151
|
Identification and Functional Characterization of a Soybean ( Glycine max) Thioesterase that Acts on Intermediates of Fatty Acid Biosynthesis. PLANTS 2019; 8:plants8100397. [PMID: 31597241 PMCID: PMC6843456 DOI: 10.3390/plants8100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
Abstract
(1) Background: Plants possess many acyl-acyl carrier protein (acyl-ACP) thioesterases (TEs) with unique specificity. One such TE is methylketone synthase 2 (MKS2), an enzyme with a single-hotdog-fold structure found in several tomato species that hydrolyzes 3-ketoacyl-ACPs to give free 3-ketoacids. (2) Methods: In this study, we identified and characterized a tomato MKS2 homolog gene, namely, GmMKS2, in the genome of soybean (Glycine max). (3) Results: GmMKS2 underwent alternative splicing to produce three alternative transcripts, but only one encodes a protein with thioesterase activity when recombinantly expressed in Escherichia coli. Heterologous expression of the main transcript of GmMKS2, GmMKS2-X2, in E. coli generated various types of fatty acids, including 3-ketoacids-with 3-ketotetradecenoic acid (14:1) being the most abundant-cis-Δ5-dodecanoic acid, and 3-hydroxyacids, suggesting that GmMKS2 acts as an acyl-ACP thioesterase. In plants, the GmMKS2-X2 transcript level was found to be higher in the roots compared to other examined organs. In silico analysis revealed that there is a substantial enrichment of putative cis-regulatory elements related to disease-resistance responses and abiotic stress responses in the promoter of this gene. (4) Conclusions: GmMKS2 showed broad substrate specificities toward a wide range of acyl-ACPs that varied in terms of chain length, oxidation state, and saturation degree. Our results suggest that GmMKS2 might have a stress-related physiological function in G. max.
Collapse
|
152
|
A Consensus Binding Motif for the PP4 Protein Phosphatase. Mol Cell 2019; 76:953-964.e6. [PMID: 31585692 DOI: 10.1016/j.molcel.2019.08.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/08/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
Dynamic protein phosphorylation constitutes a fundamental regulatory mechanism in all organisms. Phosphoprotein phosphatase 4 (PP4) is a conserved and essential nuclear serine and threonine phosphatase. Despite the importance of PP4, general principles of substrate selection are unknown, hampering the study of signal regulation by this phosphatase. Here, we identify and thoroughly characterize a general PP4 consensus-binding motif, the FxxP motif. X-ray crystallography studies reveal that FxxP motifs bind to a conserved pocket in the PP4 regulatory subunit PPP4R3. Systems-wide in silico searches integrated with proteomic analysis of PP4 interacting proteins allow us to identify numerous FxxP motifs in proteins controlling a range of fundamental cellular processes. We identify an FxxP motif in the cohesin release factor WAPL and show that this regulates WAPL phosphorylation status and is required for efficient cohesin release. Collectively our work uncovers basic principles of PP4 specificity with broad implications for understanding phosphorylation-mediated signaling in cells.
Collapse
|
153
|
Zhang X, Xue C, Lin J, Ferguson JF, Weiner A, Liu W, Han Y, Hinkle C, Li W, Jiang H, Gosai S, Hachet M, Garcia BA, Gregory BD, Soccio RE, Hogenesch JB, Seale P, Li M, Reilly MP. Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipocyte metabolism. Sci Transl Med 2019; 10:10/446/eaar5987. [PMID: 29925637 DOI: 10.1126/scitranslmed.aar5987] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 11/27/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) have emerged as important modulators of cellular functions. Most lincRNAs are not conserved among mammals, raising the fundamental question of whether nonconserved adipose-expressed lincRNAs are functional. To address this, we performed deep RNA sequencing of gluteal subcutaneous adipose tissue from 25 healthy humans. We identified 1001 putative lincRNAs expressed in all samples through de novo reconstruction of noncoding transcriptomes and integration with existing lincRNA annotations. One hundred twenty lincRNAs had adipose-enriched expression, and 54 of these exhibited peroxisome proliferator-activated receptor γ (PPARγ) or CCAAT/enhancer binding protein α (C/EBPα) binding at their loci. Most of these adipose-enriched lincRNAs (~85%) were not conserved in mice, yet on average, they showed degrees of expression and binding of PPARγ and C/EBPα similar to those displayed by conserved lincRNAs. Most adipose lincRNAs differentially expressed (n = 53) in patients after bariatric surgery were nonconserved. The most abundant adipose-enriched lincRNA in our subcutaneous adipose data set, linc-ADAL, was nonconserved, up-regulated in adipose depots of obese individuals, and markedly induced during in vitro human adipocyte differentiation. We demonstrated that linc-ADAL interacts with heterogeneous nuclear ribonucleoprotein U (hnRNPU) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) at distinct subcellular locations to regulate adipocyte differentiation and lipogenesis.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jennie Lin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Amber Weiner
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen Liu
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Yumiao Han
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Hinkle
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenjun Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Sager Gosai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie Hachet
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond E Soccio
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA. .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA
| |
Collapse
|
154
|
Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. Int J Med Microbiol 2019; 310:151359. [PMID: 31585716 DOI: 10.1016/j.ijmm.2019.151359] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 11/24/2022] Open
Abstract
Allicin (diallylthiosulfinate) is a potent antimicrobial substance, produced by garlic tissues upon wounding as a defence against pathogens and pests. Allicin is a reactive sulfur species (RSS) that oxidizes accessible cysteines in glutathione and proteins. We used a differential isotopic labelling method (OxICAT) to identify allicin targets in the bacterial proteome. We compared the proteomes of allicin-susceptible Pseudomonas fluorescens Pf0-1 and allicin-tolerant PfAR-1 after a sublethal allicin exposure. Before exposure to allicin, proteins were in a predominantly reduced state, with approximately 77% of proteins showing less than 20% cysteine oxidation. Protein oxidation increased after exposure to allicin, and only 50% of proteins from allicin-susceptible Pf0-1, but 65% from allicin-tolerant PfAR-1, remained less than 20% oxidised. DNA gyrase was identified as an allicin target. Cys433 in DNA gyrase subunit A (GyrA) was approximately 6% oxidized in untreated bacteria. After allicin treatment the degree of Cys433 oxidation increased to 55% in susceptible Pf0-1 but only to 10% in tolerant PfAR-1. Allicin inhibited E. coli DNA gyrase activity in vitro in the same concentration range as nalidixic acid. Purified PfAR-1 DNA gyrase was inhibited to greater extent by allicin in vitro than the Pf0-1 enzyme. Substituting PfAR-1 GyrA into Pf0-1 rendered the exchange mutants more susceptible to allicin than the Pf0-1 wild type. Taken together, these results suggest that GyrA was protected from oxidation in vivo in the allicin-tolerant PfAR-1 background, rather than the PfAR-1 GyrA subunit being intrinsically less susceptible to oxidation by allicin than the Pf0-1 GyrA subunit. DNA gyrase is a target for medicinally important antibiotics; thus, allicin and its analogues may have potential to be developed as gyrase inhibitors, either alone or in conjunction with other therapeutics.
Collapse
|
155
|
Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S. The multitasking abilities of MATE transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4643-4656. [PMID: 31106838 DOI: 10.1093/jxb/erz246] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
As sessile organisms, plants constantly monitor environmental cues and respond appropriately to modulate their growth and development. Membrane transporters act as gatekeepers of the cell regulating both the inflow of useful materials as well as exudation of harmful substances. Members of the multidrug and toxic compound extrusion (MATE) family of transporters are ubiquitously present in almost all forms of life including prokaryotes and eukaryotes. In bacteria, MATE proteins were originally characterized as efflux transporters conferring drug resistance. There are 58 MATE transporters in Arabidopsis thaliana, which are also known as DETOXIFICATION (DTX) proteins. In plants, these integral membrane proteins are involved in a diverse array of functions, encompassing secondary metabolite transport, xenobiotic detoxification, aluminium tolerance, and disease resistance. MATE proteins also regulate overall plant development by controlling phytohormone transport, tip growth processes, and senescence. While most of the functional characterizations of MATE proteins have been reported in Arabidopsis, recent reports suggest that their diverse roles extend to numerous other plant species. The wide array of functions exhibited by MATE proteins highlight their multitasking ability. In this review, we integrate information related to structure and functions of MATE transporters in plants. Since these transporters are central to mechanisms that allow plants to adapt to abiotic and biotic stresses, their study can potentially contribute to improving stress tolerance under changing climatic conditions.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Debojyoti Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagyashri Deepak Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Cellular Organization and Signalling, National Centre for Biological Sciences (NCBS), Bengaluru, India
| | - Sanchali Nanda
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Rini Rahiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Nimisha Panchakshari
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Genetics, Ludwig Maximilians Universität, Biocenter, Germany
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
156
|
Xu W, Long L, Zhao Y, Stevens L, Felipe I, Munoz J, Ellis RE, McGrath PT. Evolution of Yin and Yang isoforms of a chromatin remodeling subunit precedes the creation of two genes. eLife 2019; 8:e48119. [PMID: 31498079 PMCID: PMC6752949 DOI: 10.7554/elife.48119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.
