151
|
Dragone NB, Hoffert M, Strickland MS, Fierer N. Taxonomic and genomic attributes of oligotrophic soil bacteria. ISME COMMUNICATIONS 2024; 4:ycae081. [PMID: 38988701 PMCID: PMC11234899 DOI: 10.1093/ismeco/ycae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.
Collapse
Affiliation(s)
- Nicholas B Dragone
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Michael Hoffert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83844, United States
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
152
|
Giovannini M, Petroni G, Castelli M. Novel evolutionary insights on the interactions of the Holosporales (Alphaproteobacteria) with eukaryotic hosts from comparative genomics. Environ Microbiol 2024; 26:e16562. [PMID: 38173299 DOI: 10.1111/1462-2920.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Holosporales are an alphaproteobacterial order engaging in obligate and complex associations with eukaryotes, in particular protists. The functional and evolutionary features of those interactions are still largely undisclosed. Here, we sequenced the genomes of two members of the species Bealeia paramacronuclearis (Holosporales, Holosporaceae) intracellularly associated with the ciliate protist Paramecium, which resulted in high correspondence. Consistent with the short-branched early-divergent phylogenetic position, Bealeia presents a larger functional repertoire than other Holosporaceae, comparable to those of other Holosporales families, particularly for energy metabolism and motility. Our analyses indicate that different Holosporales likely experienced at least partly autonomous genome reduction and adaptation to host interactions, for example regarding dependence on host biotin driven by multiple independent horizontal acquisitions of transporters. Among Alphaproteobacteria, this is reminiscent of the convergently evolved Rickettsiales, which however appear more diverse, possibly due to a probably more ancient origin. We identified in Bealeia and other Holosporales the plasmid-encoded putative genetic determinants of R-bodies, which may be involved in a killer trait towards symbiont-free hosts. While it is not clear whether these genes are ancestral or recently horizontally acquired, an intriguing and peculiar role of R-bodies is suggested in the evolution of the interactions of multiple Holosporales with their hosts.
Collapse
Affiliation(s)
| | | | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
153
|
Long M, Chen D, Fan H, Tang S, Gan Z, Xia H, Lu Y. Microbulbifer bruguierae sp. nov., isolated from sediment of mangrove plant Bruguiera sexangula, and comparative genomic analyses of the genus Microbulbifer. Int J Syst Evol Microbiol 2024; 74. [PMID: 38240737 DOI: 10.1099/ijsem.0.006209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
A Gram-negative, non-motile, strictly aerobic, rod-shaped bacterium, designated as H12T, was isolated from the sediments of mangrove plant Bruguiera sexangula taken from Dapeng district, Shenzhen, PR China. The pairwise 16S rRNA gene sequence analysis showed that strain H12T shared high identity levels with species of the genus Microbulbifer, with the highest similarity level of 98.5 % to M. pacificus SPO729T, followed by 98.1 % to M. donghaiensis CN85T. Phylogenetic analysis using core-genome sequences showed that strain H12T formed a cluster with type species of M. pacificus SPO729T and M. harenosus HB161719T. The complete genome of strain H12T was 4 481 396 bp in size and its DNA G+C content was 56.7 mol%. The average nucleotide identity and digital DNA-DNA hybridization values among strain H12T and type species of genus Microbulbifer were below the cut-off levels of 95-96 and 70 %, respectively. The predominant cellular fatty acids of strain H12T were iso-C15 : 0 (22.5 %) and C18 : 1 ω7c (13.9 %). Ubiquinone-8 was detected as the major respiratory quinone. The polar lipids of strain H12T comprised one phosphatidylglycerol, one phosphatidylethanolamine, one unidentified aminoglycophospholipid, one unidentified glycophospholipid, three unidentified glycolipids, two unidentified aminolipids, and one unidentified lipid. Based on polyphasic evidence, strain H12T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer bruguierae sp. nov. is proposed. The type strain is H12T (=KCTC 92859T=MCCC 1K08451T). Comparative genomic analyses of strain H12T with strains of the genus Microbulbifer reveal its potential in degradation of pectin.
Collapse
Affiliation(s)
- Meng Long
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Dakun Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| | - Huimin Fan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Shaoshuai Tang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| |
Collapse
|
154
|
Yang ZZ, Xiong LS, Yuan Q, Zuo SY, Chen XM, Jiang MG, Tian XP, Jiang CL, Jiang Y. Marinimicrococcus flavescens gen. nov., sp. nov., a new member of the family Geminicoccaceae, isolated from a marine sediment of the South China Sea. Int J Syst Evol Microbiol 2024; 74. [PMID: 38240641 DOI: 10.1099/ijsem.0.006241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
A Gram-stain-negative, catalase-positive and oxidase-positive, nonmotile, aerobic, light yellow, spherical-shaped bacterial strain with no flagella, designated strain YIM 152171T, was isolated from sediment of the South China Sea. Colonies were smooth and convex, light yellow and circular, and 1.0-1.5×1.0-1.5 µm in cell diameter after 7 days of incubation at 28°C on YIM38 media supplemented with sea salt. Colonies could grow at 20-45°C (optimum 28-35°C) and pH 6.0-11.0 (optimum, pH 7.0-9.0), and they could proliferate in the salinity range of 0-6.0 % (w/v) NaCl. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C18 : 1 ω7c 11-methyl, C16 : 0, C16 : 1 ω11c, C16 : 1 ω5c, C17 : 1 ω6c and C18 : 1 ω5c. The respiratory quinone was ubiquinone 10, and the polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol mannoside, one unidentified phospholipid and one unidentified aminolipid. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain YIM 152171T within the order Rhodospirillales in a distinct lineage that also included the genus Geminicoccus. The 16S rRNA gene sequence similarities of YIM 152171T to those of Arboricoccus pini, Geminicoccus roseus and Constrictibacter antarcticus were 92.17, 89.25 and 88.91 %, respectively. The assembled draft genome of strain YIM 152171T had 136 contigs with an N50 value of 134704 nt, a total length of 3 001 346 bp and a G+C content of 70.27 mol%. The phylogenetic, phenotypic and chemotaxonomic data showed that strain YIM 152171T (=MCCC 1K08488T=KCTC 92884T) represents a type of novel species and genus for which we propose the name Marinimicrococcus gen. nov., sp. nov.
Collapse
Affiliation(s)
- Zu-Zhen Yang
- The Lab for Research and Development of Actinomycete Resources, Yunnan Institute of Microbiology, Chenggong campus of Yunnan University, Kunming, 650500, PR China
| | - Lian-Shuang Xiong
- The Lab for Research and Development of Actinomycete Resources, Yunnan Institute of Microbiology, Chenggong campus of Yunnan University, Kunming, 650500, PR China
| | - Qing Yuan
- The Lab for Research and Development of Actinomycete Resources, Yunnan Institute of Microbiology, Chenggong campus of Yunnan University, Kunming, 650500, PR China
| | - Shu-Ya Zuo
- The Lab for Research and Development of Actinomycete Resources, Yunnan Institute of Microbiology, Chenggong campus of Yunnan University, Kunming, 650500, PR China
| | - Xue-Mei Chen
- The Lab for Research and Development of Actinomycete Resources, Yunnan Institute of Microbiology, Chenggong campus of Yunnan University, Kunming, 650500, PR China
| | - Ming-Guo Jiang
- School of Marine Science and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Xin-Peng Tian
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Cheng-Lin Jiang
- The Lab for Research and Development of Actinomycete Resources, Yunnan Institute of Microbiology, Chenggong campus of Yunnan University, Kunming, 650500, PR China
| | - Yi Jiang
- The Lab for Research and Development of Actinomycete Resources, Yunnan Institute of Microbiology, Chenggong campus of Yunnan University, Kunming, 650500, PR China
| |
Collapse
|
155
|
Li L, Chen S, Xue X, Chen J, Tian J, Huo L, Zhang T, Zeng X, Su S. Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes. ISME COMMUNICATIONS 2024; 4:ycae106. [PMID: 39229495 PMCID: PMC11370035 DOI: 10.1093/ismeco/ycae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Songcan Chen
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Ximei Xue
- Institute of Urban Environment, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Jieyin Chen
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China
| | - Tuo Zhang
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, P.R. China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| |
Collapse
|
156
|
Kantor EJH, Robicheau BM, Tolman J, Archibald JM, LaRoche J. Metagenomics reveals the genetic diversity between sublineages of UCYN-A and their algal host plastids. ISME COMMUNICATIONS 2024; 4:ycae150. [PMID: 39670058 PMCID: PMC11637426 DOI: 10.1093/ismeco/ycae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
UCYN-A (or Cand. Atelocyanobacterium thalassa) has been recognized as a globally distributed, early stage, nitrogen-fixing organelle (the "nitroplast") of cyanobacterial origin present in the haptophyte alga Braarudosphaera bigelowii. Although the nitroplast was recognized as UCYN-A2, not all sublineages of UCYN-A have been confirmed as nitroplasts, and full genomes are still lacking for several known sublineages. We investigated the differences between UCYN-A sublineages by sequencing and assembly of metagenomic sequences acquired from cultured biomass from NW Atlantic seawater, which yielded near-complete Metagenome Assembled Genomes (MAGs) corresponding to UCYN-A1, -A4, and the plastid of the UCYN-A4-associated B. bigelowii. Weekly time-series data paired with the recurrence of specific microbes in cultures used for metagenomics gave further insight into the microbial community associated with the algal/UCYN-A complex. The UCYN-A1 MAG was found to have 99% average nucleotide identity (ANI) to the Pacific-derived reference genome despite its Atlantic Ocean origin. Comparison of the UCYN-A4 MAG (the initial genome sequenced from this sublineage) to other genomes showed that UCYN-A4 is sufficiently genetically distinct from both UCYN-A1 and UCYN-A2 (ANI of ~83% and ~85%, respectively) to be considered its own sublineage, but more similar to UCYN-A2 than -A1, supporting its possible classification as a nitroplast. The B. bigelowii plastid sequence was compared with published plastid sequences (sharing 78% ANI with Chrysochromulina parva) adding to our understanding of genomic variation across Haptophyta organelles and emphasizing the need for further full genomic sequencing of B. bigelowii genotypes and their organelles.
Collapse
Affiliation(s)
- Ella Joy H Kantor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | | | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - John M Archibald
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
157
|
Ghosh D, Shi Y, Zimmermann IM, Stürzebecher T, Holzhauser K, von Bergen M, Kaster AK, Spielvogel S, Dippold MA, Müller JA, Jehmlich N. Cover crop monocultures and mixtures enhance bacterial abundance and functionality in the maize root zone. ISME COMMUNICATIONS 2024; 4:ycae132. [PMID: 39526131 PMCID: PMC11546721 DOI: 10.1093/ismeco/ycae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Cover cropping is an effective method to protect agricultural soils from erosion, promote nutrient and moisture retention, encourage beneficial microbial activity, and maintain soil structure. Re-utilization of winter cover crop root channels by maize roots during summer allows the cash crop to extract resources from distal regions in the soil horizon. In this study, we investigated how cover cropping during winter followed by maize (Zea mays L.) during summer affects the spatiotemporal composition and function of the bacterial communities in the maize rhizosphere and surrounding soil samples using quantitative polymerase chain reaction (PCR), 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing, and metaproteomics. We found that the bacterial community differed significantly among cover crop species, soil depths, and maize growth stages. Bacterial abundance increased in reused root channels, and it continued to increase as cover crop diversity changed from monocultures to mixtures. Mixing Fabaceae with Brassicaceae or Poaceae enhanced the overall contributions of several steps of the bacterial carbon and nitrogen cycles, especially glycolysis and the pentose phosphate pathway. The deeper root channels of Fabaceae and Brassicaceae as compared to Poaceae corresponded to higher bacterial 16S rRNA gene copy numbers and improved community presence in the subsoil regimes, likely due to the increased availability of root exudates secreted by maize roots. In conclusion, root channel reuse improved the expression of metabolic pathways of the carbon and nitrogen cycles and the bacterial communities, which is beneficial to the soil and to the growing crops.
