151
|
Cantacessi C, Mulvenna J, Young ND, Kasny M, Horak P, Aziz A, Hofmann A, Loukas A, Gasser RB. A deep exploration of the transcriptome and "excretory/secretory" proteome of adult Fascioloides magna. Mol Cell Proteomics 2012; 11:1340-53. [PMID: 22899770 PMCID: PMC3494180 DOI: 10.1074/mcp.m112.019844] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/16/2012] [Indexed: 11/06/2022] Open
Abstract
Parasitic liver flukes of the family Fasciolidae are responsible for major socioeconomic losses worldwide. However, at present, knowledge of the fundamental molecular biology of these organisms is scant. Here, we characterize, for the first time, the transcriptome and secreted proteome of the adult stage of the "giant liver fluke," Fascioloides magna, using Illumina sequencing technology and one-dimensional SDS-PAGE and OFFGEL protein electrophoresis, respectively. A total of ∼54,000,000 reads were generated and assembled into ∼39,000 contiguous sequences (contigs); ∼20,000 peptides were predicted and classified based on homology searches, protein motifs, gene ontology, and biological pathway mapping. From the predicted proteome, 48.1% of proteins could be assigned to 384 biological pathway terms, including "spliceosome," "RNA transport," and "endocytosis." Putative proteins involved in amino acid degradation were most abundant. Of the 835 secreted proteins predicted from the transcriptome of F. magna, 80 were identified in the excretory/secretory products from this parasite. Highly represented were antioxidant proteins, followed by peptidases (particularly cathepsins) and proteins involved in carbohydrate metabolism. The integration of transcriptomic and proteomic datasets generated herein sets the scene for future studies aimed at exploring the potential role(s) that molecules might play at the host-parasite interface and for establishing novel strategies for the treatment or control of parasitic fluke infections.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- From the ‡Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
- §Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland 4878, Australia
| | - Jason Mulvenna
- ‖Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia
| | - Neil D. Young
- From the ‡Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Kasny
- ‡‡Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Horak
- ‡‡Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ammar Aziz
- §Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland 4878, Australia
| | - Andreas Hofmann
- §§Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland 4111, Australia
| | - Alex Loukas
- §Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland 4878, Australia
| | - Robin B. Gasser
- From the ‡Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
152
|
Gretes MC, Poole LB, Karplus PA. Peroxiredoxins in parasites. Antioxid Redox Signal 2012; 17:608-33. [PMID: 22098136 PMCID: PMC3373223 DOI: 10.1089/ars.2011.4404] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. RECENT ADVANCES Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. CRITICAL ISSUES The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. FUTURE DIRECTIONS The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed.
Collapse
Affiliation(s)
- Michael C. Gretes
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - P. Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| |
Collapse
|
153
|
Vaziri B, Torkashvand F, Eslami N, Fayaz A. Comparative proteomics analysis of mice lymphocytes in early stages of infection by different strains of rabies virus. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:311-6. [PMID: 24293818 DOI: 10.1007/s13337-012-0093-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 07/06/2012] [Indexed: 02/04/2023]
Abstract
The CNS immune response to rabies virus has been shown to be influenced by virulence of the virus strains. There is no comprehensive report of the peripheral immune response against different strains of rabies virus. In this report we used a comparative proteome analysis to find the early events in the spleen lymphocytes of mice infected by a street strain and an attenuated strain of the rabies virus. Differentially expressed proteins were identified which play important biological roles such as T and B lymphocyte activation (coronin 1), antiviral activity (peroxiredoxin 1), and cytoskeletal reorganization (cofilin 1). These results could be strong hints of early divergence on peripheral immune response under influence of viral strain and their pathogenicity.
Collapse
Affiliation(s)
- Behrouz Vaziri
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, 69, Pasteur St, 13164 Tehran, Iran
| | | | | | | |
Collapse
|
154
|
Suppression of IP-10/CXCL10 gene expression in LPS- and/or IFN-γ-stimulated macrophages by parasite-secreted products. Cell Immunol 2012; 276:101-9. [PMID: 22608126 DOI: 10.1016/j.cellimm.2012.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 01/22/2023]
Abstract
T helper (Th)2 polarized immune responses are characteristically dominant in helminth infections. The gene expression of interferon (IFN)-γ-inducible protein 10 (IP-10/CXCL10), which promotes Th1 responses, in mouse macrophages stimulated with lipopolysaccharide (LPS) and/or IFN-γ was suppressed by excretory/secretory (ES) products of Spirometra erinaceieuropaei plerocercoids. ES products suppressed LPS- and/or IFN-γ-induced transcriptional activities of a luciferase reporter gene under the control of a 243-bp fragment of the IP-10 gene promoter/enhancer, which contains an IFN-stimulated response element (ISRE) and two κB elements. Consistent with this result, ES products inhibited ISRE-dependent heterologous promoter activities and LPS- or IFN-γ-induced ISRE-binding activity. ES products also suppressed LPS-induced IFN-β gene expression. Furthermore, ES products suppressed nuclear factor (NF)-κB RelA (p65)-dependent transcriptional activity, whereas ES products had no effect on the κB-binding activity. These results suggest that ES products suppress the IP-10 gene expression by inhibiting the ISRE- and RelA-dependent transcriptional activities in mouse macrophages.
Collapse
|
155
|
Interface Molecules of Angiostrongylus cantonensis: Their Role in Parasite Survival and Modulation of Host Defenses. Int J Inflam 2012; 2012:512097. [PMID: 22536544 PMCID: PMC3321291 DOI: 10.1155/2012/512097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/23/2012] [Indexed: 01/21/2023] Open
Abstract
Angiostrongylus cantonensis is a nematode parasite that causes eosinophilic meningoencephalitis in humans. Disease presents following the ingestion of third-stage larvae residing in the intermediate mollusk host and disease manifests as an acute inflammation of the meninges characterized by eosinophil infiltrates which release a battery of proinflammatory and cytotoxic agents in response to the pathogen. As a mechanism of neutralizing these host defenses, A. cantonensis expresses different molecules with immunomodulatory properties that are excreted or secreted (ES). In this paper we discuss the role of ES proteins on disease exacerbation and their potential use as therapeutic targets.
