151
|
Lam M, Takeo K, Almeida RG, Cooper MH, Wu K, Iyer M, Kantarci H, Zuchero JB. CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes. Nat Commun 2022; 13:5583. [PMID: 36151203 PMCID: PMC9508103 DOI: 10.1038/s41467-022-33200-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myelin is required for rapid nerve signaling and is emerging as a key driver of CNS plasticity and disease. How myelin is built and remodeled remains a fundamental question of neurobiology. Central to myelination is the ability of oligodendrocytes to add vast amounts of new cell membrane, expanding their surface areas by many thousand-fold. However, how oligodendrocytes add new membrane to build or remodel myelin is not fully understood. Here, we show that CNS myelin membrane addition requires exocytosis mediated by the vesicular SNARE proteins VAMP2/3. Genetic inactivation of VAMP2/3 in myelinating oligodendrocytes caused severe hypomyelination and premature death without overt loss of oligodendrocytes. Through live imaging, we discovered that VAMP2/3-mediated exocytosis drives membrane expansion within myelin sheaths to initiate wrapping and power sheath elongation. In conjunction with membrane expansion, mass spectrometry of oligodendrocyte surface proteins revealed that VAMP2/3 incorporates axon-myelin adhesion proteins that are collectively required to form nodes of Ranvier. Together, our results demonstrate that VAMP2/3-mediated membrane expansion in oligodendrocytes is indispensable for myelin formation, uncovering a cellular pathway that could sculpt myelination patterns in response to activity-dependent signals or be therapeutically targeted to promote regeneration in disease.
Collapse
Affiliation(s)
- Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Koji Takeo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Kanagawa, Japan
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
152
|
Chen L, Vedula P, Tang HY, Dong DW, Kashina AS. Differential N-terminal processing of beta and gamma actin. iScience 2022; 25:105186. [PMID: 36248738 PMCID: PMC9556930 DOI: 10.1016/j.isci.2022.105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Cytoplasmic beta- and gamma-actin are ubiquitously expressed in every eukaryotic cell. They are encoded by different genes, but their amino acid sequences differ only by four conservative substitutions at the N-termini, making it difficult to dissect their individual regulation. Here, we analyzed actin from cultured cells and tissues by mass spectrometry and found that beta, unlike gamma actin, undergoes sequential removal of N-terminal Asp residues, leading to truncated actin species found in both F- and G-actin preparations. This processing affects up to ∼3% of beta actin in different cell types. We used CRISPR/Cas-9 in cultured cells to delete two candidate enzymes capable of mediating this type of processing. This deletion abolishes most of the beta actin N-terminal processing and results in changes in F-actin levels, cell spreading, filopodia formation, and cell migration. Our results demonstrate previously unknown isoform-specific actin regulation that can potentially affect actin functions in cells.
Collapse
Affiliation(s)
- Li Chen
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | - Dawei W. Dong
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Anna S. Kashina
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA,Corresponding author
| |
Collapse
|
153
|
Gawlik J, Koper M, Bogdanowicz A, Weglenski P, Dzikowska A. Nuclear Functions of KaeA, a Subunit of the KEOPS Complex in Aspergillus nidulans. Int J Mol Sci 2022; 23:ijms231911138. [PMID: 36232439 PMCID: PMC9570407 DOI: 10.3390/ijms231911138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Kae1 is a subunit of the highly evolutionarily conserved KEOPS/EKC complex, which is involved in universal (t6A37) tRNA modification. Several reports have discussed the participation of this complex in transcription regulation in yeast and human cells, including our previous observations of KaeA, an Aspergillus nidulans homologue of Kae1p. The aim of this project was to confirm the role of KaeA in transcription, employing high-throughput transcriptomic (RNA-Seq and ChIP-Seq) and proteomic (LC-MS) analysis. We confirmed that KaeA is a subunit of the KEOPS complex in A. nidulans. An analysis of kaeA19 and kaeA25 mutants showed that, although the (t6A37) tRNA modification is unaffected in both mutants, they reveal significantly altered transcriptomes compared to the wild type. The finding that KaeA is localized in chromatin and identifying its protein partners allows us to postulate an additional nuclear function for the protein. Our data shed light on the universal bi-functional role of this factor and proves that the activity of this protein is not limited to tRNA modification in cytoplasm, but also affects the transcriptional activity of a number of nuclear genes. Data are available via the NCBI’s GEO database under identifiers GSE206830 (RNA-Seq) and GSE206874 (ChIP-Seq), and via ProteomeXchange with identifier PXD034554 (proteomic).
Collapse
Affiliation(s)
- Joanna Gawlik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michal Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Albert Bogdanowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Piotr Weglenski
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Dzikowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
- Correspondence: or
| |
Collapse
|
154
|
Suica VI, Uyy E, Ivan L, Boteanu RM, Cerveanu-Hogas A, Hansen R, Antohe F. Cardiac Alarmins as Residual Risk Markers of Atherosclerosis under Hypolipidemic Therapy. Int J Mol Sci 2022; 23:ijms231911174. [PMID: 36232476 PMCID: PMC9569654 DOI: 10.3390/ijms231911174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
Increased levels of low-density lipoproteins are the main risk factor in the initiation and progression of atherosclerosis. Although statin treatment can effectively lower these levels, there is still a residual risk of cardiovascular events. We hypothesize that a specific panel of stress-sensing molecules (alarmins) could indicate the persistence of silent atherosclerosis residual risk. New Zealand White rabbits were divided into: control group (C), a group that received a high-fat diet for twelve weeks (Au), and a treated hyperlipidemic group with a lipid diet for eight weeks followed by a standard diet and hypolipidemic treatment (atorvastatin and PCSK9 siRNA-inhibitor) for four weeks (Asi). Mass spectrometry experiments of left ventricle lysates were complemented by immunologic and genomic studies to corroborate the data. The hyperlipidemic diet determined a general alarmin up-regulation tendency over the C group. A significant spectral abundance increase was measured for specific heat shock proteins, S100 family members, HMGB1, and Annexin A1. The hypolipidemic treatment demonstrated a reversed regulation trend with non-significant spectral alteration over the C group for some of the identified alarmins. Our study highlights the discriminating potential of alarmins in hyperlipidemia or following hypolipidemic treatment. Data are available via ProteomeXchange with identifier PXD035692.
Collapse
Affiliation(s)
- Viorel I. Suica
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Raluca M. Boteanu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Rune Hansen
- SINTEF Digital, 7465 Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
- Correspondence: ; Tel.: +40-213194518
| |
Collapse
|
155
|
Rudolf Vegas A, Hamdi M, Podico G, Bollwein H, Fröhlich T, Canisso IF, Bauersachs S, Almiñana C. Uterine extracellular vesicles as multi-signal messengers during maternal recognition of pregnancy in the mare. Sci Rep 2022; 12:15616. [PMID: 36114358 PMCID: PMC9481549 DOI: 10.1038/s41598-022-19958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
In contrast to other domestic mammals, the embryo-derived signal(s) leading to maternal recognition of pregnancy (MRP) are still unknow in the mare. We hypothesize that these embryonic signals could be packed into uterine extracellular vesicles (uEVs), acting as multi-signal messengers between the conceptus and the maternal tract, and contributing to MRP. To unveil these signals, the RNA and protein cargos of uEVs isolated from uterine lavages collected from pregnant mares (P; day 10, 11, 12 and 13 after ovulation) and cyclic control mares (C; day 10 and 13 after ovulation) were analyzed. Our results showed a fine-tuned regulation of the uEV cargo (RNAs and proteins), by the day of pregnancy, the estrous cycle, and even the size of the embryo. A particular RNA pattern was identified with specific increase on P12 related to immune system and hormonal response. Besides, a set of proteins as well as RNAs was highly enriched in EVs on P12 and P13. Differential abundance of miRNAs was also identified in P13-derived uEVs. Their target genes were linked to down- or upregulated genes in the embryo and the endometrium, exposing their potential origin. Our study identified for first time specific molecules packed in uEVs, which were previously associated to MRP in the mare, and thus bringing added value to the current knowledge. Further integrative and functional analyses will help to confirm the role of these molecules in uEVs during MRP in the mare.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Meriem Hamdi
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Thomas Fröhlich
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, 81377, Munich, Germany
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Stefan Bauersachs
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland
| | - Carmen Almiñana
- Functional Genomics Group, Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315, Lindau, ZH, Switzerland.
| |
Collapse
|
156
|
Kang H, Cabrera JR, Zee BM, Kang HA, Jobe JM, Hegarty MB, Barry AE, Glotov A, Schwartz YB, Kuroda MI. Variant Polycomb complexes in Drosophila consistent with ancient functional diversity. SCIENCE ADVANCES 2022; 8:eadd0103. [PMID: 36070387 PMCID: PMC9451159 DOI: 10.1126/sciadv.add0103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Polycomb group (PcG) mutants were first identified in Drosophila on the basis of their failure to maintain proper Hox gene repression during development. The proteins encoded by the corresponding fly genes mainly assemble into one of two discrete Polycomb repressive complexes: PRC1 or PRC2. However, biochemical analyses in mammals have revealed alternative forms of PRC2 and multiple distinct types of noncanonical or variant PRC1. Through a series of proteomic analyses, we identify analogous PRC2 and variant PRC1 complexes in Drosophila, as well as a broader repertoire of interactions implicated in early development. Our data provide strong support for the ancient diversity of PcG complexes and a framework for future analysis in a longstanding and versatile genetic system.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Janel R. Cabrera
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Emmanuel College, Boston, MA 02115, USA
| | - Barry M. Zee
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heather A. Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Alexander Glotov
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Yuri B. Schwartz
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Mitzi I. Kuroda
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
157
|
Han Y, Wennersten SA, Wright JM, Ludwig RW, Lau E, Lam MPY. Proteogenomics reveals sex-biased aging genes and coordinated splicing in cardiac aging. Am J Physiol Heart Circ Physiol 2022; 323:H538-H558. [PMID: 35930447 PMCID: PMC9448281 DOI: 10.1152/ajpheart.00244.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/24/2023]
Abstract
The risks of heart diseases are significantly modulated by age and sex, but how these factors influence baseline cardiac gene expression remains incompletely understood. Here, we used RNA sequencing and mass spectrometry to compare gene expression in female and male young adult (4 mo) and early aging (20 mo) mouse hearts, identifying thousands of age- and sex-dependent gene expression signatures. Sexually dimorphic cardiac genes are broadly distributed, functioning in mitochondrial metabolism, translation, and other processes. In parallel, we found over 800 genes with differential aging response between male and female, including genes in cAMP and PKA signaling. Analysis of the sex-adjusted aging cardiac transcriptome revealed a widespread remodeling of exon usage patterns that is largely independent from differential gene expression, concomitant with upstream changes in RNA-binding protein and splice factor transcripts. To evaluate the impact of the splicing events on cardiac proteoform composition, we applied an RNA-guided proteomics computational pipeline to analyze the mass spectrometry data and detected hundreds of putative splice variant proteins that have the potential to rewire the cardiac proteome. Taken together, the results here suggest that cardiac aging is associated with 1) widespread sex-biased aging genes and 2) a rewiring of RNA splicing programs, including sex- and age-dependent changes in exon usages and splice patterns that have the potential to influence cardiac protein structure and function. These changes contribute to the emerging evidence for considerable sexual dimorphism in the cardiac aging process that should be considered in the search for disease mechanisms.NEW & NOTEWORTHY Han et al. used proteogenomics to compare male and female mouse hearts at 4 and 20 mo. Sex-biased cardiac genes function in mitochondrial metabolism, translation, autophagy, and other processes. Hundreds of cardiac genes show sex-by-age interactions, that is, sex-biased aging genes. Cardiac aging is accompanied with a remodeling of exon usage in functionally coordinated genes, concomitant with differential expression of RNA-binding proteins and splice factors. These features represent an underinvestigated aspect of cardiac aging that may be relevant to the search for disease mechanisms.