Collapse
Affiliation(s)
- Debjyoti Ghosh
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
| | - Yijie Shi
- Institute of Plant Nutrition and Soil Science, Department of Soil Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 2, 24118 Kiel, Schleswig-Holstein, Germany
| | - Iris M Zimmermann
- Institute of Plant Nutrition and Soil Science, Department of Soil Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 2, 24118 Kiel, Schleswig-Holstein, Germany
| | - Tobias Stürzebecher
- Biogeochemistry of Agroecosystems, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Lower Saxony, Germany
| | - Katja Holzhauser
- Institute of Crop Science and Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Schleswig-Holstein, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
- Institute for Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Saxony, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Saxony, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Department of Soil Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 2, 24118 Kiel, Schleswig-Holstein, Germany
| | - Michaela A Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Baden-Württemberg, Germany
| | - Jochen A Müller
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
| |
Collapse
|
158
|
Zhang H, Li Z, Wang M, Yang Y, Wang Y, Nie Q, Liang F, Qin H, Zhang Z. The chromosome-level genome assembly of Fraxinus americana provides insights into the evolution of Oleaceae plants. Int J Biol Macromol 2023; 253:127132. [PMID: 37778585 DOI: 10.1016/j.ijbiomac.2023.127132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
White ash (Fraxinus americana linn.) originates from the southeastern United States. It is a tall and fast-growing tree species with strong salt-alkali resistance and cold tolerance, making it an important reforestation species and widely planted worldwide. Here, we completed the chromosome-level reference genome assembly of F. americana based on Illumina, PacBio, and Hi-C reads, with a genome size of 878.98 Mb, an N50 of 3.27 Mb, and a heterozygosity rate of 0.3 %. Based on de novo prediction, transcriptome prediction, and homology-based protein prediction, we obtained 39,538 genes. Approximately 843.21 Mb of the assembly genome was composed of 37,928 annotated protein-coding genes, with a gene function annotation rate of 95.93 %. 99.94 % of the overlap clusters (877.44 Mb) were anchored to 23 chromosomes. Synteny analysis of F. americana and other Oleaceae plants showed that F. americana underwent frequent chromosome rearrangements. The amplification of the Ale transposons effectively promoted the genome size of F. americana. Compared with other Oleaceae plants, the Glutathione S-transferase (GST) gene family in the F. americana genome has undergone significant expansion, which may help F. americana cope with adverse natural environments. Furthermore, we found that key enzyme-coding gene families related to lignin biosynthesis were expanded and highly expressed in F. americana leaves. These key genes drive lignin synthesis and benefit F. americana in fast-growing, as well as resisting biotic and abiotic stress. Overall, the F. americana genome assembly provides insights into the evolution of Oleaceae plants and provides abundant resources for breeding and germplasm conservation of white ash.
Collapse
Affiliation(s)
- Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China.
| | - Zhiqi Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Maoliang Wang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Yipeng Yang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Yongge Wang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Qiufeng Nie
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Fang Liang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Helan Qin
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572024, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China.
| |
Collapse
|
159
|
Cheng Y, Zhu W, Han S, Yang J, Wu G, Zhao G, He X. Roseomonas populi sp. nov., an acetate-degrading bacteria isolated from the stem of Populus tomentosa. Antonie Van Leeuwenhoek 2023; 117:2. [PMID: 38147266 DOI: 10.1007/s10482-023-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 12/27/2023]
Abstract
Strain CN29T, isolated from the stem of 5- to 6-year-old Populus tomentosa in Shandong, China, was characterized using a polyphasic taxonomic approach. Cells of CN29T were Gram-stain negative, aerobic, nonspore-forming, and nonmotile coccoid. Growth occurred at 20-37 °C, pH 4.0-9.0 (optimum, pH 6.0), and with 0-1% NaCl (optimum, 1%). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CN29T was closely related to members of the genus Roseomonas and closest to Roseomonas pecuniae N75T (96.6%). This classification was further supported by phylogenetic analysis using additional core genes. The average nucleotide identity and digital DNA‒DNA hybridization values between strain CN29T and Roseomonas populi CN29T were 82.7% and 27.8%, respectively. The genome size of strain CN29T was 5.87 Mb, with a G + C content of 70.9%. The major cellular fatty acids included summed feature 8 (C18:1 ω7c/C18:1 ω6c), C19:0 cyclo ω8c and C16:0. The major respiratory quinone was Q-10. The polar lipids were phosphatidylcholine, aminolipid, phosphatidylglycerol, and diphosphatidylglycerol. Strain CN29T can utilize acetate as a carbon source for growth and metabolism. Additionally, it contains acid phosphatase (2-naphthyl phosphate), which catalyzes the hydrolysis of phosphoric monoesters. The CN29T strain contains several genes, including maeB, gdhB, and cysJ, involved in carbon, nitrogen, and sulfur cycling. These findings suggest that the strain may actively participate in ecosystem cycling, leading to soil improvement and promoting the growth of poplar trees. Based on the phylogenetic, phenotypic, and genotypic characteristics, strain CN29T is concluded to represent a novel species of the genus Roseomonas, for which the name Roseomonas populi sp. nov. is proposed. The type strain is CN29T (= JCM 35579T = GDMCC 1.3267T).
Collapse
Affiliation(s)
- Yao Cheng
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wen Zhu
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuo Han
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Yang
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guanqi Wu
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guozhu Zhao
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiangwei He
- Beijing Key Laboratory of Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
160
|
Xu B, Hou Z, Liu L, Wei J. Genomic and proteomic analysis of Salmonella Enteritidis isolated from a patient with foodborne diarrhea. World J Microbiol Biotechnol 2023; 40:48. [PMID: 38114804 DOI: 10.1007/s11274-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Salmonella is a major cause of foodborne diseases and clinical infections worldwide. This study aimed to investigate the drug resistance, genomic characteristics, and protein expression of foodborne Salmonella in Shanxi Province. We isolated a strain of Salmonella Enteritidis from patient feces and designated it 31A. The drug resistance of 31A against 14 antibiotics was determined using an antimicrobial susceptibility test. Whole-genome sequencing and quantitative proteomic analysis were performed on the 31A strain. Functional annotation of drug resistance genes/proteins and virulence genes/proteins was conducted using various databases, such as VFDB, ARDB, CAZY, COG, KOG, CARD, GO, and KEGG. The focus of this study was understanding the mechanisms related to food poisoning, and the genetic evolution of 31A was analyzed through comparative genomics. The 31A strain belonged to ST11 Salmonella Enteritidis and showed resistance to β-lactam and quinolone antibiotics. The genome of 31A had 70 drug resistance genes, 321 virulence genes, 12 SPIs, and 3 plasmid replicons. Functional annotation of these drug resistance and virulence genes revealed that drug resistance genes were mainly involved in defense mechanisms to confer resistance to antibiotics, while virulence genes were mainly associated with cellular motility. There were extensive interactions among the virulence genes, which included SPI-1, SPI-2, flagella, fimbriae, capsules and so on. The 31A strain had a close relationship with ASM2413794v1 and ASM130523v1, which were also ST11 Salmonella Enteritidis strains from Asia and originated from clinical patients, animals, and food. These results suggested minimal genomic differences among strains from different sources and the potential for interhost transmission. Differential analysis of the virulence and drug resistance-related proteins revealed their involvement in pathways related to human diseases, indicating that these proteins mediated bacterial invasion and infection. The integration of genomic and proteomic information led to the discovery that Salmonella can survive in a strong acid environment through various acid resistance mechanisms after entering the intestine with food and then invade intestinal epithelial cells to exert its effects. In this study, we comprehensively analyzed the drug resistance and virulence characteristics of Salmonella Enteritidis 31A using a combination of genomic and proteomic approaches, focusing on the pathogenic mechanism of Salmonella Enteritidis in food poisoning. We found significant fluctuations in various virulence factors during the survival, invasion, and infection of Salmonella Enteritidis, which collectively contributed to its pathogenicity. These results provide important information for the source tracing, prevention, and treatment of clinical infections caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| |
Collapse
|
161
|
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 2023; 14:1322910. [PMID: 38125573 PMCID: PMC10731255 DOI: 10.3389/fmicb.2023.1322910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
162
|
Nappi J, Goncalves P, Khan T, Majzoub ME, Grobler AS, Marzinelli EM, Thomas T, Egan S. Differential priority effects impact taxonomy and functionality of host-associated microbiomes. Mol Ecol 2023; 32:6278-6293. [PMID: 34995388 DOI: 10.1111/mec.16336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 01/24/2023]
Abstract
Most multicellular eukaryotes host complex communities of microorganisms, but the factors that govern their assembly are poorly understood. The settlement of specific microorganisms may have a lasting impact on community composition, a phenomenon known as the priority effect. Priority effects of individual bacterial strains on a host's microbiome are, however, rarely studied and their impact on microbiome functionality remains unknown. We experimentally tested the effect of two bacterial strains (Pseudoalteromonas tunicata D2 and Pseudovibrio sp. D323) on the assembly and succession of the microbial communities associated with the green macroalga Ulva australis. Using 16S rRNA gene sequencing and qPCR, we found that both strains exert a priority effect, with strain D2 causing initially strong but temporary taxonomic changes and strain D323 causing weaker but consistent changes. Consistent changes were predominately facilitatory and included taxa that may benefit the algal host. Metagenome analyses revealed that the strains elicited both shared (e.g., depletion of type III secretion system genes) and unique (e.g., enrichment of antibiotic resistance genes) effects on the predicted microbiome functionality. These findings indicate strong idiosyncratic effects of colonizing bacteria on the structure and function of host-associated microbial communities. Understanding the idiosyncrasies in priority effects is key for the development of novel probiotics to improve host condition.
Collapse
Affiliation(s)
- Jadranka Nappi
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Priscila Goncalves
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Tahsin Khan
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Marwan E Majzoub
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Anna Sophia Grobler
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Ezequiel M Marzinelli
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Torsten Thomas
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Suhelen Egan
- Centre of Marine Science and Innovation, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
163
|
Chen YL, Wang ZF, Jian SG, Liao HM, Liu DM. Genome Assembly of Cordia subcordata, a Coastal Protection Species in Tropical Coral Islands. Int J Mol Sci 2023; 24:16273. [PMID: 38003462 PMCID: PMC10671804 DOI: 10.3390/ijms242216273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cordia subcordata trees or shrubs, belonging to the Boraginaceae family, have strong resistance and have adapted to their habitat on a tropical coral island in China, but the lack of genome information regarding its genetic background is unclear. In this study, the genome was assembled using both short/long whole genome sequencing reads and Hi-C reads. The assembled genome was 475.3 Mb, with 468.7 Mb (99.22%) of the sequences assembled into 16 chromosomes. Repeat sequences accounted for 54.41% of the assembled genome. A total of 26,615 genes were predicted, and 25,730 genes were functionally annotated using different annotation databases. Based on its genome and the other 17 species, phylogenetic analysis using 336 single-copy genes obtained from ortholog analysis showed that C. subcordata was a sister to Coffea eugenioides, and the divergence time was estimated to be 77 MYA between the two species. Gene family evolution analysis indicated that the significantly expanded gene families were functionally related to chemical defenses against diseases. These results can provide a reference to a deeper understanding of the genetic background of C. subcordata and can be helpful in exploring its adaptation mechanism on tropical coral islands in the future.
