151
|
Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A 2016; 113:E3492-500. [PMID: 27274060 DOI: 10.1073/pnas.1604153113] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a common cause of vision loss or blindness and reduction of intraocular pressure (IOP) has been proven beneficial in a large fraction of glaucoma patients. The IOP is maintained by the trabecular meshwork (TM) and the elevation of IOP in open-angle glaucoma is associated with dysfunction and loss of the postmitotic cells residing within this tissue. To determine if IOP control can be maintained by replacing lost TM cells, we transplanted TM-like cells derived from induced pluripotent stem cells into the anterior chamber of a transgenic mouse model of glaucoma. Transplantation led to significantly reduced IOP and improved aqueous humor outflow facility, which was sustained for at least 9 wk. The ability to maintain normal IOP engendered survival of retinal ganglion cells, whose loss is ultimately the cause for reduced vision in glaucoma. In vivo and in vitro analyses demonstrated higher TM cellularity in treated mice compared with littermate controls and indicated that this increase is primarily because of a proliferative response of endogenous TM cells. Thus, our study provides in vivo demonstration that regeneration of the glaucomatous TM is possible and points toward novel approaches in the treatment of this disease.
Collapse
|
152
|
Stem Cell Therapy for Treatment of Ocular Disorders. Stem Cells Int 2016; 2016:8304879. [PMID: 27293447 PMCID: PMC4884591 DOI: 10.1155/2016/8304879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Sustenance of visual function is the ultimate focus of ophthalmologists. Failure of complete recovery of visual function and complications that follow conventional treatments have shifted search to a new form of therapy using stem cells. Stem cell progenitors play a major role in replenishing degenerated cells despite being present in low quantity and quiescence in our body. Unlike other tissues and cells, regeneration of new optic cells responsible for visual function is rarely observed. Understanding the transcription factors and genes responsible for optic cells development will assist scientists in formulating a strategy to activate and direct stem cells renewal and differentiation. We review the processes of human eye development and address the strategies that have been exploited in an effort to regain visual function in the preclinical and clinical state. The update of clinical findings of patients receiving stem cell treatment is also presented.
Collapse
|
153
|
Abstract
BACKGROUND The primary pathophysiological feature of glaucoma is a progressive optic neuropathy with characteristic morphological changes of the optic disc and risk factors of age and intraocular pressure. Recently, involvement of other areas of the central nervous system (CNS) beyond the optic nerve has been demonstrated. This article addresses the proposition that glaucoma shares mechanistic and pathophysiologic features with neurodegenerations in the CNS. METHODS The literature on CNS alterations in patients with glaucoma is reviewed with particular focus on neuroimaging and pathological studies. A theoretical framework for assessing whether glaucoma is truly a neurodegenerative disease is developed based on the comparison with neurodegenerative and nonneurodegenerative diseases. RESULTS Although there is convincing evidence of abnormalities in CNS regions distal to the optic nerve in glaucoma, these are similar to those seen in other disorders of the proximal visual pathways, such as other optic neuropathies or retinal diseases. Similarly, features of glaucoma that are similar to neurodegenerations are also seen in nonneurodegenerative diseases. CONCLUSIONS Glaucoma is less likely a primary neurodegeneration affecting the CNS and more likely a primary optic neuropathy with secondary effects in the CNS.
Collapse
|
154
|
Autoimmune aspects in glaucoma. Eur J Pharmacol 2016; 787:105-18. [PMID: 27090926 DOI: 10.1016/j.ejphar.2016.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022]
Abstract
The pathogenesis of glaucoma, a common neurodegenerative disease, involves an immunologic component. Studies demonstrate changes of autoantibody concentrations against retinal and optic nerve head antigens in glaucoma patients. Furthermore we found antibody deposits in human glaucomatous retinae in a pro-inflammatory environment. Clinical studies showed up regulated, but also significantly down-regulated autoantibody levels. These antibodies belong to the natural autoimmunity. The upregulation of autoantibodies can be associated with fatal conditions, but several studies demonstrate that natural autoantibodies entail also neuroprotective characteristics and influence the protein expression of neuroretinal cells. A misbalance in the physiological equilibrium may shift from regulatory immunity into a neuroinflammatory degenerative process, what may lead to a predisposition to glaucoma. However, the protective nature of autoantibodies and the molecular mechanisms underlying the very sensitive equilibrium of natural autoimmunity between autoaggression and neuroprotection offer promising target sites for new therapeutic approaches. Finally, the changes in antibody profiles represent a new opportunity as highly sensitive and specific biomarkers for diagnostics purposes.
Collapse
|
155
|
Yao J, Wang XQ, Li YJ, Shan K, Yang H, Wang YNZ, Yao MD, Liu C, Li XM, Shen Y, Liu JY, Cheng H, Yuan J, Zhang YY, Jiang Q, Yan B. Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling. EMBO Mol Med 2016; 8:346-62. [PMID: 26964565 PMCID: PMC4818754 DOI: 10.15252/emmm.201505725] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 01/18/2023] Open
Abstract
The nervous and vascular systems, although functionally different, share many common regulators of function maintenance. Long non-coding RNAs (lncRNAs) are important players in many biological processes and human disorders. We previously identified a role of MALAT1 in microvascular dysfunction. However, its role in neurodegeneration is still unknown. Here, we used the eye as the model to investigate the role of MALAT1 in retinal neurodegeneration. We show that MALAT1 expression is significantly up-regulated in the retinas, Müller cells, and primary retinal ganglion cells (RGCs) upon stress. MALAT1 knockdown reduces reactive gliosis, Müller cell activation, and RGC survival in vivo and in vitro MALAT1-CREB binding maintains CREB phosphorylation by inhibiting PP2A-mediated dephosphorylation, which leads to continuous CREB signaling activation. Clinical and animal experimentation suggests that MALAT1 dysfunction is implicated in neurodegenerative processes and several human disorders. Collectively, this study reveals that MALAT1 might regulate the development of retinal neurodegeneration through CREB signaling.
Collapse
Affiliation(s)
- Jin Yao
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao-Qun Wang
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yu-Jie Li
- Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Kun Shan
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Yang
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yang-Ning-Zhi Wang
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Mu-Di Yao
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiu-Miao Li
- Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Shen
- Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Jing-Yu Liu
- Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Cheng
- Department of Neurology, Jiangsu Province Hospital, Nanjing, China
| | - Jun Yuan
- Department of Neurology, Jiangsu Chinese Medicine Hospital, Nanjing, China
| | - Yang-Yang Zhang
- Department of Cardiac Surgery, The first School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Eye Hospital, Nanjing Medical University, Nanjing, China The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
156
|
Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, Dégardin J, Godefroy D, Rostène W, Reaux-Le Goazigo A, Baudouin C, Melik Parsadaniantz S. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflammation 2016; 13:44. [PMID: 26897546 PMCID: PMC4761202 DOI: 10.1186/s12974-016-0509-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glaucoma is one of the leading causes of irreversible blindness in the world. The major risk factor is elevated intraocular pressure (IOP) leading to progressive retinal ganglion cell (RGC) death from the optic nerve (ON) to visual pathways in the brain. Glaucoma has been reported to share mechanisms with neurodegenerative disorders. We therefore hypothesize that neuroinflammatory mechanisms in central visual pathways may contribute to the spread of glaucoma disease. The aim of the present study was to analyze the neuroinflammation processes that occur from the pathological retina to the superior colliculi (SCs) in a rat model of unilateral ocular hypertension induced by episcleral vein cauterization (EVC). RESULTS Six weeks after unilateral (right eye) EVC in male Long-Evans rats, we evaluated both the neurodegenerative process and the neuroinflammatory state in visual pathway tissues. RGCs immunolabeled (Brn3a(+)) in ipsilateral whole flat-mounted retina demonstrated peripheral RGC loss associated with tissue macrophage/microglia activation (CD68(+)). Gene expression analysis of hypertensive and normotensive retinas revealed a significant increase of pro-inflammatory genes such as CCL2, IL-1β, and Nox2 mRNA expression compared to naïve eyes. Importantly, we found an upregulation of pro-inflammatory markers such as IL-1β and TNFα and astrocyte and tissue macrophage/microglia activation in hypertensive and normotensive RGC projection sites in the SCs compared to a naïve SC. To understand how neuroinflammation in the hypertensive retina is sufficient to damage both right and left SCs and the normotensive retina, we used an inflammatory model consisting in an unilateral stereotaxic injection of TNFα (25 ng/μl) in the right SC of naïve rats. Two weeks after TNFα injection, using an optomotor test, we observed that rats had visual deficiency in both eyes. Furthermore, both SCs showed an upregulation of genes and proteins for astrocytes, microglia, and pro-inflammatory cytokines, notably IL-1β. In addition, both retinas exhibited a significant increase of inflammatory markers compared to a naïve retina. CONCLUSIONS All these data evidence the complex role played by the SCs in the propagation of neuroinflammatory events induced by unilateral ocular hypertension and provide a new insight into the spread of neurodegenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Anaïs Sapienza
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Anne-Laure Raveu
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Elodie Reboussin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Christophe Roubeix
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Céline Boucher
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - David Godefroy
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - William Rostène
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Annabelle Reaux-Le Goazigo
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Christophe Baudouin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, 75012, Paris, France.,Department Ophthalmology, Hopital Ambroise Pare, AP HP, F-92100, Boulogne, France.,University Versailles St Quentin En Yvelines, F-78180, Montigny-Le-Bretonneux, France
| | - Stéphane Melik Parsadaniantz
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
157
|
Graph theoretical analysis reveals the reorganization of the brain network pattern in primary open angle glaucoma patients. Eur Radiol 2016; 26:3957-3967. [DOI: 10.1007/s00330-016-4221-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023]
|
158
|
Costa L, Cunha JP, Amado D, Pinto LA, Ferreira J. Diabetes Mellitus as a Risk Factor in Glaucoma's Physiopathology and Surgical Survival Time: A Literature Review. J Curr Glaucoma Pract 2016; 9:81-5. [PMID: 26997842 PMCID: PMC4779946 DOI: 10.5005/jp-journals-10008-1190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/13/2015] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is a multifactorial condition under serious influence of many risk factors. The role of diabetes mellitus (DM) in glaucoma etiology or progression remains inconclusive. Although, the diabetic patients have different healing mechanism comparing to the general population and it has a possible-negative role on surgical outcomes. This review article attempts to analyze the association of both diseases, glaucoma and DM, before and after the surgery. The epidemiological studies, based mainly in population prevalence analyzes, have shown opposite outcomes in time and even in the most recent articles also the association remains inconclusive. On the contrary, the experimental models based on animal induced chronic hyperglycemia have shown an important association of both diseases, explained by common neurodegenerative mechanisms. Diabetic patients have a different wound healing process in the eye viz-a-viz other organs. The healing process is more and it results in lower surgical survival time, higher intraocular pressure (IOP) levels and, therefore, these patients usually need more medication to lower the IOP. Both randomized and nonrandomized retrospective and experimental molecular studies have shown the association between DM and glaucoma. Further studies are needed to get better explanations about outcomes on more recent surgical procedures and with the exponential use of antifibrotics. How to cite this article: Costa L, Cunha JP, Amado D, Pinto LA, Ferreira J. Diabetes Mellitus as a Risk Factor in Glaucoma's Physiopathology and Surgical Survival Time: A Literature Review. J Curr Glaucoma Pract 2015;9(3):81-85.
