
160
|
Gallie DR. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges. Nutrients 2013; 5:3424-46. [PMID: 23999762 PMCID: PMC3798912 DOI: 10.3390/nu5093424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 01/02/2023] Open
Abstract
Vitamin C serves as a cofactor in the synthesis of collagen needed to support cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being required in wound healing. Although vitamin C is essential, humans are one of the few mammalian species unable to synthesize the vitamin and must obtain it through dietary sources. Only low levels of the vitamin are required to prevent scurvy but subclinical vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. Up to a third of the adult population in the U.S. obtains less than the recommended amount of vitamin C from dietary sources of which plant-based foods constitute the major source. Consequently, strategies to increase vitamin C content in plants have been developed over the last decade and include increasing its synthesis as well as its recycling, i.e., the reduction of the oxidized form of ascorbic acid that is produced in reactions back into its reduced form. Increasing vitamin C levels in plants, however, is not without consequences. This review provides an overview of the approaches used to increase vitamin C content in plants and the successes achieved. Also discussed are some of the potential limitations of increasing vitamin C and how these may be overcome.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
161
|
Wang J, Zhang Z, Huang R. Regulation of ascorbic acid synthesis in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e24536. [PMID: 23603957 PMCID: PMC3908971 DOI: 10.4161/psb.24536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ascorbic acid (AsA) is a major antioxidant and plays an important role in plant growth and development. There are two aspects to improve AsA content, including de novo synthesis and recycling from its oxidized form. However, the knowledge of regulatory mechanisms of AsA synthesis pathways and metabolism still remains limited. We have determined that AsA synthesis process was modulated on both transcriptional and post-transcriptional levels in Arabidopsis. GDP-mannose pyrophosphorylase (VTC1) is the initial AsA biosynthetic enzyme in L-galactose pathway, we previously showed that Arabidopsis ERF98 transcriptionally activates gene expression of VTC1 to improve AsA content and respond salt stress; recent discovery of the interaction between photomorphogenic factor COP9 signalosome (CSN) subunit CSN5B and VTC1 indicates that CSN5B promotes VTC1 degradation in the dark, which keeps the change of AsA content from day to night. This mini-review integrates previous reports and recent evidence to better understand the regulatory mechanisms involved in AsA synthesis.
Collapse
|
162
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|
163
|
Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:584-96. [PMID: 23430410 DOI: 10.1007/s10646-013-1050-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in mitigating oxidative stress in wheat seedlings exposed to arsenic (As). Seedlings were treated with NO donor (0.25 mM sodium nitroprusside, SNP) and As (0.25 and 0.5 mM Na2HAsO4·7H2O) separately and/or in combination and grown for 72 h. Relative water content (RWC) and chlorophyll (chl) content were decreased by As treatment but proline (Pro) content was increased. The ascorbate (AsA) content was decreased significantly with increased As concentration. The imposition of As caused marked increase in the MDA and H2O2 content. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) significantly increased with an increase in the level of As (both 0.25 and 0.5 mM), while the GSH/GSSG ratio decreased at higher concentration (0.5 mM). The ascorbate peroxidase and glutathione S-transferase activities consistently increased with an increase in the As concentration, while glutathione reductase (GR) activities increased only at 0.25 mM. The monodehydroascorbate reductase (MDHAR) and catalase (CAT) activities were not changed upon exposure to As. The activities of dehydroascorbate reductase (DHAR) and glyoxalase I (Gly I) decreased at any levels of As, while glutathione peroxidase (GPX) and glyoxalase II (Gly II) activities decreased only upon 0.5 mM As. Exogenous NO alone had little influence on the non-enzymatic and enzymatic components compared to the control seedlings. These inhibitory effects of As were markedly recovered by supplementation with SNP; that is, the treatment with SNP increased the RWC, chl and Pro contents; AsA and GSH contents and the GSH/GSSG ratio as well as the activities of MDHAR, DHAR, GR, GPX, CAT, Gly I and Gly II in the seedlings subjected to As stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to As-induced oxidative damage by enhancing their antioxidant defense and glyoxalase system.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan.
| | | |
Collapse
|
164
|
Liu J, Wang X, Hu Y, Hu W, Bi Y. Glucose-6-phosphate dehydrogenase plays a pivotal role in tolerance to drought stress in soybean roots. PLANT CELL REPORTS 2013; 32:415-29. [PMID: 23233130 DOI: 10.1007/s00299-012-1374-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/27/2012] [Accepted: 11/27/2012] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE : Two soybean cultivars showed markedly different drought tolerance. G6PDH plays a central role in the process of H ( 2 ) O ( 2 ) regulated GR, DHAR, and MDHAR activities to maintain GSH and Asc levels. Glucose-6-phosphate dehydrogenase (G6PDH) plays a pivotal role in plant resistance to environmental stresses. In this study, we investigated the role of G6PDH in modulating redox homeostasis under drought stress induced by polyethylene glycol 6000 (PEG6000) in two soybean cultivars JINDOU21 (JD-21) and WDD00172 (WDD-172). The G6PDH activity markedly increased and reached a maximum at 96 h in JD-21 and 72 h in WDD-172 during PEG6000 treatments, respectively. Glucosamine (Glucm, a G6PDH inhibitor) obviously inhibited G6PDH activity in both soybeans under PEG6000 treatments. After PEG6000 treatment, JD-21 showed higher tolerance than WDD-172 not only in higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), but also in higher content of glutathione (GSH) and ascorbate (Asc). And we found that hydrogen peroxide (H(2)O(2)) regulated the cell length in root elongation zone. Diphenylene iodonium (DPI, a plasma membrane NADPH oxidase inhibitor) counteracted the PEG6000-induced H(2)O(2) accumulation and decreased the activities of GR, DHAR, and MDHAR as well as GSH and Asc content. Furthermore, exogenous application of H(2)O(2) increased the GR, DHAR, and MDHAR activities that were decreased by Glucm under drought stress. Western blot analysis showed that the G6PDH expression was stimulated by PEG6000 and buthionine sulfoximine (BSO, glutathione biosynthesis inhibitor), and blocked by Glucm, DPI and N-acetyl-L-cysteine (NAC, GSH precursor) in both cultivars. Taken together, our evidence indicates that G6PDH plays a central role in the process of H(2)O(2) regulated GR, DHAR, and MDHAR activities to maintain GSH and Asc levels.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | |
Collapse
|
165
|
Tran D, Kadono T, Molas ML, Errakhi R, Briand J, Biligui B, Kawano T, Bouteau F. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells. PLANT, CELL & ENVIRONMENT 2013; 36:569-78. [PMID: 22897345 DOI: 10.1111/j.1365-3040.2012.02596.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death.