Collapse
Affiliation(s)
- Yi-Lan Chen
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zheng-Feng Wang
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shu-Guang Jian
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hai-Min Liao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dong-Ming Liu
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
164
|
Shen Z, Robert L, Stolpman M, Che Y, Allen KJ, Saffery R, Walsh A, Young A, Eckert J, Deming C, Chen Q, Conlan S, Laky K, Li JM, Chatman L, Kashaf SS, Kong HH, Frischmeyer-Guerrerio PA, Perrett KP, Segre JA. A genome catalog of the early-life human skin microbiome. Genome Biol 2023; 24:252. [PMID: 37946302 PMCID: PMC10636849 DOI: 10.1186/s13059-023-03090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Metagenome-assembled genomes have greatly expanded the reference genomes for skin microbiome. However, the current reference genomes are largely based on samples from adults in North America and lack representation from infants and individuals from other continents. RESULTS Here we use deep shotgun metagenomic sequencing to profile the skin microbiota of 215 infants at age 2-3 months and 12 months who are part of the VITALITY trial in Australia as well as 67 maternally matched samples. Based on the infant samples, we present the Early-Life Skin Genomes (ELSG) catalog, comprising 9483 prokaryotic genomes from 1056 species, 206 fungal genomes from 13 species, and 39 eukaryotic viral sequences. This genome catalog substantially expands the diversity of species previously known to comprise human skin microbiome and improves the classification rate of sequenced data by 21%. The protein catalog derived from these genomes provides insights into the functional elements such as defense mechanisms that distinguish early-life skin microbiome. We also find evidence for microbial sharing at the community, bacterial species, and strain levels between mothers and infants. CONCLUSIONS Overall, the ELSG catalog uncovers the skin microbiome of a previously underrepresented age group and population and provides a comprehensive view of human skin microbiome diversity, function, and development in early life.
Collapse
Affiliation(s)
- Zeyang Shen
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Lukian Robert
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Milan Stolpman
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - You Che
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Katrina J Allen
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Richard Saffery
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Audrey Walsh
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Angela Young
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jana Eckert
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Qiong Chen
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Karen Laky
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jenny Min Li
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lindsay Chatman
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | | | - Kirsten P Perrett
- Population Allergy, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, VIC, Australia
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
165
|
Krajaejun T, Patumcharoenpol P, Rujirawat T, Kittichotirat W, Tangphatsornruang S. MGI short-read genome assemblies of Pythium insidiosum (reclassified as Pythium periculosum) strains Pi057C3 and Pi050C3. BMC Res Notes 2023; 16:316. [PMID: 37932861 PMCID: PMC10629006 DOI: 10.1186/s13104-023-06587-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVES Pythium insidiosum causes a difficult-to-treat infectious condition called pythiosis, with high morbidity and mortality. So far, genome data of at least 10 strains of P. insidiosum, primarily classified in the phylogenetic clades I and II, have been sequenced using various next-generation sequencing platforms. The MGI short-read platform was employed to obtain genome data of 2 clade-III strains of P. insidiosum (recently reclassified as Pythium periculosum) from patients in Thailand and the United States. This work is a part of our attempt to generate a comprehensive genome database from diverse pathogen strains. DATA DESCRIPTION A 150-bp paired-end library was prepared from a gDNA sample of P. insidiosum (P. periculosum) strains Pi057C3 and Pi050C3 (also known as ATCC90586) to generate draft genome sequences using an MGISEQ-2000RS sequencer. As a result, for the strain Pi057C3, we obtained a 42.5-Mb assembled genome (164x coverage) comprising 14,134 contigs, L50 of 241, N50 of 45,748, 57.6% CG content, and 12,147 ORFs. For the strain Pi050C3, we received a 43.3-Mb draft genome (230x coverage) containing 14,511 contigs, L50 of 245, N50 of 45,208, 57.7% CG content, and 12,249 ORFs. The genome sequences have been deposited in the NCBI/DDBJ databases under the accession numbers JAKCXM000000000.1 (strain Pi057C3) and JAKCXL000000000.1 (strain Pi050C3).
Collapse
Affiliation(s)
- Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Preecha Patumcharoenpol
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand
| | | |
Collapse
|
166
|
Sun Y, Zhang Y, Hao X, Zhang X, Ma Y, Niu Z. A novel marine bacterium Exiguobacterium marinum a-1 isolated from in situ plastisphere for degradation of additive-free polypropylene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122390. [PMID: 37597737 DOI: 10.1016/j.envpol.2023.122390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
As the ecological niche most closely associated with polymers, microorganisms in the 'plastisphere' have great potential for plastics degradation. Microorganisms isolated from the 'plastisphere' could colonize and degrade commercial plastics containing different additives, but the observed weight loss and surface changes were most likely caused by releasing the additives rather than actual degradation of the plastics itself. Unlike commercial plastics that contain additives, whether marine microorganisms in the 'plastisphere' have adapted to additive-free plastics as a surface to colonize and potentially degrade is not yet known. Herein, a novel marine bacterium, Exiguobacterium marinum a-1, was successfully isolated from mature 'plastisphere' that had been deployed in situ for up to 20 months. Strain a-1 could use additive-free polypropylene (PP) films as its primary energy and carbon source. After strain a-1 was incubated with additive-free PP films for 80 days, the weight of films decreased by 9.2%. The ability of strain a-1 to rapidly form biofilms and effectively colonize the surface of additive-free PP films was confirmed by Scanning Electron Microscopy (SEM), as reflected by the increase in roughness and visible craters on the surface of additive-free PP films. Additionally, the functional groups of -CO, -C-H, and -OH were identified on the treated additive-free PP films according to Fourier Transform Infrared (FTIR). Genomic data from strain a-1 revealed a suite of key genes involved in biosurfactant synthesis, flagellar assembly, and cellular chemotaxis, contributing to its rapid biofilm formation on hydrophobic polymer surfaces. In particular, key enzymes that may be responsible for the degradation of additive-free PP films, such as glutathione peroxidase, cytochrome p450 and esterase were also recognized. This study highlights the potential of microorganisms present in the 'plastisphere' to metabolize plastic polymers and points to the intrinsic importance of the new strain a-1 in the mitigation of plastic pollution.
Collapse
Affiliation(s)
- Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiaohan Hao
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China; International Joint Institute of Tianjin University, Fuzhou, Fuzhou, 350205, China.
| |
Collapse
|
167
|
Zhang S, Yang W, Chen J, Zhang C, Zhang S, Gao L. Whole genome sequencing and annotation of Scleroderma yunnanense, the only edible Scleroderma species. Genomics 2023; 115:110727. [PMID: 37839651 DOI: 10.1016/j.ygeno.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Scleroderma yunnanense, an ectomycorrhizal fungus, is a popular edible mushroom within the Yunnan Province of Southwest China that holds great ecological and economic implications. However, despite its significance, there remains limited information about this species. Therefore, we sequenced S. yunnanense genome to identify the functional genes of S. yunnanense involved in secondary metabolite and carbohydrate production pathways. First, we present the 40.43 Mb high-quality reference genome for S. yunnanense, distributed across 35 contigs; moreover, the N50 contig size was found to reach 3.31 Mb and contained 8877 functional genes. Finally, genome annotation was conducted to compare the functional genes of S. yunnanense with protein sequences from different publicly available databases. Taken together, we identified 12 biosynthetic gene clusters across 10 contigs; among these were 13 key mevalonate (MVA) pathway enzymes, a key tyrosinase enzyme in the 3,4-dihydroxyphenylalanine (DOPA) pathway that is responsible for producing DOPA melanins, and 16 enzymes involved in uridine diphosphate glucose biosynthesis. Overall, this study presents the first genome assembly and annotation of S. yunnanense; ultimately, this information will be important in the elucidation of the biological activities and artificial domestication of this fungus.
Collapse
Affiliation(s)
- Shanshan Zhang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Wenzhong Yang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Jian Chen
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Chuanguang Zhang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Siqi Zhang
- Wenshan Prefecture Central Blood Station, Yunnan 663099, China
| | - Lanjing Gao
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
168
|
Liu Q, Bian Y, Mu S, Chen M, Liu S, Yang G, Huang Y, Hou X, Fang Y. Genomic and phenotypic-based safety assessment and probiotic properties of Streptococcus thermophilus FUA329, a urolithin A-producing bacterium of human milk origin. Genomics 2023; 115:110724. [PMID: 37820823 DOI: 10.1016/j.ygeno.2023.110724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.
Collapse
Affiliation(s)
- Qitong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yingying Bian
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Shuting Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Meng Chen
- Lianyungang Inspection and Testing Center for Food and Drug Control, Lianyungang, Jiangsu 222005, PR China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yichen Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
169
|
Elfmann C, Zhu B, Stülke J, Halbedel S. ListiWiki: A database for the foodborne pathogen Listeria monocytogenes. Int J Med Microbiol 2023; 313:151591. [PMID: 38043216 DOI: 10.1016/j.ijmm.2023.151591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Listeria monocytogenes is a Gram positive foodborne pathogen that regularly causes outbreaks of systemic infectious diseases. The bacterium maintains a facultative intracellular lifestyle; it thrives under a variety of environmental conditions and is able to infect human host cells. L. monocytogenes is genetically tractable and therefore has become an attractive model system to study the mechanisms employed by facultative intracellular bacteria to invade eukaryotic cells and to replicate in their cytoplasm. Besides its importance for basic research, L. monocytogenes also serves as a paradigmatic pathogen in genomic epidemiology, where the relative stability of its genome facilitates successful outbreak detection and elucidation of transmission chains in genomic pathogen surveillance systems. In both terms, it is necessary to keep the annotation of the L. monocytogenes genome up to date. Therefore, we have created the database ListiWiki (http://listiwiki.uni-goettingen.de/) which stores comprehensive information on the widely used L. monocytogenes reference strain EDG-e. ListiWiki is designed to collect information on genes, proteins and RNAs and their relevant functional characteristics, but also further information such as mutant phenotypes, available biological material, and publications. In its present form, ListiWiki combines the most recent annotation of the EDG-e genome with published data on gene essentiality, gene expression and subcellular protein localization. ListiWiki also predicts protein-protein interactions networks based on protein homology to Bacillus subtilis proteins, for which detailed interaction maps have been compiled in the sibling database SubtiWiki. Furthermore, crystallographic information of proteins is made accessible through integration of Protein Structure Database codes and AlphaFold structure predictions. ListiWiki is an easy-to-use web interface that has been developed with a focus on an intuitive access to all information. Use of ListiWiki is free of charge and its content can be edited by all members of the scientific community after registration. In our labs, ListiWiki has already become an important and easy to use tool to quickly access genome annotation details that we can keep updated with advancing knowledge. It also might be useful to promote the comprehensive understanding of the physiology and virulence of an important human pathogen.
Collapse
Affiliation(s)
- Christoph Elfmann
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany.
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855 Wernigerode, Germany; Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
170
|
Liu R, Huang Y, Chen Y, Huang D, Zhao Z, He T, Shi Y, Chen X. Lactobacillus plantarum E2 regulates intestinal microbiota and alleviates Pseudomonas plecoglossicida induced inflammation and apoptosis in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109170. [PMID: 37852511 DOI: 10.1016/j.fsi.2023.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Pseudomonas plecoglossicida infection is a highly contagious epidemic in aquaculture, causing significant mortality among teleost. Our previous research has demonstrated that Lactobacillus plantarum E2 is beneficial for large yellow croaker in resisting infections caused by P. plecoglossicida. However, the relevant mechanisms remain largely unclear. In the present study, we used zebrafish (Danio rerio) to further explore the function of L. plantarum E2 and its mechanisms for resisting P. plecoglossicida infection. E2 supplementation diet significantly improved the growth rates and α-amylase and trypsin activities of the liver in zebrafish. After challenge with P. plecoglossicida strain PQLYC4, the survival rates of zebrafish were improved, and immune-related genes expression (IL-1β, TNF-α, IL-8, Ig-Z, TLR-22 and IL-12α) were down-regulated. Histological analysis showed that E2 group had a longer intestinal villus and thicker intestinal walls after 30 days of feeding and healthier intestinal structure after challenge with P. plecoglossicida strain PQLYC4. Furthermore, co-incubation of zebrafish embryo fibroblast (ZF-4 cells) with L. plantarum E2 reduced apoptosis of ZF-4 cells after exposed to P. plecoglossicida. Intestinal microbiota analysis showed that E2 strain significantly increased the relative abundance of Lactobacillus and Pseudomonas, and PCoA analysis revealed a noticeable divergence in the intestinal microbial communities after E2 supplement. Together, our results suggested that E2 strain may promote zebrafish survival against P. plecoglossicida infection by regulating the intestinal microbiota and alleviating inflammatory response and apoptosis, thus exhibiting the potential as a probiotic.