Collapse
Affiliation(s)
- Lívio Costa
- Consultant, Department of Ophthalmology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - João Paulo Cunha
- Consultant, Department of Ophthalmology, Centro Hospitalar de Lisboa Central; Faculty of Medical Sciences, New University, Lisbon Portugal
| | - Duarte Amado
- Consultant, Department of Ophthalmology, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Luís Abegão Pinto
- Professor, Department of Ophthalmology, Centro Hospitalar de Lisboa; Institute of Pharmacology and Neurosciences, Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Joana Ferreira
- Consultant, Department of Ophthalmology, Centro Hospitalar de Lisboa Central; Faculty of Medical Sciences, New University, Lisbon Portugal
| |
Collapse
|
159
|
Structural brain alterations in primary open angle glaucoma: a 3T MRI study. Sci Rep 2016; 6:18969. [PMID: 26743811 PMCID: PMC4705520 DOI: 10.1038/srep18969] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/30/2015] [Indexed: 11/09/2022] Open
Abstract
Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma.
Collapse
|
160
|
Abstract
Glaucoma is a chronic optic neuropathy characterized by progressive damage to the optic nerve, death of retinal ganglion cells and ultimately visual field loss. It is one of the leading causes of irreversible loss of vision worldwide. The most important trigger of glaucomatous damage is elevated eye pressure, and the current standard approach in glaucoma therapy is reduction of intraocular pressure (IOP). However, despite the use of effective medications or surgical treatment leading to lowering of IOP, progression of glaucomatous changes and loss of vision among patients with glaucoma is common. Therefore, it is critical to prevent vision loss through additional treatment. To implement such treatment(s), it is imperative to identify pathophysiological changes in glaucoma and develop therapeutic methods taking into account neuroprotection. Currently, there is no method of neuroprotection with long-term proven effectiveness in the treatment of glaucoma. Among the most promising molecules shown to protect the retina and optic nerve are neurotrophic factors. Thus, the current focus is on the development of safe and non-invasive methods for the long-term elevation of the intraocular level of neurotrophins through advanced gene therapy and topical eye treatment and on the search for selective agonists of neurotrophin receptors affording more efficient neuroprotection.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Department of Ophthalmology, MSW Hospital, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Małgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
161
|
Network Centrality of Resting-State fMRI in Primary Angle-Closure Glaucoma Before and After Surgery. PLoS One 2015; 10:e0141389. [PMID: 26506229 PMCID: PMC4624709 DOI: 10.1371/journal.pone.0141389] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
Purpose Using voxel-wise degree centrality (DC), as measured by resting-state fMRI, we aimed to study alterations in the brain functional networks in patients with primary angle-closure glaucoma (PACG) and to reveal the plastic trajectories of surgery. Methods A total of 23 preoperative PACG patients (49.48 ± 14.37 years old) were recruited to undergo a resting-state fMRI scan, and 9 of them were rescanned 3 months after surgery. All PACG patients underwent a complete ophthalmologic examination, including intraocular pressure (IOP), retinal nerve fiber layer (RNFL) thickness, vertical cup to disc ratio (V C/D), and average cup to disc ratio (A C/D). Another 23 gender- and age-matched healthy controls (48.18 ± 9.40 years old) underwent scanning once for comparison. The group difference in DC was calculated in each voxel, and the correlations between the DC value and each of the clinical variables were analyzed in the PACG patients. Results Preoperative PACG (pre-PACG) patients showed significantly decreased DC in the bilateral visual cortices but increased DC in the left anterior cingulate cortex (ACC) and caudate (p < 0.05, corrected) compared with the controls. Statistical analysis showed a significantly negative correlation between DC in the bilateral visual cortices and the IOP score and between DC in the anterior cingulate cortex (ACC) and both the A C/D and V C/D scores in the pre-PACG patients. Three months after surgery, these postoperative PACG (post-PACG) patients showed a significantly increased DC in both the bilateral visual cortices and the left precentral gyrus compared with the pre-PACG patients. Conclusions Our results suggest that PACG may contribute to decreased functional centrality in the visual system and to increased degree centrality in cognition-emotional processing regions. Alterations in visual areas seem to parallel the cup to disc ratio, but not the duration of angle closure. The changes of functional centrality in PACG patients after operation may reveal the plasticity or degeneration of the visual-associated brain areas. Our findings may provide further understanding of the pathophysiology of PACG.
Collapse
|
162
|
Zhang QJ, Wang D, Bai ZL, Ren BC, Li XH. Diffusion tensor imaging of optic nerve and optic radiation in primary chronic angle-closure glaucoma using 3T magnetic resonance imaging. Int J Ophthalmol 2015; 8:975-9. [PMID: 26558212 DOI: 10.3980/j.issn.2222-3959.2015.05.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/22/2015] [Indexed: 11/02/2022] Open
Abstract
AIM To evaluate the value of quantitative diffusion tensor imaging (DTI) in assessing the axonal and myelin damage of the optic nerves and optic radiations in patients with chronic primary angle-closure glaucoma (PACG) by using high-field magnetic resonance (MR) imaging (3T). METHODS Twenty patients with bilateral chronic PACG and twenty age- and sex matched disease-free control subjects were enrolled. Conventional MRI and DTI were performed on all subjects using 3T MR scanner. Mean diffusivity (MD), fractional anisotropy (FA), axial diffusivities (AD) and radial diffusivities (RD) of each optic nerve and each optic radiation were measured by using post-processing software of DTI studio 2.3, and then compared between left eyes and right eyes and between patients group and control group. The paired-sample t- test were used. RESULTS There was no abnormality in the shape and signal intensity of the optic nerves and optic radiations in patients group and control group on the conventional MRI. No significant differences were observed in the FA, MD, AD and RD between the right and left optic nerves and optic radiations within patients group and control group (P>0.05). The optic nerves and optic radiations of patients with chronic PACG, as compared with control subjects, had significantly higher MD, AD, RD and significantly lower FA (P<0.05). CONCLUSION The diffusivity of optic nerves and optic radiations in chronic PACG group showed abnormal and diffusivity parameters could be used markers of axonal and myelin injury in glaucoma.
Collapse
Affiliation(s)
- Qiu-Juan Zhang
- Department of Radiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Dong Wang
- Department of Radiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Zhi-Lan Bai
- Department of Radiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Bai-Chao Ren
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiao-Hui Li
- Department of Radiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
163
|
Liu Z, Tian J. Amplitude of low frequency fluctuation in primary open angle glaucoma: a resting state fMRI study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6706-9. [PMID: 25571535 DOI: 10.1109/embc.2014.6945167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primary open angle glaucoma (POAG) is a kind of progressive neuropathy with no clear cause. In the present fMRI study, a data-driven approach was employed to map the alteration of regional spontaneous activity in POAG patients by measuring the amplitude of low-frequency fluctuation (ALFF) of the blood oxygen level-dependent (BOLD) signal. Twenty one POAG patients and 22 age and gender matched healthy subjects participated in this study. We found that the abnormal ALFF values in the POAG patients compared with healthy controls were not only detected in the visual regions but also across the whole brain. We also found the correlations between ALFF values and the POAG stages for POAG patients. We concluded that the abnormality of spontaneous brain activity in patients with POAG existed in visual cortex as well as in distal brain regions associated with sensation, motion, emotion and psychology. And the abnormal spontaneous neural activity in different brain regions could be better detected by specific frequency bands. These findings might contribute to a better understanding of the pathophysiology of POAG.