Collapse
Affiliation(s)
- Wen Xu
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lijiang Long
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative BiosciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Yuehui Zhao
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Irene Felipe
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Center-CNIOMadridSpain
| | - Javier Munoz
- Proteomics Unit-ProteoRed-ISCIIISpanish National Cancer Research Center-CNIOMadridSpain
| | - Ronald E Ellis
- Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordUnited States
| | - Patrick T McGrath
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Parker H. Petit Institute of Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUnited States
- School of PhysicsGeorgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
157
|
Harney DJ, Hutchison AT, Su Z, Hatchwell L, Heilbronn LK, Hocking S, James DE, Larance M. Small-protein Enrichment Assay Enables the Rapid, Unbiased Analysis of Over 100 Low Abundance Factors from Human Plasma. Mol Cell Proteomics 2019; 18:1899-1915. [PMID: 31308252 PMCID: PMC6731089 DOI: 10.1074/mcp.tir119.001562] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Unbiased and sensitive quantification of low abundance small proteins in human plasma (e.g. hormones, immune factors, metabolic regulators) remains an unmet need. These small protein factors are typically analyzed individually and using antibodies that can lack specificity. Mass spectrometry (MS)-based proteomics has the potential to address these problems, however the analysis of plasma by MS is plagued by the extremely large dynamic range of this body fluid, with protein abundances spanning at least 13 orders of magnitude. Here we describe an enrichment assay (SPEA), that greatly simplifies the plasma dynamic range problem by enriching small-proteins of 2-10 kDa, enabling the rapid, specific and sensitive quantification of >100 small-protein factors in a single untargeted LC-MS/MS acquisition. Applying this method to perform deep-proteome profiling of human plasma we identify C5ORF46 as a previously uncharacterized human plasma protein. We further demonstrate the reproducibility of our workflow for low abundance protein analysis using a stable-isotope labeled protein standard of insulin spiked into human plasma. SPEA provides the ability to study numerous important hormones in a single rapid assay, which we applied to study the intermittent fasting response and observed several unexpected changes including decreased plasma abundance of the iron homeostasis regulator hepcidin.
Collapse
Affiliation(s)
- Dylan J Harney
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amy T Hutchison
- ¶Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Zhiduan Su
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Luke Hatchwell
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Samantha Hocking
- §Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David E James
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Mark Larance
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| |
Collapse
|
158
|
Masud AJ, Kastaniotis AJ, Rahman MT, Autio KJ, Hiltunen JK. Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118540. [PMID: 31473256 DOI: 10.1016/j.bbamcr.2019.118540] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Acyl carrier protein (ACP) is a principal partner in the cytosolic and mitochondrial fatty acid synthesis (FAS) pathways. The active form holo-ACP serves as FAS platform, using its 4'-phosphopantetheine group to present covalently attached FAS intermediates to the enzymes responsible for the acyl chain elongation process. Mitochondrial unacylated holo-ACP is a component of mammalian mitoribosomes, and acylated ACP species participate as interaction partners in several ACP-LYRM (leucine-tyrosine-arginine motif)-protein heterodimers that act either as assembly factors or subunits of the electron transport chain and Fe-S cluster assembly complexes. Moreover, octanoyl-ACP provides the C8 backbone for endogenous lipoic acid synthesis. Accumulating evidence suggests that mtFAS-generated acyl-ACPs act as signaling molecules in an intramitochondrial metabolic state sensing circuit, coordinating mitochondrial acetyl-CoA levels with mitochondrial respiration, Fe-S cluster biogenesis and protein lipoylation.
Collapse
Affiliation(s)
- Ali J Masud
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
159
|
Adaptive Mutations in Replicase Transmembrane Subunits Can Counteract Inhibition of Equine Arteritis Virus RNA Synthesis by Cyclophilin Inhibitors. J Virol 2019; 93:JVI.00490-19. [PMID: 31243130 DOI: 10.1128/jvi.00490-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse RNA viruses, including arteriviruses and coronaviruses, which both belong to the order Nidovirales In this study, we aimed to identify arterivirus proteins involved in the mode of action of cyclophilin inhibitors and to investigate how these compounds inhibit arterivirus RNA synthesis in the infected cell. Repeated passaging of the arterivirus prototype equine arteritis virus (EAV) in the presence of CsA revealed that reduced drug sensitivity is associated with the emergence of adaptive mutations in nonstructural protein 5 (nsp5), one of the transmembrane subunits of the arterivirus replicase polyprotein. Introduction of singular nsp5 mutations (nsp5 Q21R, Y113H, or A134V) led to an ∼2-fold decrease in sensitivity to CsA treatment, whereas combinations of mutations further increased EAV's CsA resistance. The detailed experimental characterization of engineered EAV mutants harboring CsA resistance mutations implicated nsp5 in arterivirus RNA synthesis. Particularly, in an in vitro assay, EAV RNA synthesis was far less sensitive to CsA treatment when nsp5 contained the adaptive mutations mentioned above. Interestingly, for increased sensitivity to the closely related drug ALV, CsA-resistant nsp5 mutants required the incorporation of an additional adaptive mutation, which resided in nsp2 (H114R), another transmembrane subunit of the arterivirus replicase. Our study provides the first evidence for the involvement of nsp2 and nsp5 in the mechanism underlying the inhibition of arterivirus replication by cyclophilin inhibitors.IMPORTANCE Currently, no approved treatments are available to combat infections with nidoviruses, a group of positive-stranded RNA viruses, including important zoonotic and veterinary pathogens. Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse nidoviruses (both arteriviruses and coronaviruses), and they may thus represent a class of pan-nidovirus inhibitors. In this study, using the arterivirus prototype equine arteritis virus, we have established that resistance to CsA and ALV treatment is associated with adaptive mutations in two transmembrane subunits of the viral replication machinery, nonstructural proteins 2 and 5. This is the first evidence for the involvement of specific replicase subunits of arteriviruses in the mechanism underlying the inhibition of their replication by cyclophilin inhibitors. Understanding this mechanism of action is of major importance to guide future drug design, both for nidoviruses and for other RNA viruses inhibited by these compounds.
Collapse
|
160
|
Gao Y, Hisey E, Bradshaw TWA, Erata E, Brown WE, Courtland JL, Uezu A, Xiang Y, Diao Y, Soderling SH. Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering. Neuron 2019; 103:583-597.e8. [PMID: 31272828 PMCID: PMC7200071 DOI: 10.1016/j.neuron.2019.05.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Analysis of endogenous protein localization, function, and dynamics is fundamental to the study of all cells, including the diversity of cell types in the brain. However, current approaches are often low throughput and resource intensive. Here, we describe a CRISPR-Cas9-based homology-independent universal genome engineering (HiUGE) method for endogenous protein manipulation that is straightforward, scalable, and highly flexible in terms of genomic target and application. HiUGE employs adeno-associated virus (AAV) vectors of autonomous insertional sequences (payloads) encoding diverse functional modifications that can integrate into virtually any genomic target loci specified by easily assembled gene-specific guide-RNA (GS-gRNA) vectors. We demonstrate that universal HiUGE donors enable rapid alterations of proteins in vitro or in vivo for protein labeling and dynamic visualization, neural-circuit-specific protein modification, subcellular rerouting and sequestration, and truncation-based structure-function analysis. Thus, the "plug-and-play" nature of HiUGE enables high-throughput and modular analysis of mechanisms driving protein functions in cellular neurobiology.
Collapse
Affiliation(s)
- Yudong Gao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Erin Hisey
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Tyler W A Bradshaw
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical School, Durham, NC 27710, USA
| | - Eda Erata
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Walter E Brown
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Jamie L Courtland
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical School, Durham, NC 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical School, Durham, NC 27710, USA.
| |
Collapse
|
161
|
Crystal structure of PppA from Pseudomonas aeruginosa, a key regulatory component of type VI secretion systems. Biochem Biophys Res Commun 2019; 516:196-201. [PMID: 31208722 DOI: 10.1016/j.bbrc.2019.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022]
Abstract
The Type VI secretion system (T6SS) is a membrane protein complex related to inter-bacterial competitions and host-pathogen interactions in Pseudomonas aeruginosa. The T6SS is regulated by a great variety of regulatory mechanisms at multiple levels, including post-translational modification with threonine phosphorylation mediated by Ser/Thr protein kinase PpkA and phosphatase PppA. The T6SS is activated by PpkA via Thr phosphorylation of Fha, and PppA can antagonize PpkA. PppA is a PP2C-family protein phosphatase and plays a key role in the disassembly and reassembly of T6SS organelles. Herein, we report the first crystal structure of PppA from Pseudomonas aeruginosa, which was determined at a resolution of 2.10 Å. The overall structure consists of a bacteria PPM structural core and a flexible flap subdomain. PppA harbors a catalytic pocket containing two manganese ions which correspond to the canonical dinuclear metal center of Ser/Thr protein phosphatases including the bacterial PPM phosphatases and human PP2C. The flexibility and the diversity of the sequence of flap subdomain across the homologues might provide clues for substrates specific recognition of phosphatases.
Collapse
|
162
|
Dayebgadoh G, Sardiu ME, Florens L, Washburn MP. Biochemical Reduction of the Topology of the Diverse WDR76 Protein Interactome. J Proteome Res 2019; 18:3479-3491. [PMID: 31353912 DOI: 10.1021/acs.jproteome.9b00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A hub protein in protein interaction networks will typically have a large number of diverse interactions. Determining the core interactions and the function of such a hub protein remains a significant challenge in the study of networks. Proteins with WD40 repeats represent a large class of proteins that can be hub proteins. WDR76 is a poorly characterized WD40 repeat protein with possible involvement in DNA damage repair, cell-cycle progression, apoptosis, gene expression regulation, and protein quality control. WDR76 has a large and diverse interaction network that has made its study challenging. Here we rigorously carry out a series of affinity purification coupled to mass spectrometry (AP-MS) analyses to map out the WDR76 interactome through different biochemical conditions. We apply AP-MS analysis coupled to size-exclusion chromatography to resolve WDR76-based protein complexes. Furthermore, we also show that WDR76 interacts with the CCT complex via its WD40 repeat domain and with DNA-PK-KU, PARP1, GAN, SIRT1, and histones outside of the WD40 domain. An evaluation of the stability of WDR76 interactions led to focused and streamlined reciprocal analyses that validate the interactions with GAN and SIRT1. Overall, the approaches used to study WDR76 would be valuable to study other proteins containing WD40 repeat domains, which are conserved in a large number of proteins in many organisms.