Collapse
|
156
|
Ishii T, Warabi E, Yanagawa T. Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J Clin Biochem Nutr 2012; 50:91-105. [PMID: 22448089 PMCID: PMC3303482 DOI: 10.3164/jcbn.11-109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/20/2011] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxins possess thioredoxin or glutathione peroxidase and chaperone-like activities and thereby protect cells from oxidative insults. Recent studies, however, reveal additional functions of peroxiredoxins in gene expression and inflammation-related biological reactions such as tissue repair, parasite infection and tumor progression. Notably, peroxiredoxin 1, the major mammalian peroxiredoxin family protein, directly interacts with transcription factors such as c-Myc and NF-κB in the nucleus. Additionally, peroxiredoxin 1 is secreted from some cells following stimulation with TGF-β and other cytokines and is thus present in plasma and body fluids. Peroxiredoxin 1 is now recognized as one of the pro-inflammatory factors interacting with toll-like receptor 4, which triggers NF-κB activation and other signaling pathways to evoke inflammatory reactions. Some cancer cells release peroxiredoxin 1 to stimulate toll-like receptor 4-mediated signaling for their progression. Interestingly, peroxiredoxins expressed in protozoa and helminth may modulate host immune responses partly through toll-like receptor 4 for their survival and progression in host. Extracellular peroxiredoxin 1 and peroxiredoxin 2 are known to enhance natural killer cell activity and suppress virus-replication in cells. Peroxiredoxin 1-deficient mice show reduced antioxidant activities but also exhibit restrained tissue inflammatory reactions under some patho-physiological conditions. Novel functions of peroxiredoxins in inflammation, cancer and innate immunity are the focus of this review.
Collapse
Affiliation(s)
- Tetsuro Ishii
- Majors of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
157
|
Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, Byus CV, Travi BL, Melby PC. Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 2012; 8:e1002417. [PMID: 22275864 PMCID: PMC3261917 DOI: 10.1371/journal.ppat.1002417] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/19/2011] [Indexed: 01/11/2023] Open
Abstract
The clinicopathological features of the hamster model of visceral leishmaniasis (VL) closely mimic active human disease. Studies in humans and hamsters indicate that the inability to control parasite replication in VL could be related to ineffective classical macrophage activation. Therefore, we hypothesized that the pathogenesis of VL might be driven by a program of alternative macrophage activation. Indeed, the infected hamster spleen showed low NOS2 but high arg1 enzyme activity and protein and mRNA expression (p<0.001) and increased polyamine synthesis (p<0.05). Increased arginase activity was also evident in macrophages isolated from the spleens of infected hamsters (p<0.05), and arg1 expression was induced by L. donovani in primary hamster peritoneal macrophages (p<0.001) and fibroblasts (p<0.01), and in a hamster fibroblast cell line (p<0.05), without synthesis of endogenous IL-4 or IL-13 or exposure to exogenous cytokines. miRNAi-mediated selective knockdown of hamster arginase 1 (arg1) in BHK cells led to increased generation of nitric oxide and reduced parasite burden (p<0.005). Since many of the genes involved in alternative macrophage activation are regulated by Signal Transducer and Activator of Transcription-6 (STAT6), and because the parasite-induced expression of arg1 occurred in the absence of exogenous IL-4, we considered the possibility that L. donovani was directly activating STAT6. Indeed, exposure of hamster fibroblasts or macrophages to L. donovani resulted in dose-dependent STAT6 activation, even without the addition of exogenous cytokines. Knockdown of hamster STAT6 in BHK cells with miRNAi resulted in reduced arg1 mRNA expression and enhanced control of parasite replication (p<0.0001). Collectively these data indicate that L. donovani infection induces macrophage STAT6 activation and STAT6-dependent arg1 expression, which do not require but are amplified by type 2 cytokines, and which contribute to impaired control of infection. Visceral leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is a progressive, potentially fatal infection found in many resource-poor regions of the world. We initiated these studies of an experimental model of VL to better understand the molecular and cellular determinants underlying this disease. We found that host macrophages or fibroblasts, when infected with Leishmania donovani or exposed to products secreted by the parasite, are permissive to infection because they fail to metabolize arginine to generate nitric oxide, the effector molecule needed to kill the intracellular parasites. Instead, the infected host cells are activated in a way that leads to the expression of arginase, an enzyme that metabolizes arginine to produce polyamines, which support parasite growth. This detrimental activation pathway was dependent on the parasite-induced activation of the transcription factor STAT6, but contrary to the previously accepted paradigm, did not require (but was amplified by) the presence of polarized Th2 cells or type 2 cytokines. Knockdown of host arginase or STAT6 enhanced control of the infection, indicating that this activation pathway has a critical role in the pathogenesis of the disease. Interventions designed to inhibit the STAT6-arginase-polyamine pathway could help in the treatment or prevention of VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Weiguo Zhao
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Claudia Espitia
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Omar Saldarriaga
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Leo Hawel
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Craig V. Byus
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Bruno L. Travi
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Peter C. Melby
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
158
|
Schistosome: its benefit and harm in patients suffering from concomitant diseases. J Biomed Biotechnol 2011; 2011:264173. [PMID: 22131800 PMCID: PMC3216407 DOI: 10.1155/2011/264173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/06/2011] [Indexed: 12/24/2022] Open
Abstract
Schistosomiasis is an important tropical disease affecting approximately 200 million people worldwide. Because of its chronicity and robust immunomodulatory activity, the effects of schistosomes on other diseases, such as allergies, autoimmunity, and infectious diseases, have been studied extensively in both epidemiological and experimental settings. In this paper, we summarize the beneficial and harmful effects of schistosomes. The importance of controlling schistosomiasis is also discussed.