Collapse
|
164
|
Stothert AR, Fontaine SN, Sabbagh JJ, Dickey CA. Targeting the ER-autophagy system in the trabecular meshwork to treat glaucoma. Exp Eye Res 2015; 144:38-45. [PMID: 26302411 DOI: 10.1016/j.exer.2015.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
A major drainage network involved in aqueous humor dynamics is the conventional outflow pathway, which is gated by the trabecular meshwork (TM). The TM acts as a molecular sieve, providing resistance to aqueous outflow, which is responsible for regulating intraocular pressure (IOP). If the TM is damaged, aqueous outflow is impaired, IOP increases and glaucoma can manifest. Mutations in the MYOC gene cause hereditary primary open-angle glaucoma (POAG) by promoting the abnormal amyloidosis of the myocilin protein in the endoplasmic reticulum (ER), leading to ER stress-induced TM cell death. Myocilin accumulation is observed in approximately 70-80% of all glaucoma cases suggesting that environmental or other genetic factors may also promote myocilin toxicity. For example, simply preventing myocilin glycosylation is sufficient to promote its abnormal accretion. These myocilin amyloids are unique as there are no other known pathogenic proteins that accumulate within the ER of TM cells and cause toxicity. Moreover, this pathogenic accumulation only kills TM cells, despite expression of this protein in other cell types, suggesting that another modifier exclusive to the TM participates in the proteotoxicity of myocilin. ER autophagy (reticulophagy) is one of the pathways essential for myocilin clearance that can be impacted dramatically by aging and other environmental factors such as nutrition. This review will discuss the link between myocilin and autophagy, evaluating the role of this degradation pathway in glaucoma as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Andrew R Stothert
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Sarah N Fontaine
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Jonathan J Sabbagh
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Chad A Dickey
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA.
| |
Collapse
|
165
|
Galvao J, Elvas F, Martins T, Cordeiro MF, Ambrósio AF, Santiago AR. Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration. Exp Eye Res 2015; 140:65-74. [PMID: 26297614 DOI: 10.1016/j.exer.2015.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
Abstract
Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.
Collapse
Affiliation(s)
- Joana Galvao
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Glaucoma & Retinal Neurodegeneration Research Group, University College London, London EC1V 9EL, UK.
| | - Filipe Elvas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal.
| | - Tiago Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal.
| | - M Francesca Cordeiro
- Glaucoma & Retinal Neurodegeneration Research Group, University College London, London EC1V 9EL, UK; Western Eye Hospital, Imperial College, London, UK.
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal; CNC.IBILI, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Ana Raquel Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light (AIBILI), Coimbra 3000-548, Portugal; CNC.IBILI, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
166
|
Cui YH, Huang JF, Cheng SY, Wei W, Shang L, Li N, Xiong K. Study on establishment and mechanics application of finite element model of bovine eye. BMC Ophthalmol 2015; 15:101. [PMID: 26268321 PMCID: PMC4535564 DOI: 10.1186/s12886-015-0073-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glaucoma mainly induced by increased intraocular pressure (IOP), it was believed that the pressure that wall of eyeball withstands were determined by material properties of the tissue and stereoscopic geometry of the eyeball. In order to study the pressure changes in different parts of interior eyeball wall, it is necessary to develop a novel eye ball FEM with more accurate geometry and material properties. Use this model to study the stress changes in different parts of eyeball, especially the lamina cribrosa (LC) under normal physiological and pathological IOP, and provide a mathematical model for biomechanical studies of selected retinal ganglion cells (RGCs) death. METHODS (1) Sclera was cut into 3.8-mm wide, 14.5-mm long strips, and cornea was cut into 9.5-mm-wide and 10-mm-long strips; (2) 858 Mini BionixII biomechanical loading instrument was used to stretch sclera and cornea. The stretching rate for sclera was 0.3 mm/s, 3 mm/s, 30 mm/s, 300 mm/s; and for cornea were 0.3 mm/s and 30 mm/s. The deformation-stress curve was recorded; (3) Naso-temporal and longitudinal distance of LC were measured; (4) Micro-CT was used to accurately scan fresh bovine eyes and obtain the geometrical image and data to establish bovine eye model. 3-D reconstruction was performed using these images and data to work out the geometric shape of bovine eye; (5) IOP levels for eyeball FEM was set and the inner wall of eyeball was used taken as load-bearing part. Simulated eyeball FE modeling was run under the IOP level of 10 mmHg, 30 mmHg, 60 mmHg and 100 mmHg, and the force condition of different parts of eyeball was recorded under different IOP levels. RESULTS (1) We obtained the material parameters more in line with physiological conditions and established a more realistic eyeball model using reversed engineering of parameters optimization method to calculate the complex nonlinear super-elastic and viscoelastic parameters more accurately; (2) We observed the following phenomenon by simulating increased pressure using FEM: as simulative IOP increased, the stress concentration scope on the posterior half of sclera became narrower; in the meantime, the stress-concentration scope on the anterior half of scleral gradually expanded, and the stress on the central part of LC is highest. CONCLUSION As simulative IOP increased, stress-concentration scope on the posterior half of sclera gradually narrowed; in the meantime, the stress-concentration scope on the anterior half of sclera gradually expanded, and the stress on the LC is mainly concentrated in the central part, suggesting that IOP is mainly concentrated in the anterior part of the eyeball as it increases. This might provide a biomechanical evidence to explain why RGCs in peripheral part die earlier than RGCs in central part under HIOP.
Collapse
Affiliation(s)
- Yan-Hui Cui
- Department of Anatomy and Neurobiology, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, Hunan, 410013, China.
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, Hunan, 410013, China.
| | - Si-Ying Cheng
- Eight-year clinical medicine, 2011 grade, Xiangya Medical School, Central South University, Changsha, Hunan, 410013, China.
| | - Wei Wei
- Laboratoire de Biomécanique Appliquée, MRT24 IFSTTAR-Aix-Marseille Université, Bd. P. Dramard, Faculté de Medecine secteur-Nord, Marseille, 13916, France.
| | - Lei Shang
- Department of Anatomy and Neurobiology, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, Hunan, 410013, China.
| | - Na Li
- Radiology Department, Third Xiangya Hospital, Central South University, 138 Tongzi Po Road, Changsha, Hunan, 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
167
|
Vidal-Sanz M, Valiente-Soriano FJ, Ortín-Martínez A, Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Alarcón-Martínez L, García-Ayuso D, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP. Retinal neurodegeneration in experimental glaucoma. PROGRESS IN BRAIN RESEARCH 2015; 220:1-35. [PMID: 26497783 DOI: 10.1016/bs.pbr.2015.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In rats and mice, limbar tissues of the left eye were laser-photocoagulated (LP) and ocular hypertension (OHT) effects were investigated 1 week to 6 months later. To investigate the innermost layers, retinas were examined in wholemounts using tracing from the superior colliculi to identify retinal ganglion cells (RGCs) with intact retrograde axonal transport, melanopsin immunodetection to identify intrinsically photosensitive RGCs (m(+)RGC), Brn3a immunodetection to identify most RGCs but not m(+)RGCs, RECA1 immunodetection to examine the inner retinal vessels, and DAPI staining to detect all nuclei in the GC layer. The outer retinal layers (ORLs) were examined in cross sections analyzed morphometrically or in wholemounts to study S- and L-cones. Innervation of the superior colliculi was examined 10 days to 14 weeks after LP with orthogradely transported cholera toxin subunit B. By 2 weeks, OHT resulted in pie-shaped sectors devoid of FG(+)RGCs or Brn3a(+)RGCs but with large numbers of DAPI(+)nuclei. Brn3a(+)RGCs were significantly greater than FG(+)RGCs, indicating the survival of large numbers of RGCs with their axonal transport impaired. The inner retinal vasculature showed no abnormalities that could account for the sectorial loss of RGCs. m(+)RGCs decreased to approximately 50-51% in a diffuse loss across the retina. Cross sections showed focal areas of degeneration in the ORLs. RGC loss at 1m diminished to 20-25% and did not progress further with time, whereas the S- and L-cone populations diminished progressively up to 6m. The retinotectal projection was reduced by 10 days and did not progress further. LP-induced OHT results in retrograde degeneration of RGCs and m(+)RGCs, severe damage to the ORL, and loss of retinotectal terminals.
Collapse
Affiliation(s)
- Manuel Vidal-Sanz
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Maria P Villegas-Pérez
- Departamento de Oftalmología, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
168
|
Bell K, Wilding C, Funke S, Pfeiffer N, Grus FH. Protective effect of 14-3-3 antibodies on stressed neuroretinal cells via the mitochondrial apoptosis pathway. BMC Ophthalmol 2015; 15:64. [PMID: 26115916 PMCID: PMC4482181 DOI: 10.1186/s12886-015-0044-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Previous studies demonstrate changes of autoantibody concentrations against retinal and optic nerve head antigens in the serum of glaucoma patients in comparison to healthy persons. These antibodies belong to the natural autoimmunity. Previous studies showed up regulated, but also significantly down-regulated autoantibody levels. These antibodies have the ability to influence protein profiles of neuroretinal cells and possibly hold neuroprotective potential, as we have been able to demonstrate before. Aim of this study was to analyse the serum and antibody effect of glaucoma patients on neuroretinal cells in more detail and also determine the impact of antibodies found down-regulated in glaucoma patients on the pathogenesis of the neurodegenerative disease glaucoma. Methods Neuroretinal cells (RGC-5) were incubated with serum either from glaucoma patients or healthy controls for 24 h. Mass spectrometric analysis was performed after cell lysis. Furthermore the neuroretinal cells were preincubated with different and concentrations of 14-3-3 antibodies (0.005, 0.1, 0.5, 1, 5 and 10 μg/ml) and then stressed with H2O2, staurosporine or glutamate. Viability tests were performed with crystal violet and ROS tests with DCFH-DA. Antibody location in the cell after antibody incubation was performed with immunoccytochemical methods. Additionally mass spectrometric analysis was performed with the cells after antibody incubation. Results Protein expression analysis with Maldi-Orbitrap MS showed changes in the expression level of regulatory proteins in cells incubated with glaucoma serum, e.g. an up-regulation of 14-3-3 and a down-regulation of Calmodulin. After preincubation of the cells with anti-14-3-3 antibody and stressing the cells, we detected an increase in viability of up to 22 % and a decrease in reactive oxygen species (ROS) of up to 31 %. Proteomic 1 analysis involvement of the mitochondrial apoptosis pathway in this protective effect and immunohistochemical analysis showed an antibody uptake in the cells. Conclusion We found significant effects of serum antibodies on proteins of neuroretinal cells especially of the mitochondrial apoptosis pathway. Furthermore we detected a protective potential of antibodies down-regulated in glaucoma patients. The changed autoantibodies belong to the natural autoimmunity. We conclude that changes in the natural autoimmunity of patients with glaucoma can negatively impact regulatory functions. Electronic supplementary material The online version of this article (doi:10.1186/s12886-015-0044-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, University Medical center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Corina Wilding
- Experimental Ophthalmology, Department of Ophthalmology, University Medical center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
| |
Collapse
|
169
|
Wang Y, Huang C, Zhang H, Wu R. Autophagy in glaucoma: Crosstalk with apoptosis and its implications. Brain Res Bull 2015; 117:1-9. [PMID: 26073842 DOI: 10.1016/j.brainresbull.2015.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/05/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023]
Abstract
Glaucoma is characterized by elevated intraocular pressure that causes progressive loss of retinal ganglion cells (RGCs). Autophagy is a lysosomal degradative process that updates the cellular components and plays an important role in cellular homeostasis. Recent studies have shown that autophagy is involved in the pathophysiological process of glaucoma. The role played by autophagy in glaucoma is complex, and conflicting evidence shows that autophagy promotes both RGC survival and death. The understanding of the major pattern of RGC loss and the crosstalk between autophagy and apoptosis remains limited in glaucoma. This review focuses on the relationship between autophagy and glaucoma, particularly on the influence of autophagy on apoptosis in glaucoma. Further research on autophagy in glaucoma may provide a novel understanding of the glaucoma pathology and novel treatment targets for glaucoma in the future.
