151
|
Zhang S, Bryant DA. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212. J Biol Chem 2015; 290:14019-30. [PMID: 25869135 DOI: 10.1074/jbc.m115.648170] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria are important photoautotrophic bacteria with extensive but variable metabolic capacities. The existence of the glyoxylate cycle, a variant of the TCA cycle, is still poorly documented in cyanobacteria. Previous studies reported the activities of isocitrate lyase and malate synthase, the key enzymes of the glyoxylate cycle in some cyanobacteria, but other studies concluded that these enzymes are missing. In this study the genes encoding isocitrate lyase and malate synthase from Chlorogloeopsis fritschii PCC 9212 were identified, and the recombinant enzymes were biochemically characterized. Consistent with the presence of the enzymes of the glyoxylate cycle, C. fritschii could assimilate acetate under both light and dark growth conditions. Transcript abundances for isocitrate lyase and malate synthase increased, and C. fritschii grew faster, when the growth medium was supplemented with acetate. Adding acetate to the growth medium also increased the yield of poly-3-hydroxybutyrate. When the genes encoding isocitrate lyase and malate synthase were expressed in Synechococcus sp. PCC 7002, the acetate assimilation capacity of the resulting strain was greater than that of wild type. Database searches showed that the genes for the glyoxylate cycle exist in only a few other cyanobacteria, all of which are able to fix nitrogen. This study demonstrates that the glyoxylate cycle exists in a few cyanobacteria, and that this pathway plays an important role in the assimilation of acetate for growth in one of those organisms. The glyoxylate cycle might play a role in coordinating carbon and nitrogen metabolism under conditions of nitrogen fixation.
Collapse
Affiliation(s)
- Shuyi Zhang
- From the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Donald A Bryant
- From the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
152
|
Wang P, Lv C, Zhu G. Novel type II and monomeric NAD+ specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep 2015; 5:9150. [PMID: 25775177 PMCID: PMC4360740 DOI: 10.1038/srep09150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 11/09/2022] Open
Abstract
NAD(+) use is an ancestral trait of isocitrate dehydrogenase (IDH), and the NADP(+) phenotype arose through evolution as an ancient adaptation event. However, no NAD(+)-specific IDHs have been found among type II IDHs and monomeric IDHs. In this study, novel type II homodimeric NAD-IDHs from Ostreococcus lucimarinus CCE9901 IDH (OlIDH) and Micromonas sp. RCC299 (MiIDH), and novel monomeric NAD-IDHs from Campylobacter sp. FOBRC14 IDH (CaIDH) and Campylobacter curvus (CcIDH) were reported for the first time. The homodimeric OlIDH and monomeric CaIDH were determined by size exclusion chromatography and MALDI-TOF/TOF mass spectrometry. All the four IDHs were demonstrated to be NAD(+)-specific, since OlIDH, MiIDH, CaIDH and CcIDH displayed 99-fold, 224-fold, 61-fold and 37-fold preferences for NAD(+) over NADP(+), respectively. The putative coenzyme discriminating amino acids (Asp326/Met327 in OlIDH, Leu584/Asp595 in CaIDH) were evaluated, and the coenzyme specificities of the two mutants, OlIDH R(326)H(327) and CaIDH H(584)R(595), were completely reversed from NAD(+) to NADP(+). The detailed biochemical properties, including optimal reaction pH and temperature, thermostability, and metal ion effects, of OlIDH and CaIDH were further investigated. The evolutionary connections among OlIDH, CaIDH, and all the other forms of IDHs were described and discussed thoroughly.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Changqi Lv
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
153
|
Leroy B, De Meur Q, Moulin C, Wegria G, Wattiez R. New insight into the photoheterotrophic growth of the isocytrate lyase-lacking purple bacterium Rhodospirillum rubrum on acetate. MICROBIOLOGY-SGM 2015; 161:1061-1072. [PMID: 25737481 DOI: 10.1099/mic.0.000067] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022]
Abstract
Purple non-sulfur bacteria are well known for their metabolic versatility. One of these bacteria, Rhodospirillum rubrum S1H, has been selected by the European Space Agency to ensure the photoheterotrophic assimilation of volatile fatty acids in its regenerative life support system, MELiSSA. Here, we combined proteomic analysis with bacterial growth analysis and enzymatic activity assays in order to better understand acetate photoassimilation. In this isocitrate lyase-lacking organism, the assimilation of two-carbon compounds cannot occur through the glyoxylate shunt, and the citramalate cycle has been proposed to fill this role, while, in Rhodobacter sphaeroides, the ethylmalonyl-CoA pathway is used for acetate assimilation. Using proteomic analysis, we were able to identify and quantify more than 1700 unique proteins, representing almost one-half of the theoretical proteome of the strain. Our data reveal that a pyruvate : ferredoxin oxidoreductase (NifJ) could be used for the direct assimilation of acetyl-CoA through pyruvate, potentially representing a new redox-balancing reaction. We additionally propose that the ethylmalonyl-CoA pathway could also be involved in acetate assimilation by the examined strain, since specific enzymes of this pathway were all upregulated and activity of crotonyl-CoA reductase/carboxylase was increased in acetate conditions. Surprisingly, we also observed marked upregulation of glutaryl-CoA dehydrogenase, which could be a component of a new pathway for acetate photoassimilation. Finally, our data suggest that citramalate could be an intermediate of the branched-chain amino acid biosynthesis pathway, which is activated during acetate assimilation, rather than a metabolite of the so-called citramalate cycle.