Collapse
|
159
|
Morassutti AL, Levert K, Pinto PM, da Silva AJ, Wilkins P, Graeff-Teixeira C. Characterization of Angiostrongylus cantonensis excretory-secretory proteins as potential diagnostic targets. Exp Parasitol 2011; 130:26-31. [PMID: 22019415 DOI: 10.1016/j.exppara.2011.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/25/2011] [Accepted: 10/03/2011] [Indexed: 11/17/2022]
Abstract
Angiostrongyliasis results from infections with intra-arterial nematodes that accidentally infect humans. Specifically, infections with Angiostrongylus cantonensis cause eosinophilic meningitis and Angiostrongylus costaricensis infections result in eosinophilic enteritis. Immunological tests are the primary means of diagnosing infections with either pathogen since these parasites are usually not recoverable in fecal or cerebrospinal fluid. However, well-defined, purified antigens are not currently available in sufficient quantities from either pathogen for use in routine immunodiagnostic assays. Since A. costaricensis and A. cantonensis share common antigens, sera from infected persons will recognize antigens from either species. In addition to their potential use in angiostrongyliasis diagnosis, characterization of these proteins that establish the host-parasite interphase would improve our understanding of the biology of these parasites. The main objective of the present work was to characterize A. cantonensis excretory-secretory (ES) products by analyzing ES preparations by two-dimensional gel electrophoresis coupled with immunoblotting using pools of positive sera (PS) and sera from healthy individuals (SC). Protein spots recognized by PS were excised and analyzed by electrospray ionization (ESI) mass spectrometry. MASCOT analysis of mass spectrometry data identified 17 proteins: aldolase; CBR-PYP-1 protein; beta-amylase; heat shock protein 70; proteosome subunit beta type-1; actin A3; peroxiredoxin; serine carboxypeptidase; protein disulfide isomerase 1; fructose-bisphosphate aldolase 2; aspartyl protease inhibitor; lectin-5; hypothetical protein F01F1.12; cathepsin B-like cysteine proteinase 1; hemoglobinase-type cysteine proteinase; putative ferritin protein 2; and a hypothetical protein. Molecular cloning of these respective targets will next be carried out to develop a panel of Angiostrongylus antigens that can be used for diagnostic purposes and to further study host-Angiostrongylus interactions.
Collapse
Affiliation(s)
- Alessandra L Morassutti
- Laboratório de Biologia Parasitária da Faculdade de Biociências e Laboratório de Parasitologia Molecular do Instituto de Pesquisas Biomédicas da Pontifícia Universidade do Rio Grande do Sul, Avenida Ipiranga 6690, 90690-900 Porto Alegre RS, Brazil.
| | | | | | | | | | | |
Collapse
|
160
|
The recombinant gut-associated M17 leucine aminopeptidase in combination with different adjuvants confers a high level of protection against Fasciola hepatica infection in sheep. Vaccine 2011; 29:9057-63. [PMID: 21939713 DOI: 10.1016/j.vaccine.2011.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/17/2011] [Accepted: 09/07/2011] [Indexed: 11/21/2022]
Abstract
Fasciola hepatica M17 leucine aminopeptidase (FhLAP) is thought to play a role in catabolizing peptides generated by the concerted activity of gut-associated endopeptidases on host polypeptides, thus releasing amino acids to be used in protein anabolism. In this study, a recombinant functional form of this homo hexameric metallopeptidase produced in Escherichia coli was used in combination with adjuvants of different types in a vaccination trial in Corriedale sheep against experimental challenge with F. hepatica metacercariae. The experimental assay consisted of 6 groups of 10 animals; 5 of the groups (1-5) were subcutaneously inoculated at weeks 0 and 4 with 100 μg of rFhLAP mixed with Freund's complete plus incomplete adjuvant (group 1), Alum (group 2), Adyuvac 50 (group 3), DEAE-D (group 4) and Ribi (group 5); the adjuvant control group (group 6) received Freund's adjuvant. Two weeks after the booster, the sheep were orally challenged with 200 metacercariae. Immunization with rFhLAP induced significant reduction in fluke burdens in all vaccinated groups: 83.8% in the Freund's group, 86.7% in the Alum group, 74.4% in the Adyuvac 50 group, 49.8% in the Ribi group and 49.5% in the DEAE-D group compared to the adjuvant control group. Morphometric analysis of recovered liver flukes showed no significant size modifications in the different vaccination groups. All vaccine preparations elicited specific IgG, IgG1 and IgG2 responses. This study shows that a liver fluke vaccine based on rFhLAP combined with different adjuvants significantly reduced worm burden in a ruminant species that was high in animals that received the enzyme along with the commercially approved adjuvants Alum and Adyuvac 50.
Collapse
|
161
|
Marshall ES, Elshekiha HM, Hakimi MA, Flynn RJ. Toxoplasma gondii peroxiredoxin promotes altered macrophage function, caspase-1-dependent IL-1β secretion enhances parasite replication. Vet Res 2011; 42:80. [PMID: 21707997 PMCID: PMC3141401 DOI: 10.1186/1297-9716-42-80] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/27/2011] [Indexed: 01/09/2023] Open
Abstract
Alternatively activated macrophages (AAM) are a key feature Th2 immunity and have been associated with a variety of roles during helminth infection. The role this cell subset plays in protzoan infection remain relatively unexplored, herein we describe the effects of a redox enzyme (rTgPrx) derived from Toxoplasma gondii on murine macrophage phenotype in vitro. RTgPrx has been previously associated with the maintainence of parasite oxidative balance. Here our experiments show that rTgPrx promotes AAM as indicated by high arginase-1 (arg-1), YM1 and FIZZ expression via both signal transducer and activator of transcription (STAT)6-dependent and -independent mechanisms. Additionally rTgPrx treatment reduced caspase-1 activity and IL-1β secretion, while simultaneously increasing IL-10 release. Furthermore the in vitro replication of T. gondii (RH strain) was enhanced when macrophages were treated with rTgPrx. This is in contrast with the previously described effects of a Plasmodium berghei ANKA 2-cys-peroxiredoxin that promotes pro-inflammatory cytokine production. These results highlight the role of T. gondii derived redox enzymes as important immune modulators and potentially indicate a role for AAM in modulating immunopathology and promoting parasite replication during T. gondii infection.