Collapse
Affiliation(s)
- Yao Wang
- Eye Institute and Affiliated Xiamen Eye Center, Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China; Department of Ophthalmology, First Hospital of Xi'an, Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Changquan Huang
- Eye Institute and Affiliated Xiamen Eye Center, Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China
| | - Hongbing Zhang
- Department of Ophthalmology, First Hospital of Xi'an, Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Renyi Wu
- Eye Institute and Affiliated Xiamen Eye Center, Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China.
| |
Collapse
|
170
|
Cobb CA, Cole MP. Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis 2015; 84:4-21. [PMID: 26024962 DOI: 10.1016/j.nbd.2015.04.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
Abstract
Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage.
Collapse
Affiliation(s)
- Catherine A Cobb
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
171
|
McBean GJ, Aslan M, Griffiths HR, Torrão RC. Thiol redox homeostasis in neurodegenerative disease. Redox Biol 2015; 5:186-194. [PMID: 25974624 PMCID: PMC4434181 DOI: 10.1016/j.redox.2015.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 12/21/2022] Open
Abstract
This review provides an overview of the biochemistry of thiol redox couples and the significance of thiol redox homeostasis in neurodegenerative disease. The discussion is centred on cysteine/cystine redox balance, the significance of the xc− cystine–glutamate exchanger and the association between protein thiol redox balance and neurodegeneration, with particular reference to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. The role of thiol disulphide oxidoreductases in providing neuroprotection is also discussed. An overview of the biochemistry of thiol redox couples. The significance of thiol redox homoeostasis in neurodegenerative disease. The association between the xc− cystine–glutamate exchanger and glutamate-mediated toxicity. The role of thiol disulphide oxidoreductases in neuroprotection.
Collapse
Affiliation(s)
- Gethin J McBean
- UCD School of Biomolecular and Biomedical Science, University College, Dublin, Ireland.
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University School of Medicine, Antalya, Turkey
| | - Helen R Griffiths
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Rita C Torrão
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
172
|
Disturbed temporal dynamics of brain synchronization in vision loss. Cortex 2015; 67:134-46. [PMID: 25956453 DOI: 10.1016/j.cortex.2015.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/17/2014] [Accepted: 03/24/2015] [Indexed: 01/15/2023]
Abstract
Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input.
Collapse
|
173
|
Analysis of the expression and polymorphism of APOE, HSP, BDNF, and GRIN2B genes associated with the neurodegeneration process in the pathogenesis of primary open angle glaucoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:258281. [PMID: 25893192 PMCID: PMC4393917 DOI: 10.1155/2015/258281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
Abstract
Glaucoma is characterized by optic neuropathy of the RGC or retinal nerve fiber. The aim of this study was to evaluate a relationship between the neurodegenerative genes' polymorphisms of the APOE (rs449647), BDNF (rs2030324), GRIN2B (rs3764028), and HSP70-1 (rs1043618) and the occurrence risk of POAG and to investigate its effect on allele-specific gene expression. Genomic DNA was extracted from peripheral blood. Analysis of the genes' polymorphisms was performed using PCR-RFLP. The level of mRNA expression was determined by QRT-PCR. We showed a statistically significant association of BDNF and APOE genes' polymorphisms with a risk of POAG occurrence. There was a statistically significant association of the rs2030324 polymorphism with progression of POAG based on cup disc ratio value and rs1043618 polymorphism based on nerve fiber index and rim area. Furthermore, we found that mean HSP70-1 mRNA expression was significantly lower in the case of individuals with the G/G genotype than in the case of minor allele carriers, that is, G/C and C/C. We also found that BDNF and HSP70-1 expression level are associated with the progression of POAG based on rim area value. In conclusion, our results suggest that BDNF, APOE, and HSP70-1 genes might be associated with a risk of POAG occurrence in the Polish population.
Collapse
|
174
|
Fang J, Jiang F, Li J, Zhu Y. Rationale for the use of multifunctional drugs as neuroprotective agents for glaucoma. Neural Regen Res 2015; 7:313-8. [PMID: 25806075 PMCID: PMC4353106 DOI: 10.3969/j.issn.1673-5374.2012.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/02/2011] [Indexed: 11/18/2022] Open
Abstract
Glaucoma, the leading cause globally of irreversible blindness, is a neurodegenerative disease characterized by progressive retinal ganglion cell death. To date, no drug has been shown to prevent the retinal ganglion cell loss associated with glaucoma. Multiple mechanisms lead to ganglion cell death in glaucoma, suggesting that a neuroprotectant that has a single mode of action, like memantine, would have a limited positive effect at slowing down ganglion cell death. Conversely, simultaneously targeting several factors may be the best therapeutic approach to improve outcomes. Multifunctional drugs are fast gaining acceptance as a strategy for the treatment of complex disorders of the central nervous system, such as Parkinson's disease, Alzheimer's disease and other progressive neurodegenerative diseases. In this paper, we review the current literature on multifunctional drugs and propose a rationale for the use of multifunctional drugs in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Jiahua Fang
- Department of Ophthalmology, Jingzhou First Hospital, Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jingbo Li
- Department of Ophthalmology, Jingzhou First Hospital, Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Yanhua Zhu
- Department of Ophthalmology, Jingzhou First Hospital, Yangtze University, Jingzhou 434000, Hubei Province, China
| |
Collapse
|
175
|
Canadian ophthalmologists' opinions concerning complementary and alternative medicine (CAM) use in glaucoma. J Glaucoma 2015; 23:430-4. [PMID: 23429615 DOI: 10.1097/ijg.0b013e31827b139d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Our goal is to investigate the opinion and practice pattern of Canadian ophthalmologists regarding the use of and recommendations for complementary and alternative medicine (CAM) for their glaucoma patients. METHODS Institutional review board approval for this prospective, cross-sectional survey was obtained from the Research Ethics Board of Sunnybrook Health Sciences Centre. The survey was sent to all ophthalmologists in Canada electronically through the e-mail lists of 4 ophthalmology associations. RESULTS A total of 241 ophthalmologists representing all provinces in Canada responded to the questionnaire. Twenty-two percent felt that CAM does have a role in glaucoma therapy with specialists being more likely to believe there is a role (P<0.05). Of the total respondents, 26% ask their patients if they use CAM with those in practice for <20 years more likely to encourage use (P<0.05). Of the respondents, 9% recommend CAM and if an ophthalmologist was in practice for <20 years he/she was significantly more likely to recommend CAM (P<0.01). Respondents (62%) in general do not discourage CAM with younger ophthalmologists (younger than 50 y, P<0.02) and ophthalmologists in practice for <20 years (P<0.05) being less likely to discourage CAM use. Respondents (41%) believe that CAM rarely ever affects compliance with ophthalmologists from an urban practice (P<0.01) and academic practice (P<0.05) more likely to deny effect on compliance. Respondents believe that CAM sometimes (46%) results in patient morbidity with ophthalmologists being in practice for <20 years believing that morbidity is less likely (P<0.05). CONCLUSION A substantial minority of respondents believe that CAM has a role in glaucoma therapy, recommend its use, and ask their patients if they use CAM. Younger doctors are more likely to encourage alternatives; those in practice for <20 years are more likely to ask about alternative medicine use, recommend its use, and believe that morbidity usually does not result from the use of alternative treatments.
Collapse
|
176
|
Phatak NR, Stankowska DL, Krishnamoorthy RR. Transcription Factor Brn-3b Overexpression Enhances Neurite Outgrowth in PC12 Cells Under Condition of Hypoxia. Cell Mol Neurobiol 2015; 35:769-83. [PMID: 25786379 DOI: 10.1007/s10571-015-0171-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Transcription factor Brn-3b plays a key role in retinal ganglion cell differentiation, survival, and axon outgrowth during development. However, the precise role of Brn-3b in the normal adult retina as well as during neurodegeneration is unclear. In the current study, the effect of overexpression of Brn-3b was assessed in vitro, in PC12 cells under conditions of normoxia and hypoxia. Immunoblot analysis showed that overexpression of Brn-3b in PC12 cells as well as 661W cells produced significant increase in the growth cone marker, growth-associated protein-43 (GAP-43), and acetylated-tubulin (ac-TUBA). In addition, an increased immunostaining for GAP-43 and ac-TUBA was observed in PC12 cells overexpressing Brn-3b, which was accompanied by a marked increase in neurite outgrowth, compared to PC12 cells overexpressing the empty vector. In separate experiments, one set of PC12 cells transfected either with a Brn-3b expression vector or an empty vector was subjected to conditions of hypoxia for 2 h, while another set of similarly transfected PC12 cells was maintained in normoxic conditions. It was found that the upregulation of GAP-43 and ac-TUBA in PC12 cells overexpressing Brn-3b under conditions of normoxia was sustained under conditions of hypoxia. Immunocytochemical analysis revealed not only an upregulation of GAP-43 and ac-TUBA, but also increased neurite outgrowth in PC12 cells transfected with Brn-3b as compared to PC12 cells transfected with empty vector in both normoxia and hypoxia. The findings have implications for a potential role of Brn-3b in neurodegenerative diseases in which hypoxia/ischemia contribute to pathophysiology of the disease.