Collapse
Affiliation(s)
- Ruizhe Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulu Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - You Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongliang Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhexu Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianliang He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China.
| |
Collapse
|
171
|
Mitchell KE, Lee C, Socha MT, Kleinschmit DH, Firkins JL. Supplementing branched-chain volatile fatty acids in dual-flow cultures varying in dietary forage and corn oil concentrations. III: Protein metabolism and incorporation into bacterial protein. J Dairy Sci 2023; 106:7566-7577. [PMID: 37641344 DOI: 10.3168/jds.2022-23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/11/2023] [Indexed: 08/31/2023]
Abstract
Some cellulolytic bacteria cannot transport branched-chain AA (BCAA) and do not express complete synthesis pathways, thus depending on cross-feeding for branched-chain volatile fatty acid (BCVFA) precursors for membrane lipids or for reductive carboxylation to BCAA. Our objective was to assess BCVFA uptake for BCAA synthesis in continuous cultures administered high forage (HF) and low forage (LF) diets without or with corn oil (CO). We hypothesized that BCVFA would be used for BCAA synthesis more in the HF than in LF diets. To help overcome bacterial inhibition by polyunsaturated fatty acids in CO, BCVFA usage for bacterial BCAA synthesis was hypothesized to decrease when CO was added to HF diets. The study was an incomplete block design with 8 dual-flow fermenters used in 4 periods with 8 treatments (n = 4) arranged as a 2 × 2 × 2 factorial. The factors were: HF or LF (67 or 33% forage, 33:67 alfalfa:orchardgrass pellets), without or with supplemental CO (3% of dry matter), and without or with 2.15 mmol/d (5 mg/d 13C) each of isovalerate, isobutyrate, and 2-methylbutyrate for one combined BCVFA treatment. The flow of bacterial BCAA increased by 10.7% by supplementing BCVFA and 9.14% with LF versus HF; similarly, dosing BCVFA versus without BCVFA increased BCAA by 1.98% in total bacterial AA, whereas LF increased BCAA by 1.92% versus HF. Additionally, BCVFA supplementation increased bacterial AA flow by 16.6% when supplemented in HF - CO and 12.4% in LF + CO diets, but not in the HF + CO (-1.5%) or LF - CO (+6.7%) diets (Diet × CO × BCVFA interaction). The recovery of 13C in bacterial AA flow was 31% lower with LF than with HF. Of the total 13C recovered in bacteria, 13.8, 17.3, and 30.2% were recovered in Val, Ile, and Leu, respectively; negligible 13C was recovered in other AA. When fermenters were dosed with BCVFA, nonbacterial and total effluent flows of AA, particularly of alanine and proline, suggest decreased peptidolysis. Increased ruminal outflow of bacterial AA, especially BCAA, but also nonbacterial AA could potentially support postabsorptive responses from BCVFA supplementation to dairy cattle.
Collapse
Affiliation(s)
| | - C Lee
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | | | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43035
| |
Collapse
|
172
|
Tang H, Chen X, Chen M, Li X, Jiang J, Tuo L, Li F. Phycicoccus sonneraticus sp. nov., a Novel Endophytic Actinobacterium Isolated from the Bark of Sonneratia apetala. Curr Microbiol 2023; 80:393. [PMID: 37897506 DOI: 10.1007/s00284-023-03511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023]
Abstract
A novel endophytic actinobacterial strain, designated MQZ13P-5T, was isolated from a piece of bark of Sonneratia apetala, collected from Guangxi Zhuang Autonomous Region, China. This strain was Gram-stain positive, aerobic, non-spore-forming, non-motile and rod-shaped. Comparative 16S rRNA gene sequence analysis showed that strain MQZ13P-5T was related to the genus Phycicoccus with exhibiting the highest similarity (98.0%) to Phycicoccus endophyticus IP6SC6T. The phylogenetic trees based on 16S rRNA gene sequences and core genes indicated that strain MQZ13P-5T belonged to the genus Phycicoccus and could not be assigned to any described species. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MQZ13P-5T and type strains of Phycicoccus species were less than 84% and 27%, respectively, below the thresholds for species delineation. This strain showed chemotaxonomic and phenotypic properties consistent with its classification in the genus Phycicoccus. Based on the taxonomic data, strain MQZ13P-5T should represent a novel species of the genus Phycicoccus, for which the name Phycicoccus sonneraticus sp. nov. is proposed, with the type strain MQZ13P-5T (= CGMCC 1.18744T = JCM 34337T).
Collapse
Affiliation(s)
- Huiling Tang
- Department of Scientific Research Office, Jiangsu Food & Pharmaceutical Science College, Huai'an, 223003, China
| | - Xiaohui Chen
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Mingsheng Chen
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaohong Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Jianjing Jiang
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China
| | - Li Tuo
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, China.
| | - Feina Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Children's Hospital, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
173
|
Coclet C, Sorensen PO, Karaoz U, Wang S, Brodie EL, Eloe-Fadrosh EA, Roux S. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. MICROBIOME 2023; 11:237. [PMID: 37891627 PMCID: PMC10604447 DOI: 10.1186/s40168-023-01666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Viruses impact nearly all organisms on Earth, including microbial communities and their associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and moisture. However, our current understanding of the stability of soil viral communities across time and their response to strong seasonal changes in environmental parameters remains limited. Here, we investigated the diversity and activity of environmental soil DNA and RNA viruses, focusing especially on bacteriophages, across dynamics' seasonal changes in a snow-dominated mountainous watershed by examining paired metagenomes and metatranscriptomes. RESULTS We identified a large number of DNA and RNA viruses taxonomically divergent from existing environmental viruses, including a significant proportion of fungal RNA viruses, and a large and unsuspected diversity of positive single-stranded RNA phages (Leviviricetes), highlighting the under-characterization of the global soil virosphere. Among these, we were able to distinguish subsets of active DNA and RNA phages that changed across seasons, consistent with a "seed-bank" viral community structure in which new phage activity, for example, replication and host lysis, is sequentially triggered by changes in environmental conditions. At the population level, we further identified virus-host dynamics matching two existing ecological models: "Kill-The-Winner" which proposes that lytic phages are actively infecting abundant bacteria, and "Piggyback-The-Persistent" which argues that when the host is growing slowly, it is more beneficial to remain in a dormant state. The former was associated with summer months of high and rapid microbial activity, and the latter with winter months of limited and slow host growth. CONCLUSION Taken together, these results suggest that the high diversity of viruses in soils is likely associated with a broad range of host interaction types each adapted to specific host ecological strategies and environmental conditions. As our understanding of how environmental and host factors drive viral activity in soil ecosystems progresses, integrating these viral impacts in complex natural microbiome models will be key to accurately predict ecosystem biogeochemistry. Video Abstract.
Collapse
Affiliation(s)
- Clement Coclet
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Patrick O Sorensen
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shi Wang
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
174
|
Xie Y, Ramirez D, Chen G, He G, Sun Y, Murdoch FK, Löffler FE. Genome-Wide Expression Analysis Unravels Fluoroalkane Metabolism in Pseudomonas sp. Strain 273. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15925-15935. [PMID: 37647029 PMCID: PMC11217894 DOI: 10.1021/acs.est.3c03855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Pseudomonas sp. strain 273 grows with medium-chain terminally fluorinated alkanes under oxic conditions, releases fluoride, and synthesizes long-chain fluorofatty acids. To shed light on the genes involved in fluoroalkane metabolism, genome, and transcriptome sequencing of strain 273 grown with 1,10-difluorodecane (DFD), decane, and acetate were performed. Strain 273 harbors three genes encoding putative alkane monooxygenases (AlkB), key enzymes for initiating alkane degradation. Transcripts of alkB-2 were significantly more abundant in both decane- and DFD-grown cells compared to acetate-grown cells, suggesting AlkB-2 catalyzes the attack on terminal CH3 and CH2F groups. Coordinately expressed with alkB-2 was an adjacent gene encoding a fused ferredoxin-ferredoxin reductase (Fd-Fdr). Phylogenetic analysis distinguished AlkB that couples with fused Fd-Fdr reductases from AlkB with alternate architectures. A gene cluster containing an (S)-2-haloacid dehalogenase (had) gene was up-regulated in cells grown with DFD, suggesting a possible role in the removal of the ω-fluorine. Genes involved in long-chain fatty acid biosynthesis were not differentially expressed during growth with acetate, decane, or DFD, suggesting the bacterium's biosynthetic machinery does not discriminate against monofluoro-fatty acid intermediates. The analysis sheds first light on genes and catalysts involved in the microbial metabolism of fluoroalkanes.
Collapse
Affiliation(s)
- Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Diana Ramirez
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gao Chen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Guang He
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
175
|
Noszka M, Strzałka A, Muraszko J, Kolenda R, Meng C, Ludwig C, Stingl K, Zawilak-Pawlik A. Profiling of the Helicobacter pylori redox switch HP1021 regulon using a multi-omics approach. Nat Commun 2023; 14:6715. [PMID: 37872172 PMCID: PMC10593804 DOI: 10.1038/s41467-023-42364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
The gastric human pathogen Helicobacter pylori has developed mechanisms to combat stress factors, including reactive oxygen species (ROS). Here, we present a comprehensive study on the redox switch protein HP1021 regulon combining transcriptomic, proteomic and DNA-protein interactions analyses. Our results indicate that HP1021 modulates H. pylori's response to oxidative stress. HP1021 controls the transcription of 497 genes, including 407 genes related to response to oxidative stress. 79 proteins are differently expressed in the HP1021 deletion mutant. HP1021 controls typical ROS response pathways (katA, rocF) and less canonical ones, particularly DNA uptake and central carbohydrate metabolism. HP1021 is a molecular regulator of competence in H. pylori, as HP1021-dependent repression of the comB DNA uptake genes is relieved under oxidative conditions, increasing natural competence. Furthermore, HP1021 controls glucose consumption by directly regulating the gluP transporter and has an important impact on maintaining the energetic balance in the cell.
Collapse
Affiliation(s)
- Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
176
|
Xu B, Hou Z, Liu L, Yan R, Zhang J, Wei J, Du M, Xuan Y, Fan L, Li Z. The Resistance and Virulence Characteristics of Salmonella Enteritidis Strain Isolated from Patients with Food Poisoning Based on the Whole-Genome Sequencing and Quantitative Proteomic Analysis. Infect Drug Resist 2023; 16:6567-6586. [PMID: 37823028 PMCID: PMC10564084 DOI: 10.2147/idr.s411125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Objective This paper explores the drug resistance, genome and proteome expression characteristics of Salmonella from a food poisoning event. Methods A multidrug-resistant Salmonella Enteritidis strain, labeled as 27A, was isolated and identified from a food poisoning patient. Antimicrobial susceptibility testing determined the resistance of 27A strain to 14 antibiotics. Then, WGS analysis and comparative genomics analysis were performed on 27A, and the functional annotation of resistance genes, virulence genes were performed based on VFDB, ARDB, COG, CARD, GO, KEGG, and CAZY databases. Meanwhile, based on iTRAQ technology, quantitative proteomic analysis was conducted on 27A to analyze the functions and interactions of differentially expressed proteins related to bacterial resistance and pathogenicity. Results Strain 27A belonged to ST11 S. Enteritidis and was resistant to levofloxacin, ciprofloxacin, ampicillin, piperacillin, and ampicillin/sulbactam. There were 33 drug resistance genes, 384 virulence genes and 2 plasmid replicon, IncFIB(S) and IncFII(S), annotated by WGS. Proteomic analysis revealed significant changes in virulence and drug proteins, which were mainly involved in bacterial pathogenicity and metabolic processes. PPI prediction showed the relationship between virulence proteins and T3SS proteins, and PagN cooperated with proteins related to T3SS to jointly mediate the invasion of 27A strain on the human body. Phylogenetic analysis indicated that S. Enteritidis has potential transmission in humans, food, and animals. Conclusion This study comprehensively analyzed the drug resistance and virulence phenotypes of S. Enteritidis 27A using genomic and proteomic approaches. These helps reveal the drug resistance and virulence mechanisms of S. Enteritidis, and provides important information for the source tracing and the prevention of related diseases, which lays a foundation for research on food safety, public health monitoring, and the drug resistance and pathogenicity of S. Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Zhuru Hou
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Miao Du
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Lei Fan
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Zhuoxi Li
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| |
Collapse
|
177
|
Deng QQ, Luo XQ, Li SH, Li JL, Wang PD, Yuan Y, Yang ZW, Li WJ. Alsobacter ponti sp. nov., a novel denitrification and sulfate reduction bacterium isolated from Pearl River sediment. Antonie Van Leeuwenhoek 2023; 116:987-994. [PMID: 37568066 DOI: 10.1007/s10482-023-01861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
A Gram-staining negative, aerobic, motile, and short rods strain, designated SYSU M60028T, was isolated from a Pearl River sediment sample in Guangzhou, Guangdong, China. The isolate could be able to grow at pH 6.0-8.0 (optimum, pH 7.0), 25-37 °C (optimum, 28 °C) and in the presence of 0-2% (w/v) NaCl (optimum, 0% NaCl). The cellular polar lipids of this strain were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, one unidentified aminolipid and three unidentified lipids. The respiratory quinone of SYSU M60028T was found to be Q-10. The major fatty acids (> 5% of total) were summed feature 8, C16:0, and C18:1 ω7c 11-methy1. The genomic DNA G + C content was 69.9%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that strain SYSU M60028T belonged to the genus Alsobacter and had the highest sequences similarities to Alsobacter metallidurans SK200a-9T (96.87%) and Alsobacter soli SH9T (96.87%). Based on the phenotypic, genotypic, and phylogenetic data, strain SYSU M0028T should be considered to represent a novel species of the genus Alsobacter, for which the name Alsobacter ponti sp. nov. is proposed. The type strain is SYSU M60028T (= CGMCC 1.19341T = KCTC 92046T).