Collapse
Affiliation(s)
- Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma L, Deng XW, Huang R. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. THE PLANT CELL 2013; 25:625-36. [PMID: 23424245 PMCID: PMC3608782 DOI: 10.1105/tpc.112.106880] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/03/2013] [Accepted: 02/01/2013] [Indexed: 05/18/2023]
Abstract
Light regulates ascorbic acid (AsA) synthesis, which increases in the light, presumably reflecting a need for antioxidants to detoxify reactive molecules produced during photosynthesis. Here, we examine this regulation in Arabidopsis thaliana and find that alterations in the protein levels of the AsA biosynthetic enzyme GDP-Man pyrophosphorylase (VTC1) are associated with changes in AsA contents in light and darkness. To find regulatory factors involved in AsA synthesis, we identified VTC1-interacting proteins by yeast two-hybrid screening of a cDNA library from etiolated seedlings. This screen identified the photomorphogenic factor COP9 signalosome subunit 5B (CSN5B), which interacted with the N terminus of VTC1 in yeast and plants. Gel filtration profiling showed that VTC1-CSN5B also associated with the COP9 signalosome complex, and this interaction promotes ubiquitination-dependent VTC1 degradation through the 26S proteasome pathway. Consistent with this, csn5b mutants showed very high AsA levels in both light and darkness. Also, a double mutant of csn5b with the partial loss-of-function mutant vtc1-1 contained AsA levels between those of vtc1-1 and csn5b, showing that CSN5B modulates AsA synthesis by affecting VTC1. In addition, the csn5b mutant showed higher tolerance to salt, indicating that CSN5B regulation of AsA synthesis affects the response to salt stress. Together, our data reveal a regulatory role of CSN5B in light-dark regulation of AsA synthesis.
Collapse
Affiliation(s)
- Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Yanwen Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Address correspondence to
| |
Collapse
|
167
|
Gallie DR. L-ascorbic Acid: a multifunctional molecule supporting plant growth and development. SCIENTIFICA 2013; 2013:795964. [PMID: 24278786 PMCID: PMC3820358 DOI: 10.1155/2013/795964] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps reflecting the importance of this molecule to plant health. Given the importance of ascorbic acid to human nutrition, several technologies have been developed to increase the ascorbic acid content of plants through the manipulation of biosynthetic or recycling pathways. This paper provides an overview of these approaches as well as the consequences that changes in ascorbic acid content have on plant growth and function. Discussed is the capacity of plants to tolerate changes in ascorbic acid content. The many functions that ascorbic acid serves in plants, however, will require highly targeted approaches to improve their nutritional quality without compromising their health.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA
| |
Collapse
|
168
|
Zhang Z, Huang R. Analysis of Malondialdehyde, Chlorophyll Proline, Soluble Sugar, and Glutathione Content in Arabidopsis seedling. Bio Protoc 2013. [DOI: 10.21769/bioprotoc.817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
169
|
Hasanuzzaman M, Hossain MA, Fujita M. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 2012; 149:248-61. [PMID: 22535598 DOI: 10.1007/s12011-012-9419-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/04/2012] [Indexed: 11/27/2022]
Abstract
The protective effect of selenium (Se) on antioxidant defense and methylglyoxal (MG) detoxification systems was investigated in leaves of rapeseed (Brassica napus cv. BINA sharisha 3) seedlings under cadmium (Cd)-induced oxidative stress. Two sets of 11-day-old seedlings were pretreated with both 50 and 100 μM Se (Na(2)SeO(4), sodium selenate) for 24 h. Two concentrations of CdCl(2) (0.5 and 1.0 mM) were imposed separately or on the Se-pretreated seedlings, which were grown for another 48 h. Cadmium stress at any levels resulted in the substantial increase in malondialdehyde and H(2)O(2) levels. The ascorbate (AsA) content of the seedlings decreased significantly upon exposure to Cd stress. The amount of reduced glutathione (GSH) increased only at 0.5 mM CdCl(2), while glutathione disulfide (GSSG) increased at any level of Cd, with concomitant decrease in GSH/GSSG ratio. The activities of ascorbate peroxidase (APX) and glutathione S-transferase (GST) increased significantly with increased concentration of Cd (both at 0.5 and 1.0 mM CdCl(2)), while the activities of glutathione reductase (GR) and glutathione peroxidase (GPX) increased only at moderate stress (0.5 mM CdCl(2)) and then decreased at 1.0 mM severe stress (1.0 mM CdCl(2)). Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon exposure to any levels of Cd. Selenium pretreatment had little effect on the nonenzymatic and enzymatic components of seedlings grown under normal conditions; i.e., they slightly increased the GSH content and the activities of APX, GR, GST, and GPX. On the other hand, Se pretreatment of seedlings under Cd-induced stress showed a synergistic effect; it increased the AsA and GSH contents, the GSH/GSSG ratio, and the activities of APX, MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II which ultimately reduced the MDA and H(2)O(2) levels. However, in most cases, pretreatment with 50 μM Se showed better results compared to pretreatment with 100 μM Se. The results indicate that the exogenous application of Se at low concentrations increases the tolerance of plants to Cd-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| | | | | |
Collapse
|
170
|
Azzabi G, Pinnola A, Betterle N, Bassi R, Alboresi A. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress. PLANT & CELL PHYSIOLOGY 2012; 53:1815-25. [PMID: 22952250 DOI: 10.1093/pcp/pcs124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light.