Collapse
Grants
- R21-HL150456 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL144829 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL127302 NHLBI NIH HHS
- R03-OD032666 HHS | NIH | NIH Office of the Director (OD)
- R01 HL141278 NHLBI NIH HHS
- F32 HL149191 NHLBI NIH HHS
- F32-HL149191 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL127302 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R21 HL150456 NHLBI NIH HHS
- R03 OD032666 NIH HHS
- R00 HL144829 NHLBI NIH HHS
- R01-HL141278 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- University of Colorado
- University of Colorado School of Medicine, Anschutz Medical Campus
Collapse
Affiliation(s)
- Yu Han
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Sara A Wennersten
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Julianna M Wright
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - R W Ludwig
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Maggie P Y Lam
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
158
|
Abstract
Exposure to organophosphorus pesticides (OP) can have chronic adverse effects that are independent of inhibition of acetylcholinesterase, the classic target for acute OP toxicity. In pure proteins, the organophosphorus pesticide chlorpyrifos oxon induces a cross-link between lysine and glutamate (or aspartate) with loss of water. Tubulin is particularly sensitive to OP-induced cross-linking. Our goal was to explore OP-induced cross-linking in a complex protein sample, MAP-rich tubulin from Sus scrofa and to test 8 OP for their capacity to promote isopeptide cross-linking. We treated 100 μg of MAP-rich tubulin with 100 μM chlorpyrifos, chlorpyrifos oxon, methamidophos, paraoxon, diazinon, diazoxon, monocrotophos, or dichlorvos. Each sample was separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained with Coomassie blue. Five gel slices (at about 30, 50, 150, and 300 kDa, and the top of the separating gel) were removed from the lanes for each of the eight OP samples and from untreated control lanes. These gel slices were subjected to in-gel trypsin digestion. MSMS fragmentation spectra of the tryptic peptides were examined for isopeptide cross-links. Sixteen spectra yielded convincing evidence for isopeptide cross-linked peptides. Ten were from the chlorpyrifos oxon reaction, 1 from dichlorvos, 1 from paraoxon, 1 from diazinon, and 3 from diazoxon. It was concluded that catalysis of protein cross-linking is a general property of organophosphorus pesticides and pesticide metabolites. Data are available via ProteomeXchange with identifier PXD034529.
Collapse
Affiliation(s)
- Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Seda Onder
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Biochemistry, School of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
159
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
160
|
Bernea EG, Suica VI, Uyy E, Cerveanu-Hogas A, Boteanu RM, Ivan L, Ceausu I, Mihai DA, Ionescu-Tîrgoviște C, Antohe F. Exosome Proteomics Reveals the Deregulation of Coagulation, Complement and Lipid Metabolism Proteins in Gestational Diabetes Mellitus. Molecules 2022; 27:molecules27175502. [PMID: 36080270 PMCID: PMC9457917 DOI: 10.3390/molecules27175502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes are small extracellular vesicles with a variable protein cargo in consonance with cell origin and pathophysiological conditions. Gestational diabetes mellitus (GDM) is characterized by different levels of chronic low-grade inflammation and vascular dysfunction; however, there are few data characterizing the serum exosomal protein cargo of GDM patients and associated signaling pathways. Eighteen pregnant women were enrolled in the study: 8 controls (CG) and 10 patients with GDM. Blood samples were collected from patients, for exosomes’ concentration. Protein abundance alterations were demonstrated by relative mass spectrometric analysis and their association with clinical parameters in GDM patients was performed using Pearson’s correlation analysis. The proteomics analysis revealed 78 significantly altered proteins when comparing GDM to CG, related to complement and coagulation cascades, platelet activation, prothrombotic factors and cholesterol metabolism. Down-regulation of Complement C3 (C3), Complement C5 (C5), C4-B (C4B), C4b-binding protein beta chain (C4BPB) and C4b-binding protein alpha chain (C4BPA), and up-regulation of C7, C9 and F12 were found in GDM. Our data indicated significant correlations between factors involved in the pathogenesis of GDM and clinical parameters that may improve the understanding of GDM pathophysiology. Data are available via ProteomeXchange with identifier PXD035673.
Collapse
Affiliation(s)
- Elena G. Bernea
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020474 Bucharest, Romania
| | - Viorel I. Suica
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Raluca M. Boteanu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Iuliana Ceausu
- University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- “Dr. I. Cantacuzino” Hospital, 020475 Bucharest, Romania
| | - Doina A. Mihai
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020474 Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Constantin Ionescu-Tîrgoviște
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020474 Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
- Correspondence: ; Tel.: +40213194518
| |
Collapse
|
161
|
Evidencing New Roles for the Glycosyl-Transferase Cps1 in the Phytopathogenic Fungus Botrytis cinerea. J Fungi (Basel) 2022; 8:jof8090899. [PMID: 36135623 PMCID: PMC9500679 DOI: 10.3390/jof8090899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The fungal cell wall occupies a central place in the interaction between fungi and their environment. This study focuses on the role of the putative polysaccharide synthase Cps1 in the physiology, development and virulence of the grey mold-causing agent Botrytis cinerea. Deletion of the Bccps1 gene does not affect the germination of the conidia (asexual spores) or the early mycelial development, but it perturbs hyphal expansion after 24 h, revealing a two-phase hyphal development that has not been reported so far. It causes a severe reduction of mycelial growth in a solid medium and modifies hyphal aggregation into pellets in liquid cultures. It strongly impairs plant penetration, plant colonization and the formation of sclerotia (survival structures). Loss of the BcCps1 protein associates with a decrease in glucans and glycoproteins in the fungus cell wall and the up-accumulation of 132 proteins in the mutant’s exoproteome, among which are fungal cell wall enzymes. This is accompanied by an increased fragility of the mutant mycelium, an increased sensitivity to some environmental stresses and a reduced adhesion to plant surface. Taken together, the results support a significant role of Cps1 in the cell wall biology of B. cinerea.
Collapse
|
162
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
163
|
Bali GK, Singh SK, Chauhan VK, Joshi N, Bhat FA, Malla WA, Ramanujam B, Varshney R, Kour M, Pandit RS. An insight in proteome profiling of Tuta absoluta larvae after entomopathogenic fungal infection. Sci Data 2022; 9:507. [PMID: 35986033 PMCID: PMC9391459 DOI: 10.1038/s41597-022-01593-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Tuta absoluta (L.) (Lepidoptera: Gelechiidae), a major pest of solanaceous plant species, causes serious losses in the agriculture sector around the globe. For better pest management, entomopathogenic fungi such as Beauveria bassiana and Purpureocillium lilacinum, play an efficient role in suppressing the pest population. The present study was carried out to analyse the effects post fungal infections through proteome profiling using an Orbitrap Fusion Tribrid mass spectrometer. A total of 2,201 proteins were identified from the fourth instar larvae of T. absoluta, of which 442 and 423 proteins were significantly dysregulated upon infection with P. lilacinum and B. bassiana respectively. The potential proteins related to immune systems as well as detoxification processes showed significant alterations after post fungal infection. Studies on T. absoluta proteomics and genomics as well as the consequences of entomopathogenic fungal infection on the immune response of this insect could provide an initial framework for exploring more fungus-host interactions for the development of better strategies for integrated pest management.
Collapse
Affiliation(s)
- Gurmeet Kour Bali
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Sanjay Kumar Singh
- National Fungal Culture Collection of India, Biodiversity and Paleobiology Group, MACs Agharkar Research Institute, Pune, 411004, India
| | - Vinod Kumar Chauhan
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Neha Joshi
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal Academy of Higher Education, MAHE, Manipal, 576104, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Boman Ramanujam
- ICAR- National Bureau of Agricultural Insect Resources, Bengaluru-560024, Karnataka, India
| | - Richa Varshney
- ICAR- National Bureau of Agricultural Insect Resources, Bengaluru-560024, Karnataka, India
| | - Manpreet Kour
- Division of Veterinary Medicine, Faculty of Veterinary science and Animal Husbandry, S.K. University of Agricultural Sciences and Technology, R.S Pura, Jammu, 181102, India
| | | |
Collapse
|
164
|
Vadakekolathu J, Boocock DJ, Pandey K, Guinn BA, Legrand A, Miles AK, Coveney C, Ayala R, Purcell AW, McArdle SE. Multi-Omic Analysis of Two Common P53 Mutations: Proteins Regulated by Mutated P53 as Potential Targets for Immunotherapy. Cancers (Basel) 2022; 14:cancers14163975. [PMID: 36010968 PMCID: PMC9406384 DOI: 10.3390/cancers14163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary TP53 is the most frequently mutated gene in many cancers, but it has failed to be a very effective target for treatment to date. To overcome this, we have examined what else changes in cells when the TP53 gene is mutated. We modified cells that had no TP53 expression to have one of the two most common mutations, either R175H or R273H. We examined how the presence of these TP53 mutations caused cellular changes including microscopic, gene expression and peptide presentation to the immune system. This has allowed us to identify new (secondary) targets that could be used to facilitate the treatment of tumors that harbor p53 mutations. Abstract The p53 protein is mutated in more than 50% of human cancers. Mutated p53 proteins not only lose their normal function but often acquire novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function. Mutant p53 has been shown to affect the transcription of a range of genes, as well as protein–protein interactions with transcription factors and other effectors; however, no one has intensively investigated and identified these proteins, or their MHC presented epitopes, from the viewpoint of their ability to act as targets for immunotherapeutic interventions. We investigated the molecular changes that occurred after the TP53 null osteosarcoma cells, SaOS-2, were transfected with one of two conformational p53-mutants, either R175H or R273H. We then examined the phenotypic and functional changes using macroscopic observations, proliferation, gene expression and proteomics alongside immunopeptidome profiling of peptide antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. We identified several candidate proteins in both TP53 mutant cell lines with differential expression when compared to the TP53 null vector control, SaOS-V. Quantitative SWATH proteomics combined with immune-peptidome analysis of the class-I eluted peptides identified several epitopes presented on pMHC and in silico analysis shortlisted which antigens were expressed in a range of cancerous but not adjacent healthy tissues. Out of all the candidates, KLC1 and TOP2A showed high levels of expression in every tumor type examined. From these proteins, three A2 and four pan HLA-A epitopes were identified in both R175H and R273H from TOP2A. We have now provided a short list of future immunotherapy targets for the treatment of cancers harboring mutated TP53.