Collapse
Affiliation(s)
- Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shan-Hui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yang Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
178
|
Li XG, Dai J, Zhang WJ, Jiang AJ, Li DH, Wu LF. Genome analysis of Tepidibacter sp. SWIR-1, an anaerobic endospore-forming bacterium isolated from a deep-sea hydrothermal vent. Mar Genomics 2023; 71:101049. [PMID: 37620056 DOI: 10.1016/j.margen.2023.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023]
Abstract
Tepidibacter sp. SWIR-1, a putative new species isolated from deep-sea hydrothermal vent field on the Southwest Indian Ridge (SWIR), is an anaerobic, mesophilic and endospore-forming bacterium belonging to the family Peptostreptococcaceae. In this study, we present the complete genome sequence of strain SWIR-1, consists of a single circular chromosome comprising 4,122,966 nucleotides with 29.25% G + C content and a circular plasmid comprising 38,843 nucleotides with 29.46% G + C content. In total, 3861 protein coding genes, 104 tRNA genes and 46 rRNA genes were obtained. SWIR-1 genome contains numerous genes related to sporulation and germination. Compared with the other three Tepidibacter species, SWIR-1 contained more spore germination receptor proteins. In addition, SWIR-1 contained more genes involved in chemotaxis and two-component systems than other Tepidibacter species. These results indicated that SWIR-1 has developed versatile adaptability to the Southwest Indian Ridge hydrothermal vent environment. The genome of strain SWIR-1 will be helpful for further understanding adaptive strategies used by bacteria dwelling in the deep-sea hydrothermal vent environments of different oceans.
Collapse
Affiliation(s)
- Xue-Gong Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, China.
| | - Jie Dai
- Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, China
| | - Ai-Jun Jiang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Deng-Hui Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Sanya, China; Aix Marseille Univ, CNRS, LCB, IMM, IM2B, Marseille, France.
| |
Collapse
|
179
|
Zhang B, Lingga C, De Groot H, Hackmann TJ. The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella. Sci Rep 2023; 13:16429. [PMID: 37777597 PMCID: PMC10542786 DOI: 10.1038/s41598-023-43282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Propionate is a microbial metabolite formed in the gastrointestinal tract, and it affects host physiology as a source of energy and signaling molecule. Despite the importance of propionate, the biochemical pathways responsible for its formation are not clear in all microbes. For the succinate pathway used during fermentation, a key enzyme appears to be missing-one that oxidizes ferredoxin and reduces NAD. Here we show that Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)] is this key enzyme in two abundant bacteria of the rumen (Prevotella brevis and Prevotella ruminicola). We found these bacteria form propionate, succinate, and acetate with the classic succinate pathway. Without ferredoxin:NAD+ oxidoreductase, redox cofactors would be unbalanced; it would produce almost equal excess amounts of reduced ferredoxin and oxidized NAD. By combining growth experiments, genomics, proteomics, and enzyme assays, we point to the possibility that these bacteria solve this problem by oxidizing ferredoxin and reducing NAD with Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)]. Genomic and phenotypic data suggest many bacteria may use Rnf similarly. This work shows the ferredoxin:NAD+ oxidoreductase activity of Rnf is important to propionate formation in Prevotella species and other bacteria from the environment, and it provides fundamental knowledge for manipulating fermentative propionate production.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Hannah De Groot
- Department of Animal Science, University of California, Davis, CA, USA
| | | |
Collapse
|
180
|
Han R, Hong Y, Xu R, Guo W, Zhang M, Lu Z, Han Q, Mo Z, Dan X, Li Y. Genomic evidence of genetic diversity and functional evolution in Flavobacterium columnare. Front Microbiol 2023; 14:1240471. [PMID: 37840739 PMCID: PMC10568018 DOI: 10.3389/fmicb.2023.1240471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish. Columnaris disease can cause heavy economic losses in aquaculture. In this study, whole-genome sequencing was used to characterize this pathogen. F. columnare isolate AH-01 had a circular chromosome and plasmid that encoded a total of 3,022 genes. Isolate GX-01 only had a circular chromosome and encoded 2,965 genes. Genomic islands, prophage regions, and CRISPR/Cas systems were identified in both genomes. Both genomes presented evidence of gene variation and horizontal transfer, both of which are the essential components of genetic diversity, genome plasticity, and functional evolution. Single-gene phylogeny and comparative genome analyses were performed to investigate the variation and evolution of this pathogen. Genetic analysis of 16S rRNA and housekeeping gene sequences significantly clustered 55 F. columnare isolates into four clades. The intragroup identity of the 16S rRNA gene exceeded 99%, while the intergroup identity was below the species delineation threshold. We discovered significant translocation, inversion, and rearrangement events that influenced local synteny within each group. Notably, the observed alignments varied considerably among all the studied groups. The core genomes of all strains with available sequences comprised 747 genes, corresponding to approximately 25% of the genome. Core genome multilocus sequence typing, genome-wide orthology and phylogenetic analyses, and average nucleotide identity suggested that the currently existing F. columnare was an assemblage of several distinct species, with levels of divergence at least equivalent to those between recognized bacterial species. The present investigation provided genomic evidence of gene variation and horizontal transfer, which were the basis of genetic diversity, genome plasticity, and functional evolution. The findings supported a proposed new taxonomic perspective on F. columnare.
Collapse
Affiliation(s)
- Rui Han
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
| | - Yuhao Hong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruilong Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Mingshu Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zijun Lu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qing Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
| |
Collapse
|
181
|
Hou Z, Xu B, Liu L, Yan R, Zhang J, Yin J, Li P, Wei J. Prevalence, drug resistance, molecular typing and comparative genomics analysis of MRSA strains from a tertiary A hospital in Shanxi Province, China. Front Microbiol 2023; 14:1273397. [PMID: 37808303 PMCID: PMC10556501 DOI: 10.3389/fmicb.2023.1273397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that causes a high incidence rate and mortality worldwide. This study investigated the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) strains in a tertiary A hospital in Shanxi Province, China, in order to determine the major epidemic clones as well as their antibiotic resistance and virulence characteristics. A total of 212 S. aureus strains were collected in this hospital, and were subjected to antimicrobial susceptibility testing, detection of virulence genes, resistance genes, and efflux pump genes. Among them, 38 MRSA strains were further subjected to detection of biofilm genes, assessment of biofilm formation ability, MLST, spa typing, SCCmec typing, and phylogenetic analysis. The majority of S. aureus strains came from the neonatology department, with secretions and purulent fluid being the main source of samples. The strains showed high resistance to penicillin (98.11%), erythromycin (64.62%) and clindamycin (59.91%), while being sensitive to vancomycin and linezolid. The detection rates of efflux pump genes and resistance genes were high, and there was a significant correlation between resistance gene types and phenotypes, with mecA showing a close correlation with oxacillin. The detection rates of virulence genes and the toxin gene profiles of MSSA and MRSA strains showed significant differences. And the detection rate of biofilm genes in MRSA strains was relatively high, with 13.16% of MRSA strains showing strong biofilm formation ability. The most common epidemic clone of MRSA was ST59-SCCmecIV-t437, followed by ST59-SCCmecV-t437. The former had a higher detection rate of resistance genes and a stronger biofilm formation ability, while the latter had a higher positive rate for pvl gene and stronger pathogenicity, making it more likely to cause systemic infections. Phylogenetic analysis showed that all MRSA strains in this study clustered into three major branches, with distinct differences in antibiotic resistance and virulence characteristics among the branches. ST59-MRSA strains from different species showed consistency and inter-species transmission, but there were differences among ST59-MRSA strains from different geographical locations. In general, most MSSA and MRSA strains exhibited multidrug resistance and carried multiple resistance genes, virulence genes, and biofilm formation genes, warranting further research to elucidate the mechanisms of drug resistance and pathogenesis.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jiaxin Yin
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Peipei Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| |
Collapse
|
182
|
Boltyanskaya Y, Zhilina T, Grouzdev D, Detkova E, Pimenov N, Kevbrin V. Halanaerobium polyolivorans sp. nov.-A Novel Halophilic Alkalitolerant Bacterium Capable of Polyol Degradation: Physiological Properties and Genomic Insights. Microorganisms 2023; 11:2325. [PMID: 37764169 PMCID: PMC10536098 DOI: 10.3390/microorganisms11092325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
A search for the microorganisms responsible for the anaerobic degradation of osmoprotectants in soda lakes resulted in the isolation of a novel halophilic and alkalitolerant strain, designated Z-7514T. The cells were Gram-stain-negative and non-endospore-forming rods. Optimal growth occurs at 1.6-2.1 M Na+, pH 8.0-8.5, and 31-35 °C. The strain utilized mainly sugars, low molecular polyols, and ethanolamine as well. The G+C content of the genomic DNA of strain Z-7514T was 33.3 mol%. Phylogenetic and phylogenomic analyses revealed that strain Z-7514T belongs to the genus Halanaerobium. On the basis of phenotypic properties and the dDDH and ANI values with close validly published species, it was proposed to evolve strain Z-7514T within the genus Halanaerobium into novel species, for which the name Halanaerobium polyolivorans sp. nov. was proposed. The type strain was Z-7514T (=KCTC 25405T = VKM B-3577T). For species of the genus Halanaerobium, the utilization of ethylene glycol, propylene glycol, and ethanolamine were shown for the first time. The anaerobic degradation of glycols and ethanolamine by strain Z-7514T may represent a novel metabiotic pathway within the alkaliphilic microbial community. Based on a detailed genomic analysis, the main pathways of catabolism of most of the used substrates have been identified.