Collapse
Affiliation(s)
- Ghazi Azzabi
- Università di Verona, Dipartimento di Biotecnologie. Strada le Grazie 15-I, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
171
|
Kumar R, Mustafiz A, Sahoo KK, Sharma V, Samanta S, Sopory SK, Pareek A, Singla-Pareek SL. Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. PLANT MOLECULAR BIOLOGY 2012; 79:555-68. [PMID: 22644442 DOI: 10.1007/s11103-012-9928-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 05/13/2012] [Indexed: 05/19/2023]
Abstract
Salinity, one of the most deleterious stresses, affects growth and overall yield of crop plants. To identify new "candidate genes" having potential role in salinity tolerance, we have carried out 'functional screening' of a cDNA library (made from a salt tolerant rice-Pokkali). Based on this screening, we identified a cDNA clone that was allowing yeast cells to grow in the presence of 1.2 M NaCl. Sequencing and BLAST search identified it as mannose-1-phosphate guanyl transferase (OsMPG1) gene from rice. Analysis of rice genome sequence database indicated the presence of 3 additional genes for MPG. Out of four, three MPG genes viz. OsMPG1, 3 and 4 were able to functionally complement yeast MPG mutant -YDL055C. We have carried out detailed transcript profiling of all members of MPG family by qRT-PCR using two contrasting rice genotypes (IR64 and Pokkali) under different abiotic stresses (salinity, drought, oxidative stress, heat stress, cold or UV light). These MPG genes showed differential expression under various abiotic stresses with two genes (OsMPG1 and 3) showing high induction in response to multiple stresses. Analysis of rice microarray data indicated higher expression levels for OsMPG1 in specific tissues such as roots, leaves, shoot apical meristem and different stages of panicle and seed development, thereby indicating its developmental regulation. Functional validation of OsMPG1 carried out by overexpression in the transgenic tobacco revealed its involvement in enhancing salinity stress tolerance.
Collapse
Affiliation(s)
- Ritesh Kumar
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Zhang Z, Wang J, Zhang R, Huang R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:273-87. [PMID: 22417285 DOI: 10.1111/j.1365-313x.2012.04996.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant in plants, and its biosynthesis is finely regulated through developmental and environmental cues; however, the regulatory mechanism remains unclear. In this report, the knockout and knockdown mutants of Arabidopsis AtERF98 decreased the AsA level, whereas the overexpression of AtERF98 increased it, which suggests that AtERF98 plays an important role in regulating AsA biosynthesis. AtERF98-overexpressing plants showed enhanced expression of AsA synthesis genes in the d-mannose/l-galactose (d-Man/l-Gal) pathway and the myo-inositol pathway gene MIOX4, as well as of AsA turnover genes. In contrast, AtERF98 mutants showed decreased expression of AsA synthesis genes in the d-Man/l-Gal pathway but not of the myo-inositol pathway gene or AsA turnover genes. In addition, the role of AtERF98 in regulating AsA production was significantly impaired in the d-Man/l-Gal pathway mutant vtc1-1, but the expression of the myo-inositol pathway gene or AsA turnover genes was not affected, which indicates that the regulation of AtERF98 in AsA synthesis is primarily mediated by the d-Man/l-Gal pathway. Transient expression and chromatin immunoprecipitation assays further showed that AtERF98 binds to the promoter of VTC1, which indicates that AtERF98 modulates AsA biosynthesis by directly regulating the expression of the AsA synthesis genes. Moreover, the knockout mutant aterf98-1 displayed decreased salt-induced AsA synthesis and reduced tolerance to salt. The supplementation of exogenous AsA increased the salt tolerance of aterf98-1; coincidently, the enhanced salt tolerance of AtERF98-overexpressing plants was impaired in vtc1-1. Thus, our data provide evidence that the regulation of AtERF98 in AsA biosynthesis contributes to enhanced salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | |
Collapse
|
173
|
Szarka A, Tomasskovics B, Bánhegyi G. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 2012; 13:4458-4483. [PMID: 22605990 PMCID: PMC3344226 DOI: 10.3390/ijms13044458] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 12/02/2022] Open
Abstract
The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-1-463-3858; Fax: +36-1-463-3855
| | - Bálint Tomasskovics
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary; E-Mail:
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry Pathobiochemistry, Research Group of Hungarian Academy of Sciences and Semmelweis University, 1444 Budapest, POB 260, Hungary; E-Mail:
| |
Collapse
|
174
|
Hasanuzzaman M, Fujita M. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 2011; 143:1758-76. [PMID: 21347652 DOI: 10.1007/s12011-011-8998-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H(2)O(2)) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H(2)O(2), and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| | | |
Collapse
|
175
|
Gangwar S, Singh VP, Garg SK, Prasad SM, Maurya JN. Kinetin supplementation modifies chromium (VI) induced alterations in growth and ammonium assimilation in pea seedlings. Biol Trace Elem Res 2011; 144:1327-43. [PMID: 21796388 DOI: 10.1007/s12011-011-9157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/15/2011] [Indexed: 01/08/2023]
Abstract
In the present study, impact of kinetin (KN; 10 and 100 μM) supplementation on growth, ammonium (NH(4)(+)) assimilation and antioxidant system in pea under hexavalent chromium toxicity (Cr VI; 50, 100 and 250 μM) was investigated. Chromium decreased growth, protein, and nitrogen, and activity of glutamine synthetase (GS) and glutamate synthase (GOGAT) while it increased NH(4)(+) content and activity of glutamate dehydrogenase (GDH). Kinetin at 100 μM decreased growth and NH(4)(+) assimilation, and together with Cr, it increased Cr toxicity. Chromium and 100 μM KN increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities while decreasing activities of catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR). Ascorbate and glutathione levels were decreased by Cr and 100 μM KN. In contrast, supplementation of 10 μM KN under Cr (VI) toxicity, protected NH(4)(+) assimilation and promoted growth of pea by increasing levels of some of the antioxidants i.e., CAT, GR, DHAR, ascorbate and glutathione. Results showed that 10 μM KN increases Cr tolerance while 100 μM KN exhibited opposite responses. These results could contribute to an understanding of the mechanisms of KN-mediated dual influence on metal tolerance in crop plants.