Collapse
Affiliation(s)
- Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - David J. Boocock
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Kirti Pandey
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Barbara-ann Guinn
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, UK
| | - Antoine Legrand
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Amanda K. Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Clare Coveney
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
| | - Rochelle Ayala
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunology Program, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Stephanie E. McArdle
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK or
- Centre for Health, Ageing and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK
- Correspondence:
| |
Collapse
|
165
|
Baseline proteomics characterisation of the emerging host biomanufacturing organism Halomonas bluephagenesis. Sci Data 2022; 9:492. [PMID: 35963929 PMCID: PMC9376085 DOI: 10.1038/s41597-022-01610-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Despite its greener credentials, biomanufacturing remains financially uncompetitive compared with the higher carbon emitting, hydrocarbon-based chemical industry. Replacing traditional chassis such as E. coli with novel robust organisms, are a route to cost reduction for biomanufacturing. Extremophile bacteria such as the halophilic Halomonas bluephagenesis TD01 exemplify this potential by thriving in environments inherently inimical to other organisms, so reducing sterilisation costs. Novel chassis are inevitably less well annotated than established organisms. Rapid characterisation along with community data sharing will facilitate adoption of such organisms for biomanufacturing. The data record comprises a newly sequenced genome for the organism and evidence via LC-MS based proteomics for expression of 1160 proteins (30% of the proteome) including baseline quantification of 1063 proteins (27% of the proteome), and a spectral library enabling re-use for targeted LC-MS proteomics assays. Protein data are annotated with KEGG Orthology, enabling rapid matching of quantitative data to pathways of interest to biomanufacturing. Measurement(s) | Genome • Proteomic Profile | Technology Type(s) | PacBio Sequel System • nanoflow liquid chromatography-electrospray ionisation mass spectrometry | Sample Characteristic - Organism | Halomonas sp. TD01 |
Collapse
|
166
|
Manes NP, Calzola JM, Kaplan PR, Fraser IDC, Germain RN, Meier-Schellersheim M, Nita-Lazar A. Absolute protein quantitation of the mouse macrophage Toll-like receptor and chemotaxis pathways. Sci Data 2022; 9:491. [PMID: 35961990 PMCID: PMC9374760 DOI: 10.1038/s41597-022-01612-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The Toll-like receptor (TLR) and chemotaxis pathways are key components of the innate immune system. Subtle variation in the concentration, timing, and molecular structure of the ligands are known to affect downstream signaling and the resulting immune response. Computational modeling and simulation at the molecular interaction level can be used to study complex biological pathways, but such simulations require protein concentration values as model parameters. Here we report the development and application of targeted mass spectrometry assays to measure the absolute abundance of proteins of the mouse macrophage Toll-like receptor 4 (TLR4) and chemotaxis pathways. Two peptides per protein were quantified, if possible. The protein abundance values ranged from 1,332 to 227,000,000 copies per cell. They moderately correlated with transcript abundance values from a previously published mouse macrophage RNA-seq dataset, and these two datasets were combined to make proteome-wide abundance estimates. The datasets produced during this investigation can be used for pathway modeling and simulation, as well as for other studies of the TLR and chemotaxis pathways. Measurement(s) | molecules per cell | Technology Type(s) | nanoflow high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry | Sample Characteristic - Organism | Mus musculus |
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica M Calzola
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline R Kaplan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Iain D C Fraser
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Meier-Schellersheim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
167
|
Contreras W, Wiesehöfer C, Schreier D, Leinung N, Peche P, Wennemuth G, Gentzel M, Schröder B, Mentrup T. C11orf94/Frey is a key regulator for male fertility by controlling Izumo1 complex assembly. SCIENCE ADVANCES 2022; 8:eabo6049. [PMID: 35960805 PMCID: PMC9374335 DOI: 10.1126/sciadv.abo6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
Although gamete fusion represents the central event in sexual reproduction, the required protein machinery is poorly defined. In sperm cells, Izumo1 and several Izumo1-associated proteins play an essential role for this process. However, so far, the mechanisms underlying transport and maturation of Izumo1 and its incorporation into high molecular weight complexes are incompletely defined. Here, we provide a detailed characterization of the C11orf94 protein, which we rename Frey, which provides a platform for the assembly of Izumo1 complexes. By retaining Izumo1 in the endoplasmic reticulum, Frey facilitates its incorporation into high molecular weight complexes. To fulfill its function, the unstable Frey protein is stabilized within the catalytic center of an intramembrane protease. Loss of Frey results in reduced assembly of Izumo1 complexes and male infertility due to impaired gamete fusion. Collectively, these findings provide mechanistic insights into the early biogenesis and functional relevance of Izumo1 complexes.
Collapse
Affiliation(s)
- Whendy Contreras
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Caroline Wiesehöfer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dora Schreier
- CRISPR-Cas9 Facility, Experimental Center of the Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Petra Peche
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marc Gentzel
- Core Facility Molecular Analysis–Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
168
|
An integrative-omics analysis of an industrial clavulanic acid-overproducing Streptomyces clavuligerus. Appl Microbiol Biotechnol 2022; 106:6139-6156. [PMID: 35945361 DOI: 10.1007/s00253-022-12098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
Clavulanic acid (CA) is a clinically important secondary metabolite used to treat infectious diseases. We aimed to decipher complex regulatory mechanisms acting in CA biosynthesis by analyzing transcriptome- and proteome-wide alterations in an industrial CA overproducer Streptomyces clavuligerus strain, namely DEPA and its wild-type counterpart NRRL3585. A total of 924 differentially expressed genes (DEGs) and 271 differentially produced proteins (DPPs) were obtained by RNA-seq and nanoLC-MS/MS analyses, respectively. In particular, CA biosynthetic genes, namely, car (cad), cas2, oat2, pah, bls, ceas2, orf12, and claR, a cluster situated regulatory (CSR) gene, were significantly upregulated as shown by RNA-seq. Enzymes of clavam biosynthesis were downregulated considerably in the DEPA strain, while the genes involved in the arginine biosynthesis, one of the precursors of CA pathway, were overexpressed. However, the biosynthesis of the other CA precursor, glyceraldehyde-3-phosphate (G3P), was not affected. CA overproduction in the DEPA strain was correlated with BldD, BldG, BldM, and BldN (AdsA) overrepresentation. In addition, TetR, WhiB, and Xre family transcriptional regulators were shown to be significantly overrepresented. Several uncharacterized/unknown proteins differentially expressed in the DEPA strain await further studies for functional characterization. Correlation analysis indicated an acceptable degree of consistency between the transcriptome and proteome data. The study represents the first integrative-omics analysis in a CA overproducer S. clavuligerus strain, providing insights into the critical control points and potential rational engineering targets for a purposeful increase of CA yields in strain improvement. KEY POINTS: ∙ Transcriptome and proteome-wide alterations in industrial CA overproducer strain DEPA ∙ An acceptable degree of consistency between the transcriptome and proteome data ∙ New targets to be exploited for rational engineering.
Collapse
|
169
|
Adaptation and Resistance: How Bacteroides thetaiotaomicron Copes with the Bisphenol A Substitute Bisphenol F. Microorganisms 2022; 10:microorganisms10081610. [PMID: 36014027 PMCID: PMC9414779 DOI: 10.3390/microorganisms10081610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Bisphenols are used in the process of polymerization of polycarbonate plastics and epoxy resins. Bisphenols can easily migrate out of plastic products and enter the gastrointestinal system. By increasing colonic inflammation in mice, disrupting the intestinal bacterial community structure and altering the microbial membrane transport system in zebrafish, bisphenols seem to interfere with the gut microbiome. The highly abundant human commensal bacterium Bacteroides thetaiotaomicron was exposed to bisphenols (Bisphenol A (BPA), Bisphenol F (BPF), Bisphenol S (BPS)), to examine the mode of action, in particular of BPF. All chemicals caused a concentration-dependent growth inhibition and the half-maximal effective concentration (EC50) corresponded to their individual logP values, a measure of their hydrophobicity. B. thetaiotaomicron exposed to BPF decreased membrane fluidity with increasing BPF concentrations. Physiological changes including an increase of acetate concentrations were observed. On the proteome level, a higher abundance of several ATP synthase subunits and multidrug efflux pumps suggested an increased energy demand for adaptive mechanisms after BPF exposure. Defense mechanisms were also implicated by a pathway analysis that identified a higher abundance of members of resistance pathways/strategies to cope with xenobiotics (i.e., antibiotics). Here, we present further insights into the mode of action of bisphenols in a human commensal gut bacterium regarding growth inhibition, and the physiological and functional state of the cell. These results, combined with microbiota-directed effects, could lead to a better understanding of host health disturbances and disease development based on xenobiotic uptake.
Collapse
|
170
|
Regan-Mochrie G, Hoggard T, Bhagwat N, Lynch G, Hunter N, Remus D, Fox CA, Zhao X. Yeast ORC sumoylation status fine-tunes origin licensing. Genes Dev 2022; 36:gad.349610.122. [PMID: 35926881 PMCID: PMC9480853 DOI: 10.1101/gad.349610.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 01/03/2023]
Abstract
Sumoylation is emerging as a posttranslation modification important for regulating chromosome duplication and stability. The origin recognition complex (ORC) that directs DNA replication initiation by loading the MCM replicative helicase onto origins is sumoylated in both yeast and human cells. However, the biological consequences of ORC sumoylation are unclear. Here we report the effects of hypersumoylation and hyposumoylation of yeast ORC on ORC activity and origin function using multiple approaches. ORC hypersumoylation preferentially reduced the function of a subset of early origins, while Orc2 hyposumoylation had an opposing effect. Mechanistically, ORC hypersumoylation reduced MCM loading in vitro and diminished MCM chromatin association in vivo. Either hypersumoylation or hyposumoylation of ORC resulted in genome instability and the dependence of yeast on other genome maintenance factors, providing evidence that appropriate ORC sumoylation levels are important for cell fitness. Thus, yeast ORC sumoylation status must be properly controlled to achieve optimal origin function across the genome and genome stability.