Collapse
Affiliation(s)
- Edward S Marshall
- School of Veterinary Medicine & Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| | | | | | | |
Collapse
|
162
|
Lack of protective efficacy in buffaloes vaccinated with Fasciola gigantica leucine aminopeptidase and peroxiredoxin recombinant proteins. Acta Trop 2011; 118:217-22. [PMID: 21376699 DOI: 10.1016/j.actatropica.2011.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/21/2022]
Abstract
Gene coding for leucine aminopeptidase (LAP), a metalloprotease, was identified in the tropical liver fluke, Fasciola gigantica; that on sequence analysis showed a close homology (98.6%) with leucine aminopeptidase of the temperate liver fluke, Fasciola hepatica. The recombinant leucine aminopeptidase protein was expressed in Escherichia coli. F. gigantica peroxiredoxin, a hydrogen peroxide scavenger and an immunomodulating protein, was also cloned and expressed in E. coli. A vaccination trial in buffaloes was conducted with these two recombinant proteins, with 150 and 300 μg of leucine aminopeptidase and a cocktail of 150 μg each of recombinant leucine aminopeptidase and peroxiredoxin in three groups, respectively. Both Th1- and Th2-associated humoral immune responses were elicited to immunization with these antigens. A challenge study with 400 metacercariae did not show a significant protection in terms of reduction in the worm burden (8.4%) or anti-fecundity/embryonation effect in the immunized groups, as to the non-immunized control animals. Our observations in this buffalo vaccination trial are contrary to the earlier promise shown by leucine aminopeptidase of F. hepatica as a leading candidate vaccine molecule. Identification of leucine aminopeptidase gene and evaluation of the protein for its protective efficacy in buffaloes is the first scientific report on this protein in F. gigantica.
Collapse
|
163
|
Guasconi L, Serradell MC, Garro AP, Iacobelli L, Masih DT. C-type lectins on macrophages participate in the immunomodulatory response to Fasciola hepatica products. Immunology 2011; 133:386-96. [PMID: 21595685 DOI: 10.1111/j.1365-2567.2011.03449.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fasciola hepatica releases excretory-secretory products (FhESP), and immunomodulatory properties have been described for the carbohydrates present in these parasite products. The interaction of FhESP with the innate immune cells, such as macrophages, is crucial in the early stage of infection. In this work we observed that peritoneal macrophages from naive BALB/c mice stimulated in vitro with FhESP presented: an increased arginase activity as well as Arginase I expression, and high levels of transforming growth factor-β and interleukin-10. A similar macrophage population was also observed in the peritoneum of infected mice. A partial inhibition of the immunomodulatory effects described above was observed when macrophages were pre-incubated with Mannan, anti-mannose receptor, Laminarin or anti-Dectin-1, and then stimulated with FhESP. In addition, we observed a partial inhibition of these effects in macrophages obtained from mice that were intraperitoneally injected with Mannan or Laminarin before being infected. Taken together, these results suggest the participation of at least two C-type lectin receptors, mannose receptor and Dectin-1, in the interaction of FhESP with macrophages, which allows this parasite to induce immunoregulatory effects on these important innate immune cells and may constitute a crucial event for extending its survival in the host.
Collapse
Affiliation(s)
- Lorena Guasconi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Argentina
| | | | | | | | | |
Collapse
|
164
|
Meevissen MHJ, Yazdanbakhsh M, Hokke CH. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: molecular partners that shape immune responses. Exp Parasitol 2011; 132:14-21. [PMID: 21616068 DOI: 10.1016/j.exppara.2011.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
Abstract
Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.
Collapse
Affiliation(s)
- Moniek H J Meevissen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
165
|
Robinson MW, Donnelly S, Hutchinson AT, To J, Taylor NL, Norton RS, Perugini MA, Dalton JP. A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides. PLoS Pathog 2011; 7:e1002042. [PMID: 21589904 PMCID: PMC3093369 DOI: 10.1371/journal.ppat.1002042] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 03/15/2011] [Indexed: 01/01/2023] Open
Abstract
Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly α-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.
Collapse
Affiliation(s)
- Mark W Robinson
- Infection, Immunity and Innovation (i3) Institute, University of Technology Sydney (UTS), Ultimo, Sydney, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Bhatia S, Fei M, Yarlagadda M, Qi Z, Akira S, Saijo S, Iwakura Y, van Rooijen N, Gibson GA, St. Croix CM, Ray A, Ray P. Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype. PLoS One 2011; 6:e15943. [PMID: 21246055 PMCID: PMC3016416 DOI: 10.1371/journal.pone.0015943] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/01/2010] [Indexed: 01/16/2023] Open
Abstract
The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages (AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4Rα/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c+ alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus.
Collapse
Affiliation(s)
- Shikha Bhatia
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mingjian Fei
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Manohar Yarlagadda
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zengbiao Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka, Japan
| | - Shinobu Saijo
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, Vanderbilt University Medical Center, Amsterdam, The Netherlands
| | - Gregory A. Gibson
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Claudette M. St. Croix
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
167
|
Analysis of thioredoxin peroxidase as a promising antigen for diagnosis of Fasciola gigantica infection: a preliminary study. Parasitol Int 2010; 60:206-8. [PMID: 21185945 DOI: 10.1016/j.parint.2010.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022]
Abstract
Buffalo fasciolosis induced by Fasciola gigantica causes important economic losses in tropical areas of Asia. Detection of prepatent infection is essential to control this disease. Classical tools such as coprology, necroscopy or ELISA based on crude extracts from F. gigantica are poorly sensitive or specific. Purified antigens could be used to increase these parameters. Western blot analysis and mass spectrometry of a fraction of F. gigantica excretory-secretory products obtained by gel filtration showed that thioredoxin peroxidase could be a potential antigen for serodiagnosis: it was recognized from the 2nd week after infection, by all buffalo experimentally or naturally infected with F. gigantica but not by healthy animals.