Collapse
Affiliation(s)
- Gerald Dayebgadoh
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States
| | - Mihaela E Sardiu
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States
| | - Laurence Florens
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States
| | - Michael P Washburn
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States.,Department of Pathology and Laboratory Medicine , The University of Kansas Medical Center , 3901 Rainbow Boulevard , Kansas City , Kansas 66160 , United States
| |
Collapse
|
163
|
Mentasti M, Prime K, Sands K, Khan S, Wootton M. Rapid detection of IMP, NDM, VIM, KPC and OXA-48-like carbapenemases from Enterobacteriales and Gram-negative non-fermenter bacteria by real-time PCR and melt-curve analysis. Eur J Clin Microbiol Infect Dis 2019; 38:2029-2036. [DOI: 10.1007/s10096-019-03637-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
164
|
Friedrich M, Jasinski-Bergner S, Lazaridou MF, Subbarayan K, Massa C, Tretbar S, Mueller A, Handke D, Biehl K, Bukur J, Donia M, Mandelboim O, Seliger B. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunol Immunother 2019; 68:1689-1700. [PMID: 31375885 DOI: 10.1007/s00262-019-02373-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022]
Abstract
Immunotherapy aims to activate the immune system to fight cancer in a very specific and targeted manner. Despite the success of different immunotherapeutic strategies, in particular antibodies directed against checkpoints as well as adoptive T-cell therapy, the response of patients is limited in different types of cancers. This attributes to escape of the tumor from immune surveillance and development of acquired resistances during therapy. In this review, the different evasion and resistance mechanisms that limit the efficacy of immunotherapies targeting tumor-associated antigens presented by major histocompatibility complex molecules on the surface of the malignant cells are summarized. Overcoming these escape mechanisms is a great challenge, but might lead to a better clinical outcome of patients and is therefore currently a major focus of research.
Collapse
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Marco Donia
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany.
| |
Collapse
|
165
|
Tabata R, Kawaguchi F, Sasazaki S, Yamamoto Y, Rakotondraparany F, Ratsoavina FM, Yonezawa T, Mannen H. Phylogeographic Analysis of Madagascan Goats Using mtDNA Control Region and SRY Gene Sequences. Zoolog Sci 2019; 36:294-298. [DOI: 10.2108/zs180184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Risa Tabata
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yoshio Yamamoto
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Felix Rakotondraparany
- Mention Zoologie et Biodiversité Animale, Faculty of Sciences, Antananarivo University, BP 906 Ankatso, Antananarivo 101, Madagascar
| | - Fanomezana Mihaja Ratsoavina
- Mention Zoologie et Biodiversité Animale, Faculty of Sciences, Antananarivo University, BP 906 Ankatso, Antananarivo 101, Madagascar
| | - Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
166
|
Knapik K, Becerra M, González-Siso MI. Microbial diversity analysis and screening for novel xylanase enzymes from the sediment of the Lobios Hot Spring in Spain. Sci Rep 2019; 9:11195. [PMID: 31371784 PMCID: PMC6671963 DOI: 10.1038/s41598-019-47637-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 01/28/2023] Open
Abstract
Here, we describe the metagenome composition of a microbial community in a hot spring sediment as well as a sequence-based and function-based screening of the metagenome for identification of novel xylanases. The sediment was collected from the Lobios Hot Spring located in the province of Ourense (Spain). Environmental DNA was extracted and sequenced using Illumina technology, and a total of 3.6 Gbp of clean paired reads was produced. A taxonomic classification that was obtained by comparison to the NCBI protein nr database revealed a dominance of Bacteria (93%), followed by Archaea (6%). The most abundant bacterial phylum was Acidobacteria (25%), while Thaumarchaeota (5%) was the main archaeal phylum. Reads were assembled into contigs. Open reading frames (ORFs) predicted on these contigs were searched by BLAST against the CAZy database to retrieve xylanase encoding ORFs. A metagenomic fosmid library of approximately 150,000 clones was constructed to identify functional genes encoding thermostable xylanase enzymes. Function-based screening revealed a novel xylanase-encoding gene (XynA3), which was successfully expressed in E. coli BL21. The resulting protein (41 kDa), a member of glycoside hydrolase family 11 was purified and biochemically characterized. The highest activity was measured at 80 °C and pH 6.5. The protein was extremely thermostable and showed 94% remaining activity after incubation at 60 °C for 24 h and over 70% remaining activity after incubation at 70 °C for 24 h. Xylanolytic activity of the XynA3 enzyme was stimulated in the presence of β-mercaptoethanol, dithiothreitol and Fe3+ ions. HPLC analysis showed that XynA3 hydrolyzes xylan forming xylobiose with lower proportion of xylotriose and xylose. Specific activity of the enzyme was 9080 U/mg for oat arabinoxylan and 5080 U/mg for beechwood xylan, respectively, without cellulase activity.
Collapse
Affiliation(s)
- Kamila Knapik
- Universidade da Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), A Coruña, Spain
| | - Manuel Becerra
- Universidade da Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), A Coruña, Spain
| | - María-Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), A Coruña, Spain.
| |
Collapse
|
167
|
Pérez-Burgos M, García-Romero I, Jung J, Valvano MA, Søgaard-Andersen L. Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme and the O-antigen ligase in Myxococcus xanthus: critical role of LPS O-antigen in motility and development. Mol Microbiol 2019; 112:1178-1198. [PMID: 31332863 DOI: 10.1111/mmi.14354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/03/2023]
Abstract
Myxococcus xanthus is a model bacterium to study social behavior. At the cellular level, the different social behaviors of M. xanthus involve extensive cell-cell contacts. Here, we used bioinformatics, genetics, heterologous expression and biochemical experiments to identify and characterize the key enzymes in M. xanthus implicated in O-antigen and lipopolysaccharide (LPS) biosynthesis and examined the role of LPS O-antigen in M. xanthus social behaviors. We identified WbaPMx (MXAN_2922) as the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for priming O-antigen synthesis. In heterologous expression experiments, WbaPMx complemented a Salmonella enterica mutant lacking the endogenous WbaP that primes O-antigen synthesis, indicating that WbaPMx transfers galactose-1-P to undecaprenyl-phosphate. We also identified WaaLMx (MXAN_2919), as the O-antigen ligase that joins O-antigen to lipid A-core. Our data also support the previous suggestion that WzmMx (MXAN_4622) and WztMx (MXAN_4623) form the Wzm/Wzt ABC transporter. We show that mutations that block different steps in LPS O-antigen synthesis can cause pleiotropic phenotypes. Also, using a wbaPMx deletion mutant, we revisited the role of LPS O-antigen and demonstrate that it is important for gliding motility, conditionally important for type IV pili-dependent motility and required to complete the developmental program leading to the formation of spore-filled fruiting bodies.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jana Jung
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
168
|
Clark MS, Villota Nieva L, Hoffman JI, Davies AJ, Trivedi UH, Turner F, Ashton GV, Peck LS. Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming. Nat Commun 2019; 10:3383. [PMID: 31358752 PMCID: PMC6662708 DOI: 10.1038/s41467-019-11348-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Marine encrusting communities play vital roles in benthic ecosystems and have major economic implications with regards to biofouling. However, their ability to persist under projected warming scenarios remains poorly understood and is difficult to study under realistic conditions. Here, using heated settlement panel technologies, we show that after 18 months Antarctic encrusting communities do not acclimate to either +1 °C or +2 °C above ambient temperatures. There is significant up-regulation of the cellular stress response in warmed animals, their upper lethal temperatures decline with increasing ambient temperature and population genetic analyses show little evidence of differential survival of genotypes with treatment. By contrast, biofilm bacterial communities show no significant differences in community structure with temperature. Thus, metazoan and bacterial responses differ dramatically, suggesting that ecosystem responses to future climate change are likely to be far more complex than previously anticipated. Genetic adaptation and physiological acclimation can potentially buffer species against climate change. Here, the authors perform a long-term warming experiment of Antarctic encrusting communities and show that focal animal species failed to acclimate and lacked genetic variation in tolerance to warming.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Leyre Villota Nieva
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Joseph I Hoffman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, 33615, Bielefeld, Germany
| | - Andrew J Davies
- University of Rhode Island, Department of Biological Sciences, Woodward Hall, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Urmi H Trivedi
- Edinburgh Genomics (Genome Science), Ashworth Laboratories, Charlotte Auerbach Road, The King's Buildings, The University of Edinburgh, EH9 3FL, Edinburgh, UK
| | - Frances Turner
- Edinburgh Genomics (Genome Science), Ashworth Laboratories, Charlotte Auerbach Road, The King's Buildings, The University of Edinburgh, EH9 3FL, Edinburgh, UK
| | - Gail V Ashton
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD, 21037-0028, USA
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
169
|
Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes. Catalysts 2019. [DOI: 10.3390/catal9070629] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually possess higher thermal and pH stability, and are more suitable for expression and genetic manipulations in bacterial expression hosts. Therefore, the aim of this study was to identify, recombinantly express, and characterize novel laccases from Pseudomonas spp. A combination of approaches including DNA sequence analysis, N-terminal protein sequencing, and genome sequencing data analysis for laccase amplification, cloning, and overexpression have been used. Four active recombinant laccases were obtained, one each from P. putida KT2440 and P. putida CA-3, and two from P. putida F6. The new laccases exhibited broad temperature and pH range and high thermal stability, as well as the potential to degrade selection of synthetic textile dyes. The best performing laccase was CopA from P. putida F6 which degraded five out of seven tested dyes, including Amido Black 10B, Brom Cresol Purple, Evans Blue, Reactive Black 5, and Remazol Brilliant Blue. This work highlighted species of Pseudomonas genus as still being good sources of biocatalytically relevant enzymes.
Collapse
|
170
|
Vamathevan J, Apweiler R, Birney E. Biomolecular Data Resources: Bioinformatics Infrastructure for Biomedical Data Science. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-072018-021321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Technological advances have continuously driven the generation of bio-molecular data and the development of bioinformatics infrastructure, which enables data reuse for scientific discovery. Several types of data management resources have arisen, such as data deposition databases, added-value databases or knowledgebases, and biology-driven portals. In this review, we provide a unique overview of the gradual evolution of these resources and discuss the goals and features that must be considered in their development. With the increasing application of genomics in the health care context and with 60 to 500 million whole genomes estimated to be sequenced by 2022, biomedical research infrastructure is transforming, too. Systems for federated access, portable tools, provision of reference data, and interpretation tools will enable researchers to derive maximal benefits from these data. Collaboration, coordination, and sustainability of data resources are key to ensure that biomedical knowledge management can scale with technology shifts and growing data volumes.
