151
|
Pereira Lima JJ, Buitink J, Lalanne D, Rossi RF, Pelletier S, da Silva EAA, Leprince O. Molecular characterization of the acquisition of longevity during seed maturation in soybean. PLoS One 2017; 12:e0180282. [PMID: 28700604 PMCID: PMC5507495 DOI: 10.1371/journal.pone.0180282] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
Seed longevity, defined as the ability to remain alive during storage, is an important agronomic factor. Poor longevity negatively impacts seedling establishment and consequently crop yield. This is particularly problematic for soybean as seeds have a short lifespan. While the economic importance of soybean has fueled a large number of transcriptome studies during embryogenesis and seed filling, the mechanisms regulating seed longevity during late maturation remain poorly understood. Here, a detailed physiological and molecular characterization of late seed maturation was performed in soybean to obtain a comprehensive overview of the regulatory genes that are potentially involved in longevity. Longevity appeared at physiological maturity at the end of seed filling before maturation drying and progressively doubled until the seeds reached the dry state. The increase in longevity was associated with the expression of genes encoding protective chaperones such as heat shock proteins and the repression of nuclear and chloroplast genes involved in a range of chloroplast activities, including photosynthesis. An increase in the raffinose family oligosaccharides (RFO)/sucrose ratio together with changes in RFO metabolism genes was also associated with longevity. A gene co-expression network analysis revealed 27 transcription factors whose expression profiles were highly correlated with longevity. Eight of them were previously identified in the longevity network of Medicago truncatula, including homologues of ERF110, HSF6AB, NFXL1 and members of the DREB2 family. The network also contained several transcription factors associated with auxin and developmental cell fate during flowering, organ growth and differentiation. A transcriptional transition occurred concomitant with seed chlorophyll loss and detachment from the mother plant, suggesting the activation of a post-abscission program. This transition was enriched with AP2/EREBP and WRKY transcription factors and genes associated with growth, germination and post-transcriptional processes, suggesting that this program prepares the seed for the dry quiescent state and germination.
Collapse
Affiliation(s)
- Juliana Joice Pereira Lima
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo State, Brazil
- Institut de Recherche en Horticulture et Semences, INRA, Agrocampus Ouest, Université d’Angers, SFR QUASAV, Beaucouzé, France
| | - Julia Buitink
- Institut de Recherche en Horticulture et Semences, INRA, Agrocampus Ouest, Université d’Angers, SFR QUASAV, Beaucouzé, France
| | - David Lalanne
- Institut de Recherche en Horticulture et Semences, INRA, Agrocampus Ouest, Université d’Angers, SFR QUASAV, Beaucouzé, France
| | - Rubiana Falopa Rossi
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo State, Brazil
- Institut de Recherche en Horticulture et Semences, INRA, Agrocampus Ouest, Université d’Angers, SFR QUASAV, Beaucouzé, France
| | - Sandra Pelletier
- Institut de Recherche en Horticulture et Semences, INRA, Agrocampus Ouest, Université d’Angers, SFR QUASAV, Beaucouzé, France
| | | | - Olivier Leprince
- Institut de Recherche en Horticulture et Semences, INRA, Agrocampus Ouest, Université d’Angers, SFR QUASAV, Beaucouzé, France
| |
Collapse
|
152
|
Bueso E, Serrano R, Pallás V, Sánchez-Navarro JA. Seed tolerance to deterioration in arabidopsis is affected by virus infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:1-8. [PMID: 28477474 DOI: 10.1016/j.plaphy.2017.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/05/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Seed longevity is the period during which the plant seed is able to germinate. This property is strongly influenced by environment conditions experienced by seeds during their formation and storage. In the present study we have analyzed how the biotic stress derived from the infection of Cauliflower mosaic virus (CaMV), Turnip mosaic virus (TuMV), Cucumber mosaic virus (CMV) and Alfalfa mosaic virus (AMV) affects seed tolerance to deterioration measuring germination rates after an accelerated aging treatment. Arabidopsis wild type plants infected with AMV and CMV rendered seeds with improved tolerance to deterioration when compared to the non-inoculated plants. On the other hand, CaMV infection generated seeds more sensitive to deterioration. No seeds were obtained from TuMV infected plants. Similar pattern of viral effects was observed in the double mutant athb22 athb25, which is more sensitive to accelerated seed aging than wild type. However, we observed a significant reduction of the seed germination for CMV (65% vs 55%) and healthy (50% vs 30%) plants in these mutants. The seed quality differences were overcomed using the A. thaliana athb25-1D dominant mutant, which over accumulated gibberellic acid (GA), except for TuMV which generated some siliques with low seed tolerance to deterioration. For AMV and TuMV (in athb25-1D), the seed quality correlated with the accumulation of the messengers of the gibberellin 3-oxidase family, the mucilage of the seed and the GA1. For CMV and CaMV it was not a good correlation suggesting that other factors are affecting seed viability.