Collapse
Affiliation(s)
- Nitasha R Phatak
- Department of Cell Biology and Immunology, North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | | | | |
Collapse
|
177
|
Visual impairment in an optineurin mouse model of primary open-angle glaucoma. Neurobiol Aging 2015; 36:2201-12. [PMID: 25818176 DOI: 10.1016/j.neurobiolaging.2015.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Primary open-angle glaucoma (POAG) is characterized by progressive neurodegeneration of retinal ganglion cells (RGCs). Why RGCs degenerate in low-pressure POAG remains poorly understood. To gain mechanistic insights, we developed a novel mouse model based on a mutation in human optineurin associated with hereditary, low-pressure POAG. This mouse improves the design and phenotype of currently available optineurin mice, which showed high global overexpression. Although both 18-month-old optineurin and nontransgenic control mice showed an age-related decrease in healthy axons and RGCs, the expression of mutant optineurin enhanced axonal degeneration and decreased RGC survival. Mouse visual function was determined using visual evoked potentials, which revealed specific visual impairment in contrast sensitivity. The E50K optineurin transgenic mouse described here exhibited clinical features of POAG and may be useful for mechanistic dissection of POAG and therapeutic development.
Collapse
|
178
|
Chen H, Zhao Y, Liu M, Feng L, Puyang Z, Yi J, Liang P, Zhang HF, Cang J, Troy JB, Liu X. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Invest Ophthalmol Vis Sci 2015; 56:1971-84. [PMID: 25722210 DOI: 10.1167/iovs.14-15691] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE We investigated the progressive degeneration of retinal and superior collicular functions in a mouse model of sustained ocular hypertension. METHODS Focal laser illumination and injection of polystyrene microbeads were used to induce chronic ocular hypertension. Retinal ganglion cell (RGC) loss was characterized by in vivo optical coherence tomography (OCT) and immunohistochemistry. Retinal dysfunction was also monitored by the full-field ERG. Retinal ganglion cell light responses were recorded using a 256-channel multielectrode array (MEA), and RGC subtypes were characterized by noncentered spike-triggered covariance (STC-NC) analysis. Single-unit extracellular recordings from superficial layers of the superior colliculus (SC) were performed to examine the receptive field (RF) properties of SC neurons. RESULTS The elevation of intraocular pressure (IOP) lasted 4 months in mice treated with a combination of laser photocoagulation and microbead injection. Progressive RGC loss and functional degeneration were confirmed in ocular hypertensive (OHT) mice. These mice had fewer visually responsive RGCs than controls. Using the STC-NC analysis, we classified RGCs into ON, OFF, and ON-OFF functional subtypes. We showed that ON and OFF RGCs were more susceptible to the IOP elevation than ON-OFF RGCs. Furthermore, SC neurons of OHT mice had weakened responses to visual stimulation and exhibited mismatched ON and OFF subfields and irregular RF structure. CONCLUSIONS We demonstrated that the functional degeneration of RGCs is subtype-dependent and that the ON and OFF pathways from the retina to the SC were disrupted. Our study provides a foundation to investigate the mechanisms underlying the progressive vision loss in experimental glaucoma.
Collapse
Affiliation(s)
- Hui Chen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Yan Zhao
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Mingna Liu
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| | - Liang Feng
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Zhen Puyang
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Yi
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Peiji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao F Zhang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Jianhua Cang
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| | - John B Troy
- Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States
| | - Xiaorong Liu
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, United States
| |
Collapse
|
179
|
Optic nerve diffusion tensor imaging parameters and their correlation with optic disc topography and disease severity in adult glaucoma patients and controls. J Glaucoma 2015; 23:513-20. [PMID: 23632406 DOI: 10.1097/ijg.0b013e318294861d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate optic nerve diffusion tensor imaging (DTI) parameters in glaucoma patients and controls, and to correlate DTI parameters with the rim area obtained with Heidelberg retina tomography (HRT) and with the severity of glaucomatous damage using the Glaucoma Staging System. DESIGN Pilot study. METHODS Twenty-seven patients with glaucoma and 12 control subjects underwent DTI and HRT imaging. Main outcome measures included: fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, HRT rim area, and Glaucoma Staging System stage. RESULTS In group comparison, mean diffusivity (1.33 vs. 0.91 μm/ms, P=0.0002), axial diffusivity (1.70 vs. 1.43 μm/ms, P=0.036), and radial diffusivity (1.24 vs. 0.71 μm/ms, P<0.0001) were significantly higher and fractional anisotropy (0.21 vs. 0.44, P<0.0001) was significantly lower in the glaucoma compared with those of control subjects. In glaucoma patients, mean, axial, and radial diffusivities increased and fractional anisotropy decreased as rim area decreases and the Glaucoma stage increased (P<0.05). However, there were no statistically significant differences in the DTI parameters when adjacent pairs of stages were compared (P>0.05). CONCLUSIONS DTI may be a useful technique for detection and evaluation of glaucomatous damage in the optic nerve, particularly for patients in whom conventional imaging and perimetry are not possible. Future studies are needed to evaluate how DTI parameters change longitudinally with glaucomatous damage within the visual pathways and address cerebrospinal fluid partial volume effects in diffusion tensor quantification, especially for patients with advanced glaucoma stage.
Collapse
|
180
|
Ledolter AA, Monhart M, Schoetzau A, Todorova MG, Palmowski-Wolfe AM. Structural and functional changes in glaucoma: comparing the two-flash multifocal electroretinogram to optical coherence tomography and visual fields. Doc Ophthalmol 2015; 130:197-209. [PMID: 25616700 DOI: 10.1007/s10633-015-9482-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE To correlate multifocal electroretinogram (mfERG) findings in the macular area of glaucoma patients with automated perimetry (visual fields) and with optical coherence tomography (OCT). METHODS A two-global flash mfERG (VERIS™) was recorded in 20 eyes with primary open-angle glaucoma. The root mean square was calculated, and three response epochs were analysed: the direct component (15-45 ms) and two induced components (IC-1 at 45-75 ms and IC-2 at 75-105 ms). The central 10° of the mfERG was compared to the central 10° of the OCT and of the visual field. Responses grouped in a superior and in an inferior semicircle, extending between 10° and 20°, were also compared to the corresponding areas of the OCT and of the visual fields. In addition, the area of the papillomacular bundle was also analysed separately. RESULTS In glaucoma patients, mfERG responses showed a significant positive association with retinal thickness in the central 10° for IC2 (p = 0.001) and a trend for IC1 (p = 0.066). A significant association was found between the central IC1 and IC2 of the mfERG and corresponding perimetric sensitivities expressed in linear units (p < 0.01). The OCT showed a positive association with visual field sensitivities (p < 0.05) in all areas examined (p < 0.05). Separation of the papillomacular bundle area did not improve structure-function association further. CONCLUSIONS In our study, mfERG showed a statistically significant correlation with perimetric sensitivity measured in linear units and with structural macular changes detected with time-domain OCT.
Collapse
Affiliation(s)
- Anna A Ledolter
- Department of Ophthalmology, University of Basel, Basel, Switzerland,
| | | | | | | | | |
Collapse
|
181
|
Nucci C, Martucci A, Cesareo M, Garaci F, Morrone LA, Russo R, Corasaniti MT, Bagetta G, Mancino R. Links among glaucoma, neurodegenerative, and vascular diseases of the central nervous system. PROGRESS IN BRAIN RESEARCH 2015; 221:49-65. [DOI: 10.1016/bs.pbr.2015.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
182
|
Wang Y, Lu Q, Gao S, Zhu Y, Gao Y, Xie B, Shen X. Pigment epithelium-derived factor regulates glutamine synthetase and l-glutamate/l-aspartate transporter in retinas with oxygen-induced retinopathy. Curr Eye Res 2014; 40:1232-44. [PMID: 25548969 DOI: 10.3109/02713683.2014.990639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE A predominant function of Müller cells is to regulate glutamate levels, but these cells are compromised in oxygen-induced retinopathy. The aim of this study was to investigate the role of pigment epithelium-derived factor (PEDF) in regulating glutamate levels in retina under hypoxia. MATERIALS AND METHODS One-week-old C57BL/6J mice were exposed to 75% oxygen for 5 days and then kept in room air for another 5 days to establish the oxygen-induced retinopathy (OIR) mouse model. Mice received intravitreous injections of 2 μg PEDF or vehicle on postnatal (P)12 and P14, respectively. Antibody against interleukin-1Beta (IL-1β) (IL-1ab) was used to neutralize the activity of IL-1β, mice received intravitreous injections of 500 ng IL-1ab or vehicle on P12 and P14, respectively, too. At P17, the mice were euthanized and their eyes were enucleated. The expression levels of IL-1β, glutamine synthetase (GS) and l-glutamate/l-aspartate transporter (GLAST) in retinas with different treatments were detected. In addition, wild-type C57BL/6J mice received intravitreous injections of IL-1β or PEDF. After 24 h, the expression of GS and GLAST in the retinas was also detected. Furthermore, high-performance liquid chromatography (HPLC) was performed to determine the glutamate concentrations in retinas with different treatments. RESULTS The expression of IL-1β and levels of glutamate were increased in retinas with OIR, while the expression of GS and GLAST was decreased. Administration of PEDF ameliorated the characteristic changes in retinas of OIR mice. And neutralization of IL-1β by administration of IL-1ab increased GS and GLAST expression in retinas with OIR. Moreover, the effects of IL-1β on GS and GLAST expression and unbalanced glutamate levels were inhibited after receiving intravitreous injections of PEDF in retinas of normal mice. CONCLUSIONS These results suggested that PEDF might up-regulate GS and GLAST expression and decrease glutamate levels by suppressing the role of IL-1β as an anti-inflammatory factor under hypoxia, and these functions may underlie the neuroprotective effects of PEDF.