Collapse
Affiliation(s)
- Savita Gangwar
- Department of Plant Science, M.J.P. Rohilkhand University, Bareilly, 243006, India.
| | | | | | | | | |
Collapse
|
176
|
Hasanuzzaman M, Hossain MA, Fujita M. Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 2011; 143:1704-21. [PMID: 21264525 DOI: 10.1007/s12011-011-8958-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/05/2011] [Indexed: 11/28/2022]
Abstract
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na(2)SeO(4)) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H(2)O(2) and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H(2)O(2) and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| | | | | |
Collapse
|
177
|
Soto G, Stritzler M, Lisi C, Alleva K, Pagano ME, Ardila F, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND. Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5699-711. [PMID: 21908473 DOI: 10.1093/jxb/err287] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acetoacetyl-CoA thiolase (EC 2.3.1.9), also called thiolase II, condenses two molecules of acetyl-CoA to give acetoacetyl-CoA. This is the first enzymatic step in the biosynthesis of isoprenoids via mevalonate (MVA). In this work, thiolase II from alfalfa (MsAACT1) was identified and cloned. The enzymatic activity was experimentally demonstrated in planta and in heterologous systems. The condensation reaction by MsAACT1 was proved to be inhibited by CoA suggesting a negative feedback regulation of isoprenoid production. Real-time RT-PCR analysis indicated that MsAACT1 expression is highly increased in roots and leaves under cold and salinity stress. Treatment with mevastatin, a specific inhibitor of the MVA pathway, resulted in a decrease in squalene production, antioxidant activity, and the survival of stressed plants. As expected, the presence of mevastatin did not change chlorophyll and carotenoid levels, isoprenoids synthesized via the plastidial MVA-independent pathway. The addition of vitamin C suppressed the sensitive phenotype of plants challenged with mevastatin, suggesting a critical function of the MVA pathway in abiotic stress-inducible antioxidant defence. MsAACT1 over-expressing transgenic plants showed salinity tolerance comparable with empty vector transformed plants and enhanced production of squalene without altering the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity in salt-stress conditions. Thus, acetoacetyl-CoA thiolase is a regulatory enzyme in isoprenoid biosynthesis involved in abiotic stress adaptation.
Collapse
Affiliation(s)
- Gabriela Soto
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), De reseros S/N, Castelar C25 (1712), Provincia de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Wang HS, Yu C, Zhu ZJ, Yu XC. Overexpression in tobacco of a tomato GMPase gene improves tolerance to both low and high temperature stress by enhancing antioxidation capacity. PLANT CELL REPORTS 2011; 30:1029-40. [PMID: 21287174 DOI: 10.1007/s00299-011-1009-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/30/2010] [Accepted: 01/10/2011] [Indexed: 05/26/2023]
Abstract
GDP-mannose pyrophosphorylase (GMPase: EC 2.7.7.22) plays a crucial role in the synthesis of L-ascorbate (AsA) and the consequent detoxification of reactive oxygen species (ROS). Herein, a GMPase (accession ID DQ449030) was identified and cloned from tomato. The full-length cDNA sequence of this gene contains 1,498 bp nucleotides encoding a putative protein with 361 amino acid residues of approximate molecular weight 43 kDa. Northern blot analysis revealed that the GMPase was expressed in all examined tomato tissues, but its expression level was up-regulated in tomato plants subjected to abnormal temperatures. We then overexpressed this tomato GMPase in tobacco plants and observed that the activity of GMPase and the content of AsA were significantly increased by two- to fourfold in the leaves of transgenic tobacco plants. The effect of this gene overexpression was superimposed by the treatments of high or low temperature in tobacco, since the activities of both chloroplastic SOD (superoxide dismutase EC 1.15.1.1), APX (ascorbate peroxidase EC 1.11.1.7) and the content of AsA in leaves were significantly higher in transgenic plants than those of WT, while the contents of H(2)O(2) and O(2)(-·) were reduced. Meanwhile, relative electric conductivity increased less in transgenic plants than that in WT, and the net photosynthetic rate (P(n)) and the maximal photochemical efficiency of PSII (F(v)/F(m)) of transgenic plants were notably higher than those of WT under temperature stresses. In conclusion, the overexpression of GMPase increased the content of AsA, thereby leading to the increase in tolerance to temperature stress in transgenic plants.
Collapse
Affiliation(s)
- Hua-Sen Wang
- Department of Horticulture, School of Agriculture and Food Science, Zhejiang A and F University, Lin'an 311300, Zhejiang, People's Republic of China
| | | | | | | |
Collapse
|
179
|
Kempinski CF, Haffar R, Barth C. Toward the mechanism of NH(4) (+) sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. PLANT, CELL & ENVIRONMENT 2011; 34:847-58. [PMID: 21332510 DOI: 10.1111/j.1365-3040.2011.02290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana mutant vtc1-1, which is defective in GDP-mannose pyrophosphorylase (GMPase), exhibits conditional hypersensitivity to ammonium (NH(4) (+) ), a phenomenon that is independent of AA deficiency. As GMPase is important for GDP-mannose biosynthesis, a nucleotide sugar necessary for protein N-glycosylation, it has been thought that GDP-mannose deficiency is responsible for the growth defect in vtc1-1 in the presence of NH(4) (+) . Therefore, the motivation for this work was to elucidate the growth and developmental processes that are affected in vtc1-1 in the presence of NH(4) (+) and to determine whether GDP-mannose deficiency generally causes NH(4) (+) sensitivity. Furthermore, as NH(4) (+) may alter cytosolic pH, we investigated the responses of vtc1-1 to pH changes in the presence and absence of NH(4) (+) . Using qRT-PCR and staining procedures, we demonstrate that defective N-glycosylation in vtc1-1 contributes to cell wall, membrane and cell cycle defects, resulting in root growth inhibition in the presence of NH(4) (+) . However, by using mutants acting upstream of vtc1-1 and contributing to GDP-mannose biosynthesis, we show that GDP-mannose deficiency does not generally lead to and is not the primary cause of NH(4) (+) sensitivity. Instead, our data suggest that GMPase responds to pH alterations in the presence of NH(4) (+) .