Collapse
Affiliation(s)
- Jessica Vamathevan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Rolf Apweiler
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
171
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
172
|
Poszytek K, Karczewska-Golec J, Dziurzynski M, Stepkowska-Kowalska O, Gorecki A, Decewicz P, Dziewit L, Drewniak L. Genome-Wide and Functional View of Proteolytic and Lipolytic Bacteria for Efficient Biogas Production through Enhanced Sewage Sludge Hydrolysis. Molecules 2019; 24:molecules24142624. [PMID: 31323902 PMCID: PMC6680700 DOI: 10.3390/molecules24142624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022] Open
Abstract
In this study, we used a multifaceted approach to select robust bioaugmentation candidates for enhancing biogas production and to demonstrate the usefulness of a genome-centric approach for strain selection for specific bioaugmentation purposes. We also investigated the influence of the isolation source of bacterial strains on their metabolic potential and their efficiency in enhancing anaerobic digestion. Whole genome sequencing, metabolic pathway reconstruction, and physiological analyses, including phenomics, of phylogenetically diverse strains, Rummeliibacillus sp. POC4, Ochrobactrum sp. POC9 (both isolated from sewage sludge) and Brevundimonas sp. LPMIX5 (isolated from an agricultural biogas plant) showed their diverse enzymatic activities, metabolic versatility and ability to survive under varied growth conditions. All tested strains display proteolytic, lipolytic, cellulolytic, amylolytic, and xylanolytic activities and are able to utilize a wide array of single carbon and energy sources, as well as more complex industrial by-products, such as dairy waste and molasses. The specific enzymatic activity expressed by the three strains studied was related to the type of substrate present in the original isolation source. Bioaugmentation with sewage sludge isolates–POC4 and POC9–was more effective for enhancing biogas production from sewage sludge (22% and 28%, respectively) than an approach based on LPMIX5 strain (biogas production boosted by 7%) that had been isolated from an agricultural biogas plant, where other type of substrate is used.
Collapse
Affiliation(s)
- Krzysztof Poszytek
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Karczewska-Golec
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Mikolaj Dziurzynski
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Olga Stepkowska-Kowalska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Adrian Gorecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
173
|
Roose BW, Christianson DW. Structural Basis of Tryptophan Reverse N-Prenylation Catalyzed by CymD. Biochemistry 2019; 58:3232-3242. [PMID: 31251043 DOI: 10.1021/acs.biochem.9b00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indole prenyltransferases catalyze the prenylation of l-tryptophan (l-Trp) and other indoles to produce a diverse set of natural products in bacteria, fungi, and plants, many of which possess useful biological properties. Among this family of enzymes, CymD from Salinispora arenicola catalyzes the reverse N1 prenylation of l-Trp, an unusual reaction given the poor nucleophilicity of the indole nitrogen. CymD utilizes dimethylallyl diphosphate (DMAPP) as the prenyl donor, catalyzing the dissociation of the diphosphate leaving group followed by nucleophilic attack of the indole nitrogen at the tertiary carbon of the dimethylallyl cation. To better understand the structural basis of selective indole N-alkylation reactions in biology, we have determined the X-ray crystal structures of CymD, the CymD-l-Trp complex, and the CymD-l-Trp-DMSPP complex (DMSPP is dimethylallyl S-thiolodiphosphate, an unreactive analogue of DMAPP). The orientation of l-Trp with respect to DMSPP reveals how the active site contour of CymD serves as a template to direct the reverse prenylation of the indole nitrogen. Comparison to PriB, a C6 bacterial indole prenyltransferase, offers further insight regarding the structural basis of regioselective indole prenylation. Isothermal titration calorimetry measurements indicate a synergistic relationship between l-Trp and DMSPP binding. Finally, activity assays demonstrate the selectivity of CymD for l-Trp and indole as prenyl acceptors. Collectively, these data establish a foundation for understanding and engineering the regioselectivity of indole prenylation by members of the prenyltransferase protein family.
Collapse
Affiliation(s)
- Benjamin W Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
174
|
Diversity and evolution of chitin synthases in oomycetes (Straminipila: Oomycota). Mol Phylogenet Evol 2019; 139:106558. [PMID: 31288106 DOI: 10.1016/j.ympev.2019.106558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
The oomycetes are filamentous eukaryotic microorganisms, distinct from true fungi, many of which act as crop or fish pathogens that cause devastating losses in agriculture and aquaculture. Chitin is present in all true fungi, but it occurs in only small amounts in some Saprolegniomycetes and it is absent in Peronosporomycetes. However, the growth of several oomycetes is severely impacted by competitive chitin synthase (CHS) inhibitors. Here, we shed light on the diversity, evolution and function of oomycete CHS proteins. We show by phylogenetic analysis of 93 putative CHSs from 48 highly diverse oomycetes, including the early diverging Eurychasma dicksonii, that all available oomycete genomes contain at least one putative CHS gene. All gene products contain conserved CHS motifs essential for enzymatic activity and form two Peronosporomycete-specific and six Saprolegniale-specific clades. Proteins of all clades, except one, contain an N-terminal microtubule interacting and trafficking (MIT) domain as predicted by protein domain databases or manual analysis, which is supported by homology modelling and comparison of conserved structural features from sequence logos. We identified at least three groups of CHSs conserved among all oomycete lineages and used phylogenetic reconciliation analysis to infer the dynamic evolution of CHSs in oomycetes. The evolutionary aspects of CHS diversity in modern-day oomycetes are discussed. In addition, we observed hyphal tip rupture in Phytophthora infestans upon treatment with the CHS inhibitor nikkomycin Z. Combining data on phylogeny, gene expression, and response to CHS inhibitors, we propose the association of different CHS clades with certain developmental stages.
Collapse
|
175
|
Williams C, Fernández-Calvo P, Colinas M, Pauwels L, Goossens A. Jasmonate and auxin perception: how plants keep F-boxes in check. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3401-3414. [PMID: 31173086 DOI: 10.1093/jxb/erz272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/29/2019] [Indexed: 05/24/2023]
Abstract
Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin-RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein-protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.
Collapse
Affiliation(s)
- Clara Williams
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Centre for Plant Biotechnology and Genomics, Parque Cientifico y Tecnologico, UPM Campus de Montegancedo, Madrid, Spain
| | - Maite Colinas
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
176
|
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47:W636-W641. [PMID: 30976793 PMCID: PMC6602479 DOI: 10.1093/nar/gkz268] [Citation(s) in RCA: 2945] [Impact Index Per Article: 589.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
The EMBL-EBI provides free access to popular bioinformatics sequence analysis applications as well as to a full-featured text search engine with powerful cross-referencing and data retrieval capabilities. Access to these services is provided via user-friendly web interfaces and via established RESTful and SOAP Web Services APIs (https://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/EMBL-EBI+Web+Services+APIs+-+Data+Retrieval). Both systems have been developed with the same core principles that allow them to integrate an ever-increasing volume of biological data, making them an integral part of many popular data resources provided at the EMBL-EBI. Here, we describe the latest improvements made to the frameworks which enhance the interconnectivity between public EMBL-EBI resources and ultimately enhance biological data discoverability, accessibility, interoperability and reusability.
Collapse
Affiliation(s)
- Fábio Madeira
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Young mi Park
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Joon Lee
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nicola Buso
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tamer Gur
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nandana Madhusoodanan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Prasad Basutkar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Adrian R N Tivey
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Simon C Potter
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rodrigo Lopez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
177
|
Crystal structure of the tubulin tyrosine carboxypeptidase complex VASH1-SVBP. Nat Struct Mol Biol 2019; 26:567-570. [PMID: 31270470 DOI: 10.1038/s41594-019-0254-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022]
Abstract
The cyclic enzymatic removal and ligation of the C-terminal tyrosine of α-tubulin generates heterogeneous microtubules and affects their functions. Here we describe the crystal and solution structure of the tubulin carboxypeptidase complex between vasohibin (VASH1) and small vasohibin-binding protein (SVBP), which folds in a long helix, which stabilizes the VASH1 catalytic domain. This structure, combined with molecular docking and mutagenesis experiments, reveals which residues are responsible for recognition and cleavage of the tubulin C-terminal tyrosine.
Collapse
|
178
|
Marche MG, Mura ME, Ruiu L. Rapid polymerase chain reaction assays for Brevibacillus laterosporus detection. J Basic Microbiol 2019; 59:853-857. [PMID: 31250936 DOI: 10.1002/jobm.201900188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 11/10/2022]
Abstract
The identification of the ubiquitous spore-forming bacterium Brevibacillus laterosporus, whose interest in pharma, agriculture, and other industrial sectors is raising, mostly relies on 16S ribosomal RNA gene sequence analysis. However, due to bacterial gene homology, this method appears insufficient for a proper discrimination of this species, so that the availability of other target genes is necessary. Leveraging the morphological and genetic feature uniqueness of B. laterosporus, a sensitive and reliable detection and quantification method based on polymerase chain reaction (PCR) and quantitative PCR assays, respectively, was developed. Targeting a highly conserved spore surface protein-related gene, B. laterosporus could be easily found in different matrices including soil, food, and insect body. Primer set selectivity was confirmed to be very specific and no false positives or negatives were observed using DNA of different bacterial species as a template. The method developed is also suitable for the rapid identification of newly isolated B. laterosporus strains.