Collapse
Affiliation(s)
- Yulia Boltyanskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Tatjana Zhilina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | | | - Ekaterina Detkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Nikolay Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| | - Vadim Kevbrin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2, Leninsky Ave., Moscow 119071, Russia; (Y.B.); (T.Z.); (E.D.); (N.P.)
| |
Collapse
|
183
|
Yuan Y, Liu P, Zheng Y, Li Q, Bian J, Liang Q, Su T, Dian L, Qi Q. Unique Raoultella species isolated from petroleum contaminated soil degrades polystyrene and polyethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115232. [PMID: 37429089 DOI: 10.1016/j.ecoenv.2023.115232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Polyolefin plastics, such as polyethylene (PE) and polystyrene (PS), are the most widely used synthetic plastics in our daily life. However, the chemical structure of polyolefin plastics is composed of carbon-carbon (C-C) bonds, which is extremely stable and makes polyolefin plastics recalcitrant to degradation. The growing accumulation of plastic waste has caused serious environmental pollution and has become a global environmental concern. In this study, we isolated a unique Raoultella sp. DY2415 strain from petroleum-contaminated soil that can degrade PE and PS film. After 60 d of incubation with strain DY2415, the weight of the UV-irradiated PE (UVPE) film and PS film decreased by 8% and 2%, respectively. Apparent microbial colonization and holes on the surface of the films were observed by scanning electron microscopy (SEM). Furthermore, the Fourier transform infrared spectrometer (FTIR) results showed that new oxygen-containing functional groups such as -OH and -CO were introduced into the polyolefin molecular structure. Potential enzymes that may be involved in the biodegradation of polyolefin plastics were analyzed. These results demonstrate that Raoultella sp. DY2415 has the ability to degrade polyolefin plastics and provide a basis for further investigating the biodegradation mechanism.
Collapse
Affiliation(s)
- Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Junling Bian
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Longyang Dian
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
184
|
Bai X, Wang H, Cheng W, Wang J, Ma M, Hu H, Song Z, Ma H, Fan Y, Du C, Xu J. Genomic Analysis of Leptolyngbya boryana CZ1 Reveals Efficient Carbon Fixation Modules. PLANTS (BASEL, SWITZERLAND) 2023; 12:3251. [PMID: 37765415 PMCID: PMC10536570 DOI: 10.3390/plants12183251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Cyanobacteria, one of the most widespread photoautotrophic microorganisms on Earth, have evolved an inorganic CO2-concentrating mechanism (CCM) to adapt to a variety of habitats, especially in CO2-limited environments. Leptolyngbya boryana, a filamentous cyanobacterium, is widespread in a variety of environments and is well adapted to low-inorganic-carbon environments. However, little is currently known about the CCM of L. boryana, in particular its efficient carbon fixation module. In this study, we isolated and purified the cyanobacterium CZ1 from the Xin'anjiang River basin and identified it as L. boryana by 16S rRNA sequencing. Genome analysis revealed that L. boryana CZ1 contains β-carboxysome shell proteins and form 1B of Rubisco, which is classify it as belonging to the β-cyanobacteria. Further analysis revealed that L. boryana CZ1 employs a fine CCM involving two CO2 uptake systems NDH-13 and NDH-14, three HCO3- transporters (SbtA, BicA, and BCT1), and two carboxysomal carbonic anhydrases. Notably, we found that NDH-13 and NDH-14 are located close to each other in the L. boryana CZ1 genome and are back-to-back with the ccm operon, which is a novel gene arrangement. In addition, L. boryana CZ1 encodes two high-affinity Na+/HCO3- symporters (SbtA1 and SbtA2), three low-affinity Na+-dependent HCO3- transporters (BicA1, BicA2, and BicA3), and a BCT1; it is rare for a single strain to encode all three bicarbonate transporters in such large numbers. Interestingly, L. boryana CZ1 also uniquely encodes two active carbonic anhydrases, CcaA1 and CcaA2, which are also rare. Taken together, all these results indicated that L. boryana CZ1 is more efficient at CO2 fixation. Moreover, compared with the reported CCM gene arrangement of cyanobacteria, the CCM-related gene distribution pattern of L. boryana CZ1 was completely different, indicating a novel gene organization structure. These results can enrich our understanding of the CCM-related gene arrangement of cyanobacteria, and provide data support for the subsequent improvement and increase in biomass through cyanobacterial photosynthesis.
Collapse
Affiliation(s)
- Xiaohui Bai
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| | - Honghui Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 245000, China;
| | - Wenbin Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Junjun Wang
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| | - Mengyang Ma
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| | - Haihang Hu
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| | - Zilong Song
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| | - Hongguang Ma
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| | - Yan Fan
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chenyu Du
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| | - Jingcheng Xu
- College of Life and Environment Science, Huangshan University, Huangshan 245041, China; (J.W.); (M.M.); (H.H.); (Z.S.); (H.M.); (Y.F.); (C.D.)
| |
Collapse
|
185
|
Arikawa K, Hosokawa M. Uncultured prokaryotic genomes in the spotlight: An examination of publicly available data from metagenomics and single-cell genomics. Comput Struct Biotechnol J 2023; 21:4508-4518. [PMID: 37771751 PMCID: PMC10523443 DOI: 10.1016/j.csbj.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
Owing to the ineffectiveness of traditional culture techniques for the vast majority of microbial species, culture-independent analyses utilizing next-generation sequencing and bioinformatics have become essential for gaining insight into microbial ecology and function. This mini-review focuses on two essential methods for obtaining genetic information from uncultured prokaryotes, metagenomics and single-cell genomics. We analyzed the registration status of uncultured prokaryotic genome data from major public databases and assessed the advantages and limitations of both the methods. Metagenomics generates a significant quantity of sequence data and multiple prokaryotic genomes using straightforward experimental procedures. However, in ecosystems with high microbial diversity, such as soil, most genes are presented as brief, disconnected contigs, and lack association of highly conserved genes and mobile genetic elements with individual species genomes. Although technically more challenging, single-cell genomics offers valuable insights into complex ecosystems by providing strain-resolved genomes, addressing issues in metagenomics. Recent technological advancements, such as long-read sequencing, machine learning algorithms, and in silico protein structure prediction, in combination with vast genomic data, have the potential to overcome the current technical challenges and facilitate a deeper understanding of uncultured microbial ecosystems and microbial dark matter genes and proteins. In light of this, it is imperative that continued innovation in both methods and technologies take place to create high-quality reference genome databases that will support future microbial research and industrial applications.
Collapse
Affiliation(s)
- Koji Arikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
186
|
Cong B, Zhang H, Li S, Liu S, Lin J, Deng A, Liu W, Yang Y. Taxonomic Identification of the Arctic Strain Nocardioides Arcticus Sp. Nov. and Global Transcriptomic Analysis in Response to Hydrogen Peroxide Stress. Int J Mol Sci 2023; 24:13943. [PMID: 37762246 PMCID: PMC10531085 DOI: 10.3390/ijms241813943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Microorganisms living in polar regions rely on specialized mechanisms to adapt to extreme environments. The study of their stress adaptation mechanisms is a hot topic in international microbiology research. In this study, a bacterial strain (Arc9.136) isolated from Arctic marine sediments was selected to implement polyphasic taxonomic identification based on factors such as genetic characteristics, physiological and biochemical properties, and chemical composition. The results showed that strain Arc9.136 is classified to the genus Nocardioides, for which the name Nocardioides arcticus sp. nov. is proposed. The ozone hole over the Arctic leads to increased ultraviolet (UV-B) radiation, and low temperatures lead to increased dissolved content in seawater. These extreme environmental conditions result in oxidative stress, inducing a strong response in microorganisms. Based on the functional classification of significantly differentially expressed genes under 1 mM H2O2 stress, we suspect that Arc9.136 may respond to oxidative stress through the following strategies: (1) efficient utilization of various carbon sources to improve carbohydrate transport and metabolism; (2) altering ion transport and metabolism by decreasing the uptake of divalent iron (to avoid the Fenton reaction) and increasing the utilization of trivalent iron (to maintain intracellular iron homeostasis); (3) increasing the level of cell replication, DNA repair, and defense functions, repairing DNA damage caused by H2O2; (4) and changing the composition of lipids in the cell membrane and reducing the sensitivity of lipid peroxidation. This study provides insights into the stress resistance mechanisms of microorganisms in extreme environments and highlights the potential for developing low-temperature active microbial resources.
Collapse
Affiliation(s)
- Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Hui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; (H.Z.); (Y.Y.)
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Aifang Deng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Wenqi Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Yan Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; (H.Z.); (Y.Y.)
| |
Collapse
|
187
|
Blaz J, Galindo LJ, Heiss AA, Kaur H, Torruella G, Yang A, Alexa Thompson L, Filbert A, Warring S, Narechania A, Shiratori T, Ishida KI, Dacks JB, López-García P, Moreira D, Kim E, Eme L. One high quality genome and two transcriptome datasets for new species of Mantamonas, a deep-branching eukaryote clade. Sci Data 2023; 10:603. [PMID: 37689692 PMCID: PMC10492846 DOI: 10.1038/s41597-023-02488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/11/2023] Open
Abstract
Mantamonads were long considered to represent an "orphan" lineage in the tree of eukaryotes, likely branching near the most frequently assumed position for the root of eukaryotes. Recent phylogenomic analyses have placed them as part of the "CRuMs" supergroup, along with collodictyonids and rigifilids. This supergroup appears to branch at the base of Amorphea, making it of special importance for understanding the deep evolutionary history of eukaryotes. However, the lack of representative species and complete genomic data associated with them has hampered the investigation of their biology and evolution. Here, we isolated and described two new species of mantamonads, Mantamonas vickermani sp. nov. and Mantamonas sphyraenae sp. nov., for each of which we generated transcriptomic sequence data, as well as a high-quality genome for the latter. The estimated size of the M. sphyraenae genome is 25 Mb; our de novo assembly appears to be highly contiguous and complete with 9,416 predicted protein-coding genes. This near-chromosome-scale genome assembly is the first described for the CRuMs supergroup.
Collapse
Affiliation(s)
- Jazmin Blaz
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Aaron A Heiss
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Department of Oceanography, Kyungpook National University, Daegu, South Korea
| | - Harpreet Kaur
- Division of Infectious Disease, Department of Medicine, University of Alberta and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Ashley Yang
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - L Alexa Thompson
- Division of Infectious Disease, Department of Medicine, University of Alberta and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Filbert
- Division of Infectious Disease, Department of Medicine, University of Alberta and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sally Warring
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Apurva Narechania
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Takashi Shiratori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichiro Ishida
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Joel B Dacks
- Department of Oceanography, Kyungpook National University, Daegu, South Korea
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.
- Division of EcoScience, Ewha Womans University, Seoul, South Korea.
| | - Laura Eme
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| |
Collapse
|
188
|
Nageeb WM, Hetta HF. Pangenome analysis of Corynebacterium striatum: insights into a neglected multidrug-resistant pathogen. BMC Microbiol 2023; 23:252. [PMID: 37684624 PMCID: PMC10486106 DOI: 10.1186/s12866-023-02996-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Over the past two decades, Corynebacterium striatum has been increasingly isolated from clinical cultures with most isolates showing increased antimicrobial resistance (AMR) to last resort agents. Advances in the field of pan genomics would facilitate the understanding of the clinical significance of such bacterial species previously thought to be among commensals paving the way for identifying new drug targets and control strategies. METHODS We constructed a pan-genome using 310 genome sequences of C. striatum. Pan-genome analysis was performed using three tools including Roary, PIRATE, and PEPPAN. AMR genes and virulence factors have been studied in relation to core genome phylogeny. Genomic Islands (GIs), Integrons, and Prophage regions have been explored in detail. RESULTS The pan-genome ranges between a total of 5253-5857 genes with 2070 - 1899 core gene clusters. Some antimicrobial resistance genes have been identified in the core genome portion, but most of them were located in the dispensable genome. In addition, some well-known virulence factors described in pathogenic Corynebacterium species were located in the dispensable genome. A total of 115 phage species have been identified with only 44 intact prophage regions. CONCLUSION This study presents a detailed comparative pangenome report of C. striatum. The species show a very slowly growing pangenome with relatively high number of genes in the core genome contributing to lower genomic variation. Prophage elements carrying AMR and virulence elements appear to be infrequent in the species. GIs appear to offer a prominent role in mobilizing antibiotic resistance genes in the species and integrons occur at a frequency of 50% in the species. Control strategies should be directed against virulence and resistance determinants carried on the core genome and those frequently occurring in the accessory genome.
Collapse
Affiliation(s)
- Wedad M Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, 41111, Egypt.