Collapse
Affiliation(s)
- Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
| |
Collapse
|
153
|
Carranco R, Prieto-Dapena P, Almoguera C, Jordano J. SUMO-Dependent Synergism Involving Heat Shock Transcription Factors with Functions Linked to Seed Longevity and Desiccation Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:974. [PMID: 28659940 PMCID: PMC5468958 DOI: 10.3389/fpls.2017.00974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/23/2017] [Indexed: 05/03/2023]
Abstract
A transcriptional synergism between HaHSFA9 (A9) and HaHSFA4a (A4a) contributes to determining longevity and desiccation tolerance of sunflower (Helianthus annuus, L.) seeds. Potential lysine SUMOylation sites were identified in A9 and A4a and mutated to arginine. We show that A9 is SUMOylated in planta at K38. Although we did not directly detect SUMOylated A4a in planta, we provide indirect evidence from transient expression experiments indicating that A4a is SUMOylated at K172. Different combinations of wild type and SUMOylation site mutants of A9 and A4a were analyzed by transient expression in sunflower embryos and leaves. Although most of the precedents in literature link SUMOylation with repression, the A9 and A4a synergism was fully abolished when the mutant forms for both factors were combined. However, the combination of mutant forms of A9 and A4a did not affect the nuclear retention of A4a by A9; therefore, the analyzed mutations would affect the synergism after the mutual interaction and nuclear co-localization of A9 and A4a. Our results suggest a role for HSF SUMOylation during late, zygotic, embryogenesis. The SUMOylation of A9 (or A4a) would allow a crucial, synergic, transcriptional effect that occurs in maturing sunflower seeds.
Collapse
Affiliation(s)
| | | | | | - Juan Jordano
- Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones CientíficasSeville, Spain
| |
Collapse
|
154
|
Oenel A, Fekete A, Krischke M, Faul SC, Gresser G, Havaux M, Mueller MJ, Berger S. Enzymatic and Non-Enzymatic Mechanisms Contribute to Lipid Oxidation During Seed Aging. PLANT & CELL PHYSIOLOGY 2017; 58:925-933. [PMID: 28371855 DOI: 10.1093/pcp/pcx036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/05/2017] [Indexed: 05/26/2023]
Abstract
Storage of seeds is accompanied by loss of germination and oxidation of storage and membrane lipids. A lipidomic analysis revealed that during natural and artificial aging of Arabidopsis seeds, levels of several diacylglycerols and free fatty acids, such as linoleic acid and linolenic acid as well as free oxidized fatty acids and oxygenated triacylglycerols, increased. Lipids can be oxidized by enzymatic or non-enzymatic processes. In the enzymatic pathway, lipoxygenases (LOXs) catalyze the first oxygenation step of polyunsaturated fatty acids. Analysis of lipid levels in mutants with defects in the two 9-LOX genes revealed that the strong increase in free 9-hydroxy- and 9-keto-fatty acids is dependent on LOX1 but not LOX5. Fatty acid oxidation correlated with an aging-induced decrease of germination, raising the question of whether these oxylipins negatively regulate germination. However, seeds of the lox1 mutant were only slightly more tolerant to aging, indicating that 9-LOX products contribute to but are not the major cause of loss of germination during aging. In contrast to free oxidized fatty acids, accumulation of oxygenated triacylglycerols upon accelerated aging was mainly based on non-enzymatic oxidation of seed storage lipids.
Collapse
Affiliation(s)
- Ayla Oenel
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Sophie C Faul
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Gabriele Gresser
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Michel Havaux
- CEA, CNRS UMR7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, France
| | - Martin J Mueller
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Susanne Berger
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| |
Collapse
|
155
|
Fleming MB, Richards CM, Walters C. Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2219-2230. [PMID: 28407071 PMCID: PMC6055530 DOI: 10.1093/jxb/erx100] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/06/2017] [Indexed: 05/22/2023]
Abstract
This study investigates the relationship between germination ability and damage to RNA in soybean seeds (cv 'Williams 82') stored dry at 5 °C for 1-27 years. Total germination of 14 age cohorts harvested between 2015 and 1989 ranged from 100% to 3%. Germination decline followed classic seed viability kinetics, with symptomatic seed aging beginning after 17 years of storage. RNA integrity was assessed in dry seeds by electrophoresis of total RNA, followed by calculation of the RNA integrity number (RIN, Agilent Bioanalyzer software), which evaluates RNA fragment size distributions. Analysis of RNA extracted from cotyledons, embryonic axes, plumules, and seed coats across the range of age cohorts showed consistent RNA degradation: older seeds had over-representation of small RNAs compared with younger seeds, which had nearly a 2:1 ratio of 25S and 18S rRNAs. RIN values for cotyledons and embryonic axes from the same seed were correlated. Decline in RIN tracked reduced germination, with a pronounced decrease in RIN after 17 years of storage. This led to a high correlation between the mean RIN of cotyledon RNA and the total germination percentage (R2=0.91, P<0.0001). Despite this relationship, germinable and non-germinable seeds within cohorts could not be distinguished unless the RIN was <3.5, indicating substantial deterioration. Our work demonstrates that seed RNA incurs damage over time, observable in fragment size distributions. Under the experimental conditions used here, RIN appears to be a promising surrogate for germination tests used to monitor viability of stored seeds.