Collapse
Affiliation(s)
- B Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Q De Meur
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - C Moulin
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - G Wegria
- Biotech Materia Nova, Parc Initialis, Avenue Copernic 1, 7000 Mons, Belgium
| | - R Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
154
|
Escherichia coli EDL933 requires gluconeogenic nutrients to successfully colonize the intestines of streptomycin-treated mice precolonized with E. coli Nissle 1917. Infect Immun 2015; 83:1983-91. [PMID: 25733524 DOI: 10.1128/iai.02943-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/20/2015] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli MG1655, a K-12 strain, uses glycolytic nutrients exclusively to colonize the intestines of streptomycin-treated mice when it is the only E. coli strain present or when it is confronted with E. coli EDL933, an O157:H7 strain. In contrast, E. coli EDL933 uses glycolytic nutrients exclusively when it is the only E. coli strain in the intestine but switches in part to gluconeogenic nutrients when it colonizes mice precolonized with E. coli MG1655 (R. L. Miranda et al., Infect Immun 72:1666-1676, 2004, http://dx.doi.org/10.1128/IAI.72.3.1666-1676.2004). Recently, J. W. Njoroge et al. (mBio 3:e00280-12, 2012, http://dx.doi.org/10.1128/mBio.00280-12) reported that E. coli 86-24, an O157:H7 strain, activates the expression of virulence genes under gluconeogenic conditions, suggesting that colonization of the intestine with a probiotic E. coli strain that outcompetes O157:H7 strains for gluconeogenic nutrients could render them nonpathogenic. Here we report that E. coli Nissle 1917, a probiotic strain, uses both glycolytic and gluconeogenic nutrients to colonize the mouse intestine between 1 and 5 days postfeeding, appears to stop using gluconeogenic nutrients thereafter in a large, long-term colonization niche, but continues to use them in a smaller niche to compete with invading E. coli EDL933. Evidence is also presented suggesting that invading E. coli EDL933 uses both glycolytic and gluconeogenic nutrients and needs the ability to perform gluconeogenesis in order to colonize mice precolonized with E. coli Nissle 1917. The data presented here therefore rule out the possibility that E. coli Nissle 1917 can starve the O157:H7 E. coli strain EDL933 of gluconeogenic nutrients, even though E. coli Nissle 1917 uses such nutrients to compete with E. coli EDL933 in the mouse intestine.
Collapse
|
155
|
Bae M, Kim H, Moon K, Nam SJ, Shin J, Oh KB, Oh DC. Mohangamides A and B, New Dilactone-Tethered Pseudo-Dimeric Peptides Inhibiting Candida albicans Isocitrate Lyase. Org Lett 2015; 17:712-5. [DOI: 10.1021/ol5037248] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Munhyung Bae
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Heegyu Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kyuho Moon
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sang-Jip Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Jongheon Shin
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Dong-Chan Oh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
156
|
Lin J, Chen J, He J, Chen J, Yan Q, Zhou J, Xie P. Effects of microcystin-LR on bacterial and fungal functional genes profile in rat gut. Toxicon 2015; 96:50-6. [PMID: 25617596 DOI: 10.1016/j.toxicon.2015.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/29/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
The short-term exposure to microcystin-LR (MC-LR, one of the most common and toxic variants generated by toxigenic cyanobacteria) induced gut dysfunction such as generation of reactive oxygen species, cell erosion and deficient intestinal absorption of nutrients. However, till now, little is known about its impact on gut microbial community, which has been considered as necessary metabolic assistant and stresses resistant entities for the host. This study was designed to reveal the shift of microbial functional genes in the gut of rat orally gavaged with MC-LR. GeoChip detected a high diversity of bacterial and fungal genes involved in basic metabolic processes and stress resistance. The results showed that the composition of functional genes was significantly changed in rat gut after one week of exposure to MC-LR, and we found some relatively enriched genes that are involved in carbon degradation including chitin, starch and limonene metabolism, and these genes were mainly derived from fungal and bacterial pathogens. In addition, we found large amounts of significantly enriched genes relevant to degradation of the specific carbon compounds, aromatics. The dysbiosis of bacterial and fungal flora gave an implication of pathogens invasion. The enriched gene functions could be linked to acute gastroenteritis induced by MC-LR.