Collapse
Affiliation(s)
- Yanuo Wang
- a Department of Ophthalmology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qing Lu
- a Department of Ophthalmology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Sha Gao
- a Department of Ophthalmology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yanji Zhu
- a Department of Ophthalmology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yushuo Gao
- a Department of Ophthalmology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Bing Xie
- a Department of Ophthalmology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Xi Shen
- a Department of Ophthalmology , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
183
|
Wu JH, Zhang SH, Nickerson JM, Gao FJ, Sun Z, Chen XY, Zhang SJ, Gao F, Chen JY, Luo Y, Wang Y, Sun XH. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma. Neurobiol Dis 2014; 74:167-179. [PMID: 25478814 DOI: 10.1016/j.nbd.2014.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs.
Collapse
Affiliation(s)
- Ji-Hong Wu
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China
| | - Sheng-Hai Zhang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China
| | - John M Nickerson
- Ophthalmology Department, Emory University, Atlanta, GA, 30322, USA
| | - Feng-Juan Gao
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | | | - Xin-Ya Chen
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Shu-Jie Zhang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Feng Gao
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Jun-Yi Chen
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Yi Luo
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Yan Wang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Xing-Huai Sun
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| |
Collapse
|
184
|
Jamous KF, Kalloniatis M, Hennessy MP, Agar A, Hayen A, Zangerl B. Clinical model assisting with the collaborative care of glaucoma patients and suspects. Clin Exp Ophthalmol 2014; 43:308-19. [PMID: 25362898 DOI: 10.1111/ceo.12466] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/23/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optimizing patient management will reduce unnecessary vision loss in glaucoma through early detection. One method is the introduction of collaborative care schemes between optometrists and ophthalmologists. DESIGN We conducted a retrospective study to evaluate the impact of the Centre for Eye Health (CFEH) on glaucoma patient outcomes and management in primary optometric care. PARTICIPANTS Patients referred to CFEH by optometrists for a glaucoma assessment were eligible for this study if written consent was provided (500 participants were randomly chosen). METHODS Clinical data were classified according to disease risk and implemented patient care and analysed against the original diagnosis and patient parameters, followed by statistical analysis. MAIN OUTCOME MEASURES Two main parameters were evaluated; suitable referral of patients for glaucoma condition assessment and appropriate implementation of follow-up care. RESULTS The majority of patients referred for glaucoma assessment (86.2%) were classified as glaucoma suspects or likely to have glaucoma, indicating suitable referral of patients for a CFEH evaluation. Further, the involvement of CFEH resulted in a false positive rate of 7.8% for those patients who proceeded to ophthalmological care. However, long-term optometric patient care was not maintained for up to a third of primarily lower risk patients. CONCLUSIONS The investigated collaborative eye health-care model led to a substantial improvement in appropriate referrals of glaucoma patients to ophthalmologists and could be suitable for optimizing patient care and utilization of resources. Improvement in follow-up of patients by optometrists is required to minimize inappropriately discontinued patient care.
Collapse
Affiliation(s)
- Khalid F Jamous
- Centre for Eye Health, UNSW Australia, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, UNSW Australia, Sydney, New South Wales, Australia.,Department of Ophthalmology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Michael Kalloniatis
- Centre for Eye Health, UNSW Australia, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, UNSW Australia, Sydney, New South Wales, Australia
| | - Michael P Hennessy
- Ophthalmology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Ashish Agar
- Ophthalmology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Andrew Hayen
- School of Public Health and Community Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - Barbara Zangerl
- Centre for Eye Health, UNSW Australia, Sydney, New South Wales, Australia.,School of Optometry and Vision Science, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
185
|
Frezzotti P, Giorgio A, Motolese I, De Leucio A, Iester M, Motolese E, Federico A, De Stefano N. Structural and functional brain changes beyond visual system in patients with advanced glaucoma. PLoS One 2014; 9:e105931. [PMID: 25162716 PMCID: PMC4146554 DOI: 10.1371/journal.pone.0105931] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
In order to test the hypothesis that in primary open angle glaucoma (POAG), an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC). Altered integrity (decreased fractional anisotropy or increased diffusivities) of white matter (WM) tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle). POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM) regions (frontoparietal cortex, hippocampi and cerebellar cortex), decreased functional connectivity (FC) in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.
Collapse
Affiliation(s)
- Paolo Frezzotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Ilaria Motolese
- Department of Ophthalmology, University of Genoa, Genoa, Italy
| | - Alessandro De Leucio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Michele Iester
- Department of Ophthalmology, University of Genoa, Genoa, Italy
| | - Eduardo Motolese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
186
|
Ayub H, Micheal S, Akhtar F, Khan MI, Bashir S, Waheed NK, Ali M, Schoenmaker-Koller FE, Shafique S, Qamar R, den Hollander AI. Association of a polymorphism in the BIRC6 gene with pseudoexfoliative glaucoma. PLoS One 2014; 9:e105023. [PMID: 25118708 PMCID: PMC4132048 DOI: 10.1371/journal.pone.0105023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
Recently an association was observed between alleles in genes of the unfolded protein response pathway and primary open angle glaucoma (POAG). The goal of the current study is to investigate the role of these two genes, protein disulphide isomerase A member 5 (PDIA5) and baculoviral IAP repeat containing 6 (BIRC6), in different forms of glaucoma. 278 patients with POAG, 132 patients with primary angle closure glaucoma (PACG) and 135 patients with pseudoexfoliative glaucoma (PEXG) were genotyped for single nucleotide polymorphisms (SNPs) rs11720822 in PDIA5 and 471 POAG, 184 PACG and 218 PEXG patients were genotyped for rs2754511 in BIRC6. Genotyping was done by allelic discrimination PCR, and genotype and allele frequencies were calculated. Logistic regression analyses were performed using R software to determine the association of these SNPs with glaucoma. The allele and genotype frequencies of rs11720822 in PDIA5 were not associated with POAG, PACG or PEXG. The TT genotype of rs2754511 in BIRC6 was found to be protective for PEXG (p = 0.05, OR 0.42 [0.22–0.81]) in the Pakistani population, but not for POAG or PACG. This study did not confirm a previously reported association of risk alleles in PDIA5 and BIRC6 with POAG, but did demonstrate a protective role of the T allele of rs2754511 in the BIRC6 gene in PEXG. This supports a role for the unfolded protein response pathway and regulation of apoptotic cell death in the pathogenesis of PEXG.
Collapse
Affiliation(s)
- Humaira Ayub
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Shazia Micheal
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Farah Akhtar
- Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Shaheena Bashir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nadia K. Waheed
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mahmood Ali
- Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | | | - Sobia Shafique
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Raheel Qamar
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Al-Nafees Medical College & Hospital, Isra University, Islamabad, Pakistan
| | - Anneke I. den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
187
|
Stothert AR, Suntharalingam A, Huard DJE, Fontaine SN, Crowley VM, Mishra S, Blagg BSJ, Lieberman RL, Dickey CA. Exploiting the interaction between Grp94 and aggregated myocilin to treat glaucoma. Hum Mol Genet 2014; 23:6470-80. [PMID: 25027323 DOI: 10.1093/hmg/ddu367] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gain-of-function mutations in the olfactomedin domain of the MYOC gene facilitate the toxic accumulation of amyloid-containing myocilin aggregates, hastening the onset of the prevalent ocular disorder primary open-angle glaucoma. Aggregation of wild-type myocilin has been reported in other glaucoma subtypes, suggesting broader relevance of misfolded myocilin across the disease spectrum, but the absence of myocilin does not cause disease. Thus, strategies aimed at eliminating myocilin could be therapeutically relevant for glaucoma. Here, a novel and selective Grp94 inhibitor reduced the levels of several mutant myocilin proteins as well as wild-type myocilin when forced to misfold in cells. This inhibitor rescued mutant myocilin toxicity in primary human trabecular meshwork cells. Mechanistically, in vitro kinetics studies demonstrate that Grp94 recognizes on-pathway aggregates of the myocilin olfactomedin domain (myoc-OLF), accelerates rates of aggregation and co-precipitates with myoc-OLF. These results indicate that aberrant myocilin quaternary structure drives Grp94 recognition, rather than peptide motifs exposed by unfolded protein. Inhibition of Grp94 ameliorates the effects of Grp94-accelerated myoc-OLF aggregation, and Grp94 remains in solution. In cells, when wild-type myocilin is driven to misfold and aggregate, it becomes a client of Grp94 and sensitive to Grp94 inhibition. Taken together, the interaction of Grp94 with myocilin aggregates can be manipulated by cellular environment and genetics; this process can be exploited with Grp94 inhibitors to promote the clearance of toxic forms of myocilin.