Collapse
Affiliation(s)
- Chase F Kempinski
- Department of Biology, West Virginia University, 5228 Life Sciences Building, 53 Campus Drive, Morgantown, West Virginia 26506-6057, USA
| | | | | |
Collapse
|
180
|
Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS. Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 2011; 36:163-73. [DOI: 10.1007/s12038-011-9000-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
181
|
Hossain MA, Hasanuzzaman M, Fujita M. Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11703-010-1070-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
182
|
Singh LP, Singh Gill S, Tuteja N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2011; 6:175-91. [PMID: 21512319 PMCID: PMC3121976 DOI: 10.4161/psb.6.2.14146] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 11/06/2010] [Indexed: 05/18/2023]
Abstract
Fungal symbionts have been found associated with every plant studied in natural ecosystem, where they colonize and reside entirely in the internal tissues of their host plant or partially. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress, heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.
Collapse
Affiliation(s)
| | - Sarvajeet Singh Gill
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
- Stress Physiology and Molecular Biology Lab; Centre for Biotechnology; MD University; Rohtak, Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
183
|
Eltayeb AE, Yamamoto S, Habora MEE, Yin L, Tsujimoto H, Tanaka K. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. BREEDING SCIENCE 2011. [PMID: 0 DOI: 10.1270/jsbbs.61.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Amin Elsadig Eltayeb
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
- Arid Land Research Center, Tottori University
| | - Shohei Yamamoto
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
| | | | - Lina Yin
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
| | - Hisashi Tsujimoto
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Tottori University
| | - Kiyoshi Tanaka
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
| |
Collapse
|
184
|
The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 2010; 21:957-69. [PMID: 21187857 DOI: 10.1038/cr.2010.181] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca(2+) release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway.
Collapse
|
185
|
Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW. Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. PHYSIOLOGIA PLANTARUM 2010; 139:421-34. [PMID: 20230481 DOI: 10.1111/j.1399-3054.2010.01369.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A tomato (Lycopersicon esculentum Mill.) monodehydroascorbate reductase gene (LeMDAR) was isolated. The LeMDAR-green fluorescence protein (GFP) fusion protein was targeted to chloroplast in Arabidopsis mesophyll protoplast. RNA and protein gel blot analyses confirmed that the sense- and antisense- LeMDAR were integrated into the tomato genome. The MDAR activities and the levels of reduced ascorbate (AsA) were markedly increased in sense transgenic lines and decreased in antisense transgenic lines compared with wild-type (WT) plants. Under low and high temperature stresses, the sense transgenic plants showed lower level of hydrogen peroxide (H(2)O(2)), lower thiobarbituric acid reactive substance (TBARS) content, higher net photosynthetic rate (P(n)), higher maximal photochemical efficiency of PSII (F(v)/F(m)) and fresh weight compared with WT plants. The oxidizable P700 decreased more obviously in WT and antisense plants than that in sense plants at chilling temperature under low irradiance. Furthermore, the sense transgenic plants exhibited significantly lower H(2)O(2) level, higher ascorbate peroxidase (APX) activity, greater P(n) and F(v)/F(m) under methyl viologen (MV)-mediated oxidative stresses. These results indicated that overexpression of chloroplastic MDAR played an important role in alleviating photoinhibition of PSI and PSII and enhancing the tolerance to various abiotic stresses by elevating AsA level.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | | | | | | | | | | |
Collapse
|
186
|
Hossain MA, Hasanuzzaman M, Fujita M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:259-72. [PMID: 23572976 PMCID: PMC3550671 DOI: 10.1007/s12298-010-0028-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The present study investigates the possible mediatory role of exogenously applied glycinebetaine (betaine) and proline on reactive oxygen species (ROS) and methylglyoxal (MG) detoxification systems in mung bean seedlings subjected to cadmium (Cd) stress (1 mM CdCl2, 48 h). Cadmium stress caused a significant increase in glutathione (GSH) and glutathione disulfide (GSSG) content, while the ascorbate (AsA) content decreased significantly with a sharp increase in hydrogen peroxide (H2O2) and lipid peroxidation level (MDA). Ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activities were increased in response to Cd stress, while the activities of catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glyoxalase II (Gly II) were sharply decreased. Exogenous application of 5 mM betaine or 5 mM proline resulted in an increase in GSH and AsA content, maintenance of a high GSH/GSSG ratio and increased the activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I and Gly II involved in ROS and MG detoxification system as compared to the control and mostly also Cd-stressed plants, with a concomitant decrease in GSSG content, H2O2 and lipid peroxidation level. These findings together with our earlier findings suggest that both betaine and proline provide a protective action against Cd-induced oxidative stress by reducing H2O2 and lipid peroxidation levels and by increasing the antioxidant defense and MG detoxification systems.
Collapse
Affiliation(s)
- Mohammad Anwar Hossain
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
- />Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | - Mirza Hasanuzzaman
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
- />Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Masayuki Fujita
- />Department of Applied Biological Science, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| |
Collapse
|
187
|
Chao YY, Hong CY, Kao CH. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:374-81. [PMID: 20144872 DOI: 10.1016/j.plaphy.2010.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) toxicity of rice (Oryza sativa L. cv. Taichung Native 1) seedlings was evaluated by the decrease in chlorophyll content and the increase in malondialdehyde (MDA) in the second leaves of rice seedlings. CdCl2 (5 microM) treatment was accompanied by a decrease in the contents of ascorbic acid (AsA) and AsA + dehydroascorbate (DHA) and in the ratios of AsA/DHA in leaves. However, CdCl2 treatment resulted in an increase in DHA content in leaves. Moreover, the decrease in AsA content was prior to the occurrence of chlorosis and associated with the increase in MDA content in the leaves of seedlings treated with Cd. Pretreatment with 0.5 mM AsA or L-galactono-1,4-lactone (GalL), the biosynthetic precursor of AsA, for 6 h resulted in an increase in the contents of AsA and reduced glutathione (GSH), the ratios of AsA/DHA and GSH/oxidized glutathione, and the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in the leaves of rice seedlings. Quantitative RT-PCR was applied to quantify the mRNA levels for OsAPX and OsGR genes from rice leaves to examine the effect of AsA or GalL pretreatment on the expression of OsAPX and OsGR genes in rice leaves. The expression of OsAPX2, OsAPX3, OsAPX4, OsAPX5, OsAPX6, OsAPX7, and OsGR1 was increased by AsA or GalL pretreatment. Rice seedlings pretreated with AsA or GalL were observed to reduce the subsequent Cd-induced toxicity. Our results suggest that AsA content may play a role in regulating Cd toxicity of rice seedlings.