Collapse
Affiliation(s)
| | | | - Luca Ruiu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| |
Collapse
|
179
|
In Silico Insights into HIV-1 Vpu-Tetherin Interactions and Its Mutational Counterparts. Med Sci (Basel) 2019; 7:medsci7060074. [PMID: 31234536 PMCID: PMC6631454 DOI: 10.3390/medsci7060074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Tetherin, an interferon-induced host protein encoded by the bone marrow stromal antigen 2 (BST2/CD317/HM1.24) gene, is involved in obstructing the release of many retroviruses and other enveloped viruses by cross-linking the budding virus particles to the cell surface. This activity is antagonized in the case of human immunodeficiency virus (HIV)-1 wherein its accessory protein Viral Protein U (Vpu) interacts with tetherin, causing its downregulation from the cell surface. Vpu and tetherin connect through their transmembrane (TM) domains, culminating into events leading to tetherin degradation by recruitment of β-TrCP2. However, mutations in the TM domains of both proteins are reported to act as a resistance mechanism to Vpu countermeasure impacting tetherin's sensitivity towards Vpu but retaining its antiviral activity. Our study illustrates the binding aspects of blood-derived, brain-derived, and consensus HIV-1 Vpu with tetherin through protein-protein docking. The analysis of the bound complexes confirms the blood-derived Vpu-tetherin complex to have the best binding affinity as compared to other two. The mutations in tetherin and Vpu are devised computationally and are subjected to protein-protein interactions. The complexes are tested for their binding affinities, residue connections, hydrophobic forces, and, finally, the effect of mutation on their interactions. The single point mutations in tetherin at positions L23Y, L24T, and P40T, and triple mutations at {L22S, F44Y, L37I} and {L23T, L37T, T45I}, while single point mutations in Vpu at positions A19H and W23Y and triplet of mutations at {V10K, A11L, A19T}, {V14T, I18T, I26S}, and {A11T, V14L, A15T} have revealed no polar contacts with minimal hydrophobic interactions between Vpu and tetherin, resulting in reduced binding affinity. Additionally, we have explored the aggregation potential of tetherin and its association with the brain-derived Vpu protein. This work is a possible step toward an understanding of Vpu-tetherin interactions.
Collapse
|
180
|
Ehrlich F, Fischer H, Langbein L, Praetzel-Wunder S, Ebner B, Figlak K, Weissenbacher A, Sipos W, Tschachler E, Eckhart L. Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Mol Biol Evol 2019; 36:328-340. [PMID: 30517738 PMCID: PMC6367960 DOI: 10.1093/molbev/msy214] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Keratins are the main intermediate filament proteins of epithelial cells. In keratinocytes of the mammalian epidermis they form a cytoskeleton that resists mechanical stress and thereby are essential for the function of the skin as a barrier against the environment. Here, we performed a comparative genomics study of epidermal keratin genes in terrestrial and fully aquatic mammals to determine adaptations of the epidermal keratin cytoskeleton to different environments. We show that keratins K5 and K14 of the innermost (basal), proliferation-competent layer of the epidermis are conserved in all mammals investigated. In contrast, K1 and K10, which form the main part of the cytoskeleton in the outer (suprabasal) layers of the epidermis of terrestrial mammals, have been lost in whales and dolphins (cetaceans) and in the manatee. Whereas in terrestrial mammalian epidermis K6 and K17 are expressed only upon stress-induced epidermal thickening, high levels of K6 and K17 are consistently present in dolphin skin, indicating constitutive expression and substitution of K1 and K10. K2 and K9, which are expressed in a body site-restricted manner in human and mouse suprabasal epidermis, have been lost not only in cetaceans and manatee but also in some terrestrial mammals. The evolution of alternative splicing of K10 and differentiation-dependent upregulation of K23 have increased the complexity of keratin expression in the epidermis of terrestrial mammals. Taken together, these results reveal evolutionary diversification of the epidermal cytoskeleton in mammals and suggest a complete replacement of the quantitatively predominant epidermal proteins of terrestrial mammals by originally stress-inducible keratins in cetaceans.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Silke Praetzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Bettina Ebner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Figlak
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
181
|
Kravchuk OI, Lyupina YV, Erokhov PA, Finoshin AD, Adameyko KI, Mishyna MY, Moiseenko AV, Sokolova OS, Orlova OV, Beljelarskaya SN, Serebryakova MV, Indeykina MI, Bugrova AE, Kononikhin AS, Mikhailov VS. Characterization of the 20S proteasome of the lepidopteran, Spodoptera frugiperda. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:840-853. [PMID: 31228587 DOI: 10.1016/j.bbapap.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Multiple complexes of 20S proteasomes with accessory factors play an essential role in proteolysis in eukaryotic cells. In this report, several forms of 20S proteasomes from extracts of Spodoptera frugiperda (Sf9) cells were separated using electrophoresis in a native polyacrylamide gel and examined for proteolytic activity in the gel and by Western blotting. Distinct proteasome bands isolated from the gel were subjected to liquid chromatography-tandem mass spectrometry and identified as free core particles (CP) and complexes of CP with one or two dimers of assembly chaperones PAC1-PAC2 and activators PA28γ or PA200. In contrast to the activators PA28γ and PA200 that regulate the access of protein substrates to the internal proteolytic chamber of CP in an ATP-independent manner, the 19S regulatory particle (RP) in 26S proteasomes performs stepwise substrate unfolding and opens the chamber gate in an ATP-dependent manner. Electron microscopic analysis suggested that spontaneous dissociation of RP in isolated 26S proteasomes leaves CPs with different gate sizes related presumably to different stages in the gate opening. The primary structure of 20S proteasome subunits in Sf9 cells was determined by a search of databases and by sequencing. The protein sequences were confirmed by mass spectrometry and verified by 2D gel electrophoresis. The relative rates of sequence divergence in the evolution of 20S proteasome subunits, the assembly chaperones and activators were determined by using bioinformatics. The data confirmed the conservation of regular CP subunits and PA28γ, a more accelerated evolution of PAC2 and PA200, and especially high divergence rates of PAC1.
Collapse
Affiliation(s)
- Oksana I Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Yulia V Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Pavel A Erokhov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Alexander D Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Kim I Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Maryia Yu Mishyna
- M.V. Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Andrey V Moiseenko
- M.V. Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Olga S Sokolova
- M.V. Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Olga V Orlova
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119334, Russia
| | - Svetlana N Beljelarskaya
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119334, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology MSU, 1c40 Leniniskie Gory, Moscow 119234, Russia
| | - Maria I Indeykina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., Moscow 119334, Russia
| | - Anna E Bugrova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., Moscow 119334, Russia
| | - Alexey S Kononikhin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., Moscow 119334, Russia; Skolkovo Institute of Science and Technology, 3 Ulitsa Nobelya, Moscow region, Skolkovo 121205, Russia
| | - Victor S Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia.
| |
Collapse
|
182
|
Lechner J, Hartkopf F, Hiort P, Nitsche A, Grossegesse M, Doellinger J, Renard BY, Muth T. Purple: A Computational Workflow for Strategic Selection of Peptides for Viral Diagnostics Using MS-Based Targeted Proteomics. Viruses 2019; 11:E536. [PMID: 31181768 PMCID: PMC6630961 DOI: 10.3390/v11060536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/26/2023] Open
Abstract
Emerging virus diseases present a global threat to public health. To detect viral pathogens in time-critical scenarios, accurate and fast diagnostic assays are required. Such assays can now be established using mass spectrometry-based targeted proteomics, by which viral proteins can be rapidly detected from complex samples down to the strain-level with high sensitivity and reproducibility. Developing such targeted assays involves tedious steps of peptide candidate selection, peptide synthesis, and assay optimization. Peptide selection requires extensive preprocessing by comparing candidate peptides against a large search space of background proteins. Here we present Purple (Picking unique relevant peptides for viral experiments), a software tool for selecting target-specific peptide candidates directly from given proteome sequence data. It comes with an intuitive graphical user interface, various parameter options and a threshold-based filtering strategy for homologous sequences. Purple enables peptide candidate selection across various taxonomic levels and filtering against backgrounds of varying complexity. Its functionality is demonstrated using data from different virus species and strains. Our software enables to build taxon-specific targeted assays and paves the way to time-efficient and robust viral diagnostics using targeted proteomics.
Collapse
Affiliation(s)
- Johanna Lechner
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.
| | - Felix Hartkopf
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.
| | - Pauline Hiort
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, 13353 Berlin, Germany.
| | - Marica Grossegesse
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, 13353 Berlin, Germany.
| | - Joerg Doellinger
- Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS 6), Robert Koch Institute, 13353 Berlin, Germany.
| | - Bernhard Y Renard
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.
| | - Thilo Muth
- Bioinformatics Unit (MF 1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany.
| |
Collapse
|
183
|
Kim HK, Anwar MA, Choi S. Association of BUD13-ZNF259-APOA5-APOA1-SIK3 cluster polymorphism in 11q23.3 and structure of APOA5 with increased plasma triglyceride levels in a Korean population. Sci Rep 2019; 9:8296. [PMID: 31165758 PMCID: PMC6549162 DOI: 10.1038/s41598-019-44699-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
In this association study on chromosome 11, the data from 12,537 Korean individuals within the Health Examinee (HEXA) and the Korea Association Resource (KARE) projects were analysed to identify genetic loci correlating with increased and decreased plasma triglyceride (TG) levels. We identified a locus in chromosomal region 11q23.3 that harbours genes BUD13, ZNF259, APOA5, APOA1, and SIK3, which may be associated with plasma TG levels. In this locus, 13 relevant single-nucleotide polymorphisms (SNPs) were found: rs184616707, rs118175510, rs60954647, rs79408961, and rs180373 (near BUD13); rs11604424 (in ZNF259); rs2075291, rs651821, and rs7123666 (in or near APOA5); rs525028 (near APOA1), and rs645258, rs10160754, and rs142395187 (in or near SIK3). All 13 SNPs satisfied the genome-wide significance level (P < 5.0 × 10-8) in both meta-analysis and conditional analysis. Haplotype analysis of six SNPs (rs79408961, rs180373, rs2075291, rs651821, rs525028, and rs10160754) that were selected based on the β coefficient and conditional P values, revealed nine common haplotypes (with frequency 0.02-0.34) associated with both increased and reduced TG levels. Furthermore, to shed light on possible structural implications, we modelled and simulated the G185C variant of APOA5 (corresponding to rs2075291), which showed the strongest association. Molecular dynamics simulation results showed that this polymorphic variant of APOA5 has a different hydrogen bond network, increased average distance between chains, and an ability to form distinct clusters. Owing to the orientation of cysteine, the possibility of disulphide bond formation with other proteins is evident. In summary, our association and modelling analyses provided evidence that genetic variations in chromosomal region 11q23.3 are associated with elevated TG levels.