Collapse
Affiliation(s)
- Gemma Regan-Mochrie
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Nikhil Bhagwat
- Howard Hughes Medical Institute, University of California at Davis, Davis, California 95616, USA
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California 95616, USA
| | - Gerard Lynch
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California at Davis, Davis, California 95616, USA
- Department of Microbiology and Molecular Genetics, University of California at Davis, Davis, California 95616, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
171
|
Molecular Framework of Mouse Endothelial Cell Dysfunction during Inflammation: A Proteomics Approach. Int J Mol Sci 2022; 23:ijms23158399. [PMID: 35955534 PMCID: PMC9369400 DOI: 10.3390/ijms23158399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
A key aspect of cytokine-induced changes as observed in sepsis is the dysregulated activation of endothelial cells (ECs), initiating a cascade of inflammatory signaling leading to leukocyte adhesion/migration and organ damage. The therapeutic targeting of ECs has been hampered by concerns regarding organ-specific EC heterogeneity and their response to inflammation. Using in vitro and in silico analysis, we present a comprehensive analysis of the proteomic changes in mouse lung, liver and kidney ECs following exposure to a clinically relevant cocktail of proinflammatory cytokines. Mouse lung, liver and kidney ECs were incubated with TNF-α/IL-1β/IFN-γ for 4 or 24 h to model the cytokine-induced changes. Quantitative label-free global proteomics and bioinformatic analysis performed on the ECs provide a molecular framework for the EC response to inflammatory stimuli over time and organ-specific differences. Gene Ontology and PANTHER analysis suggest why some organs are more susceptible to inflammation early on, and show that, as inflammation progresses, some protein expression patterns become more uniform while additional organ-specific proteins are expressed. These findings provide an in-depth understanding of the molecular changes involved in the EC response to inflammation and can support the development of drugs targeting ECs within different organs. Data are available via ProteomeXchange (identifier PXD031804).
Collapse
|
172
|
Ferguson ID, Patiño-Escobar B, Tuomivaara ST, Lin YHT, Nix MA, Leung KK, Kasap C, Ramos E, Nieves Vasquez W, Talbot A, Hale M, Naik A, Kishishita A, Choudhry P, Lopez-Girona A, Miao W, Wong SW, Wolf JL, Martin TG, Shah N, Vandenberg S, Prakash S, Besse L, Driessen C, Posey AD, Mullins RD, Eyquem J, Wells JA, Wiita AP. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat Commun 2022; 13:4121. [PMID: 35840578 PMCID: PMC9287322 DOI: 10.1038/s41467-022-31810-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/30/2022] [Indexed: 12/21/2022] Open
Abstract
The myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here, we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline, in drug resistance, and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells. We engineer proof-of-principle chimeric antigen receptor (CAR) T-cells targeting CCR10 using its natural ligand CCL27. In myeloma models we identify proteins that could serve as markers of resistance to bortezomib and lenalidomide, including CD53, CD10, EVI2B, and CD33. We find that acute lenalidomide treatment increases activity of MUC1-targeting CAR-T cells through antigen upregulation. Finally, we develop a miniaturized surface proteomic protocol for profiling primary plasma cell samples with low inputs. These approaches and datasets may contribute to the biological, therapeutic, and diagnostic understanding of myeloma.
Collapse
Affiliation(s)
- Ian D Ferguson
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Matthew A Nix
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Corynn Kasap
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Wilson Nieves Vasquez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Alexis Talbot
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
- INSERM U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Martina Hale
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Akul Naik
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Audrey Kishishita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- Program in Chemistry and Chemical Biology, University of California, San Francisco, CA, USA
| | - Priya Choudhry
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | | | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandy W Wong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Jeffrey L Wolf
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Thomas G Martin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nina Shah
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Scott Vandenberg
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Sonam Prakash
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Lenka Besse
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christoph Driessen
- Department of Medical Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - R Dyche Mullins
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | - Justin Eyquem
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Gladstone Institute for Genomic Immunology, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
173
|
Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat Commun 2022; 13:4043. [PMID: 35831314 PMCID: PMC9279285 DOI: 10.1038/s41467-022-31809-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
Co-fractionation/mass spectrometry (CF/MS) enables the mapping of endogenous macromolecular networks on a proteome scale, but current methods are experimentally laborious, resource intensive and afford lesser quantitative accuracy. Here, we present a technically efficient, cost-effective and reproducible multiplex CF/MS (mCF/MS) platform for measuring and comparing, simultaneously, multi-protein assemblies across different experimental samples at a rate that is up to an order of magnitude faster than previous approaches. We apply mCF/MS to map the protein interaction landscape of non-transformed mammary epithelia versus breast cancer cells in parallel, revealing large-scale differences in protein-protein interactions and the relative abundance of associated macromolecules connected with cancer-related pathways and altered cellular processes. The integration of multiplexing capability within an optimized workflow renders mCF/MS as a powerful tool for systematically exploring physical interaction networks in a comparative manner. Co-fractionation/mass spectrometry (CF/MS) allows mapping protein interactomes but efficiency and quantitative accuracy are limited. Here, the authors develop a reproducible multiplexed CF/MS method and apply it to characterize interactome rewiring in breast cancer cells.
Collapse
|
174
|
Agüero-Chapin G, Galpert-Cañizares D, Domínguez-Pérez D, Marrero-Ponce Y, Pérez-Machado G, Teijeira M, Antunes A. Emerging Computational Approaches for Antimicrobial Peptide Discovery. Antibiotics (Basel) 2022; 11:antibiotics11070936. [PMID: 35884190 PMCID: PMC9311958 DOI: 10.3390/antibiotics11070936] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
In the last two decades many reports have addressed the application of artificial intelligence (AI) in the search and design of antimicrobial peptides (AMPs). AI has been represented by machine learning (ML) algorithms that use sequence-based features for the discovery of new peptidic scaffolds with promising biological activity. From AI perspective, evolutionary algorithms have been also applied to the rational generation of peptide libraries aimed at the optimization/design of AMPs. However, the literature has scarcely dedicated to other emerging non-conventional in silico approaches for the search/design of such bioactive peptides. Thus, the first motivation here is to bring up some non-standard peptide features that have been used to build classical ML predictive models. Secondly, it is valuable to highlight emerging ML algorithms and alternative computational tools to predict/design AMPs as well as to explore their chemical space. Another point worthy of mention is the recent application of evolutionary algorithms that actually simulate sequence evolution to both the generation of diversity-oriented peptide libraries and the optimization of hit peptides. Last but not least, included here some new considerations in proteogenomic analyses currently incorporated into the computational workflow for unravelling AMPs in natural sources.
Collapse
Affiliation(s)
- Guillermin Agüero-Chapin
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (G.A.-C.); (A.A.); Tel.: +351-22-340-1813 (G.A.-C. & A.A.)
| | - Deborah Galpert-Cañizares
- Departamento de Ciencia de la Computación, Universidad Central Marta Abreu de Las Villas (UCLV), Santa Clara 54830, Cuba;
| | - Dany Domínguez-Pérez
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Proquinorte, Unipessoal, Lda, Avenida 5 de Outubro, 124, 7º Piso, Avenidas Novas, 1050-061 Lisboa, Portugal
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Translacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Ecuador;
| | - Gisselle Pérez-Machado
- EpiDisease S.L—Spin-Off of Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46980 Valencia, Spain;
| | - Marta Teijeira
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain;
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Agostinho Antunes
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (G.A.-C.); (A.A.); Tel.: +351-22-340-1813 (G.A.-C. & A.A.)
| |
Collapse
|
175
|
Kennedy J, Whiteaker JR, Ivey RG, Burian A, Chowdhury S, Tsai CF, Liu T, Lin C, Murillo OD, Lundeen RA, Jones LA, Gafken PR, Longton G, Rodland KD, Skates SJ, Landua J, Wang P, Lewis MT, Paulovich AG. Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Anal Chem 2022; 94:9540-9547. [PMID: 35767427 PMCID: PMC9280723 DOI: 10.1021/acs.analchem.1c04382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite advances in proteomic technologies, clinical translation of plasma biomarkers remains low, partly due to a major bottleneck between the discovery of candidate biomarkers and costly clinical validation studies. Due to a dearth of multiplexable assays, generally only a few candidate biomarkers are tested, and the validation success rate is accordingly low. Previously, mass spectrometry-based approaches have been used to fill this gap but feature poor quantitative performance and were generally limited to hundreds of proteins. Here, we demonstrate the capability of an internal standard triggered-parallel reaction monitoring (IS-PRM) assay to greatly expand the numbers of candidates that can be tested with improved quantitative performance. The assay couples immunodepletion and fractionation with IS-PRM and was developed and implemented in human plasma to quantify 5176 peptides representing 1314 breast cancer biomarker candidates. Characterization of the IS-PRM assay demonstrated the precision (median % CV of 7.7%), linearity (median R2 > 0.999 over 4 orders of magnitude), and sensitivity (median LLOQ < 1 fmol, approximately) to enable rank-ordering of candidate biomarkers for validation studies. Using three plasma pools from breast cancer patients and three control pools, 893 proteins were quantified, of which 162 candidate biomarkers were verified in at least one of the cancer pools and 22 were verified in all three cancer pools. The assay greatly expands capabilities for quantification of large numbers of proteins and is well suited for prioritization of viable candidate biomarkers.
Collapse
Affiliation(s)
- Jacob
J. Kennedy
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Jeffrey R. Whiteaker
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Richard G. Ivey
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Aura Burian
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Shrabanti Chowdhury
- Department
of Genetics and Genomic Sciences and Icahn Institute for Data Science
and Genomic Technology, Icahn School of
Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chia-Feng Tsai
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Tao Liu
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - ChenWei Lin
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Oscar D. Murillo
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Rachel A. Lundeen
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States
| | - Lisa A. Jones
- Proteomics
and Metabolomics Shared Resources, Fred
Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Philip R. Gafken
- Proteomics
and Metabolomics Shared Resources, Fred
Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Gary Longton
- Public
Health Sciences Division, Fred Hutchinson
Cancer Research Center, Seattle, Washington 98109, United States
| | - Karin D. Rodland
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Steven J. Skates
- MGH
Biostatistics Center, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - John Landua
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Pei Wang
- Department
of Genetics and Genomic Sciences, Mount
Sinai Hospital, New York, New York 10065, United States
| | - Michael T. Lewis
- Lester
and Sue Smith Breast Center, Baylor College
of Medicine, Houston, Texas 77030, United States
| | - Amanda G. Paulovich
- Clinical
Research Division, Fred Hutchinson Cancer
Research Center, Seattle, Washington 98109, United States,Phone: 206-667-1912. . Fax: 206-667-2277
| |
Collapse
|
176
|
Beykou M, Arias-Garcia M, Roumeliotis TI, Choudhary JS, Moser N, Georgiou P, Bakal C. Proteomic characterisation of triple negative breast cancer cells following CDK4/6 inhibition. Sci Data 2022; 9:395. [PMID: 35817775 PMCID: PMC9273754 DOI: 10.1038/s41597-022-01512-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
When used in combination with hormone treatment, Palbociclib prolongs progression-free survival of patients with hormone receptor positive breast cancer. Mechanistically, Palbociclib inhibits CDK4/6 activity but the basis for differing sensitivity of cancer to Palbociclib is poorly understood. A common observation in a subset of Triple Negative Breast Cancers (TNBCs) is that prolonged CDK4/6 inhibition can engage a senescence-like state where cells exit the cell cycle, whilst, remaining metabolically active. To better understand the senescence-like cell state which arises after Palbociclib treatment we used mass spectrometry to quantify the proteome, phosphoproteome, and secretome of Palbociclib-treated MDA-MB-231 TNBC cells. We observed altered levels of cell cycle regulators, immune response, and key senescence markers upon Palbociclib treatment. These datasets provide a starting point for the derivation of biomarkers which could inform the future use CDK4/6 inhibitors in TNBC subtypes and guide the development of potential combination therapies.