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
189
|
Wang T, Chen S, Niu Q, Xu G, Lu C, Zhang J. Genomic Sequence Resource of Talaromyces albobiverticillius, the Causative Pathogen of Pomegranate Pulp Rot Disease. J Fungi (Basel) 2023; 9:909. [PMID: 37755017 PMCID: PMC10533087 DOI: 10.3390/jof9090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Talaromyces albobiverticillius, a prominent pathogen responsible for pomegranate pulp rot disease, inflicts significant damage on Punica granatum L. Besides its pathogenicity, this fungus possesses the potential to produce substantial amounts of red pigments, making it promising for industrial applications. This study presents the genome annotation of T. albobiverticillius field strain Tp-2, isolated from pomegranates. The genome assembly, generated through a combination of Oxford Nanopore and Illumina sequencing reads, yielded a high-quality assembly with 14 contigs, featuring an N50 length of 4,594,200 bp. The complete genome of strain Tp-2 spans 38,354,882 bp, with a GC content of 45.78%. Importantly, the assembly exhibits remarkable integrity, with 98.3% of complete Benchmarking Universal Single-Copy Orthologs validating genome completeness. Genome prediction analysis reveals the presence of 10,380 protein-coding genes. To our knowledge, this study is the first report on the genome sequence of T. albobiverticillius, offering valuable insights into its genetic variation and molecular mechanisms of pigment production.
Collapse
Affiliation(s)
- Tan Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuchang Chen
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qiuhong Niu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Guangling Xu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chenxu Lu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jin Zhang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
190
|
Li F, Hao X, Lu Q, Tuo L, Liu S, Zheng H, Sibero MT, Shen C, Sun C. Protaetiibacter mangrovi sp. nov., isolated from mangrove soil. J Antibiot (Tokyo) 2023; 76:532-539. [PMID: 37208458 DOI: 10.1038/s41429-023-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023]
Abstract
A novel Gram-stain-positive, aerobic, non-flagellated and rod-shaped actinobacterium, designated 10F1B-8-1T, was isolated from mangrove soil sampled at Futian Mangrove Nature Reserve, China. The isolate was able to grow at 10-40 °C (optimum 30-32 °C), at pH 6-8 (optimum 7) and in the presence of 0-6% (w/v) NaCl (optimum 0%). Strain 10F1B-8-1T shared the highest 16S rRNA gene sequence similarity to Protaetiibacter larvae NBRC 113051T (98.3%), followed by Protaetiibacter intestinalis NBRC 113050T (98.2%). Phylogenetic trees based on 16S rRNA gene sequences and the core proteomes exhibited that strain 10F1B-8-1T formed a new phyletic line in the clade of genus Protaetiibacter, indicating that this strain belonged to the genus Protaetiibacter. Strain 10F1B-8-1T showed low average nucleotide identity (<84%) and digital DNA-DNA hybridization values (<27%) with closely related taxa, suggesting that strain 10F1B-8-1T was a hitherto undescribed species of the genus Protaetiibacter. Strain 10F1B-8-1T contained D-2,4-diaminobutyric acid as the diagnostic diamino acid, and the peptidoglycan type was characterized as type B2β. The major fatty acids were iso-C16:0, anteiso-C15:0 and anteiso-C17:0. The major menaquinones were MK-13 and MK-14. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and five unidentified lipids. Notably, the ethyl acetate extracts of strain 10F1B-8-1T showed effective antibacterial activity against Bacillus subtilis CPCC 100029 and Escherichia coli △tolC. According to the polyphasic data, strain 10F1B-8-1T should be classified as a novel species of the genus Protaetiibacter, for which the name Protaetiibacter mangrovi sp. nov. is proposed, with the type strain 10F1B-8-1T (=JCM 33142T = CPCC 205428T).
Collapse
Affiliation(s)
- Feina Li
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaomeng Hao
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qinpei Lu
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Li Tuo
- Life Sciences Institute, Zunyi Medical University, Zunyi, 563006, China
| | - Shaowei Liu
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Mada Triandala Sibero
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275, Indonesia
| | - Chen Shen
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China.
| | - Chenghang Sun
- Department of Microbial Chemistry, Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
191
|
Lin TY, Liu WT. Validation of 16S rRNA gene sequencing and metagenomics for evaluating microbial immigration in a methanogenic bioreactor. WATER RESEARCH 2023; 243:120358. [PMID: 37481999 DOI: 10.1016/j.watres.2023.120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
To quantitatively evaluate the impact of microbial immigration from an upstream community on the microbial assembly of a downstream community, an ecological genomics (ecogenomics)-based mass balance (EGMB) model coupled with 16S rRNA gene sequencing was previously developed. In this study, a mock community was used to further validate the EGMB models and demonstrate the feasibility of using metagenome-based EGMB model to reveal both microbial activity and function. The mock community consisting of Aeromonas, Escherichia, and Pseudomonas was fed into a lab-scale methanogenic bioreactor together with dissolved organic substrate. Using qPCR, 16S rRNA gene, 16S rRNA gene copy number normalization (GCN), and metagenome, results showed highly comparable community profiles in the feed. In the bioreactor, Aeromonas and Pseudomonas exhibited negative growth rates throughout the experiment by all approaches. Escherichia's growth rate was negative by most biomarkers but was slightly positive by 16S rRNA gene. Still, all approaches showed a decreasing trend toward negative in the growth rate of Escherichia as reactor operation time increased. Uncultivated populations of phyla Desulfobacterota, Chloroflexi, Actinobacteriota, and Spirochaetota were observed to increase in abundance, suggesting their contribution in degrading the feed biomass. Based on metabolic reconstruction of metagenomes, these populations possessed functions of hydrolysis, fermentation, fatty acid degradation, or acetate oxidation. Overall results supported the application of both 16S rRNA gene- and metagenome-based EGMB models to measure the growth rate of microbes in the bioreactor, and the latter had advantage in providing insights into the microbial functions of uncultivated populations.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
192
|
Yao B, Niu G, Wang Z, Mu H, Ren X, Jiao Y, Cai C, Li J. Kaistella polysaccharea sp. nov., isolated from Antarctic intertidal sediment produces a novel extracellular polymeric substance. Int J Syst Evol Microbiol 2023; 73. [PMID: 37725075 DOI: 10.1099/ijsem.0.006037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
An exopolysaccharide-producing bacterial strain GW4-15T, belonging to the genus Kaistella, was isolated from intertidal sediment from King George Island, Antarctic. The strain was Gram-stain-negative, aerobic, rod-shaped, non-motile and yellow-pigmented. The strain was able to grow in the presence of 0-2 % (w/v) NaCl (optimum, 0 %), at 4-30 °C (optimum, 20-28 °C) and at pH 5.0-10.0 (optimum, pH 8.0). A phylogenetic tree based on 16S rRNA gene sequences showed that strain GW4-15T formed a lineage within the genus Kaistella with the closest phylogenetic neighbours Kaistella carnis NCTC 13525T (98.3 %), Kaistella gelatinilytica G5-32T (97.7 %), Kaistella antarctica LMG 24720T (97.4 %) and Kaistella yonginensis HMD1043T (96.9 %). Digital DNA-DNA hybridization values of strain GW4-15T with K. carnis NCTC 13525T, K. antarctica LMG 24720T, K. gelatinilytica G5-32T and K. yonginensis HMD1043T were 22.8, 22.0, 21.7 and 21.6 %, respectively. The average nucleotide identity values between strain GW4-15T and K. carnis NCTC 13525T , K. antarctica LMG 24720T, K. gelatinilytica G5-32T and K. yonginensis HMD1043T were 79.3, 78.6, 77.5 and 77.2 %, respectively. The G+C content of the genome was 36.2 mol%. The major phospholipids were phosphatidylethanolamine and aminophospholipid. The predominant menaquinone was MK-6. The major fatty acids were anteiso-C15 : 0 (28.7 %), iso-C16 : 0 3-OH (15.7 %), iso-C16 : 0 H (10.0 %), iso-C16 : 0 (5.4 %), summed feature 9 (comprising iso-C17 : 1 ω9c and/or 10-methyl C16 : 0; 5.2 %) and iso-C15 : 0 (5.1 %). The monosaccharide composition of the new type of extracellular polymeric of GW4-15T was Glc, GalN, GlcN, Rha, Man and Gal with a molar ratio of 3.14 : 3.83 : 8.38 : 5.16 : 1 : 2.82. Based on phenotypic, phylogenetic and genotypic data, a novel species, Kaistella polysaccharea sp. nov., is proposed with the type strain GW4-15T (=CGMCC 1.19368T=KCTC 92753T).
Collapse
Affiliation(s)
- Boqing Yao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Guojiang Niu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Zhe Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, PR China
| | - Hongmei Mu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Xingtao Ren
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Yabin Jiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, 266003, PR China
| | - Jing Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| |
Collapse
|
193
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Touma JJ, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolomic rearrangement controls the intrinsic microbial response to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550177. [PMID: 37546722 PMCID: PMC10401945 DOI: 10.1101/2023.07.22.550177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Temperature is one of the key determinants of microbial behavior and survival, whose impact is typically studied under heat- or cold-shock conditions that elicit specific regulation to combat lethal stress. At intermediate temperatures, cellular growth rate varies according to the Arrhenius law of thermodynamics without stress responses, a behavior whose origins have not yet been elucidated. Using single-cell microscopy during temperature perturbations, we show that bacteria exhibit a highly conserved, gradual response to temperature upshifts with a time scale of ~1.5 doublings at the higher temperature, regardless of initial/final temperature or nutrient source. We find that this behavior is coupled to a temperature memory, which we rule out as being neither transcriptional, translational, nor membrane dependent. Instead, we demonstrate that an autocatalytic enzyme network incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, which encodes a temperature memory and successfully predicts alterations in the upshift response observed under simple-sugar, low-nutrient conditions, and in fungi. This model also provides a mechanistic framework for both Arrhenius-dependent growth and the classical Monod Equation through temperature-dependent metabolite flux.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joanna Jammal Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Josh E. Elias
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
194
|
Ritsch M, Cassman NA, Saghaei S, Marz M. Navigating the Landscape: A Comprehensive Review of Current Virus Databases. Viruses 2023; 15:1834. [PMID: 37766241 PMCID: PMC10537806 DOI: 10.3390/v15091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are abundant and diverse entities that have important roles in public health, ecology, and agriculture. The identification and surveillance of viruses rely on an understanding of their genome organization, sequences, and replication strategy. Despite technological advancements in sequencing methods, our current understanding of virus diversity remains incomplete, highlighting the need to explore undiscovered viruses. Virus databases play a crucial role in providing access to sequences, annotations and other metadata, and analysis tools for studying viruses. However, there has not been a comprehensive review of virus databases in the last five years. This study aimed to fill this gap by identifying 24 active virus databases and included an extensive evaluation of their content, functionality and compliance with the FAIR principles. In this study, we thoroughly assessed the search capabilities of five database catalogs, which serve as comprehensive repositories housing a diverse array of databases and offering essential metadata. Moreover, we conducted a comprehensive review of different types of errors, encompassing taxonomy, names, missing information, sequences, sequence orientation, and chimeric sequences, with the intention of empowering users to effectively tackle these challenges. We expect this review to aid users in selecting suitable virus databases and other resources, and to help databases in error management and improve their adherence to the FAIR principles. The databases listed here represent the current knowledge of viruses and will help aid users find databases of interest based on content, functionality, and scope. The use of virus databases is integral to gaining new insights into the biology, evolution, and transmission of viruses, and developing new strategies to manage virus outbreaks and preserve global health.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Noriko A. Cassman
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Shahram Saghaei
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
195
|
Riley R, Bowers RM, Camargo AP, Campbell A, Egan R, Eloe-Fadrosh EA, Foster B, Hofmeyr S, Huntemann M, Kellom M, Kimbrel JA, Oliker L, Yelick K, Pett-Ridge J, Salamov A, Varghese NJ, Clum A. Terabase-Scale Coassembly of a Tropical Soil Microbiome. Microbiol Spectr 2023; 11:e0020023. [PMID: 37310219 PMCID: PMC10434106 DOI: 10.1128/spectrum.00200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Petabases of environmental metagenomic data are publicly available, presenting an opportunity to characterize complex environments and discover novel lineages of life. Metagenome coassembly, in which many metagenomic samples from an environment are simultaneously analyzed to infer the underlying genomes' sequences, is an essential tool for achieving this goal. We applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 terabases (Tbp) of metagenome data from a tropical soil in the Luquillo Experimental Forest (LEF), Puerto Rico. The resulting coassembly yielded 39 high-quality (>90% complete, <5% contaminated, with predicted 23S, 16S, and 5S rRNA genes and ≥18 tRNAs) metagenome-assembled genomes (MAGs), including two from the candidate phylum Eremiobacterota. Another 268 medium-quality (≥50% complete, <10% contaminated) MAGs were extracted, including the candidate phyla Dependentiae, Dormibacterota, and Methylomirabilota. In total, 307 medium- or higher-quality MAGs were assigned to 23 phyla, compared to 294 MAGs assigned to nine phyla in the same samples individually assembled. The low-quality (<50% complete, <10% contaminated) MAGs from the coassembly revealed a 49% complete rare biosphere microbe from the candidate phylum FCPU426 among other low-abundance microbes, an 81% complete fungal genome from the phylum Ascomycota, and 30 partial eukaryotic MAGs with ≥10% completeness, possibly representing protist lineages. A total of 22,254 viruses, many of them low abundance, were identified. Estimation of metagenome coverage and diversity indicates that we may have characterized ≥87.5% of the sequence diversity in this humid tropical soil and indicates the value of future terabase-scale sequencing and coassembly of complex environments. IMPORTANCE Petabases of reads are being produced by environmental metagenome sequencing. An essential step in analyzing these data is metagenome assembly, the computational reconstruction of genome sequences from microbial communities. "Coassembly" of metagenomic sequence data, in which multiple samples are assembled together, enables more complete detection of microbial genomes in an environment than "multiassembly," in which samples are assembled individually. To demonstrate the potential for coassembling terabases of metagenome data to drive biological discovery, we applied MetaHipMer2, a distributed metagenome assembler that runs on supercomputing clusters, to coassemble 3.4 Tbp of reads from a humid tropical soil environment. The resulting coassembly, its functional annotation, and analysis are presented here. The coassembly yielded more, and phylogenetically more diverse, microbial, eukaryotic, and viral genomes than the multiassembly of the same data. Our resource may facilitate the discovery of novel microbial biology in tropical soils and demonstrates the value of terabase-scale metagenome sequencing.