Collapse
Affiliation(s)
- Han-Kyul Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| |
Collapse
|
184
|
Dutoit R, Delsaute M, Collet L, Vander Wauven C, Van Elder D, Berlemont R, Richel A, Galleni M, Bauvois C. Crystal structure determination of Pseudomonas stutzeri A1501 endoglucanase Cel5A: the search for a molecular basis for glycosynthesis in GH5_5 enzymes. Acta Crystallogr D Struct Biol 2019; 75:605-615. [PMID: 31205022 DOI: 10.1107/s2059798319007113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
The discovery of new glycoside hydrolases that can be utilized in the chemoenzymatic synthesis of carbohydrates has emerged as a promising approach for various biotechnological processes. In this study, recombinant Ps_Cel5A from Pseudomonas stutzeri A1501, a novel member of the GH5_5 subfamily, was expressed, purified and crystallized. Preliminary experiments confirmed the ability of Ps_Cel5A to catalyze transglycosylation with cellotriose as a substrate. The crystal structure revealed several structural determinants in and around the positive subsites, providing a molecular basis for a better understanding of the mechanisms that promote and favour synthesis rather than hydrolysis. In the positive subsites, two nonconserved positively charged residues (Arg178 and Lys216) were found to interact with cellobiose. This adaptation has also been reported for transglycosylating β-mannanases of the GH5_7 subfamily.
Collapse
Affiliation(s)
| | - Maud Delsaute
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Dany Van Elder
- Laboratory of Microbiology, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Renaud Berlemont
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840-9502, USA
| | - Aurore Richel
- Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, 5030 Gembloux, Belgium
| | - Moreno Galleni
- InBioS - Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
185
|
Stamou MI, Plummer L, Koika V, Galli-Tsinopoulou A, Georgopoulos NA. A novel FGF8 mutation in a female patient with isolated congenital anosmia. Hormones (Athens) 2019; 18:241-244. [PMID: 31087283 PMCID: PMC8832634 DOI: 10.1007/s42000-019-00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/27/2019] [Indexed: 10/26/2022]
Affiliation(s)
- M I Stamou
- Harvard Reproductive Science Center, Harvard Medical School, Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Massachusetts General Hospital, Boston, MA, USA.
- Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Cambridge, MA, USA.
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University Regional Hospital of Patras, Rio, Greece.
| | - L Plummer
- Harvard Reproductive Science Center, Harvard Medical School, Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Massachusetts General Hospital, Boston, MA, USA
| | - V Koika
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University Regional Hospital of Patras, Rio, Greece
| | - A Galli-Tsinopoulou
- 4th Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N A Georgopoulos
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University Regional Hospital of Patras, Rio, Greece
| |
Collapse
|
186
|
Tonino P, Kiss B, Gohlke J, Smith JE, Granzier H. Fine mapping titin's C-zone: Matching cardiac myosin-binding protein C stripes with titin's super-repeats. J Mol Cell Cardiol 2019; 133:47-56. [PMID: 31158359 DOI: 10.1016/j.yjmcc.2019.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 01/04/2023]
Abstract
Titin is largely comprised of serially-linked immunoglobulin (Ig) and fibronectin type-III (Fn3) domains. Many of these domains are arranged in an 11 domain super-repeat pattern that is repeated 11 times, forming the so-named titin C-zone in the A-band region of the sarcomere. Each super-repeat is thought to provide binding sites for thick filament proteins, such as cMyBP-C (cardiac myosin-binding protein C). However, it remains to be established which of titin's 11 C-zone super-repeats anchor cMyBP-C as titin contains 11 super-repeats and cMyBP-C is found in 9 stripes only. To study the layout of titin's C-zone in relation to MyBP-C, immunolabeling studies were performed on mouse skinned myocardium with antibodies to titin and cMyBP-C, using both immuno-electron microscopy and super-resolution optical microscopy. Results indicate that cMyBP-C locates near the interface between titin's C-zone super-repeats. Studies on a mouse model in which two of titin's C-zone repeats have been genetically deleted support that the first Ig domain of a super-repeat is important for anchoring cMyBP-C but also Fn3 domains located at the end of the preceding repeat. Furthermore, not all super-repeat interfaces are equal as the interface between super-repeat 1 and 2 (close to titin's D-zone) does not contain cMyBP-C. Finally, titin's C-zone does not extend all the way to the bare zone but instead terminates at the level of the second myosin crown. This study enhances insights in the molecular layout of the C-zone of titin, its relation to cMyBP-C, and its possible roles in cardiomyopathies.
Collapse
Affiliation(s)
- Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Balazs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
187
|
Philippon A, Jacquier H, Ruppé E, Labia R. Structure-based classification of class A beta-lactamases, an update. Curr Res Transl Med 2019; 67:115-122. [PMID: 31155436 DOI: 10.1016/j.retram.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Beta-lactamase (EC 3.5.2.6) synthesis, particularly in Gram-negative bacilli, is a major mechanism of natural and acquired resistance to beta-lactams, sometimes accompanied by impermeability and/or active efflux. These enzymes have been classified into four molecular classes (A-D). The serine enzymes of class A, which may be encoded by the bacterial chromosome or transferable elements and are susceptible to clinically available inhibitors (clavulanic acid, sulbactam, tazobactam, avibactam), are prevalent considering other molecular classes (B,C,D). The continual rapid development of genomic approaches and tremendous progress in automatic sequencer technology have resulted in the accumulation of massive amounts of data. A structure-based classification of class A beta-lactamases based on specific conserved motifs involved in catalytic mechanisms and/or substrate binding (S70XXK, S130DN, K234TG), together with E166 (Ambler numbering) and at least 24 other amino-acid residues or analogs such as G45, F66, V80, L81, L91, L101, P107, A134, L138, G143, G144, G156, L169, T181, T182, P183, was validated on 700 amino-acid sequences, including 132 representative types, but mostly probable enzyme sequences, many produced by environmental bacteria. Two subclasses (A1, A2), six major clusters or groups (e.g. natural limited-spectrum beta-lactamases (LSBL), wider spectrum beta-lactamases (WSBL), and various other clusters were identified on the basis of conserved (> 90%) and specific motifs, and residues such as S70TFKAL, S130DNTAANL, R164XEXXLN, V231GDKTG for subclass A1, S70VFKFH, S130DNNACDI,E166XXM, and V231AHKTG for subclass A2, a probable disulfide bridge C77-C123 and G236, A237, G238, and R244 for the LSBL group. This great diversity of primary structures was used as the basis for a structure-based and phylogenetic classification.
Collapse
Affiliation(s)
- Alain Philippon
- Faculté de Médecine Paris Descartes, Service de Bactériologie, Paris, France.
| | - Hervé Jacquier
- AP-HP, Hôpital Lariboisière, Laboratoire de Bactériologie, Paris, France; INSERM, IAME, UMR 1137, Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, France
| | - Etienne Ruppé
- INSERM, IAME, UMR 1137, Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, France; AP-HP, Hôpital Bichat, Laboratoire de Bactériologie, F-75018 Paris, France
| | - Roger Labia
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, 6 Rue de l'Université, Quimper, France
| |
Collapse
|
188
|
Aslaksen S, Wolff AB, Vigeland MD, Breivik L, Sheng Y, Oftedal BE, Artaza H, Skinningsrud B, Undlien DE, Selmer KK, Husebye ES, Bratland E. Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. J Transl Autoimmun 2019; 1:100005. [PMID: 32743495 PMCID: PMC7388336 DOI: 10.1016/j.jtauto.2019.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autoimmune Addison's disease (AAD) is a classic organ-specific autoimmune disease characterized by an immune-mediated attack on the adrenal cortex. As most autoimmune diseases, AAD is believed to be caused by a combination of genetic and environmental factors, and probably interactions between the two. Persistent viral infections have been suggested to play a triggering role, by invoking inflammation and autoimmune destruction. The inability of clearing infections can be due to aberrations in innate immunity, including mutations in genes involved in the recognition of conserved microbial patterns. In a whole exome sequencing study of anonymized AAD patients, we discovered several rare variants predicted to be damaging in the gene encoding Toll-like receptor 3 (TLR3). TLR3 recognizes double stranded RNAs, and is therefore a major factor in antiviral defense. We here report the occurrence and functional characterization of five rare missense variants in TLR3 of patients with AAD. Most of these variants occurred together with a common TLR3 variant that has been associated with a wide range of immunopathologies. The biological implications of these variants on TLR3 function were evaluated in a cell-based assay, revealing a partial loss-of-function effect of three of the rare variants. In addition, rare mutations in other members of the TLR3-interferon (IFN) signaling pathway were detected in the AAD patients. Together, these findings indicate a potential role for TLR3 and downstream signaling proteins in the pathogenesis in a subset of AAD patients.