Collapse
Affiliation(s)
- Yun-Yang Chao
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
188
|
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. PLANT, CELL & ENVIRONMENT 2010; 33:453-67. [PMID: 19712065 DOI: 10.1111/j.1365-3040.2009.02041.x] [Citation(s) in RCA: 1733] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit and salinity, especially under high light intensity or in combination with other stresses, disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of reactive oxygen species (ROS). ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules. In this review, we provide an overview of ROS homeostasis and signalling in response to drought and salt stresses and discuss the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses.
Collapse
Affiliation(s)
- Gad Miller
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
189
|
Abogadallah GM. Antioxidative defense under salt stress. PLANT SIGNALING & BEHAVIOR 2010; 5:369-74. [PMID: 20118663 PMCID: PMC2958586 DOI: 10.4161/psb.5.4.10873] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
Salt tolerance is a complex trait involving the coordinated action of many gene families that perform a variety of functions such as control of water loss through stomata, ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defense. In spite of the large number of publications on the role of antioxidative defense under salt stress, the relative importance of this process to overall plant salt tolerance is still a matter of controversy. In this article, the generation and scavenging of reactive oxygen species (ROS) under normal and salt stress conditions in relation to the type of photosynthesis is discussed. The CO(2) concentrating mechanism in C4 and CAM plants is expected to contribute to decreasing ROS generation. However, the available data supports this hypothesis in CAM but not in C4 plants. We discuss the specific roles of enzymatic and non enzymatic antioxidants in relation to the oxidative load in the context of whole plant salt tolerance. The possible preventive antioxidative mechanisms are also discussed.
Collapse
Affiliation(s)
- Gaber M Abogadallah
- Department of Botany, Faculty of Science at New Damietta, New Damietta, Egypt.
| |
Collapse
|
190
|
Wang Z, Xiao Y, Chen W, Tang K, Zhang L. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:400-9. [PMID: 20377702 DOI: 10.1111/j.1744-7909.2010.00921.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vitamin C (L-ascorbic acid, AsA) has important antioxidant and metabolic functions in both plants and animals. Once used, ascorbic acid can be regenerated from its oxidized form in a reaction catalyzed by dehydroascorbate reductase (DHAR, EC 1.8.5.1). To analyze the physiological role of DHAR catalyzing the reduction of DHA to ascorbate in environmental stress adaptation, we examined whether increasing the level of AsA through enhanced AsA recycling would limit the deleterious effects of oxidative stress. A chimeric construct consisting of the double CaMV35S promoter fused to the Myc-dhar gene was introduced into Arabidopsis thaliana. Transgenic plants were biochemically characterized and tested for responses to oxidative stress. Western blot indicated that the dhar-transgene was successfully expressed. In homozygous T(4) transgenic seedlings, DHAR overexpression was increased up to 1.5 to 5.4 fold, which enhanced foliar ascorbic acid levels 2- to 4.25-fold and ratio of AsA/DHA about 3- to 16-fold relative to wild type. In addition, the level of glutathione, the reductant used by DHAR, also increased as did its redox state. When whole plants were treated with high light and high temperature stress or in vitro leaf discs were subjected to 10 muM paraquat, transgenic plants showed a larger AsA pool size, lower membrane damage, and a higher level of chlorophyll compared with controls. These data suggested that increasing the plant vitamin C content through enhanced ascorbate recycling could limit the deleterious effects of environmental oxidative stress.
Collapse
Affiliation(s)
- Zinan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
191
|
Domínguez-Perles R, Martínez-Ballesta MC, Carvajal M, García-Viguera C, Moreno DA. Broccoli-Derived By-Products-A Promising Source of Bioactive Ingredients. J Food Sci 2010; 75:C383-92. [DOI: 10.1111/j.1750-3841.2010.01606.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
192
|
Rosso D, Bode R, Li W, Krol M, Saccon D, Wang S, Schillaci LA, Rodermel SR, Maxwell DP, Hüner NP. Photosynthetic redox imbalance governs leaf sectoring in the Arabidopsis thaliana variegation mutants immutans, spotty, var1, and var2. THE PLANT CELL 2009; 21:3473-92. [PMID: 19897671 PMCID: PMC2798315 DOI: 10.1105/tpc.108.062752] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/22/2009] [Accepted: 10/17/2009] [Indexed: 05/19/2023]
Abstract
We hypothesized that chloroplast energy imbalance sensed through alterations in the redox state of the photosynthetic electron transport chain, measured as excitation pressure, governs the extent of variegation in the immutans mutant of Arabidopsis thaliana. To test this hypothesis, we developed a nondestructive imaging technique and used it to quantify the extent of variegation in vivo as a function of growth temperature and irradiance. The extent of variegation was positively correlated (R(2) = 0.750) with an increase in excitation pressure irrespective of whether high light, low temperature, or continuous illumination was used to induce increased excitation pressure. Similar trends were observed with the variegated mutants spotty, var1, and var2. Measurements of greening of etiolated wild-type and immutans cotyledons indicated that the absence of IMMUTANS increased excitation pressure twofold during the first 6 to 12 h of greening, which led to impaired biogenesis of thylakoid membranes. In contrast with IMMUTANS, the expression of its mitochondrial analog, AOX1a, was transiently upregulated in the wild type but permanently upregulated in immutans, indicating that the effects of excitation pressure during greening were also detectable in mitochondria. We conclude that mutations involving components of the photosynthetic electron transport chain, such as those present in immutans, spotty, var1, and var2, predispose Arabidopsis chloroplasts to photooxidation under high excitation pressure, resulting in the variegated phenotype.