Collapse
Affiliation(s)
- Margaret B Fleming
- USDA-ARS, National Laboratory for Genetic Resource Preservation, Fort Collins, CO, USA
| | | | - Christina Walters
- USDA-ARS, National Laboratory for Genetic Resource Preservation, Fort Collins, CO, USA
| |
Collapse
|
156
|
Ballesteros D, Hill LM, Walters C. Variation of desiccation tolerance and longevity in fern spores. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:53-62. [PMID: 28152418 DOI: 10.1016/j.jplph.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 05/26/2023]
Abstract
This work contributes to the understanding of plant cell responses to extreme water stress when it is applied at different intensity and duration. Fern spores are used to explore survival at relative humidity (RH)<85% because their unicellular nature eliminates complexities that may arise in multicellular organisms from slower drying and variable responses of different cell types. Fern spore cytoplasm solidifies between 30 and 60% RH and spores survive this transition, but subsequently lose viability. We characterized the kinetics of viability loss in terms of the fluid to solid transition using concepts of water activity (i.e., sorption) and glass transition (Tg), two concepts that dominate studies of food and pharmaceutical stability. For all fern species studied, longest survival times were observed in spores placed at about 10-25% RH and mortality rates increased sharply above and below this moisture level. A RH of 10-25% corresponds well to sorption behavior parameters and is below the glass transition, measured using differential scanning calorimetry. Though response to RH was similar among species, the kinetics of deterioration varied considerably among species and this implies differences in the structure or mobility of molecules within the solidified cytoplasm. Our work suggests that desiccation damage occurs in desiccation tolerant cells, and that it is expressed as a time-dependent response, otherwise known as aging.
Collapse
Affiliation(s)
- Daniel Ballesteros
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA.
| | - Lisa M Hill
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA.
| | - Christina Walters
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA.
| |
Collapse
|
157
|
Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:827-841. [PMID: 28391329 DOI: 10.1093/jxb/erw363] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Besides the deposition of storage reserves, seed maturation is characterized by the acquisition of functional traits including germination, desiccation tolerance, dormancy, and longevity. After seed filling, seed longevity increases up to 30-fold, concomitant with desiccation that brings the embryo to a quiescent state. The period that we define as late maturation phase can represent 10-78% of total seed development time, yet it remains overlooked. Its importance is underscored by the fact that in the seed production chain, the stage of maturity at harvest is the primary factor that influences seed longevity and seedling establishment. This review describes the major events and regulatory pathways underlying the acquisition of seed longevity, focusing on key indicators of maturity such as chlorophyll degradation, accumulation of raffinose family oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins. We discuss how these markers are correlated with or contribute to seed longevity, and highlight questions that merit further attention. We present evidence suggesting that molecular players involved in biotic defence also have a regulatory role in seed longevity. We also explore how the concept of plasticity can help understand the acquisition of longevity.
Collapse
Affiliation(s)
- Olivier Leprince
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Anthoni Pellizzaro
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Souha Berriri
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| | - Julia Buitink
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France
| |
Collapse
|
158
|
Chahtane H, Kim W, Lopez-Molina L. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:857-869. [PMID: 27729475 DOI: 10.1093/jxb/erw377] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Primary seed dormancy is an important adaptive plant trait whereby seed germination is blocked under conditions that would otherwise be favorable for germination. This trait is found in newly produced mature seeds of many species, but not all. Once produced, dry seeds undergo an aging time period, called dry after-ripening, during which they lose primary dormancy and gradually acquire the capacity to germinate when exposed to favorable germination conditions. Primary seed dormancy has been extensively studied not only for its scientific interest but also for its ecological, phenological, and agricultural importance. Nevertheless, the mechanisms underlying primary seed dormancy and its regulation during after-ripening remain poorly understood. Here we review the principal developmental stages where primary dormancy is established and regulated prior to and during seed after-ripening, where it is progressively lost. We attempt to identify and summarize what is known about the molecular and genetic mechanisms intervening over time in each of these stages.