Collapse
Affiliation(s)
- Melina Beykou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK.
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Mar Arias-Garcia
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK
| | - Theodoros I Roumeliotis
- Institute of Cancer Research, Division of Cancer Biology, Functional Proteomics, London, SW3 6JB, UK
| | - Jyoti S Choudhary
- Institute of Cancer Research, Division of Cancer Biology, Functional Proteomics, London, SW3 6JB, UK
| | - Nicolas Moser
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Pantelis Georgiou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK.
- Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
177
|
Végvári Á, Rodriguez JE, Zubarev RA. Single-Cell Chemical Proteomics (SCCP) Interrogates the Timing and Heterogeneity of Cancer Cell Commitment to Death. Anal Chem 2022; 94:9261-9269. [PMID: 35731985 PMCID: PMC9260713 DOI: 10.1021/acs.analchem.2c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022]
Abstract
Chemical proteomics studies the effects of drugs upon a cellular proteome. Due to the complexity and diversity of tumors, the response of cancer cells to drugs is also heterogeneous, and thus, proteome analysis at the single-cell level is needed. Here, we demonstrate that single-cell proteomics techniques have become quantitative enough to tackle the drug effects on target proteins, enabling single-cell chemical proteomics (SCCP). Using SCCP, we studied here the time-resolved response of individual adenocarcinoma A549 cells to anticancer drugs methotrexate, camptothecin, and tomudex, revealing the early emergence of cellular subpopulations committed and uncommitted to death. As a novel and useful approach to exploring the heterogeneous response to drugs of cancer cells, SCCP may prove to be a breakthrough application for single-cell proteomics.
Collapse
Affiliation(s)
- Ákos Végvári
- Division of Physiological
Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Biomedicum A9, Solnavägen 9, SE-171 77 Stockholm, Sweden
| | - Jimmy E. Rodriguez
- Division of Physiological
Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Biomedicum A9, Solnavägen 9, SE-171 77 Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological
Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Biomedicum A9, Solnavägen 9, SE-171 77 Stockholm, Sweden
| |
Collapse
|
178
|
Proteomics Insights into the Gene Network of cis9, trans11-Conjugated Linoleic Acid Biosynthesis in Bovine Mammary Gland Epithelial Cells. Animals (Basel) 2022; 12:ani12131718. [PMID: 35804617 PMCID: PMC9264836 DOI: 10.3390/ani12131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the study was to elucidate the stearoyl-coenzyme A desaturase (SCD1)-dependent gene network of c9, t11-CLA biosynthesis in MAC-T cells from an energy metabolism perspective. The cells were divided into the CAY group (firstly incubated with CAY10566, a chemical inhibitor of SCD1, then incubated with trans-11-octadecenoic acid, (TVA)), the TVA group (only TVA), and the control group (without CAY, TVA). The c9, t11-CLA, and TVA contents were determined by gas chromatography. The mRNA levels of SCD1 and candidate genes were analyzed via real-time PCR. Tandem mass tag (TMT)-based quantitative proteomics, bioinformatic analysis, parallel reaction monitoring (PRM), and small RNA interference were used to explore genes involved in the SCD1-dependent c9, t11-CLA biosynthesis. The results showed that the SCD1 deficiency led by CAY10566 blocked the biosynthesis of c9, t11-CLA. In total, 60 SCD1-related proteins mainly involved in energy metabolism pathways were primarily screened by TMT-based quantitative proteomics analysis. Moreover, 17 proteins were validated using PRM analysis. Then, 11 genes were verified to have negative relationships with SCD1 after the small RNA interference analysis. Based on the above results, we concluded that genes involved in energy metabolism pathways have an impact on the SCD1-dependent molecular mechanism of c9, t11-CLA biosynthesis.
Collapse
|
179
|
Palomba A, Melis R, Biosa G, Braca A, Pisanu S, Ghisaura S, Caimi C, Biasato I, Oddon SB, Gasco L, Terova G, Moroni F, Antonini M, Pagnozzi D, Anedda R. On the Compatibility of Fish Meal Replacements in Aquafeeds for Rainbow Trout. A Combined Metabolomic, Proteomic and Histological Study. Front Physiol 2022; 13:920289. [PMID: 35846007 PMCID: PMC9276982 DOI: 10.3389/fphys.2022.920289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
The sustainable development of modern aquaculture must rely on a significant reduction of the fish meal (FM) used in aquafeed formulations. However, FM substitution with alternative ingredients in diets for carnivorous fish species often showed reduced nutrient absorption, significantly perturbed metabolisms, and histological changes at both hepatic and intestinal levels. In the present study, rainbow trout (Oncorhynchus mykiss) were fed three different experimental aquafeeds. A control diet with higher FM content (27.3%) than two test formulations in which FM was substituted with two more sustainable and promising alternatives: insect meal (Hermetia illucens larvae = 10.1%, FM = 11.6%) and poultry by-products meal (PBM = 14.8%; FM = 11.7%). Combined metabolomics and proteomics analyses of fish liver, together with histological examination of liver and intestine demonstrated that a well-balanced formulation of nutrients in the three diets allowed high metabolic compatibility of either substitution, paving the way for a deeper understanding of the impact of novel raw materials for the fish feed industry. Results show that the main metabolic pathways of nutrient absorption and catabolism were essentially unaltered by alternative feed ingredients, and also histological alterations were negligible. It is demonstrated that the substitution of FM with sustainable alternatives does not have a negative impact on fish metabolism, as long as the nutritional requirements of rainbow trout are fulfilled.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christian Caimi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Sara Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco (TO), Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Federico Moroni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Micaela Antonini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche S.r.l, Alghero (SS), Italy
- *Correspondence: Roberto Anedda, ; Daniela Pagnozzi,
| | - Roberto Anedda
- Porto Conte Ricerche S.r.l, Alghero (SS), Italy
- *Correspondence: Roberto Anedda, ; Daniela Pagnozzi,
| |
Collapse
|
180
|
Gyenis L, Menyhart D, Cruise ES, Jurcic K, Roffey SE, Chai DB, Trifoi F, Fess SR, Desormeaux PJ, Núñez de Villavicencio Díaz T, Rabalski AJ, Zukowski SA, Turowec JP, Pittock P, Lajoie G, Litchfield DW. Chemical Genetic Validation of CSNK2 Substrates Using an Inhibitor-Resistant Mutant in Combination with Triple SILAC Quantitative Phosphoproteomics. Front Mol Biosci 2022; 9:909711. [PMID: 35755813 PMCID: PMC9225150 DOI: 10.3389/fmolb.2022.909711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Edward S Cruise
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Darren B Chai
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Flaviu Trifoi
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sam R Fess
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paul J Desormeaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Stephanie A Zukowski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paula Pittock
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
181
|
Wang D, Li Q, Pan CS, Yan L, Sun K, Wang XY, Anwaier G, Liao QZ, Xie TT, Fan JY, Huo XM, Wang Y, Han JY. Yu-Ping-Feng Formula Ameliorates Alveolar-Capillary Barrier Injury Induced by Exhausted-Exercise via Regulation of Cytoskeleton. Front Pharmacol 2022; 13:891802. [PMID: 35814249 PMCID: PMC9263595 DOI: 10.3389/fphar.2022.891802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Yu-ping-feng powder (YPF) is a compound traditional Chinese medicine extensively used in China for respiratory diseases. However, the role of YPF in alveolar-capillary barrier dysfunction remains unknown. This study aimed to explore the effect and potential mechanism of YPF on alveolar-capillary barrier injury induced by exhausted exercise. Methods: Male Sprague–Dawley rats were used to establish an exhausted-exercise model by using a motorized rodent treadmill. YPF at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Food intake-weight/body weight, blood gas analysis, lung water percent content, BALF protein concentration, morphological observation, quantitative proteomics, real-time PCR, and Western blot were performed. A rat pulmonary microvascular endothelial cell line (PMVEC) subjected to hypoxia was applied for assessing the related mechanism. Results: YPF attenuated the decrease of food intake weight/body weight, improved lung swelling and hemorrhage, alleviated the increase of lung water percent content and BALF protein concentration, and inhibited the impairment of lung morphology. In addition, YPF increased the expression of claudin 3, claudin 18, occludin, VE-cadherin, and β-catenin, attenuated the epithelial and endothelial hyperpermeability in vivo and/or in vitro, and the stress fiber formation in PMVECs after hypoxia. Quantitative proteomics discovered that the effect of YPF implicated the Siah2-ubiquitin-proteasomal pathway, Gng12-PAK1-MLCK, and RhoA/ROCK, which was further confirmed by Western blot. Data are available via ProteomeXchange with identifier PXD032737. Conclusion: YPF ameliorated alveolar-capillary barrier injury induced by exhausted exercise, which is accounted for at least partly by the regulation of cytoskeleton.
Collapse
Affiliation(s)
- Di Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Gulinigaer Anwaier
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Qian-Zan Liao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Ting-Ting Xie
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
- *Correspondence: Jing-Yan Han,
| |
Collapse
|
182
|
Proteomic Analysis of Chicken Chorioallantoic Membrane (CAM) during Embryonic Development Provides Functional Insight. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7813921. [PMID: 35774275 PMCID: PMC9237712 DOI: 10.1155/2022/7813921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
In oviparous animals, the egg contains all resources required for embryonic development. The chorioallantoic membrane (CAM) is a placenta-like structure produced by the embryo for acid-base balance, respiration, and calcium solubilization from the eggshell for bone mineralization. The CAM is a valuable in vivo model in cancer research for development of drug delivery systems and has been used to study tissue grafts, tumor metastasis, toxicology, angiogenesis, and assessment of bacterial invasion. However, the protein constituents involved in different CAM functions are poorly understood. Therefore, we have characterized the CAM proteome at two stages of development (ED12 and ED19) and assessed the contribution of the embryonic blood serum (EBS) proteome to identify CAM-unique proteins. LC/MS/MS-based proteomics allowed the identification of 1470, 1445, and 791 proteins in CAM (ED12), CAM (ED19), and EBS, respectively. In total, 1796 unique proteins were identified. Of these, 175 (ED12), 177 (ED19), and 105 (EBS) were specific to these stages/compartments. This study attributed specific CAM protein constituents to functions such as calcium ion transport, gas exchange, vasculature development, and chemical protection against invading pathogens. Defining the complex nature of the CAM proteome provides a crucial basis to expand its biomedical applications for pharmaceutical and cancer research.