Collapse
Affiliation(s)
- Andrew R Stothert
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Amirthaa Suntharalingam
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Dustin J E Huard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA and
| | - Sarah N Fontaine
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Vincent M Crowley
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66049, USA
| | - Sanket Mishra
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66049, USA
| | - Brian S J Blagg
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66049, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA and
| | - Chad A Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33613, USA,
| |
Collapse
|
188
|
Wang Y, Zhou YF, Zhao BY, Gu ZY, Li SL. Apolipoprotein E gene ε4ε4 is associated with elevated risk of primary open angle glaucoma in Asians: a meta-analysis. BMC MEDICAL GENETICS 2014; 15:60. [PMID: 24885013 PMCID: PMC4035820 DOI: 10.1186/1471-2350-15-60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 12/02/2022]
Abstract
Background Epidemiological studies have evaluated the association between Apolipoprotein E (APOE) gene ε2/ε3/ε4 polymorphism and glaucoma susceptibility. However, the published data are still inconclusive. The aim of the present study is to evaluate the impact of APOE gene ε2/ε3/ε4 polymorphism on glaucoma risk by using meta-analysis. Methods A comprehensive literature search of PubMed, EMBASE, Cochrane, Elsevier Science Direct and CNKI databases was conducted to identify relevant articles, with the last report up to January 5, 2014. Pooled odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of association by using the fixed or random effect model. Results Fifteen separate studies including 2,700 cases and 2,365 controls were included in the meta-analysis. We did not detect a significant association between APOE gene ε2/ε3/ε4 polymorphism and glaucoma in overall population (P > 0.0083). In Asians, we detected an association of the ε4ε4 genotype with elevated risk for glaucoma (OR = 5.22, 95% CI = 1.85-14.68, P = 0.002), mainly for primary open angle glaucoma (OR = 4.98, 95% CI = 1.75-14.20, P = 0.003). Conclusions The meta-analysis suggests that APOE gene ε4ε4 may be associated with elevated risk for primary open angle glaucoma in Asians. However, more epidemiologic studies based on larger sample size, case–control design and stratified by ethnicity as well as types of glaucoma are suggested to further clarify the relationship between APOE gene ε2/ε3/ε4 polymorphism and genetic predisposition to glaucoma.
Collapse
Affiliation(s)
| | | | | | | | - Shou-Ling Li
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
189
|
Yan Y, Li L, Preuss TM, Hu X, Herndon JG, Zhang X. In vivo evaluation of optic nerve aging in adult rhesus monkey by diffusion tensor imaging. Quant Imaging Med Surg 2014; 4:43-9. [PMID: 24649434 DOI: 10.3978/j.issn.2223-4292.2014.02.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 01/14/2023]
Abstract
Aging of the optic nerve can result in reduced visual sensitivity or vision loss. Normal optic nerve aging has been investigated previously in tissue specimens but poorly explored in vivo. In the present study, the normal aging of optic nerve was evaluated by diffusion tensor imaging (DTI) in non-human primates. Adult female rhesus monkeys at the ages of 9 to 13 years old (young group, n=8) and 21 to 27 years old (old group, n=7) were studied using parallel-imaging-based DTI on a clinical 3T scanner. Compared to young adults, the old monkeys showed 26% lower fractional anisotropy (P<0.01), and 44% greater radial diffusivity, although the latter difference was of marginal statistical significance (P=0.058). These MRI findings are largely consistent with published results of light and electron microscopic studies of optic nerve aging in macaque monkeys, which indicate a loss of fibers and degenerative changes in myelin sheaths.
Collapse
Affiliation(s)
- Yumei Yan
- 1 Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 2 Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA ; 3 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 4 The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Longchuan Li
- 1 Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 2 Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA ; 3 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 4 The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Todd M Preuss
- 1 Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 2 Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA ; 3 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 4 The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Xiaoping Hu
- 1 Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 2 Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA ; 3 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 4 The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - James G Herndon
- 1 Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 2 Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA ; 3 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 4 The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Xiaodong Zhang
- 1 Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 2 Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA ; 3 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA ; 4 The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| |
Collapse
|
190
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Intraneuronal neurofibrillary tangles, extracellular Aβ amyloid deposits in the form of amyloid plaques and cerebral amyloid angiopathy, and synaptic and neuronal loss co-exist in the brain parenchyma, with the limbic areas being the most severely affected. The classic clinical findings are personality changes, progressive cognitive dysfunction, and loss of ability to perform activities of daily living. Visual impairment is common and appears related to disease severity, suggesting that visual testing may provide a method of screening and tracking AD changes. Although still not fully understood, research and clinical findings point to a possible common causal relationship between AD and glaucoma. These two chronic neurodegenerative disorders share biological and mechanistic features, among them (1) a strong age-related incidence, (2) retinal ganglion cell degeneration, and (3) extracellular fibrillar deposits in exfoliation syndrome, the most common recognizable cause of glaucoma, suggesting that both diseases may originate from similar misfolding mechanisms. A presentation of common pathogenetic pathways associated with these disorders, including cell death mechanisms, reactive oxygen species (ROS) production, mitochondrial dysfunction and vascular abnormalities, will serve as an initiation point for further exploration.
Collapse
|
191
|
|
192
|
Costello F. The afferent visual pathway: designing a structural-functional paradigm of multiple sclerosis. ISRN NEUROLOGY 2013; 2013:134858. [PMID: 24288622 PMCID: PMC3830872 DOI: 10.1155/2013/134858] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/11/2013] [Indexed: 01/19/2023]
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) believed to arise from a dysfunctional immune-mediated response in a genetically susceptible host. The actual cause of MS is not known, and there is ongoing debate about whether this CNS disorder is predominantly an inflammatory versus a degenerative condition. The afferent visual pathway (AVP) is frequently involved in MS, such that one in every five individuals affected presents with acute optic neuritis (ON). As a functionally eloquent system, the AVP is amenable to interrogation with highly reliable and reproducible tests that can be used to define a structural-functional paradigm of CNS injury. The AVP has numerous unique advantages as a clinical model of MS. In this review, the parameters and merits of the AVP model are highlighted. Moreover, the roles the AVP model may play in elucidating mechanisms of brain injury and repair in MS are described.
Collapse
Affiliation(s)
- Fiona Costello
- Departments of Clinical Neurosciences and Surgery (Ophthalmology), Hotchkiss Brain Institute, University of Calgary, Canada
| |
Collapse
|
193
|
You Y, Gupta VK, Li JC, Klistorner A, Graham SL. Optic neuropathies: characteristic features and mechanisms of retinal ganglion cell loss. Rev Neurosci 2013; 24:301-21. [PMID: 23612594 DOI: 10.1515/revneuro-2013-0003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 02/23/2013] [Indexed: 11/15/2022]
Abstract
Optic neuropathy refers to dysfunction and/or degeneration of axons of the optic nerve with subsequent optic nerve atrophy. A common feature of different optic neuropathies is retinal ganglion cell (RGC) apoptosis and axonal damage. Glaucoma and optic neuritis are the two major degenerative causes of optic nerve damage. Here, we review the anatomy and pathology of the optic nerve, and etiological categories of optic neuropathies, and discuss rodent models that can mimic these conditions. Electrophysiology can reveal signature features of RGC damage using the pattern electroretinogram (PERG), scotopic threshold response (STR) and photopic negative response (PhNR). The amplitude of the visual evoked potential (VEP) also reflects RGC axonal damage. The neurotrophin-mediated survival pathways, as well as the extrinsic and intrinsic cell apoptotic pathways, play a critical role in the pathogenesis of RGC loss. Finally, promising neuroprotective approaches based on the molecular signaling are analyzed for the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Yuyi You
- Department of Ophthalmology, Australian School of Advanced Medicine, Macquarie University, New South wales, Australia.
| | | | | | | | | |
Collapse
|
194
|
Omodaka K, Murata T, Sato S, Takahashi M, Tatewaki Y, Nagasaka T, Doi H, Araie M, Takahashi S, Nakazawa T. Correlation of magnetic resonance imaging optic nerve parameters to optical coherence tomography and the visual field in glaucoma. Clin Exp Ophthalmol 2013; 42:360-8. [PMID: 24119065 DOI: 10.1111/ceo.12237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/25/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND To determine the viability of using magnetic resonance imaging measurement of optic nerve morphology as an objective analysis of glaucomatous damage. DESIGN Retrospective study conducted at Tohoku University Hospital. PARTICIPANTS Thirty-eight eyes of 19 patients with open-angle glaucoma. METHODS Patients were scanned with T2-weighted and 3-T diffusion tensor magnetic resonance imaging, and parameters of the optic nerve, including fractional anisotropy, apparent diffusion coefficient and cross-sectional area, were determined. Conventional parameters of glaucomatous damage, including circumpapillary and macular retinal nerve fibre layer thickness, and mean deviation and average total deviation of the central 16 test points from the Humphrey Field Analyzer, were then compared with the magnetic resonance imaging-derived parameters. Spearman's coefficient of correlation was calculated to determine the significance of the correlation. MAIN OUTCOME MEASURE Correlation coefficient between the magnetic resonance imaging parameters and the parameters of glaucomatous damage. RESULTS Mean deviation was significantly correlated with all magnetic resonance imaging parameters (fractional anisotropy: r = 0.53, apparent diffusion coefficient: r = -0.44, cross-sectional area: r = 0.70). Circumpapillary retinal nerve fibre layer thickness was significantly correlated with fractional anisotropy (r = 0.60) and cross-sectional area (r = 0.47), but not apparent diffusion coefficient (r = -0.29). Central macular function and macular retinal nerve fibre layer thickness were also significantly correlated with magnetic resonance imaging parameters. CONCLUSIONS Optic nerve magnetic resonance imaging parameters were significantly correlated to glaucomatous damage. Magnetic resonance imaging analysis of the optic nerve may, thus, have value as an objective instrument to assess glaucomatous degeneration, including the function of the macula.