Collapse
|
168
|
El Ridi R, Tallima H, Mahana N, Dalton JP. Innate immunogenicity and in vitro protective potential of Schistosoma mansoni lung schistosomula excretory–secretory candidate vaccine antigens. Microbes Infect 2010; 12:700-9. [DOI: 10.1016/j.micinf.2010.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/18/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
|
169
|
A preliminary study to understand the effect of Fasciola hepatica tegument on naïve macrophages and humoral responses in an ovine model. Vet Immunol Immunopathol 2010; 139:245-9. [PMID: 20850186 DOI: 10.1016/j.vetimm.2010.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/12/2010] [Accepted: 08/18/2010] [Indexed: 11/21/2022]
Abstract
Fasciola hepatica, the liver fluke, is a highly evolved endo-parasite that uses various mechanisms to evade the host immune system. The immunosuppressive capabilities of the parasite's excretory/secretory products have been well demonstrated by previous independent studies. However, the role of the parasite's tegument in the immune responses remains to be investigated. In this study, the effect of the tegument and other fractions of adult F. hepatica (excretory/secretory, liver fluke homogenate and liver fluke homogenate without tegument) in the activation of naïve macrophages in vitro was investigated using an ovine model. In addition, an immunoproteomic approach was used to investigate the characteristics of humoral antibody responses developed in sheep against the tegument fraction. The results indicated significantly increased arginase expression in macrophages incubated with the tegument and excretory/secretory fractions. Two dimensional gel electrophoresis of the tegument demonstrated approximately 100 protein spots, with only four of these spots were highly reactive with the positive serum as determined by 2-DE immunoblotting. These results give a preliminary indication that the liver fluke tegument may play role in avoiding hosts' protective immune responses against itself.
Collapse
|
170
|
Robinson MW, Hutchinson AT, Dalton JP, Donnelly S. Peroxiredoxin: a central player in immune modulation. Parasite Immunol 2010; 32:305-13. [PMID: 20500659 DOI: 10.1111/j.1365-3024.2010.01201.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peroxiredoxins (Prx) are a family of anti-oxidants that protect cells from metabolically produced reactive oxygen species (ROS). The presence of these enzymes in the secretomes of many parasitic helminths suggests they provide protection against ROS released by host immune effector cells. However, we recently reported that helminth-secreted Prx also contribute to the development of Th2-responses via a mechanism involving the induction of alternatively activated macrophages. In this review, we discuss the role helminth Prx may play in modulating the immune responses of their hosts.
Collapse
Affiliation(s)
- M W Robinson
- Institute for the Biotechnology of Infectious Diseases (IBID), University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
171
|
Macroparasites, innate immunity and immunoregulation: developing natural models. Trends Parasitol 2010; 26:540-9. [PMID: 20634138 DOI: 10.1016/j.pt.2010.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
Innate immune receptors carry out surveillance for infection threats and are a proximal controller of the threshold and intensity at which inflammatory responses occur. As such, they are a natural focus for understanding how inflammatory immune reactivity is regulated. This review highlights how little data there are relating to the effect of macroparasites on systemic innate receptor responses. The idea is developed that studies on innate immune function in wild animals exposed to a natural profile of infections, including macroparasites, might be a valuable model in which to test hypotheses about the ultimate cause of aberrant inflammation in modern human populations.
Collapse
|
172
|
Everts B, Adegnika AA, Kruize YCM, Smits HH, Kremsner PG, Yazdanbakhsh M. Functional impairment of human myeloid dendritic cells during Schistosoma haematobium infection. PLoS Negl Trop Dis 2010; 4:e667. [PMID: 20422029 PMCID: PMC2857749 DOI: 10.1371/journal.pntd.0000667] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/11/2010] [Indexed: 01/27/2023] Open
Abstract
Chronic Schistosoma infection is often characterized by a state of T cell hyporesponsiveness of the host. Suppression of dendritic cell (DC) function could be one of the mechanisms underlying this phenomenon, since Schistosoma antigens are potent modulators of dendritic cell function in vitro. Yet, it remains to be established whether DC function is modulated during chronic human Schistosoma infection in vivo. To address this question, the effect of Schistosoma haematobium infection on the function of human blood DC was evaluated. We found that plasmacytoid (pDC) and myeloid DC (mDC) from infected subjects were present at lower frequencies in peripheral blood and that mDC displayed lower expression levels of HLA-DR compared to those from uninfected individuals. Furthermore, mDC from infected subjects, but not pDC, were found to have a reduced capacity to respond to TLR ligands, as determined by MAPK signaling, cytokine production and expression of maturation markers. Moreover, the T cell activating capacity of TLR-matured mDC from infected subjects was lower, likely as a result of reduced HLA-DR expression. Collectively these data show that S. haematobium infection is associated with functional impairment of human DC function in vivo and provide new insights into the underlying mechanisms of T cell hyporesponsiveness during chronic schistosomiasis.
Collapse
Affiliation(s)
- Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
173
|
Falcón C, Carranza F, Martínez FF, Knubel CP, Masih DT, Motrán CC, Cervi L. Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells. Vet Immunol Immunopathol 2010; 137:36-46. [PMID: 20447697 DOI: 10.1016/j.vetimm.2010.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/07/2010] [Accepted: 04/10/2010] [Indexed: 01/05/2023]
Abstract
Fasciola hepatica is a helminth trematode that migrates through the host tissues until reaching bile ducts where it becomes an adult. During its migration the parasite releases different excretory-secretory products (ESP), which are in contact with the immune system. In this study, we focused on the effect of ESP on the maturation and function of murine bone marrow derived-dendritic cells (DC). We found that the treatment of DC with ESP failed to induce a classical maturation of these cells, since ESP alone did not activate DC to produce any cytokines, although they impaired the ability of DC to be activated by TLR ligands and also their capacity to stimulate an allospecific response. In addition, using an in vitro ovalbumin peptide-restricted priming assay, ESP-treated DC exhibited a capacity to drive Th2 and regulatory T cell (Treg) polarization of CD4(+) cells from DO11.10 transgenic mice. This was characterized by increased IL-4, IL-5, IL-10 and TGF-beta production and the expansion of CD4(+)CD25(+)Foxp3(+) cells. Our results support the hypothesis that ESP from F. hepatica modulate the maturation and function of DC as part of a generalized immunosuppressive mechanism that involves a bias towards a Th2 response and Treg development.