Collapse
Affiliation(s)
- Dominic Rosso
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Rainer Bode
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Wenze Li
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Marianna Krol
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Diego Saccon
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Shelly Wang
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Lori A. Schillaci
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Steven R. Rodermel
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, 50011
| | - Denis P. Maxwell
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Norman P.A. Hüner
- Department of Biology and the Biotron, University of Western Ontario, London, ON, Canada N6A 5B7
| |
Collapse
|
193
|
Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1263-1274. [PMID: 19386380 DOI: 10.1016/j.jplph.2008.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 05/04/2023]
Abstract
Ascorbate is a major antioxidant and radical scavenger in plants. Monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) are two enzymes of the ascorbate-glutathione cycle that maintain ascorbate in its reduced state. MDAR2 (At3g09940) and DHAR5 (At1g19570) expression was upregulated in the roots and shoots of Arabidopsis seedlings co-cultivated with the root-colonizing endophytic fungus Piriformospora indica, or that were exposed to a cell wall extract or a culture filtrate from the fungus. Growth and seed production were not promoted by Piriformospora indica in mdar2 (SALK_0776335C) and dhar5 (SALK_029966C) T-DNA insertion lines, while colonized wild-type plants were larger and produced more seeds compared to the uncolonized controls. After 3 weeks of drought stress, growth and seed production were reduced in Piriformospora indica-colonized plants compared to the uncolonized control, and the roots of the drought-stressed insertion lines were colonized more heavily by the fungus than were wild-type plants. Upregulation of the message for the antimicrobial PDF1.2 protein in drought-stressed insertion lines indicated that MDAR2 and DHAR5 are crucial for producing sufficient ascorbate to maintain the interaction between Piriformospora indica and Arabidopsis in a mutualistic state.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, 07743 Jena, Germany
| | - Swati Tripathi
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ram Prasad
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ajit Varma
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ralf Oelmüller
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, 07743 Jena, Germany.
| |
Collapse
|
194
|
Kotchoni SO, Larrimore KE, Mukherjee M, Kempinski CF, Barth C. Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:803-15. [PMID: 19028878 PMCID: PMC2633856 DOI: 10.1104/pp.108.132324] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 11/17/2008] [Indexed: 05/18/2023]
Abstract
Ascorbic acid (AA) protects plants against abiotic stress. Previous studies suggested that this antioxidant is also involved in the control of flowering. To decipher how AA influences flowering time, we studied the four AA-deficient Arabidopsis (Arabidopsis thaliana) mutants vtc1-1, vtc2-1, vtc3-1, and vtc4-1 when grown under short and long days. These mutants flowered and senesced before the wild type irrespective of the photoperiod, a response that cannot simply be attributed to slightly elevated oxidative stress in the mutants. Transcript profiling of various flowering pathway genes revealed a correlation of altered mRNA levels and flowering time. For example, circadian clock and photoperiodic pathway genes were significantly higher in the vtc mutants than in the wild type under both short and long days, a result that is consistent with the early-flowering phenotype of the mutants. In contrast, when the AA content was artificially increased, flowering was delayed, which correlated with lower mRNA levels of circadian clock and photoperiodic pathway genes compared with plants treated with water. Similar observations were made for the autonomous pathway. Genetic analyses demonstrated that various photoperiodic and autonomous pathway mutants are epistatic to the vtc1-1 mutant. In conclusion, our transcript and genetic analyses suggest that AA acts upstream of the photoperiodic and autonomous pathways.
Collapse
Affiliation(s)
- Simeon O Kotchoni
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | |
Collapse
|
195
|
Oh MM, Trick HN, Rajashekar CB. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:180-91. [PMID: 18562042 DOI: 10.1016/j.jplph.2008.04.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 05/23/2023]
Abstract
Lettuce (Lactuca sativa) plants grown in a protective environment, similar to in vitro conditions, were acclimated in a growth chamber and subjected to water stress to examine the activation of genes involved in secondary metabolism and biosynthesis of antioxidants. The expression of phenylalanine ammonia-lyase (PAL), gamma-tocopherol methyl transferase (gamma-TMT) and l-galactose dehydrogenase (l-GalDH) genes involved in the biosynthesis of phenolic compounds, alpha-tocopherol and ascorbic acid, respectively, were determined during plant adaptation. These genes were activated in tender plants, grown under protective conditions, when exposed to normal growing conditions in a growth chamber. A large increase in transcript level for PAL, a key gene in the phenylpropanoid pathway leading to the biosynthesis of a wide array of phenolics and flavonoids, was observed within 1h of exposure of tender plants to normal growing conditions. Plant growth, especially the roots, was retarded in tender plants when exposed to normal growing conditions. Furthermore, exposure of both protected and unprotected plants to water stress resulted in the activation of PAL. PAL inhibition by 2-aminoindan-2-phosphonic acid (AIP) rendered these plants more sensitive to chilling and heat shock treatments. These results suggest that activation of secondary metabolism as well as the antioxidative metabolism is an integral part of plant adaptation to normal growing conditions in lettuce plants.
Collapse
Affiliation(s)
- Myung-Min Oh
- Division of Horticulture, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
196
|
López-Berenguer C, Martínez-Ballesta MDC, Moreno DA, Carvajal M, García-Viguera C. Growing hardier crops for better health: Salinity tolerance and the nutritional value of broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:572-78. [PMID: 19123813 DOI: 10.1021/jf802994p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To evaluate the variations in the nutritional components of a broccoli cultivar under saline stress, two different NaCl concentrations (40 and 80 mM) were assayed. Glucosinolates, phenolic compounds, and ascorbic and dehydroascorbic acids (vitamin C) were analyzed by HPLC, and mineral composition was determined by ICP spectrophotometry. Qualitative differences were observed for several bioactive compounds depending on the plant organ and the intensity of the salt stress. Glucosinolate content showed the most significant increase in the florets; phenolic compounds also increased in the florets, whereas no variation in the vitamin C content was observed as a result of the saline treatments. The mineral composition of the edible parts of the inflorescences remained within the range of the recommended values for human consumption. Overall, the nutritional quality of the edible florets of broccoli was improved under moderate saline stress.
Collapse
Affiliation(s)
- Carmen López-Berenguer
- Food Science and Technology Department and Plant Nutrition Department, CEBAS-CSIC, Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
197
|
Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D. The challenge of making ozone risk assessment for forest trees more mechanistic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:567-582. [PMID: 18571819 DOI: 10.1016/j.envpol.2008.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 05/26/2023]
Abstract
Upcoming decades will experience increasing atmospheric CO2 and likely enhanced O3 exposure which represents a risk for the carbon sink strength of forests, so that the need for cause-effect related O3 risk assessment increases. Although assessment will gain in reliability on an O3 uptake basis, risk is co-determined by the effective dose, i.e. the plant's sensitivity per O3 uptake. Recent progress in research on the molecular and metabolic control of the effective O3 dose is reported along with advances in empirically assessing O3 uptake at the whole-tree and stand level. Knowledge on both O3 uptake and effective dose (measures of stress avoidance and tolerance, respectively) needs to be understood mechanistically and linked as a pre-requisite before practical use of process-based O3 risk assessment can be implemented. To this end, perspectives are derived for validating and promoting new O3 flux-based modelling tools.