Collapse
Affiliation(s)
- Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Ljubimova JY, Portilla-Arias J, Patil R, Ding H, Inoue S, Markman JL, Rekechenetskiy A, Konda B, Gangalum PR, Chesnokova A, Ljubimov AV, Black KL, Holler E. Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment. J Drug Target 2013; 21:956-967. [PMID: 24032759 DOI: 10.3109/1061186x.2013.837470] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safety for cancer patient's treatment. All-in-one covalent nanodrugs of the third generation have been synthesized based on a poly(β-L-malic acid) (PMLA) platform, targeting human triple-negative breast cancer (TNBC). They significantly inhibited tumor growth in nude mice by blocking synthesis of epidermal growth factor receptor, and α4 and β1 chains of laminin-411, the tumor vascular wall protein and angiogenesis marker. PMLA and nanodrug biocompatibility and toxicity at low and high dosages were evaluated in vitro and in vivo. The dual-action nanodrug and single-action precursor nanoconjugates were assessed under in vitro conditions and in vivo with multiple treatment regimens (6 and 12 treatments). The monitoring of TNBC treatment in vivo with different drugs included blood hematologic and immunologic analysis after multiple intravenous administrations. The present study demonstrates that the dual-action nanoconjugate is highly effective in preclinical TNBC treatment without side effects, supported by hematologic and immunologic assays data. PMLA-based nanodrugs of the Polycefin™ family passed multiple toxicity and efficacy tests in vitro and in vivo on preclinical level and may prove to be optimized and efficacious for the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA
| | - Jose Portilla-Arias
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hui Ding
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Satoshi Inoue
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Janet L Markman
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Bindu Konda
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pallavi R Gangalum
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Alexander V Ljubimov
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA.,Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA
| | - Eggehard Holler
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Arrogene, Inc., Santa Monica, CA, USA
| |
Collapse
|
196
|
Wu JH, Zhang SH, Gao FJ, Lei Y, Chen XY, Gao F, Zhang SJ, Sun XH. RNAi screening identifies GSK3β as a regulator of DRP1 and the neuroprotection of lithium chloride against elevated pressure involved in downregulation of DRP1. Neurosci Lett 2013; 554:99-104. [PMID: 24025791 DOI: 10.1016/j.neulet.2013.08.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/10/2023]
Abstract
Elevated intraocular pressure (IOP) is considered as the major risk factor for the loss of retinal ganglion cells (RGCs) and their axons in glaucoma. Emerging evidence suggests elevated IOP can induce Drp1 upregulation and mitochondrial fission, which is involved in cell death. However, the underlying mechanism for these effects remains unknown. The present study used RNAi screening to investigate the effects of 24 kinases associated with mitochondrial activities on DRP1 expression under hydrostatic pressure. We identified, for the first time, that glycogen synthase kinase 3 beta (GSK3β) knockdown suppressed the upregulation of DRP1 induced by elevated pressure. Use of the pharmacological inhibitor of GSK3β inhibitor, lithium chloride (LiCl), confirmed this result. Furthermore, we demonstrated that one of the mechanisms of lithium chloride neuroprotection might be via inhibition of mitochondrial fission through downregulation of Drp1.
Collapse
Affiliation(s)
- Ji-Hong Wu
- Eye & ENT Hospital, Fudan University, 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J, Dai C. Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness. PLoS One 2013; 8:e73208. [PMID: 24019910 PMCID: PMC3760921 DOI: 10.1371/journal.pone.0073208] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/16/2013] [Indexed: 11/24/2022] Open
Abstract
Objectives To examine possible changes in cortical thickness and their relationship to retinal nerve fiber layer (RNFL) thickness in patients with primary open-angle glaucoma (POAG). Materials and Methods Thirty-six patients with POAG and 40 matched healthy controls were enrolled in this study. All subjects underwent a comprehensive ophthalmologic examination and a high resolution structural magnetic resonance scan. Cortical thickness analysis was used to assess the changes between patients and controls. Correlations between the thickness of the visual cortex and RNFL thickness were also analyzed. Finally, the relationship between the severity of changes in the visual cortex and RNFL thickness was evaluated by comparing patients with mild and severe groups. Results POAG patients showed significant bilateral cortical thinning in the anterior half of the visual cortex around the calcarine sulci (left BA 17 and BA 18, right BA17) and in some smaller regions located in the left middle temporal gyrus (BA37) and fusiform gyrus (BA19). The thickness of the visual cortex correlated positively with RNFL thickness (left, r = 0.44, p = 0.01; right, r = 0.38, p = 0.03). Significant differences between mild and severe groups were observed with regard to both RNFL thickness and the thickness of bilateral visual cortex (p < 0.05). Conclusion Our findings indicate that cortical thickness analysis may be sufficiently sensitive to detect cortical alterations in POAG and that the measurement has great potential for clinical application.
Collapse
Affiliation(s)
- Longhua Yu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Radiology, 401st hospital of the People’s Liberation Army, Qingdao, Shandong, China
| | - Bing Xie
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Minglong Liang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (JW); (CD)
| | - Chao Dai
- Ophthalmology research center, Southwest Eye Hospital/Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (JW); (CD)
| |
Collapse
|
198
|
Feng L, Chen H, Suyeoka G, Liu X. A laser-induced mouse model of chronic ocular hypertension to characterize visual defects. J Vis Exp 2013. [PMID: 23979255 DOI: 10.3791/50440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glaucoma, frequently associated with elevated intraocular pressure (IOP), is one of the leading causes of blindness. We sought to establish a mouse model of ocular hypertension to mimic human high-tension glaucoma. Here laser illumination is applied to the corneal limbus to photocoagulate the aqueous outflow, inducing angle closure. The changes of IOP are monitored using a rebound tonometer before and after the laser treatment. An optomotor behavioral test is used to measure corresponding changes in visual capacity. The representative result from one mouse which developed sustained IOP elevation after laser illumination is shown. A decreased visual acuity and contrast sensitivity is observed in this ocular hypertensive mouse. Together, our study introduces a valuable model system to investigate neuronal degeneration and the underlying molecular mechanisms in glaucomatous mice.
Collapse
Affiliation(s)
- Liang Feng
- Department of Ophthalmology, Northwestern University, USA
| | | | | | | |
Collapse
|
199
|
Bokhari RF, Baeesa SS. Does the treatment of normal pressure hydrocephalus put the retinal ganglion cells at risk? A brief literature review and novel hypothesis. Med Hypotheses 2013; 81:686-9. [PMID: 23920271 DOI: 10.1016/j.mehy.2013.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/22/2013] [Accepted: 07/12/2013] [Indexed: 11/17/2022]
Abstract
Normal pressure hydrocephalus (NPH) is a poorly understood entity as well as a source of continuous controversy in the neuroscientific community. The surgical management of this disease requires that intracranial pressure (ICP), also referred to as the cerebrospinal fluid pressure (CSFP), be lowered using a cerebrospinal fluid (CSF) diversion procedure. Numerous complications are linked with this procedure; we believe that new evidence suggests that the induction or acceleration of glaucomatous optic neuropathy are possible sequelae that warrant further investigation. We also suggest potential solutions derived from the increased understanding of the disease's pathophysiology and new advances in imaging of the optic nerve head complex. The recent inclusion of the translaminar gradient (TLG) (the difference between the intraocular pressure (IOP) and the ICP/CSFP across the thickness of the lamina cribrosa in the optic nerve head complex) in the pathogenesis of normal tension glaucoma (NTG) suggests that the disease may be a complication encountered during the treatment of NPH with CSF diversion procedures. The significant decrease in CSFP required to treat NPH increases this gradient. In addition, there have been recent observations of an increased prevalence of NTG, as well as other forms of glaucoma, among patients with NPH, thought to be due to inherently fragile neurons in these patients. This new data suggest that patients who undergo ICP lowering therapy for their NPH may be at a higher risk of developing or accelerating already present NTG. We present the clinical and theoretical basis for our hypothesis after reviewing the relevant literature linking the two entities. We also propose a possible solution, as we believe that treatment guidelines for NPH should take the TLG into account. Indeed, recent advances in the imaging of the optic nerve head complex may provide an opportunity to detect the mechanical sequelae of an increased TLG in the preclinical stage, i.e., prior to optic nerve damage. If we are able to determine safe parameters for the TLG in this population, we may be able to recommend the initiation of prophylactic glaucoma therapy for selected patients.
Collapse
Affiliation(s)
- Rakan F Bokhari
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
200
|
Prokai-Tatrai K, Xin H, Nguyen V, Szarka S, Blazics B, Prokai L, Koulen P. 17β-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Mol Pharm 2013; 10:3253-61. [PMID: 23841874 DOI: 10.1021/mp400313u] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuroprotection in glaucoma as a curative strategy complementary to current therapies to lower intraocular pressure (IOP) is highly desirable. This study was designed to investigate neuroprotection by 17β-estradiol (E2) to prevent retinal ganglion cell (RGC) death in a glaucoma model of surgically elevated IOP in rats. We found that daily treatment with E2-containing eye drops resulted in significant E2 concentration in the retina with concomitant profound neuroprotective therapeutic benefits, even in the presence of continually elevated IOP. The number of apoptotic cells in the RGC layer was significantly decreased in the E2-treated group, when compared to the vehicle-treated controls. Deterioration in visual acuity in these animals was also markedly prevented. Using mass spectrometry-based proteomics, beneficial changes in the expression of several proteins implicated in the maintenance of retinal health were also found in the retina of E2-treated animals. On the other hand, systemic side effects could not be avoided with the eye drops, as confirmed by the measured high circulating estrogen levels and through the assessment of the uterus representing a typical hormone-sensitive peripheral organ. Collectively, the demonstrated significant neuroprotective effect of topical E2 in the selected animal model of glaucoma provides a clear rationale for further studies aiming at targeting E2 into the eye while avoiding systemic E2 exposure to diminish undesirable off-target side effects.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center , 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | | | | | | | | | | | | |
Collapse
|