Collapse
|
183
|
Walzer M, García-Seisdedos D, Prakash A, Brack P, Crowther P, Graham RL, George N, Mohammed S, Moreno P, Papatheodorou I, Hubbard SJ, Vizcaíno JA. Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas. Sci Data 2022; 9:335. [PMID: 35701420 PMCID: PMC9197839 DOI: 10.1038/s41597-022-01380-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
The number of mass spectrometry (MS)-based proteomics datasets in the public domain keeps increasing, particularly those generated by Data Independent Acquisition (DIA) approaches such as SWATH-MS. Unlike Data Dependent Acquisition datasets, the re-use of DIA datasets has been rather limited to date, despite its high potential, due to the technical challenges involved. We introduce a (re-)analysis pipeline for public SWATH-MS datasets which includes a combination of metadata annotation protocols, automated workflows for MS data analysis, statistical analysis, and the integration of the results into the Expression Atlas resource. Automation is orchestrated with Nextflow, using containerised open analysis software tools, rendering the pipeline readily available and reproducible. To demonstrate its utility, we reanalysed 10 public DIA datasets from the PRIDE database, comprising 1,278 SWATH-MS runs. The robustness of the analysis was evaluated, and the results compared to those obtained in the original publications. The final expression values were integrated into Expression Atlas, making SWATH-MS experiments more widely available and combining them with expression data originating from other proteomics and transcriptomics datasets.
Collapse
Affiliation(s)
- Mathias Walzer
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom.
| | - David García-Seisdedos
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Ananth Prakash
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Paul Brack
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Peter Crowther
- Melandra Limited, 16 Brook Road, Urmston, Manchester, M41 5RY, United Kingdom
| | - Robert L Graham
- School of Biological Sciences, Chlorine Gardens, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Suhaib Mohammed
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Pablo Moreno
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Simon J Hubbard
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom.
| |
Collapse
|
184
|
Cao L, Li N, Dong Y, Yang XY, Liu J, He QY, Ge R, Sun X. SPD_0090 Negatively Contributes to Virulence of Streptococcus pneumoniae. Front Microbiol 2022; 13:896896. [PMID: 35770170 PMCID: PMC9234739 DOI: 10.3389/fmicb.2022.896896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
In most bacteria, iron plays an important role in the survival of bacteria and the process of infection to the host. Streptococcus pneumoniae (S. pneumoniae) evolved three iron transporters (i.e., PiaABC, PiuABC, and PitABC) responsible for the transportation of three kinds of iron (i.e., ferrichrome, hemin, and ferric ion). Our previous study showed that both mRNA and protein levels of SPD_0090 were significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, but its detailed biological function is unknown. In this study, we constructed spd_0090 knockout and complement strain and found that the deletion of spd_0090 hinders bacterial growth. SPD_0090 is located on the cell membrane and affects the hemin utilization ability of S. pneumoniae. The cell infection model showed that the knockout strain had stronger invasion and adhesion ability. Notably, knockout of the spd_0090 gene resulted in an enhanced infection ability of S. pneumoniae in mice by increasing the expression of virulence factors. Furthermore, iTRAQ quantitative proteomics studies showed that the knockout of spd_0090 inhibited carbon metabolism and thus suppressed bacterial growth. Our study showed that SPD_0090 negatively regulates the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Linlin Cao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yingshan Dong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Yan Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiajia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- *Correspondence: Qing-Yu He,
| | - Ruiguang Ge
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Ruiguang Ge,
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Xuesong Sun,
| |
Collapse
|
185
|
Biswas H, Zhao SJ, Makinwa Y, Bassett JS, Musich PR, Liu JY, Zou Y. Prolyl Isomerization-Mediated Conformational Changes Define ATR Subcellular Compartment-Specific Functions. Front Cell Dev Biol 2022; 10:826576. [PMID: 35721505 PMCID: PMC9204103 DOI: 10.3389/fcell.2022.826576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
ATR is a PI3K-like kinase protein, regulating checkpoint responses to DNA damage and replication stress. Apart from its checkpoint function in the nucleus, ATR actively engages in an antiapoptotic role at mitochondria following DNA damage. The different functions of ATR in the nucleus and cytoplasm are carried out by two prolyl isomeric forms of ATR: trans- and cis-ATR, respectively. The isomerization occurs at the Pin1 Ser428-Pro429 motif of ATR. Here, we investigated the structural basis of the subcellular location-specific functions of human ATR. Using a mass spectrometry-based footprinting approach, the surface accessibility of ATR lysine residues to sulfo-NHS-LC-biotin modification was monitored and compared between the cis- and the trans-isomers. We have identified two biotin-modified lysine residues, K459 and K469, within the BH3-like domain of cis-ATR that were not accessible in trans-ATR, indicating a conformational change around the BH3 domain between cis- and trans-ATR. The conformational alteration also involved the N-terminal domain and the middle HEAT domain. Moreover, experimental results from an array of complementary assays show that cis-ATR with the accessible BH3 domain was able to bind to tBid while trans-ATR could not. In addition, both cis- and trans-ATR can directly form homodimers via their C-terminal domains without ATRIP, while nuclear (trans-ATR) in the presence of ATRIP forms dimer-dimer complexes involving both N- and C-termini of ATR and ATRIP after UV. Structural characteristics around the Ser428-Pro429 motif and the BH3 domain region are also analyzed by molecular modeling and dynamics simulation. In support, cis conformation was found to be significantly more energetically favorable than trans at the Ser428-Pro429 bond in a 20-aa wild-type ATR peptide. Taken together, our results suggest that the isomerization-induced structural changes of ATR define both its subcellular location and compartment-specific functions and play an essential role in promoting cell survival and DNA damage responses.
Collapse
Affiliation(s)
- Himadri Biswas
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Shu-Jun Zhao
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH, United States
| | - Yetunde Makinwa
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - James S. Bassett
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Phillip R. Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH, United States
| | - Yue Zou
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
186
|
Dewar CE, Oeljeklaus S, Mani J, Mühlhäuser WWD, von Känel C, Zimmermann J, Ochsenreiter T, Warscheid B, Schneider A. Mistargeting of aggregation prone mitochondrial proteins activates a nucleus-mediated posttranscriptional quality control pathway in trypanosomes. Nat Commun 2022; 13:3084. [PMID: 35654893 PMCID: PMC9163028 DOI: 10.1038/s41467-022-30748-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial protein import in the parasitic protozoan Trypanosoma brucei is mediated by the atypical outer membrane translocase, ATOM. It consists of seven subunits including ATOM69, the import receptor for hydrophobic proteins. Ablation of ATOM69, but not of any other subunit, triggers a unique quality control pathway resulting in the proteasomal degradation of non-imported mitochondrial proteins. The process requires a protein of unknown function, an E3 ubiquitin ligase and the ubiquitin-like protein (TbUbL1), which all are recruited to the mitochondrion upon ATOM69 depletion. TbUbL1 is a nuclear protein, a fraction of which is released to the cytosol upon triggering of the pathway. Nuclear release is essential as cytosolic TbUbL1 can bind mislocalised mitochondrial proteins and likely transfers them to the proteasome. Mitochondrial quality control has previously been studied in yeast and metazoans. Finding such a pathway in the highly diverged trypanosomes suggests such pathways are an obligate feature of all eukaryotes. Mitochondria import most of their proteins posttranslationally. Here, Dewar et al. characterize the mitochondrial quality control mechanism of Trypanosoma brucei. Through proteomics and functional studies, they show that only ablation of ATOM69, one of the seven subunits of its mitochondrial protein translocase, triggers a unique quality control pathway resulting in TbUbL1 release from the nucleus and subsequent proteasomal degradation of non-imported mitochondrial proteins.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany.,Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Jan Mani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Johannes Zimmermann
- Faculty of Chemistry and Pharmacy, Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, CH-3012, Switzerland
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany. .,Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland.
| |
Collapse
|
187
|
Machine vs. Radiologist-Based Translations of RadLex: Implications for Multi-language Report Interoperability. J Digit Imaging 2022; 35:660-665. [PMID: 35166969 PMCID: PMC9156647 DOI: 10.1007/s10278-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to evaluate the feasibility of translation of RadLex lexicon from English to German performed by Google Translate, using the RadLex ontology as ground truth. The same comparison was also performed for German to English translations. We determined the concordance rate of the Google Translate-rendered translations (for both English to German and German to English translations) to the official German RadLex (translations provided by the German Radiological Society) and English RadLex terms via character-by-character concordance analysis (string matching). Specific term characteristics of term character count and word count were compared between concordant and discordant translations using t-tests. Google Translate-rendered translations originally considered incongruent (2482 English terms and 2500 German terms) were then reviewed by German and English-speaking radiologists to further evaluate clinical utility. Overall success rates of both methods were calculated by adding the percentage of terms marked correct by string comparison to the percentage marked correct during manual review extrapolated to the terms that had been initially marked incorrect during string analysis. 64,632 English and 47,425 German RadLex terms were analyzed. 3507 (5.4%) of the Google Translate-rendered English to German translations were concordant with the official German RadLex terms when evaluated via character-by-character concordance. 3288 (6.9%) of the Google Translate-rendered German to English translations matched the corresponding English RadLex terms. Human review of a random sample of non-concordant machine translations revealed that 95.5% of such English to German translations were understandable, whereas 43.9% of such German to English translations were understandable. Combining both string matching and human review resulted in an overall Google Translate success rate of 95.7% for English to German translations and 47.8% for German to English translations. For certain radiologic text translation tasks, Google Translate may be a useful tool for translating multi-language radiology reports into a common language for natural language processing and subsequent labeling of datasets for machine learning. Indeed, string matching analysis alone is an incomplete method for evaluating machine translation. However, when human review of automated translation is also incorporated, measured performance improves. Additional evaluation using longer text samples and full imaging reports is needed. An apparent discordance between English to German versus German to English translation suggests that the direction of translation affects accuracy.
Collapse
|
188
|
Kim C, Wang X, Kültz D. Prediction and Experimental Validation of a New Salinity-Responsive Cis-Regulatory Element (CRE) in a Tilapia Cell Line. Life (Basel) 2022; 12:787. [PMID: 35743818 PMCID: PMC9225295 DOI: 10.3390/life12060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptional regulation is a major mechanism by which organisms integrate gene x environment interactions. It can be achieved by coordinated interplay between cis-regulatory elements (CREs) and transcription factors (TFs). Euryhaline tilapia (Oreochromis mossambicus) tolerate a wide range of salinity and thus are an appropriate model to examine transcriptional regulatory mechanisms during salinity stress in fish. Quantitative proteomics in combination with the transcription inhibitor actinomycin D revealed 19 proteins that are transcriptionally upregulated by hyperosmolality in tilapia brain (OmB) cells. We searched the extended proximal promoter up to intron1 of each corresponding gene for common motifs using motif discovery tools. The top-ranked motif identified (STREME1) represents a binding site for the Forkhead box TF L1 (FoxL1). STREME1 function during hyperosmolality was experimentally validated by choosing two of the 19 genes, chloride intracellular channel 2 (clic2) and uridine phosphorylase 1 (upp1), that are enriched in STREME1 in their extended promoters. Transcriptional induction of these genes during hyperosmolality requires STREME1, as evidenced by motif mutagenesis. We conclude that STREME1 represents a new functional CRE that contributes to gene x environment interactions during salinity stress in tilapia. Moreover, our results indicate that FoxL1 family TFs are contribute to hyperosmotic induction of genes in euryhaline fish.