Collapse
Affiliation(s)
- Cristian Falcón
- Departamento de Bioquímica Clínica, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
174
|
Cancela M, Ruétalo N, Dell'Oca N, da Silva E, Smircich P, Rinaldi G, Roche L, Carmona C, Alvarez-Valín F, Zaha A, Tort JF. Survey of transcripts expressed by the invasive juvenile stage of the liver fluke Fasciola hepatica. BMC Genomics 2010; 11:227. [PMID: 20374642 PMCID: PMC2867827 DOI: 10.1186/1471-2164-11-227] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 04/07/2010] [Indexed: 01/09/2023] Open
Abstract
Background The common liver fluke Fasciola hepatica is the agent of a zoonosis with significant economic consequences in livestock production worldwide, and increasing relevance to human health in developing countries. Although flukicidal drugs are available, re-infection and emerging resistance are demanding new efficient and inexpensive control strategies. Understanding the molecular mechanisms underlying the host-parasite interaction provide relevant clues in this search, while enlightening the physiological adaptations to parasitism. Genomics and transcriptomics are still in their infancy in F. hepatica, with very scarce information available from the invasive newly excysted juveniles (NEJ). Here we provide an initial glimpse to the transcriptomics of the NEJ, the first stage to interact with the mammalian host. Results We catalogued more than 500 clusters generated from the analysis of F. hepatica juvenile expressed sequence tags (EST), several of them not detected in the adult stage. A set of putative F. hepatica specific transcripts, and a group of sequences conserved exclusively in flatworms were identified. These novel sequences along with a set of parasite transcripts absent in the host genomes are putative new targets for future anti-parasitic drugs or vaccine development. Comparisons of the F. hepatica sequences with other metazoans genomes or EST databases were consistent with the basal positioning of flatworms in the bilaterian phylogeny. Notably, GC content, codon usage and amino acid frequencies are remarkably different in Schistosomes to F. hepatica and other trematodes. Functional annotation of predicted proteins showed a general representation of diverse biological functions. Besides proteases and antioxidant enzymes expected to participate in the early interaction with the host, various proteins involved in gene expression, protein synthesis, cell signaling and mitochondrial enzymes were identified. Differential expression of secreted protease gene family members between juvenile and adult stages may respond to different needs during host colonization. Conclusion The knowledge of the genes expressed by the invasive stage of Fasciola hepatica is a starting point to unravel key aspects of this parasite's biology. The integration of the emerging transcriptomics, and proteomics data and the advent of functional genomics tools in this organism are positioning F. hepatica as an interesting model for trematode biology.
Collapse
Affiliation(s)
- Martín Cancela
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Harnett W, Harnett MM. Helminth-derived immunomodulators: can understanding the worm produce the pill? Nat Rev Immunol 2010; 10:278-84. [PMID: 20224568 DOI: 10.1038/nri2730] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helminths may protect humans against allergic and autoimmune diseases and, indeed, defined helminth-derived products have recently been shown to prevent the development of such inflammatory diseases in mouse models. Here, we propose that helminth-derived products not only have therapeutic potential but can also be used as unique tools for defining key molecular events in the induction of an anti-inflammatory response and, therefore, for defining new therapeutic targets.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
176
|
Famulski KS, Kayser D, Einecke G, Allanach K, Badr D, Venner J, Sis B, Halloran PF. Alternative macrophage activation-associated transcripts in T-cell-mediated rejection of mouse kidney allografts. Am J Transplant 2010; 10:490-7. [PMID: 20121742 DOI: 10.1111/j.1600-6143.2009.02983.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Macrophages display two activation states that are considered mutually exclusive: classical macrophage activation (CMA), inducible by IFNG, and alternative macrophage activation (AMA), inducible by IL4 and IL13. CMA is prominent in allograft rejection and AMA is associated with tissue remodeling after injury. We studied expression of AMA markers in mouse kidney allografts and in kidneys with acute tubular necrosis (ATN). In rejecting allografts, unlike interferon gamma (IFNG) effects and T-cell infiltration that developed rapidly and plateaued by day 7, AMA transcripts (Arg1, Mrc1, Mmp12 and Ear1) rose progressively as tubulitis and parenchymal deterioration developed at days 21 and 42, despite persistent IFNG effects. AMA in allografts was associated with transcripts for AMA inducers IL4, IL13 and inhibin A, but also occurred when hosts lacked IL4/IL13 receptors, suggesting a role for inhibin A. Kidneys with ATN injured by ischemia/reperfusion also had increased expression of AMA markers and inhibin A. Thus kidneys undergoing T-cell-mediated rejection progressively acquire macrophages with alternative activation phenotype despite strong local IFNG effects, independent of IL4 and IL13. Although the mechanisms and causal relationships remain to be determined, high AMA transcript levels in rejecting allografts are strongly associated with and may be a consequence of parenchymal deterioration similar to ATN.
Collapse
Affiliation(s)
- K S Famulski
- Alberta Transplant Applied Genomics Centre, Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Flynn RJ, Mulcahy G, Elsheikha HM. Coordinating innate and adaptive immunity in Fasciola hepatica infection: implications for control. Vet Parasitol 2010; 169:235-40. [PMID: 20219284 DOI: 10.1016/j.vetpar.2010.02.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 11/19/2022]
Abstract
The helminth parasite Fasciola hepatica is responsible for major economic losses in agriculture throughout temperate regions of the globe. Control measures are heavily reliant on chemotherapy resulting in the emergence of drug resistant parasite populations. Novel control strategies based on vaccination ultimately require a deeper knowledge of host-parasite interactions. Herein we discuss recent advances in the understanding of the immune response to F. hepatica placing them in context with previous knowledge and developments from other model systems. Advances in RNAi and proteomics in the context of helminth research should make target identification and characterisation more rapid. In parallel, integration of these technologies with better immunological understanding will be crucial for future research into F. hepatica control measures.