Collapse
Affiliation(s)
- R Matyssek
- Ecophysiology of Plants, Technische Universität München, Ecology, Am Hochanger 13, D-85354 Freising, Weihenstephan, Germany.
| | | | | | | | | | | | | |
Collapse
|
198
|
Gao Q, Zhang L. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:138-48. [PMID: 17561306 DOI: 10.1016/j.jplph.2007.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and results in the generation of reactive oxygen species (ROS). In order to increase our understanding of the effects of UV-B on antioxidant processes, we investigated the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc1 to short-term increased UV-B exposure. After UV-B supplementation, vtc1 mutants exhibited oxidative damage. Evidence for damage included an increase in H(2)O(2) content and the production of thiobarbituric acid reactive substances (TBARS); a decrease in chlorophyll content and chlorophyll fluorescence parameters were also reported. The vtc1 mutants had higher total glutathione than the wild type (WT) during the first day of UV-B treatment. We found reduced ratio of glutathione/total glutathione and increased ratio of dehydroascorbate/total ascorbate in the vtc1 mutants, compared to the WT plants. In addition, the enzymes responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, had insufficient activity in the vtc1 mutants, compared to the WT plants. The same reduced activity in the vtc1 mutants was reported for the enzymes responsible for the regeneration of ascorbate and glutathione (including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase). These results suggest that the ascorbate-deficient mutant vtc1 is more sensitive to supplementary UV-B treatment than WT plants and ascorbate can be considered an important antioxidant for UV-B radiation.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | |
Collapse
|
199
|
Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. THE NEW PHYTOLOGIST 2008; 180:501-510. [PMID: 18681935 DOI: 10.1111/j.1469-8137.2008.02583.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The root endophytic basidiomycete Piriformospora indica has been shown to increase resistance against biotic stress and tolerance to abiotic stress in many plants. Biochemical mechanisms underlying P. indica-mediated salt tolerance were studied in barley (Hordeum vulgare) with special focus on antioxidants. Physiological markers for salt stress, such as metabolic activity, fatty acid composition, lipid peroxidation, ascorbate concentration and activities of catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase and glutathione reductase enzymes were assessed. Root colonization by P. indica increased plant growth and attenuated the NaCl-induced lipid peroxidation, metabolic heat efflux and fatty acid desaturation in leaves of the salt-sensitive barley cultivar Ingrid. The endophyte significantly elevated the amount of ascorbic acid and increased the activities of antioxidant enzymes in barley roots under salt stress conditions. Likewise, a sustained up-regulation of the antioxidative system was demonstrated in NaCl-treated roots of the salt-tolerant barley cultivar California Mariout, irrespective of plant colonization by P. indica. These findings suggest that antioxidants might play a role in both inherited and endophyte-mediated plant tolerance to salinity.
Collapse
Affiliation(s)
- Helmut Baltruschat
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - József Fodor
- Plant Protection Institute, Hungarian Academy of Sciences, Herman Ottóút 15, H-1022, Budapest, Hungary
| | - Borbála D Harrach
- Plant Protection Institute, Hungarian Academy of Sciences, Herman Ottóút 15, H-1022, Budapest, Hungary
| | - Elżbieta Niemczyk
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland
| | - Balázs Barna
- Plant Protection Institute, Hungarian Academy of Sciences, Herman Ottóút 15, H-1022, Budapest, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Hungarian Academy of Sciences, Herman Ottóút 15, H-1022, Budapest, Hungary
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland
| | - Karl-Heinz Kogel
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Patrick Schäfer
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ildikó Schwarczinger
- Plant Protection Institute, Hungarian Academy of Sciences, Herman Ottóút 15, H-1022, Budapest, Hungary
| | - Alga Zuccaro
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Andrzej Skoczowski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland
| |
Collapse
|
200
|
Colville L, Smirnoff N. Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3857-68. [PMID: 18849295 DOI: 10.1093/jxb/ern229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ascorbate is the most abundant small molecule antioxidant in plants and is proposed to function, along with other members of an antioxidant network, in controlling reactive oxygen species. A biochemical and molecular characterization of four ascorbate-deficient (vtc) Arabidopsis thaliana mutants has been carried out to determine if ascorbate deficiency is compensated by changes in the other major antioxidants. Seedlings grown in vitro were used to minimize stress and longer term developmental differences. Comparison was made with the low glutathione cad2 mutant and vtc2-1 treated with D,L-buthionine-[S,R]-sulphoximine to cause combined ascorbate and glutathione deficiency. The pool sizes and oxidation state of ascorbate and glutathione were not altered by deficiency of the other. alpha-Tocopherol and activities of monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and catalase were little affected. Ascorbate peroxidase activity was higher in vtc1, vtc2-1, and vtc2-2. Ionically bound cell wall peroxidase activity was increased in vtc1, vtc2-1, and vtc4. Supplementation with ascorbate increased cell wall peroxidase activity. 2,6-Dichlorobenzonitrile, an inhibitor of cellulose synthesis, increased cell wall peroxidase activity in the wild type and vtc1. The transcript level of an endochitinase, PR1, and PR2, but not GST6, was increased in vtc1, vtc2-1, and vtc-2-2. Endochitinase transcript levels increased after ascorbate, paraquat, salicylic acid, and UV-C treatment, PR1 after salicylic acid treatment, and PR2 after paraquat and UV-C treatment. Camalexin was higher in vtc1 and the vtc2 alleles. Induction of PR genes, cell wall peroxidase activity, and camalexin in vtc1, vtc2-1, and vtc2-2 suggests that the mutants are affected in pathogen response signalling pathways.
Collapse
Affiliation(s)
- Louise Colville
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | | |
Collapse
|