Collapse
Affiliation(s)
- Chanhee Kim
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Dietmar Kültz
- Stress-Induced Evolution Laboratory, Department of Animal Sciences, University of California, Davis, CA 95616, USA;
| |
Collapse
|
189
|
Zhang N, Mattoon EM, McHargue W, Venn B, Zimmer D, Pecani K, Jeong J, Anderson CM, Chen C, Berry JC, Xia M, Tzeng SC, Becker E, Pazouki L, Evans B, Cross F, Cheng J, Czymmek KJ, Schroda M, Mühlhaus T, Zhang R. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun Biol 2022; 5:460. [PMID: 35562408 PMCID: PMC9106746 DOI: 10.1038/s42003-022-03359-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Different intensities of high temperatures affect the growth of photosynthetic cells in nature. To elucidate the underlying mechanisms, we cultivated the unicellular green alga Chlamydomonas reinhardtii under highly controlled photobioreactor conditions and revealed systems-wide shared and unique responses to 24-hour moderate (35°C) and acute (40°C) high temperatures and subsequent recovery at 25°C. We identified previously overlooked unique elements in response to moderate high temperature. Heat at 35°C transiently arrested the cell cycle followed by partial synchronization, up-regulated transcripts/proteins involved in gluconeogenesis/glyoxylate-cycle for carbon uptake and promoted growth. But 40°C disrupted cell division and growth. Both high temperatures induced photoprotection, while 40°C distorted thylakoid/pyrenoid ultrastructure, affected the carbon concentrating mechanism, and decreased photosynthetic efficiency. We demonstrated increased transcript/protein correlation during both heat treatments and hypothesize reduced post-transcriptional regulation during heat may help efficiently coordinate thermotolerance mechanisms. During recovery after both heat treatments, especially 40°C, transcripts/proteins related to DNA synthesis increased while those involved in photosynthetic light reactions decreased. We propose down-regulating photosynthetic light reactions during DNA replication benefits cell cycle resumption by reducing ROS production. Our results provide potential targets to increase thermotolerance in algae and crops. A systems-wide analysis of the single-cell green alga Chlamydomonas reinhardti reveals shared and unique responses to moderate and acute high temperatures using multiple-level investigation of transcriptomics, proteomics, cell physiology, photosynthetic parameters, and cellular ultrastructure.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | - Will McHargue
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | | | - David Zimmer
- TU Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Kresti Pecani
- The Rockefeller University, New York, New York, 10065, USA
| | - Jooyeon Jeong
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Cheyenne M Anderson
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.,Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, Missouri, 63130, USA
| | - Chen Chen
- University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Jeffrey C Berry
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Shin-Cheng Tzeng
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Eric Becker
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Leila Pazouki
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Bradley Evans
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Fred Cross
- The Rockefeller University, New York, New York, 10065, USA
| | - Jianlin Cheng
- University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | | | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
190
|
Analysis of human brain tissue derived from DBS surgery. Transl Neurodegener 2022; 11:22. [PMID: 35418104 PMCID: PMC9006459 DOI: 10.1186/s40035-022-00297-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Transcriptomic and proteomic profiling of human brain tissue is hindered by the availability of fresh samples from living patients. Postmortem samples usually represent the advanced disease stage of the patient. Furthermore, the postmortem interval can affect the transcriptomic and proteomic profiles. Therefore, fresh brain tissue samples from living patients represent a valuable resource of metabolically intact tissue. Implantation of deep brain stimulation (DBS) electrodes into the human brain is a neurosurgical treatment for, e.g., movement disorders. Here, we describe an improved approach to collecting brain tissues from surgical instruments used in implantation of DBS device for transcriptomics and proteomics analyses. Methods Samples were extracted from guide tubes and recording electrodes used in routine DBS implantation procedure to treat patients with Parkinson’s disease, genetic dystonia and tremor. RNA sequencing was performed in tissues extracted from the recording microelectrodes and liquid chromatography-mass spectrometry (LC-MS) performed in tissues from guide tubes. To assess the performance of the current approach, the obtained datasets were compared with previously published datasets representing brain tissues. Results Altogether, 32,034 RNA transcripts representing the unique Ensembl gene identifiers were detected from eight samples representing both hemispheres of four patients. By using LC-MS, we identified 734 unique proteins from 31 samples collected from 14 patients. The datasets are available in the BioStudies database (accession number S-BSST667). Our results indicate that surgical instruments used in DBS installation retain brain material sufficient for protein and gene expression studies. Comparison with previously published datasets obtained with similar approach proved the robustness and reproducibility of the protocol. Conclusions The instruments used during routine DBS surgery are a useful source for obtaining fresh brain tissues from living patients. This approach overcomes the issues that arise from using postmortem tissues, such as the effect of postmortem interval on transcriptomic and proteomic landscape of the brain, and can be used for studying molecular aspects of DBS-treatable diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00297-y.
Collapse
|
191
|
Radiation-Induced Bystander Effect Mediated by Exosomes Involves the Replication Stress in Recipient Cells. Int J Mol Sci 2022; 23:ijms23084169. [PMID: 35456987 PMCID: PMC9029583 DOI: 10.3390/ijms23084169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes released by irradiated cells mediate the radiation-induced bystander effect, which is manifested by DNA breaks detected in recipient cells; yet, the specific mechanism responsible for the generation of chromosome lesions remains unclear. In this study, naive FaDu head and neck cancer cells were stimulated with exosomes released by irradiated (a single 2 Gy dose) or mock-irradiated cells. Maximum accumulation of gamma H2A.X foci, a marker of DNA breaks, was detected after one hour of stimulation with exosomes from irradiated donors, the level of which was comparable to the one observed in directly irradiated cells (a weaker wave of the gamma H2A.X foci accumulation was also noted after 23 h of stimulation). Exosomes from irradiated cells, but not from control ones, activated two stress-induced protein kinases: ATM and ATR. Noteworthy is that while direct irradiation activated only ATM, both ATM and ATR were activated by two factors known to induce the replication stress: hydroxyurea and camptothecin (with subsequent phosphorylation of gamma H2A.X). One hour of stimulation with exosomes from irradiated cells suppressed DNA synthesis in recipient cells and resulted in the subsequent nuclear accumulation of RNA:DNA hybrids, which is an indicator of impaired replication. Interestingly, the abovementioned effects were observed before a substantial internalization of exosomes, which may suggest a receptor-mediated mechanism. It was observed that after one hour of stimulation with exosomes from irradiated donors, phosphorylation of several nuclear proteins, including replication factors and regulators of heterochromatin remodeling as well as components of multiple intracellular signaling pathways increased. Hence, we concluded that the bystander effect mediated by exosomes released from irradiated cells involves the replication stress in recipient cells.
Collapse
|
192
|
Chauvin A, Bergeron D, Vencic J, Lévesque D, Paquette B, Scott MS, Boisvert FM. Downregulation of KRAB zinc finger proteins in 5-fluorouracil resistant colorectal cancer cells. BMC Cancer 2022; 22:363. [PMID: 35379199 PMCID: PMC8981854 DOI: 10.1186/s12885-022-09417-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/15/2022] [Indexed: 12/23/2022] Open
Abstract
Radio-chemotherapy with 5-flu orouracil (5-FU) is the standard of care treatment for patients with colorectal cancer, but it is only effective for a third of them. Despite our understanding of the mechanism of action of 5-FU, drug resistance remains a significant limitation to the clinical use of 5-FU, as both intrinsic and acquired chemoresistance represents the major obstacles for the success of 5-FU-based chemotherapy. In order to identify the mechanism of acquired resistance, 5-FU chemoresistance was induced in CRC cell lines by passaging cells with increasing concentrations of 5-FU. To study global molecular changes, quantitative proteomics and transcriptomics analyses were performed on these cell lines, comparing the resistant cells as well as the effect of chemo and radiotherapy. Interestingly, a very high proportion of downregulated genes were annotated as transcription factors coding for Krüppel-associated box (KRAB) domain-containing zinc-finger proteins (KZFPs), the largest family of transcriptional repressors. Among nearly 350 KRAB-ZFPs, almost a quarter were downregulated after the induction of a 5-FU-resistance including a common one between the three CRC cell lines, ZNF649, whose role is still unknown. To confirm the observations of the proteomic and transcriptomic approaches, the abundance of 20 different KZFPs and control mRNAs was validated by RT-qPCR. In fact, several KZFPs were no longer detectable using qPCR in cell lines resistant to 5-FU, and the KZFPs that were downregulated only in one or two cell lines showed similar pattern of expression as measured by the omics approaches. This proteomic, transcriptomic and genomic analysis of intrinsic and acquired resistance highlights a possible new mechanism involved in the cellular adaptation to 5-FU and therefore identifies potential new therapeutic targets to overcome this resistance.
Collapse
Affiliation(s)
- Anaïs Chauvin
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Danny Bergeron
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean Vencic
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
193
|
Micanovic R, LaFavers KA, Patidar KR, Ghabril MS, Doud EH, Mosley AL, Sabo AR, Khan S, El-Achkar TM. The kidney releases a nonpolymerizing form of uromodulin in the urine and circulation that retains the external hydrophobic patch domain. Am J Physiol Renal Physiol 2022; 322:F403-F418. [PMID: 35100812 PMCID: PMC8934678 DOI: 10.1152/ajprenal.00322.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
Uromodulin [Tamm-Horsfall protein (THP)] is a glycoprotein uniquely produced in the kidney. It is released by cells of the thick ascending limbs apically in the urine and basolaterally in the renal interstitium and systemic circulation. Processing of mature urinary THP, which polymerizes into supramolecular filaments, requires cleavage of an external hydrophobic patch (EHP) at the COOH-terminus. However, THP in the circulation is not polymerized, and it remains unclear if nonaggregated forms of THP exist natively in the urine. We propose that an alternative processing path, which retains the EHP domain, can lead to a nonpolymerizing form of THP. We generated an antibody that specifically recognizes THP with retained EHP (THP + EHP) and established its presence in the urine in a nonpolymerized native state. Proteomic characterization of urinary THP + EHP revealed its COOH-terminus ending at F617. In the human kidney, THP + EHP was detected in thick ascending limb cells and less strongly in the renal parenchyma. Using immunoprecipitation followed by proteomic sequencing and immunoblot analysis, we then demonstrated that serum THP has also retained EHP. In a small cohort of patients at risk for acute kidney injury, admission urinary THP + EHP was significantly lower in patients who subsequently developed acute kidney injury during hospitalization. Our findings uncover novel insights into uromodulin biology by establishing the presence of an alternative path for cellular processing, which could explain the release of nonpolymerizing THP in the circulation. Larger studies are needed to establish the utility of urinary THP + EHP as a sensitive biomarker of kidney health and susceptibility to injury.NEW & NOTEWORTHY In this work, we discovered and characterized a novel form of uromodulin that does not polymerize because it retains an external hydrophobic patch at the COOH-terminus. These findings establish an alternative form of cellular processing of this protein and elucidate new aspects of its biology. We also provide evidence suggesting that measuring urinary nonpolymerizing uromodulin could be a promising assay to assess the risk of acute kidney injury.