Collapse
Affiliation(s)
- Sigrid Aslaksen
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Anette B Wolff
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Magnus D Vigeland
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Lars Breivik
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Haydee Artaza
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | | | - Dag E Undlien
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Kaja K Selmer
- Department of Research and Development, Division of Neuroscience, Oslo University Hospital and the University of Oslo, Norway.,National Centre for Epilepsy, Oslo University Hospital, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| |
Collapse
|
189
|
Chen S, Cai F, Wang J, Yang Z, Gu C, Wang G, Mao G, Yan J. Salidroside protects SH‑SY5Y from pathogenic α‑synuclein by promoting cell autophagy via mediation of mTOR/p70S6K signaling. Mol Med Rep 2019; 20:529-538. [PMID: 31180515 PMCID: PMC6580031 DOI: 10.3892/mmr.2019.10285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
The abnormal aggregation of α‑synuclein (α‑syn), which is an important pathological feature of Parkinson's disease (PD), is cytotoxic to dopaminergic neurons and causes cellular damage and apoptosis. Salidroside (SAL) is the main active component of the traditional Chinese medicine Rhodiola rosea. Previous research has demonstrated that SAL exerts cellular protection against cell senescence and neurodegeneration. However, the role and mechanism of action of SAL in PD remain unclear. The present study used overexpression of the wild‑type and the A53T mutation of α‑syn to induce a neuronal model of PD in SH‑SY5Y cells, which led to neuronal toxicity and a reduced cell proliferation index. SAL increased the cell proliferation index of both PD model groups in a dose‑dependent manner. Additionally, SAL alleviated pathogenic phosphorylated (Ser129) α‑syn expression as well as the ratio of microtubule‑associated proteins 1A/1B light chain 3 (LC3)‑I to LC3‑II expression, which is related to autophagic function. Furthermore, the results suggested that the underlying mechanism for the SAL‑induced protection of PD model neurons may involve the preservation of autophagy, which attenuates the phosphorylation of α‑syn in neurons predominantly via mTOR/p70S6K, and is independent of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shasha Chen
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Feng Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jirong Wang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhouxin Yang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Guofu Wang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Yan
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
190
|
Sharma A, Pooraiiouby R, Guzman B, Vu P, Gulia-Nuss M, Nuss AB. Dynamics of Insulin Signaling in the Black-Legged Tick, Ixodes scapularis. Front Endocrinol (Lausanne) 2019; 10:292. [PMID: 31164865 PMCID: PMC6536706 DOI: 10.3389/fendo.2019.00292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/23/2019] [Indexed: 01/05/2023] Open
Abstract
Insulin-like peptides (ILPs) have been identified in several invertebrates, particularly insects, and work on these ILPs has revealed many roles including regulation of energy homeostasis, growth, development, and lifespan to name a few. However, information on arthropod ILPs outside of insects is sparse. Studies of Ixodid tick ILPs are particularly scarce, despite their importance as vectors of infectious agents, most notably Lyme disease. The recent publication of the genome of the black-legged tick, Ixodes scapularis, has advanced opportunities to study this organism from a molecular standpoint, a resource sorely needed for an organism with challenging life history requirements for study in the laboratory, such as a long life cycle and obligate, prolonged, blood-feeding at each life stage. Through bioinformatics searches of the tick genome and other available I. scapularis databases, we identified four putative ILP sequences. Full-length sequences of these ILP transcripts were confirmed, and quantitative RT-PCR was used to examine expression levels of these ILPs in different life stages, feeding states, and adult tissues. This work serves as an initial characterization of ILP expression in ticks and provides the foundation for further exploration of the roles of ILPs in these important arthropod vectors.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Rana Pooraiiouby
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States
| | - Blanca Guzman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Preston Vu
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States
| |
Collapse
|
191
|
Hrynkiewicz K, Patz S, Ruppel S. Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. J Adv Res 2019; 19:49-56. [PMID: 31341669 PMCID: PMC6630021 DOI: 10.1016/j.jare.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Revealing of the community composition of diazotrophic endophytes of S. europaea. The abundance of bacterial diazotrophs in plant organs of S. europaea. Domination of endophytic diazotrophs from Actinobacteria in higher salinity. Indication of new diazotrophic species associated with halophytes. Selection of diazotrophic endophytes useful in agriculture.
Despite the great interest in using halophyte Salicornia europaea L. as a crop in extreme saline habitats, little is known about the role played by associated endophytic bacteria in increasing tolerance of the host-plant to nutrient deficiency. Main objectives of this study were to investigate the community composition of diazotrophic endophytes of S. europaea grown under natural conditions, and determine the proportion of plant-growth promoting bacterial strains able to fix N2. To quantify the abundance of diazotrophic bacterial endophytes in stems and roots of S. europaea, nifH gene and 16S rDNA copy numbers were assessed by quantitative real-time PCR, and characterized the taxonomic structure of cultivable bacteria based on selective medium for diazotrophs. The highest copy numbers of nifH and 16S rDNA were observed in the stems of plants growing at the test site characterized by lower salinity, and correlated with high N concentrations in plant tissues. The abundance of bacterial diazotrophs isolated from plant tissues ranged from 3.6 to 6.3 (log10 of cfu per gram dry plant tissue) and varied in a site- and plant-organ manner. Proteobacteria dominated in plants growing in lower salinity while Actinobacteria prevailed in plants originating from higher salinity, what suggest better adaptation of this group of bacteria to extreme salinity. The results provide insights into new species of diazotrophs associated with halophytes that can be used to optimize strategies for selecting biostimulants useful in saline soils.
Collapse
Affiliation(s)
- Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, N. Copernicus University in Torun, Lwowska 1, PL-87-100 Torun, Poland
| | - Sascha Patz
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tuebingen, Sand 14, D-72076 Tuebingen, Germany
| | - Silke Ruppel
- Leibniz Institute of Vegetable- and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979 Grossbeeren, Germany
| |
Collapse
|
192
|
Shirshikov FV, Pekov YA, Miroshnikov KA. MorphoCatcher: a multiple-alignment based web tool for target selection and designing taxon-specific primers in the loop-mediated isothermal amplification method. PeerJ 2019; 7:e6801. [PMID: 31086739 PMCID: PMC6487805 DOI: 10.7717/peerj.6801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/18/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Advantages of loop-mediated isothermal amplification in molecular diagnostics allow to consider the method as a promising technology of nucleic acid detection in agriculture and medicine. A bioinformatics tool that provides rapid screening and selection of target nucleotide sequences with subsequent taxon-specific primer design toward polymorphic orthologous genes, not only unique or conserved common regions of genome, would contribute to the development of more specific and sensitive diagnostic assays. However, considering features of the original software for primer selection, also known as the PrimerExplorer (Eiken Chemical Co. LTD, Tokyo, Japan), the taxon-specific primer design using multiple sequence alignments of orthologs or even viral genomes with conservative architecture is still complicated. FINDINGS Here, MorphoCatcher is introduced as a fast and simple web plugin for PrimerExplorer with a clear interface. It enables an execution of multiple-alignment based search of taxon-specific mutations, visual screening and selection of target sequences, and easy-to-start specific primer design using the PrimerExplorer software. The combination of MorphoCatcher and PrimerExplorer allows to perform processing of the multiple alignments of orthologs for informative sliding-window plot analysis, which is used to identify the sequence regions with a high density of taxon-specific mutations and cover them by the primer ends for better specificity of amplification. CONCLUSIONS We hope that this new bioinformatics tool developed for target selection and taxon-specific primer design, called the MorphoCatcher, will gain more popularity of the loop-mediated isothermal amplification method for molecular diagnostics community. MorphoCatcher is a simple web plugin tool for the PrimerExplorer software which is freely available only for non-commercial and academic users at http://morphocatcher.ru.
Collapse
Affiliation(s)
- Fedor V Shirshikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Yuri A Pekov
- Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
193
|
Kinase activity of casein kinase 1 delta (CK1δ) is modulated by protein kinase C α (PKCα) by site-specific phosphorylation within the kinase domain of CK1δ. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:710-721. [PMID: 31096047 DOI: 10.1016/j.bbapap.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 01/08/2023]
Abstract
Members of the casein kinase 1 (CK1) family are involved in regulation of crucial cellular pathways including chromosomal segregation, DNA repair, and apoptosis. Therefore, the activity of CK1 isoforms needs to be tightly regulated in order to avoid pathogenesis of proliferative diseases. Regulation of cellular CK1 activity is mainly mediated by (auto-) phosphorylation within its C-terminal regulatory domain. Cellular kinases, among them protein kinase A (PKA), checkpoint kinase 1 (Chk1), protein kinase C α (PKCα), and cyclin-dependent kinases (CDKs) have already been identified to C-terminally phosphorylate CK1δ, thereby modulating its kinase activity. In the present study we analyzed the CK1δ kinase domain for phosphorylation sites targeted by PKCα. Several phosphorylation sites were identified in vitro by initially using GST-CK1δ wild type and phosphorylation-site mutant protein fragments originating from the CK1δ kinase domain. Residues S53, T176, and S181 could finally be confirmed as targets for PKCα. Determination of kinetic parameters of full-length wild type and mutant GST-CK1δ-mediated substrate phosphorylation revealed that integrity of residue T176 is crucial for maintaining CK1δ kinase activity. Functional biochemical and cell culture-based analysis discovered that site-specific phosphorylation of CK1δ by PKCα contributes to fine-tuning of CK1δ kinase activity. In summary, our work for the first time demonstrates the effects of PKCα-mediated site-specific phosphorylation in the CK1δ kinase domain and enhances our knowledge about the regulation of the disease-associated CK1 kinase family.
Collapse
|
194
|
Leveraging implicit knowledge in neural networks for functional dissection and engineering of proteins. NAT MACH INTELL 2019. [DOI: 10.1038/s42256-019-0049-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
195
|
Borba VH, Machado-Silva JR, Le Bailly M, Iñiguez AM. Worldwide paleodistribution of capillariid parasites: Paleoparasitology, current status of phylogeny and taxonomic perspectives. PLoS One 2019; 14:e0216150. [PMID: 31039193 PMCID: PMC6490956 DOI: 10.1371/journal.pone.0216150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Paleoparasitology, the study of parasites in the past, brings the knowledge of where and when they occurred in preterit populations. Some groups of parasites, as capillariids, have a complex and controversial systematic, hindering the paleoparasitological diagnosis. In this article, we synthesized the occurrence of capillariids in both the New and the Old World in ancient times, and discussed the difficulty of the diagnosis of species and the strategies for identification. The present review also shows the current status of the phylogeny in capillariids and indicates the necessity to try new approaches for a better understanding of capillariid paleodistribution. Methods For the systematic review, a predefined guideline defined by PRISMA was used. The articles collected were identified, screened, and included in the review following criteria for eligibility. The current status of the phylogeny of capillariids was accessed using MUSCLE, Bioedit v.7.0.5 and MEGA v. 7.0.21 programs. Results The review discussed 38 articles that presented information about capillariids in past populations. Most of capillariid eggs found in the New and Old World were not identified. However, Calodium hepaticum eggs were the most identified, as some from Eucoleus genus. It was observed that sites from the New World had a better chance for capillariid egg identification, due to previous knowledge of its host, when compared to the Old World. In the 18S rDNA phylogenetic analyses, two datasets were constructed, one including sequences from 7 Moravec’s genera, where 3 genus-specific clusters, with high bootstrap values, could be observed for Capillaria (ML = 99%, NJ = 96%), Eucoleus (ML / NJ = 100%) and Paratrichosoma (ML / NJ = 100%). A fourth cluster of 18S rDNA dataset I revealed lack of definition of Pearsonema and Aonchotheca genera. The 18S rDNA dataset II comprised 8 Moravec’s genera and defined 3 clusters, 2 genus-specific for Eucoleus (ML = 99%, NJ = 100%) and Capillaria (ML / NJ = 98%). The third 18S rDNA dataset II cluster included 6 genera and exhibited, once again, Pearsonema and Aonchotheca poor discrimination. The cox1 gene data consist of 4 Moravec’s genera, and in spite of grouping some species-specific clusters, did not show genera-specific definition. Conclusions Despite the numerous archaeological findings, both in the New and the Old Worlds, the identification of capillariid species based on the morphology and morphometry of eggs remains imprecise, often resulting in a generic diagnosis of a group or morphotype of capillariid. Capillariid is one of the most diverse group of helminths recovered in archaeological sites. The phylogenetic trees produced in this study showed limited genetic information available, unresolved genera and incongruence with the classical taxonomy. The elucidation of the paleodistribution of capillariids can give insights of the ancient host-parasite associations but also in modern sceneries.