Collapse
Affiliation(s)
- Robert Riley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Robert M. Bowers
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Antonio Pedro Camargo
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Ashley Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Rob Egan
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | | | - Brian Foster
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Steven Hofmeyr
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marcel Huntemann
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Matthew Kellom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Leonid Oliker
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katherine Yelick
- Applied Math and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, California, USA
| | - Asaf Salamov
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Neha J. Varghese
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | - Alicia Clum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley California, USA
| |
Collapse
|
196
|
Zhang T, Wei S, Liu Y, Cheng C, Ma J, Yue L, Gao Y, Cheng Y, Ren Y, Su S, Zhao X, Lu Z. Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil. Front Microbiol 2023; 14:1167293. [PMID: 37637133 PMCID: PMC10450921 DOI: 10.3389/fmicb.2023.1167293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Crop straw contains huge amounts of exploitable energy, and efficient biomass degradation measures have attracted worldwide attention. Mining strains with high yields of cellulose-degrading enzymes is of great significance for developing clean energy and industrial production of related enzymes. In this study, we reported a high-quality genome sequence of Bacillus velezensis SSF6 strain using high-throughput sequencing technology (Illumina PE150 and PacBio) and assessed its lignocellulose degradation potential. The results demonstrated that the genome of B. velezensis SSF6 was 3.89 Mb and contained 4,015 genes, of which 2,972, 3,831 and 158 genes were annotated in the COGs (Clusters of Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and Genomes) and CAZyme (Carbohydrate-Active enZymes) databases, respectively, and contained a large number of genes related to carbohydrate metabolism. Furthermore, B. velezensis SSF6 has a high cellulose degradation capacity, with a filter paper assay (FPA) and an exoglucanase activity of 64.48 ± 0.28 and 78.59 ± 0.42 U/mL, respectively. Comparative genomic analysis depicted that B. velezensis SSF6 was richer in carbohydrate hydrolase gene. In conclusion, the cellulose-degrading ability of B. velezensis SSF6 was revealed by genome sequencing and the determination of cellulase activity, which laid a foundation for further cellulose degradation and bioconversion.
Collapse
Affiliation(s)
- Tianjiao Zhang
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shuli Wei
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yajie Liu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Chao Cheng
- School of Life Science, Jining Normal University, Ulanqab, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Linfang Yue
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
| | - Yanrong Gao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Shaofeng Su
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia Academy of Agriculture and Husbandry Science, Hohhot, China
- Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
197
|
Mendes LW, Raaijmakers JM, de Hollander M, Sepo E, Gómez Expósito R, Chiorato AF, Mendes R, Tsai SM, Carrión VJ. Impact of the fungal pathogen Fusarium oxysporum on the taxonomic and functional diversity of the common bean root microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:68. [PMID: 37537681 PMCID: PMC10401788 DOI: 10.1186/s40793-023-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Plants rely on their root microbiome as the first line of defense against soil-borne fungal pathogens. The abundance and activities of beneficial root microbial taxa at the time prior to and during fungal infection are key to their protective success. If and how invading fungal root pathogens can disrupt microbiome assembly and gene expression is still largely unknown. Here, we investigated the impact of the fungal pathogen Fusarium oxysporum (fox) on the assembly of rhizosphere and endosphere microbiomes of a fox-susceptible and fox-resistant common bean cultivar. RESULTS Integration of 16S-amplicon, shotgun metagenome as well as metatranscriptome sequencing with community ecology analysis showed that fox infections significantly changed the composition and gene expression of the root microbiome in a cultivar-dependent manner. More specifically, fox infection led to increased microbial diversity, network complexity, and a higher proportion of the genera Flavobacterium, Bacillus, and Dyadobacter in the rhizosphere of the fox-resistant cultivar compared to the fox-susceptible cultivar. In the endosphere, root infection also led to changes in community assembly, with a higher abundance of the genera Sinorhizobium and Ensifer in the fox-resistant cultivar. Metagenome and metatranscriptome analyses further revealed the enrichment of terpene biosynthesis genes with a potential role in pathogen suppression in the fox-resistant cultivar upon fungal pathogen invasion. CONCLUSION Collectively, these results revealed a cultivar-dependent enrichment of specific bacterial genera and the activation of putative disease-suppressive functions in the rhizosphere and endosphere microbiome of common bean under siege.
Collapse
Affiliation(s)
- Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP, 13416-000, Brazil.
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.
| | - Jos M Raaijmakers
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Mattias de Hollander
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Edis Sepo
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Ruth Gómez Expósito
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands
| | - Alisson Fernando Chiorato
- Centro de Análises e Pesquisa Tecnológica do Agronegócio dos Grãos e Fibras, Instituto Agronômico IAC, Campinas, 130001-970, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, 18020-000, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP, 13416-000, Brazil
| | - Victor J Carrión
- Departament of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.
- Institute of Biology, Leiden University, Leiden, the Netherlands.
- Departamento de Microbiología, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
198
|
Zhao H, Dai YC, Wu F, Liu XY, Maurice S, Krutovsky KV, Pavlov IN, Lindner DL, Martin FM, Yuan Y. Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia. Genome Biol Evol 2023; 15:evad136. [PMID: 37498334 PMCID: PMC10410303 DOI: 10.1093/gbe/evad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total. Compared with those of parasitic and saprophytic members, EcM species have significantly reduced number of plant cell wall degrading enzyme genes, and expanded transposable elements, genome sizes, small secreted proteins, and secreted proteases. EcM species still retain some of secreted carbohydrate-active enzymes (CAZymes) and have lost the key secreted CAZymes to degrade lignin and cellulose, while possess a strong capacity to degrade a microbial cell wall containing chitin and peptidoglycan. There were no significant differences in secreted CAZymes between fungi growing on gymnosperms and angiosperms, suggesting that the secreted CAZymes in the Hymenochaetales evolved before differentiation of host trees into gymnosperms and angiosperms. Nevertheless, parasitic and saprophytic species of the Hymenochaetales are very similar in many genome features, which reflect their close phylogenetic relationships both being white rot fungi. Phylogenomic and molecular clock analyses showed that the EcM genus Coltricia formed a clade located at the base of the Hymenochaetaceae and divergence time later than saprophytic species. And Coltricia remains one to two genes of AA2 family. These indicate that the ancestors of Coltricia appear to have originated from saprophytic ancestor with the ability to cause a white rot. This study provides new genomic data for EcM species and insights into the ecological diversification within the Hymenochaetales based on comparative genomics and phylogenomics analyses.
Collapse
Affiliation(s)
- Heng Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fang Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, Voronezh, Russia
| | - Igor N Pavlov
- Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia
| | | | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst-Nancy, Champenoux, France
| | - Yuan Yuan
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
199
|
Yuan T, Huang Y, Luo L, Wang J, Li J, Chen J, Qin Y, Liu J. Complete Genome Sequence of Pantoea ananatis Strain LCFJ-001 Isolated from Bacterial Wilt Mulberry. PLANT DISEASE 2023; 107:2500-2505. [PMID: 36691281 DOI: 10.1094/pdis-10-22-2473-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Pantoea ananatis strain, named LCFJ-001 (GDMCC: 1.6101), was isolated for the first time from bacterial wilt-diseased roots of mulberry (Morus atropurpurea) in the western part of the Guangxi Zhuang Autonomous Region, China. Moreover, through Koch's postulates, it was proven that LCFJ-001 can cause mulberry wilt, which is one of the pathogens of mulberry bacterial wilt. Here, we report a complete, annotated genome sequence of P. ananatis LCFJ-001. The entire genome sequence of P. ananatis strain LCFJ-001 was a 4,499,350 bp circular chromosome with 53.50% GC content. In total, 3,521 genes were annotated, of which 3,418 were assigned protein-coding genes. In addition, 22 ribosomal RNAs and 81 transfer RNAs were identified. The presented resource will help explore the pathogenetic mechanisms of mulberry wilt disease caused by the genus Pantoea.
Collapse
Affiliation(s)
- Ting Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yuxing Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Longhui Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jicheng Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinhao Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jiehu Chen
- Science Corporation of Gene (SCGene), Guangzhou 510000, China
| | - Yue Qin
- School of Chemical and Biological Engineering, Hechi College, Hechi, Guangxi 546300, China
| | - Jiping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
200
|
Zhang K, Huang Y, Zhang Y, Liang R, Li Q, Li R, Zhao X, Bian C, Chen Y, Wu J, Shi Q, Lin L. A chromosome-level reference genome assembly of the Reeve's moray eel (Gymnothorax reevesii). Sci Data 2023; 10:501. [PMID: 37516767 PMCID: PMC10387071 DOI: 10.1038/s41597-023-02394-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Due to potentially hostile behaviors and elusive habitats, moray eels (Muraenidae) as one group of apex predators in coral reefs all across the globe have not been well investigated. Here, we constructed a chromosome-level genome assembly for the representative Reeve's moray eel (Gymnothorax reevesii). This haplotype genome assembly is 2.17 Gb in length, and 97.87% of the sequences are anchored into 21 chromosomes. It contains 56.34% repetitive sequences and 23,812 protein-coding genes, of which 96.77% are functionally annotated. This sequenced marine species in Anguilliformes makes a good complement to the genetic resource of eel genomes. It not only provides a genetic resource for in-depth studies of the Reeve's moray eel, but also enables deep-going genomic comparisons among various eels.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, 510225, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yuxuan Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, 510225, China
| | - Rishen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, 510225, China
| | - Qingqing Li
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, 510225, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China
| | - Xiaomeng Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yongnan Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, 510225, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou, 510225, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Li Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, 510225, China.
| |
Collapse
|