Collapse
Affiliation(s)
- Robin J Flynn
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington Campus, Sutton Bonington LE12 5RD, United Kingdom.
| | | | | |
Collapse
|
178
|
Mendes RE, Pérez-Ecija RA, Zafra R, Buffoni L, Martínez-Moreno A, Dalton JP, Mulcahy G, Pérez J. Evaluation of hepatic changes and local and systemic immune responses in goats immunized with recombinant Peroxiredoxin (Prx) and challenged with Fasciola hepatica. Vaccine 2010; 28:2832-40. [PMID: 20153792 DOI: 10.1016/j.vaccine.2010.01.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Protection against Fasciola hepatica in goats immunized with Peroxiredoxin (Prx) was assessed. The experimental trial consisted of three groups of seven animals; group 1 were unimmunized and uninfected, group 2 were immunized with adjuvant only and group 3 were immunized with recombinant Prx in adjuvant (immunized and infected). Immunization with Prx in Quil A adjuvant, group 3, induced a reduction in fluke burden of 33.04% when compared to adjuvant control, group 2, although this difference was not significant. The hepatic gross and microscopical morphometric study revealed lower damage in the Prx-immunized compared to group 2 (p<0.05). Furthermore, immunohistochemical studies revealed that the Prx-immunized group exhibited reduced infiltration of CD4(+), CD8(+), IFN-gamma(+) and TCR(+) (p<0.05); and CD2(+) and IL-4(+) (p<0.001) in hepatic lesions. Levels of anti-Prx serum IgG in group 3 showed a significant increase at the 4th week after challenge infection compared with group 2 (p<0.0001). This is the first report of ruminant immunization with recombinant Prx of F. hepatica. The study shows that this vaccine significantly reduces hepatic damage and encourages further studies to improve the vaccine efficacy.
Collapse
Affiliation(s)
- Ricardo E Mendes
- Department of Anatomy and Comparative Pathology, School of Veterinary Medicine, University of Cordoba, Animal Health Building, Campus Rabanales, Cordoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Parasitic helminths: new weapons against immunological disorders. J Biomed Biotechnol 2010; 2010:743758. [PMID: 20169100 PMCID: PMC2821776 DOI: 10.1155/2010/743758] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/25/2009] [Indexed: 12/14/2022] Open
Abstract
The prevalence of allergic and autoimmune diseases is increasing in developed countries, possibly due to reduced exposure to microorganisms in childhood (hygiene hypothesis). Epidemiological and experimental evidence in support of this hypothesis is accumulating. In this context, parasitic helminths are now important candidates for antiallergic/anti-inflammatory agents. Here we summarize antiallergic/anti-inflammatory effects of helminths together along with our own study of the effects of Schistosoma mansoni on Th17-dependent experimental arthritis. We also discuss possible mechanisms of helminth-induced suppression according to the recent advances of immunology.
Collapse
|
180
|
Reyes JL, Terrazas CA, Alonso-Trujillo J, van Rooijen N, Satoskar AR, Terrazas LI. Early removal of alternatively activated macrophages leads to Taenia crassiceps cysticercosis clearance in vivo. Int J Parasitol 2010; 40:731-42. [PMID: 20045000 DOI: 10.1016/j.ijpara.2009.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 12/14/2022]
Abstract
To determine the role of alternatively activated macrophages in modulating the outcome of experimental cysticercosis caused by Taenia crassiceps, we investigated the effect of removal of alternatively activated macrophage by injecting clodronate-loaded liposomes into susceptible BALB/c mice. Following T. crassiceps infection, mice receiving PBS-loaded liposomes developed a dominant Th2-type response associated with the presence of alternatively activated macrophages together with antigen-specific hyporesponsiveness and high parasite burden. In contrast, similarly infected mice treated with clodronate-loaded liposomes mounted a mixed Th1/Th2-type response, reversed antigen-specific hyporesponsiveness and did not carry notable alternatively activated macrophage populations. These factors were associated with increased resistance to T. crassiceps cysticercosis. Interestingly, early AAM phi depletion was enough to limit parasite growth. However, if macrophages were depleted late in the infection, no effect on parasite burden was observed. These findings demonstrate that alternatively activated macrophages play a critical role in mediating susceptibility to experimental cysticercosis in which their early recruitment may favor parasite survival.
Collapse
Affiliation(s)
- José L Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | |
Collapse
|
181
|
Cassol E, Cassetta L, Alfano M, Poli G. Macrophage polarization and HIV-1 infection. J Leukoc Biol 2009; 87:599-608. [PMID: 20042468 DOI: 10.1189/jlb.1009673] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Edana Cassol
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | |
Collapse
|
182
|
Major secretory antigens of the helminth Fasciola hepatica activate a suppressive dendritic cell phenotype that attenuates Th17 cells but fails to activate Th2 immune responses. Infect Immun 2009; 78:793-801. [PMID: 19917714 DOI: 10.1128/iai.00573-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fasciola hepatica is a helminth pathogen that drives Th2/Treg immune responses in its mammalian host. The parasite releases a large number of molecules that are critical to inducing this type of immune response. Here we have selected recombinant forms of two major F. hepatica secreted molecules, the protease cathepsin L (rFhCL1) and an antioxidant, sigma class glutathione transferase (rFhGST-si), to examine their interactions with dendritic cells (DCs). Despite enzymatic and functional differences between these molecules, both induced interleukin-6 (IL-6), IL-12p40, and macrophage inflammatory protein 2 (MIP-2) secretion from DCs and enhanced CD40 expression. While this induction was mediated by Toll-like receptor 4 (TLR4), the subsequent intracellular signaling pathways differed; rFhCL1 signaled through p38, and rFhGST-si mediated its effect via c-Jun N-terminal kinase (JNK), p38, p-NF-kappaBp65, and IRF5. Neither rFhCL1 nor rFhGST-si enhanced DC phagocytosis or induced Th2 immune responses in vivo. However, DCs matured in the presence of either enzyme attenuated IL-17 production from OVA peptide-specific T cells in vivo. In addition, DCs exposed to either antigen secreted reduced levels of IL-23. Therefore, both F. hepatica FhCL1 and FhGST-si modulate host immunity by suppressing responses associated with chronic inflammation-an immune modulatory mechanism that may benefit the parasite's survival within the host.