Collapse
Affiliation(s)
- Victor Hugo Borba
- Laboratório de Helmintologia Romero Lascasas Porto, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Laboratório de Helmintologia Romero Lascasas Porto, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matthieu Le Bailly
- University of Bourgogne Franche-Comte, CNRS UMR 6249 Chrono-environment, Besançon, France
| | - Alena Mayo Iñiguez
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
196
|
Madeira F, Madhusoodanan N, Lee J, Tivey ARN, Lopez R. Using EMBL-EBI Services via Web Interface and Programmatically via Web Services. ACTA ACUST UNITED AC 2019; 66:e74. [PMID: 31039604 DOI: 10.1002/cpbi.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The European Bioinformatics Institute (EMBL-EBI) provides access to a wide range of core databases and analysis tools that are of key importance in bioinformatics. As well as providing web interfaces to these resources, web services are available using REST and SOAP protocols that enable programmatic access and allow their integration into other applications and analytical workflows and pipelines. This article describes the various options available to researchers and bioinformaticians who would like to use our resources via the web interface employing RESTful web service clients provided in Perl, Python, and Java, or would like to use Docker containers to integrate the resources into analysis pipelines and workflows. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Fábio Madeira
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nandana Madhusoodanan
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Joon Lee
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Adrian R N Tivey
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rodrigo Lopez
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
197
|
Martín-Vicente M, Resino S, Martínez I. siRNA-Mediated Simultaneous Regulation of the Cellular Innate Immune Response and Human Respiratory Syncytial Virus Replication. Biomolecules 2019; 9:biom9050165. [PMID: 31035368 PMCID: PMC6572644 DOI: 10.3390/biom9050165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) infection is a common cause of severe lower respiratory tract diseases such as bronchiolitis and pneumonia. Both virus replication and the associated inflammatory immune response are believed to be behind these pathologies. So far, no vaccine or effective treatment is available for this viral infection. With the aim of finding new strategies to counteract HRSV replication and modulate the immune response, specific small interfering RNAs (siRNAs) were generated targeting the mRNA coding for the viral fusion (F) protein or nucleoprotein (N), or for two proteins involved in intracellular immune signaling, which are named tripartite motif-containing protein 25 (TRIM25) and retinoic acid-inducible gene-I (RIG-I). Furthermore, two additional bispecific siRNAs were designed that silenced F and TRIM25 (TRIM25/HRSV-F) or N and RIG-I (RIG-I/HRSV-N) simultaneously. All siRNAs targeting N or F, but not those silencing TRIM25 or RIG-I alone, significantly reduced viral titers. However, while siRNAs targeting F inhibited only the expression of the F mRNA and protein, the siRNAs targeting N led to a general inhibition of viral mRNA and protein expression. The N-targeting siRNAs also induced a drastic decrease in the expression of genes of the innate immune response. These results show that both virus replication and the early innate immune response can be regulated by targeting distinct viral products with siRNAs, which may be related to the different role of each protein in the life cycle of the virus.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Gene Expression Regulation, Viral
- Gene Silencing
- Genome, Viral
- Humans
- Immunity, Innate/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Viral/metabolism
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/growth & development
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication/physiology
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
198
|
López-Ochoa AJ, Sánchez-Alonso P, Vázquez-Cruz C, Horta-Valerdi G, Negrete-Abascal E, Vaca-Pacheco S, Mejía R, Pérez-Márquez M. Molecular and genetic characterization of the pOV plasmid from Pasteurella multocida and construction of an integration vector for Gallibacterium anatis. Plasmid 2019; 103:45-52. [PMID: 31022414 DOI: 10.1016/j.plasmid.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pOV plasmid isolated from the Pasteurella multocida strain PMOV is a new plasmid, and its molecular characterization is important for determining its gene content and its replicative properties in Pasteurellaceae family bacteria. METHODS Antimicrobial resistance mediated by the pOV plasmid was tested in bacteria. Purified pOV plasmid DNA was used to transform E. coli DH5α and Gallibacterium anatis 12656-12, including the pBluescript II KS(-) plasmid DNA as a control for genetic transformation. The pOV plasmid was digested with EcoRI for cloning fragments into the pBluescript II KS(-) vector to obtain constructs and to determine the full DNA sequence of pOV. RESULTS The pOV plasmid is 13.5 kb in size; confers sulfonamide, streptomycin and ampicillin resistance to P. multocida PMOV; and can transform E. coli DH5α and G. anatis 12656-12. The pOV plasmid was digested for the preparation of chimeric constructs and used to transform E. coli DH5α, conferring resistance to streptomycin (plasmid pSEP3), ampicillin (pSEP4) and sulfonamide (pSEP5) on the bacteria; however, similar to pBluescript II KS(-), the chimeric plasmids did not transform G. anatis 12656-12. A 1.4 kb fragment of the streptomycin cassette from pSEP3 was amplified by PCR and used to construct pSEP7, which in turn was used to interrupt a chromosomal DNA locus of G. anatis by double homologous recombination, introducing strA-strB into the G. anatis chromosome. CONCLUSION The pOV plasmid is a wide-range, low-copy-number plasmid that is able to replicate in some gamma-proteobacteria. Part of this plasmid was integrated into the G. anatis 12656-12 chromosome. This construct may prove to be a useful tool for genetic studies of G. anatis.
Collapse
Affiliation(s)
- Ana Jaqueline López-Ochoa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México.
| | - Guillermo Horta-Valerdi
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Sergio Vaca-Pacheco
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Ricardo Mejía
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | | |
Collapse
|
199
|
Cui W, Li X, Hull L, Xiao M. GATA-type transcription factors play a vital role in radiation sensitivity of Cryptococcus neoformans by regulating the gene expression of specific amino acid permeases. Sci Rep 2019; 9:6385. [PMID: 31015536 PMCID: PMC6478845 DOI: 10.1038/s41598-019-42778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
Cryptococcus neoformans is a basidiomycete fungus that is highly resistant to ionizing radiation and has been identified in highly radioactive environments. Transcription factors (TFs) are master regulators of gene expression by binding to specific DNA sequences within promoters of target genes. A library of 322 signature-tagged gene deletion strains for 155 C. neoformans TF genes has been established. Previous phenome-based functional analysis of the C. neoformans TF mutant library identified key TFs important for various phenotypes, such as growth, differentiation, virulence-factor production, and stress responses. Here, utilizing the established TF mutant library, we identified 5 TFs that are important for radiation sensitivity, including SRE1, BZP2, GAT5, GAT6, and HCM1. Interestingly, BZP2, GAT5 and GAT6 all belong to the GATA-type transcription factors. These factors regulate transcription of nitrogen catabolite repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. In addition to radiation, we found that specific GATA factors are important for other stressors such as rapamycin, fluconazole, and hydroxyurea treatment. Using real-time PCR method, we studied the expression of GATA down-stream genes after radiation exposure and identified that AAP4, AAP5 and URO1 were differentially expressed in the GAT5 and GAT6 mutants compared to the wild type cells. In summary, our data suggest that GATA TFs are important for radiation sensitivity in C. neoformans by regulating specific downstream AAP genes.
Collapse
Affiliation(s)
- Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
200
|
Yin C, Wang F, Fan H, Fang Y, Li W. Identification of Tea Plant Purple Acid Phosphatase Genes and Their Expression Responses to Excess Iron. Int J Mol Sci 2019; 20:ijms20081954. [PMID: 31010077 PMCID: PMC6515233 DOI: 10.3390/ijms20081954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022] Open
Abstract
Purple acid phosphatase (PAP) encoding genes are a multigene family. PAPs require iron (Fe) to exert their functions that are involved in diverse biological roles including Fe homeostasis. However, the possible roles of PAPs in response to excess Fe remain unknown. In this study, we attempted to understand the regulation of PAPs by excess Fe in tea plant (Camellia sinensis). A genome-wide investigation of PAP encoding genes identified 19 CsPAP members based on the conserved motifs. The phylogenetic analysis showed that PAPs could be clustered into four groups, of which group II contained two specific cysteine-containing motifs “GGECGV” and “YERTC”. To explore the expression patterns of CsPAP genes in response to excessive Fe supply, RNA-sequencing (RNA-seq) analyses were performed to compare their transcript abundances between tea plants that are grown under normal and high iron conditions, respectively. 17 members were shown to be transcribed in both roots and leaves. When supplied with a high amount of iron, the expression levels of four genes were significantly changed. Of which, CsPAP15a, CsPAP23 and CsPAP27c were shown as downregulated, while the highly expressed CsPAP10a was upregulated. Moreover, CsPAP23 was found to be alternatively spliced, suggesting its post-transcriptional regulation. The present work implicates that some CsPAP genes could be associated with the responses of tea plants to the iron regime, which may offer a new direction towards a further understanding of iron homeostasis and provide the potential approaches for crop improvement in terms of iron biofortification.
Collapse
Affiliation(s)
- Chaoyan Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Fei Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Huiqin Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|