Collapse
Affiliation(s)
- Radmila Micanovic
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kaice A LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kavish R Patidar
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Liver Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Marwan S Ghabril
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Center for Liver Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela R Sabo
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shehnaz Khan
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tarek M El-Achkar
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
194
|
Bense S, Witte J, Preuße M, Koska M, Pezoldt L, Dröge A, Hartmann O, Müsken M, Schulze J, Fiebig T, Bähre H, Felgner S, Pich A, Häussler S. Pseudomonas aeruginosa post-translational responses to elevated c-di-GMP levels. Mol Microbiol 2022; 117:1213-1226. [PMID: 35362616 DOI: 10.1111/mmi.14902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
C-di-GMP signaling can directly influence bacterial behavior by affecting the functionality of c-di-GMP-binding proteins. In addition, c-di-GMP can exert a global effect on gene transcription or translation, e.g., via riboswitches or by binding to transcription factors. In this study, we investigated the effects of changes in intracellular c-di-GMP levels on gene expression and protein production in the opportunistic pathogen Pseudomonas aeruginosa. We induced c-di-GMP production via an ectopically introduced diguanylate cyclase and recorded the transcriptional, translational as well as proteomic profile of the cells. We demonstrate that rising levels of c-di-GMP under growth conditions otherwise characterized by low c-di-GMP levels caused a switch to a non-motile, auto-aggregative P. aeruginosa phenotype. This phenotypic switch became apparent before any c-di-GMP-dependent role on transcription, translation, or protein abundance was observed. Our results suggest that rising global c-di-GMP pools first affects the motility phenotype of P. aeruginosa by altering protein functionality and only then global gene transcription.
Collapse
Affiliation(s)
- Sarina Bense
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Julius Witte
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany.,Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Matthias Preuße
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Michal Koska
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Lorena Pezoldt
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Astrid Dröge
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Oliver Hartmann
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany. Infection Research, Hannover, Germany
| | - Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
195
|
LeDuc RD, Deutsch EW, Binz PA, Fellers RT, Cesnik AJ, Klein JA, Van Den Bossche T, Gabriels R, Yalavarthi A, Perez-Riverol Y, Carver J, Bittremieux W, Kawano S, Pullman B, Bandeira N, Kelleher NL, Thomas PM, Vizcaíno JA. Proteomics Standards Initiative's ProForma 2.0: Unifying the Encoding of Proteoforms and Peptidoforms. J Proteome Res 2022; 21:1189-1195. [PMID: 35290070 PMCID: PMC7612572 DOI: 10.1021/acs.jproteome.1c00771] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is important for the proteomics community to have a standardized manner to represent all possible variations of a protein or peptide primary sequence, including natural, chemically induced, and artifactual modifications. The Human Proteome Organization Proteomics Standards Initiative in collaboration with several members of the Consortium for Top-Down Proteomics (CTDP) has developed a standard notation called ProForma 2.0, which is a substantial extension of the original ProForma notation developed by the CTDP. ProForma 2.0 aims to unify the representation of proteoforms and peptidoforms. ProForma 2.0 supports use cases needed for bottom-up and middle-/top-down proteomics approaches and allows the encoding of highly modified proteins and peptides using a human- and machine-readable string. ProForma 2.0 can be used to represent protein modifications in a specified or ambiguous location, designated by mass shifts, chemical formulas, or controlled vocabulary terms, including cross-links (natural and chemical) and atomic isotopes. Notational conventions are based on public controlled vocabularies and ontologies. The most up-to-date full specification document and information about software implementations are available at http://psidev.info/proforma.
Collapse
Affiliation(s)
- Richard D LeDuc
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60611, United States
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Pierre-Alain Binz
- Clinical Chemistry Service, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Ryan T Fellers
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60611, United States
| | - Anthony J Cesnik
- Department of Genetics, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, California 94158, United States
- SciLifeLab, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH-Royal Institute of Technology, SE-171 21 Solna, Stockholm, Sweden 113 51
| | - Joshua A Klein
- Program for Bioinformatics, Boston University, Boston, Massachusetts 02215, United States
| | - Tim Van Den Bossche
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark 75-FSVM II, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark 75-FSVM II, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Arshika Yalavarthi
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60611, United States
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, United Kingdom
| | | | | | - Shin Kawano
- Toyama University of International Studies, Toyama, 930-1292 Toyama, Higashikuromaki, 6 5-1, Japan
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Kashiwa, Chiba 277-0871, Japan
| | | | | | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60611, United States
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois 60611, United States
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
196
|
Dewar CE, Oeljeklaus S, Wenger C, Warscheid B, Schneider A. Characterization of a highly diverged mitochondrial ATP synthase F o subunit in Trypanosoma brucei. J Biol Chem 2022; 298:101829. [PMID: 35293314 PMCID: PMC9034290 DOI: 10.1016/j.jbc.2022.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
197
|
Castiglioni VG, Ramalho JJ, Kroll JR, Stucchi R, van Beuzekom H, Schmidt R, Altelaar M, Boxem M. Identification and characterization of Crumbs polarity complex proteins in Caenorhabditis elegans. J Biol Chem 2022; 298:101786. [PMID: 35247383 PMCID: PMC9006659 DOI: 10.1016/j.jbc.2022.101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - João J Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Stucchi
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands; Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hanna van Beuzekom
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Maarten Altelaar
- Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
198
|
Discoidin Domain Receptor 2 orchestrates melanoma resistance combining phenotype switching and proliferation. Oncogene 2022; 41:2571-2586. [PMID: 35322197 DOI: 10.1038/s41388-022-02266-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022]
Abstract
Combined therapy with anti-BRAF plus anti-MEK is currently used as first-line treatment of patients with metastatic melanomas harboring the somatic BRAF V600E mutation. However, the main issue with targeted therapy is the acquisition of tumor cell resistance. In a majority of resistant melanoma cells, the resistant process consists in epithelial-to-mesenchymal transition (EMT). This process called phenotype switching makes melanoma cells more invasive. Its signature is characterized by MITF low, AXL high, and actin cytoskeleton reorganization through RhoA activation. In parallel of this phenotype switching phase, the resistant cells exhibit an anarchic cell proliferation due to hyper-activation of the MAP kinase pathway. We show that a majority of human melanoma overexpress discoidin domain receptor 2 (DDR2) after treatment. The same result was found in resistant cell lines presenting phenotype switching compared to the corresponding sensitive cell lines. We demonstrate that DDR2 inhibition induces a decrease in AXL expression and reduces stress fiber formation in resistant melanoma cell lines. In this phenotype switching context, we report that DDR2 control cell and tumor proliferation through the MAP kinase pathway in resistant cells in vitro and in vivo. Therefore, inhibition of DDR2 could be a new and promising strategy for countering this resistance mechanism.
Collapse
|
199
|
Lejeune C, Sago L, Cornu D, Redeker V, Virolle MJ. A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in Streptomyces coelicolor and in the pptA Mutant of Streptomyces lividans. Front Microbiol 2022; 12:813993. [PMID: 35392450 PMCID: PMC8981147 DOI: 10.3389/fmicb.2021.813993] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
In most Streptomyces species, antibiotic production is triggered in phosphate limitation and repressed in phosphate proficiency. However, the model strain, Streptomyces coelicolor, escapes this general rule and produces actinorhoddin (ACT), a polyketide antibiotic, even more abundantly in phosphate proficiency than in phosphate limitation. ACT was shown to bear "anti-oxidant" properties suggesting that its biosynthesis is triggered by oxidative stress. Interestingly, Streptomyces lividans, a strain closely related to S. coelicolor, does not produce ACT in any phosphate condition whereas its pptA/sco4144 mutant produces ACT but only in phosphate limitation. In order to define the potentially common features of the ACT producing strains, these three strains were grown in condition of low and high phosphate availability, and a comparative quantitative analysis of their proteomes was carried out. The abundance of proteins of numerous pathways differed greatly between S. coelicolor and the S. lividans strains, especially those of central carbon metabolism and respiration. S. coelicolor is characterized by the high abundance of the complex I of the respiratory chain thought to generate reactive oxygen/nitrogen species and by a weak glycolytic activity causing a low carbon flux through the Pentose Phosphate Pathway resulting into the low generation of NADPH, a co-factor of thioredoxin reductases necessary to combat oxidative stress. Oxidative stress is thus predicted to be high in S. coelicolor. In contrast, the S. lividans strains had rather similar proteins abundance for most pathways except for the transhydrogenases SCO7622-23, involved in the conversion of NADPH into NADH. The poor abundance of these enzymes in the pptA mutant suggested a deficit in NADPH. Indeed, PptA is an accessory protein forcing polyphosphate into a conformation allowing their efficient use by various enzymes taking polyphosphate as a donor of phosphate and energy, including the ATP/Polyphosphate-dependent NAD kinase SCO1781. In phosphate limitation, this enzyme would mainly use polyphosphate to phosphorylate NAD into NADP, but this phosphorylation would be inefficient in the pptA mutant resulting in low NADP(H) levels and thus high oxidative stress. Altogether, our results indicated that high oxidative stress is the common feature triggering ACT biosynthesis in S. coelicolor and in the pptA mutant of S. lividans.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
- Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
200
|
Winans S, Yu HJ, de Los Santos K, Wang GZ, KewalRamani VN, Goff SP. A point mutation in HIV-1 integrase redirects proviral integration into centromeric repeats. Nat Commun 2022; 13:1474. [PMID: 35304442 PMCID: PMC8933506 DOI: 10.1038/s41467-022-29097-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Retroviruses utilize the viral integrase (IN) protein to integrate a DNA copy of their genome into host chromosomal DNA. HIV-1 integration sites are highly biased towards actively transcribed genes, likely mediated by binding of the IN protein to specific host factors, particularly LEDGF, located at these gene regions. We here report a substantial redirection of integration site distribution induced by a single point mutation in HIV-1 IN. Viruses carrying the K258R IN mutation exhibit a high frequency of integrations into centromeric alpha satellite repeat sequences, as assessed by deep sequencing, a more than 10-fold increase over wild-type. Quantitative PCR and in situ immunofluorescence assays confirm this bias of the K258R mutant virus for integration into centromeric DNA. Immunoprecipitation studies identify host factors binding to IN that may account for the observed bias for integration into centromeres. Centromeric integration events are known to be enriched in the latent reservoir of infected memory T cells, as well as in elite controllers who limit viral replication without intervention. The K258R point mutation in HIV-1 IN is also present in databases of latent proviruses found in patients, and may reflect an unappreciated aspect of the establishment of viral latency. HIV-1 integration sites are biased towards actively transcribed genes, likely mediated by binding of the viral integrase (IN) protein to host factors. Here, Winans et al. show that the K258R point mutation in IN eredirects viral DNA integration to the centromeres of host chromosomes, which may affect HIV latency.
Collapse
Affiliation(s)
- Shelby Winans
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, USA
| | - Kenia de Los Santos
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Gary Z Wang
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Vineet N KewalRamani
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA. .,Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|