Collapse
Affiliation(s)
- Hicham Chahtane
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Woohyun Kim
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Luis Lopez-Molina
- Department of Plant Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
159
|
Galland M, He D, Lounifi I, Arc E, Clément G, Balzergue S, Huguet S, Cueff G, Godin B, Collet B, Granier F, Morin H, Tran J, Valot B, Rajjou L. An Integrated "Multi-Omics" Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. FRONTIERS IN PLANT SCIENCE 2017; 8:1984. [PMID: 29213276 PMCID: PMC5702907 DOI: 10.3389/fpls.2017.01984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive "multi-omics" dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered "multi-omics" study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.
Collapse
Affiliation(s)
- Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Dongli He
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Imen Lounifi
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Erwann Arc
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Gilles Clément
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Sandrine Balzergue
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Stéphanie Huguet
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Boris Collet
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Fabienne Granier
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Halima Morin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Joseph Tran
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Benoit Valot
- GQE-Le Moulon, Génétique Quantitative et Evolution (INRA Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay), PAPPSO-Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Saclay Plant Sciences (SPS), Gif-sur-Yvette, France
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
- *Correspondence: Loïc Rajjou
| |
Collapse
|
160
|
Bueso E, Muñoz-Bertomeu J, Campos F, Martínez C, Tello C, Martínez-Almonacid I, Ballester P, Simón-Moya M, Brunaud V, Yenush L, Ferrándiz C, Serrano R. Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:583-596. [PMID: 27227784 DOI: 10.1111/tpj.13220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Light is a major regulator of plant growth and development by antagonizing gibberellins (GA), and we provide evidence for a role of light perception and GA in seed coat formation and seed tolerance to deterioration. We have identified two activation-tagging mutants of Arabidopsis thaliana, cog1-2D and cdf4-1D, with improved seed tolerance to deterioration linked to increased expression of COG1/DOF1.5 and CDF4/DOF2.3, respectively. These encode two homologous DOF transcription factors, with COG1 most highly expressed in seeds. Improved tolerance to seed deterioration was reproduced in transgenic plants overexpressing these genes, and loss of function from RNA interference resulted in opposite phenotypes. Overexpressions of COG1 and CDF4 have been described to attenuate various light responses mediated by phytochromes. Accordingly, we found that phyA and phyB mutants exhibit increased seed tolerance to deterioration. The phenotype of tolerance to deterioration conferred by gain of function of COG1 and by loss of function of phytochromes is of maternal origin, is also observed under natural aging conditions and correlates with a seed coat with increased suberin and reduced permeability. In developing siliques of the cog1-2D mutant the expression of the GA biosynthetic gene GA3OX3 and levels of GA1 are higher than in the wild type. These results explain the antagonism between phytochromes and COG1 in terms of the inhibition and the activation, respectively, of GA action.
Collapse
Affiliation(s)
- Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Jesús Muñoz-Bertomeu
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Francisco Campos
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Cándido Martínez
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Carlos Tello
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Irene Martínez-Almonacid
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Miguel Simón-Moya
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Veronique Brunaud
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
- Unité Recherche en Génomique Végétale Plant Genomics, 91057, Evry, France
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain.
| |
Collapse
|
161
|
Aloisi I, Parrotta L, Ruiz KB, Landi C, Bini L, Cai G, Biondi S, Del Duca S. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts. FRONTIERS IN PLANT SCIENCE 2016; 7:656. [PMID: 27242857 PMCID: PMC4870233 DOI: 10.3389/fpls.2016.00656] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/28/2016] [Indexed: 05/27/2023]
Abstract
Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.
Collapse
Affiliation(s)
- Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| | - Karina B. Ruiz
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
- Departamento de Producción Agrícola, Universidad de ChileSantiago, Chile
| | - Claudia Landi
- Department of Life Sciences, University of SienaSiena, Italy
| | - Luca Bini
- Department of Life Sciences, University of SienaSiena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of SienaSiena, Italy
| | - Stefania Biondi
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| |
Collapse
|
162
|
Ingram GC, Fujiwara T. Special Focus Issue on Plant Responses to the Environment. PLANT & CELL PHYSIOLOGY 2016; 57:657-659. [PMID: 27091852 DOI: 10.1093/pcp/pcw058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire de Reproduction et Devéloppement des Plantes, École Normale Supérieure de Lyon, CNRS UMR 5667, Lyon, France
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|