Collapse
|
183
|
Everts B, Perona-Wright G, Smits HH, Hokke CH, van der Ham AJ, Fitzsimmons CM, Doenhoff MJ, van der Bosch J, Mohrs K, Haas H, Mohrs M, Yazdanbakhsh M, Schramm G. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. ACTA ACUST UNITED AC 2009; 206:1673-80. [PMID: 19635864 PMCID: PMC2722183 DOI: 10.1084/jem.20082460] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Soluble egg antigens of the parasitic helminth Schistosoma mansoni (S. mansoni egg antigen [SEA]) induce strong Th2 responses both in vitro and in vivo. However, the specific molecules that prime the development of Th2 responses have not been identified. We report that omega-1, a glycoprotein which is secreted from S. mansoni eggs and present in SEA, is capable of conditioning human monocyte-derived dendritic cells in vitro to drive T helper 2 (Th2) polarization with similar characteristics as whole SEA. Furthermore, using IL-4 dual reporter mice, we show that both natural and recombinant omega-1 alone are sufficient to generate Th2 responses in vivo, even in the absence of IL-4R signaling. Finally, omega-1-depleted SEA displays an impaired capacity for Th2 priming in vitro, but not in vivo, suggesting the existence of additional factors within SEA that can compensate for the omega-1-mediated effects. Collectively, we identify omega-1, a single component of SEA, as a potent inducer of Th2 responses.
Collapse
Affiliation(s)
- Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden 2333 ZA, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D, Caspar P, Schwartzberg PL, Sher A, Jankovic D. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). ACTA ACUST UNITED AC 2009; 206:1681-90. [PMID: 19635859 PMCID: PMC2722182 DOI: 10.1084/jem.20082462] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schistosoma mansoni eggs contain factors that trigger potent Th2 responses in vivo and condition mouse dendritic cells (DCs) to promote Th2 lymphocyte differentiation. Using an in vitro bystander polarization assay as the readout, we purified and identified the major Th2-inducing component from soluble egg extract (SEA) as the secreted T2 ribonuclease, omega-1. The Th2-promoting activity of omega-1 was found to be sensitive to ribonuclease inhibition and did not require MyD88/TRIF signaling in DCs. In common with unfractioned SEA, the purified native protein suppresses lipopolysaccharide-induced DC activation, but unlike SEA, it fails to trigger interleukin 4 production from basophils. Importantly, omega-1-exposed DCs displayed pronounced cytoskeletal changes and exhibited decreased antigen-dependent conjugate formation with CD4(+) T cells. Based on this evidence, we hypothesize that S. mansoni omega-1 acts by limiting the interaction of DCs with CD4(+) T lymphocytes, thereby lowering the strength of the activation signal delivered.
Collapse
Affiliation(s)
- Svenja Steinfelder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009; 27:451-83. [PMID: 19105661 DOI: 10.1146/annurev.immunol.021908.132532] [Citation(s) in RCA: 2049] [Impact Index Per Article: 128.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages are innate immune cells with well-established roles in the primary response to pathogens, but also in tissue homeostasis, coordination of the adaptive immune response, inflammation, resolution, and repair. These cells recognize danger signals through receptors capable of inducing specialized activation programs. The classically known macrophage activation is induced by IFN-gamma, which triggers a harsh proinflammatory response that is required to kill intracellular pathogens. Macrophages also undergo alternative activation by IL-4 and IL-13, which trigger a different phenotype that is important for the immune response to parasites. Here we review the cellular sources of these cytokines, receptor signaling pathways, and induced markers and gene signatures. We draw attention to discrepancies found between mouse and human models of alternative activation. The evidence for in vivo alternative activation of macrophages is also analyzed, with nematode infection as prototypic disease. Finally, we revisit the concept of macrophage activation in the context of the immune response.
Collapse
Affiliation(s)
- Fernando O Martinez
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| | | | | |
Collapse
|
186
|
Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 2009; 8:1891-907. [PMID: 19443417 DOI: 10.1074/mcp.m900045-mcp200] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To infect their mammalian hosts, Fasciola hepatica larvae must penetrate and traverse the intestinal wall of the duodenum, move through the peritoneum, and penetrate the liver. After migrating through and feeding on the liver, causing extensive tissue damage, the parasites move to their final niche in the bile ducts where they mature and produce eggs. Here we integrated a transcriptomics and proteomics approach to profile Fasciola secretory proteins that are involved in host-pathogen interactions and to correlate changes in their expression with the migration of the parasite. Prediction of F. hepatica secretory proteins from 14,031 expressed sequence tags (ESTs) available from the Wellcome Trust Sanger Centre using the semiautomated EST2Secretome pipeline showed that the major components of adult parasite secretions are proteolytic enzymes including cathepsin L, cathepsin B, and asparaginyl endopeptidase cysteine proteases as well as novel trypsin-like serine proteases and carboxypeptidases. Proteomics analysis of proteins secreted by infective larvae, immature flukes, and adult F. hepatica showed that these proteases are developmentally regulated and correlate with the passage of the parasite through host tissues and its encounters with different host macromolecules. Proteases such as FhCL3 and cathepsin B have specific functions in larvae activation and intestinal wall penetration, whereas FhCL1, FhCL2, and FhCL5 are required for liver penetration and tissue and blood feeding. Besides proteases, the parasites secrete an array of antioxidants that are also highly regulated according to their migration through host tissues. However, whereas the proteases of F. hepatica are secreted into the parasite gut via a classical endoplasmic reticulum/Golgi pathway, we speculate that the antioxidants, which all lack a signal sequence, are released via a non-classical trans-tegumental pathway.
Collapse
Affiliation(s)
- Mark W Robinson
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Ultimo, Sydney, New South Wales 2007, Australia.
| | | | | | | | | |
Collapse
|
187
|
Adisakwattana P, Saunders SP, Nel HJ, Fallon PG. Helminth-Derived Immunomodulatory Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:95-107. [DOI: 10.1007/978-1-4419-1601-3_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|