Collapse
Affiliation(s)
- Juan Lin
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Graduate University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Graduate University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Jing Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; Graduate University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Qingyun Yan
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
157
|
Comparative proteomic analysis of hyphae and germinating cysts of Phytophthora pisi and Phytophthora sojae. J Proteomics 2015; 117:24-40. [PMID: 25613045 DOI: 10.1016/j.jprot.2015.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED The recently described oomycete pathogen Phytophthora pisi causes root rot on pea and faba bean, while the closely related Phytophthora sojae is the causal agent of soybean root and stem rot. Differences in the pathogenicity factor repertoires that enable the two species to have distinct host specificity towards pea and soybean, were studied using tandem mass spectrometry in a global proteome study of hyphae and germinating cysts in P. pisi and P. sojae. In total 2775 proteins from P. pisi and 2891 proteins from P. sojae were identified. Fifty-eight orthologous proteins were more abundant in germinated cysts of both pathogens and thus identified as candidate proteins for the infective stage. Several of these proteins were associated with lipid transport and metabolism, and energy production. Twenty-three orthologous proteins were more abundant in hyphae of both pathogens and thus identified as candidate proteins for vegetative growth. Proteins uniquely present in germinating cysts of either P. pisi or P. sojae were considered as candidates for species-specific pathogenicity factors that may be involved in host specificity. Among these proteins were serine proteases, membrane transporters and a berberine-like protein. These results significantly expand the knowledge of the expressed proteome in P. pisi and P. sojae. BIOLOGICAL SIGNIFICANCE P. sojae and P. pisi are closely related species that specifically cause root rot on soybean and pea, respectively. The pathogenicity factors contributing to their host specificity remained unknown. We carried out a comparative large-scale proteome analysis of vegetative (hyphae) and infective (germinating cysts) life stages in P. pisi and P. sojae. This study provides knowledge of the common factors and mechanism involved in initiation of infection and species-specific proteins that may contribute to the host specificity of these pathogens. This knowledge will lead to a better understanding of the infection biology of these pathogens, allowing new possibilities towards developing alternative and effective plant protection measures.
Collapse
|
158
|
Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. BIOMED RESEARCH INTERNATIONAL 2015; 2015:895453. [PMID: 25649791 PMCID: PMC4306415 DOI: 10.1155/2015/895453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
Abstract
Isocitrate lyase (ICL) is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle), especially Mycobacterium tuberculosis (MTB). In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a) MTB ICL with natural compounds; (b) MTB ICL with synthetic compounds; (c) non-MTB ICL with natural compounds; and (d) non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.
Collapse
|
159
|
Roman G. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem 2015; 89:743-816. [PMID: 25462280 PMCID: PMC7115492 DOI: 10.1016/j.ejmech.2014.10.076] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
Abstract
The biological activity of Mannich bases, a structurally heterogeneous class of chemical compounds that are generated from various substrates through the introduction of an aminomethyl function by means of the Mannich reaction, is surveyed, with emphasis on the relationship between structure and biological activity. The review covers extensively the literature reports that have disclosed Mannich bases as anticancer and cytotoxic agents, or compounds with potential antibacterial and antifungal activity in the last decade. The most relevant studies on the activity of Mannich bases as antimycobacterial agents, antimalarials, or antiviral candidates have been included as well. The review contains also a thorough coverage of anticonvulsant, anti-inflammatory, analgesic and antioxidant activities of Mannich bases. In addition, several minor biological activities of Mannich bases, such as their ability to regulate blood pressure or inhibit platelet aggregation, their antiparasitic and anti-ulcer effects, as well as their use as agents for the treatment of mental disorders have been presented. The review gives in the end a brief overview of the potential of Mannich bases as inhibitors of various enzymes or ligands for several receptors.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic Polymers, 41A Aleea Gr. Ghica Vodă, Iaşi 700487, Romania.
| |
Collapse
|
160
|
Abubakar M, Saeed A, Kul O. Modification of Animal Products for Fat and Other Characteristics. THE ROLE OF BIOTECHNOLOGY IN IMPROVEMENT OF LIVESTOCK 2015. [PMCID: PMC7121827 DOI: 10.1007/978-3-662-46789-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter includes information about modification of animal products using biotechnology and the importance of different modifications on the natural composition. The species considered for modified products include beef and dairy cattle, sheep, goats, poultry, and a wide variety of fishes. Moreover, the discussion includes the importance of animal food, nongenetically engineered animal modified food products, genetically engineered animal modified food items primarily for meat, milk, or egg and genetically engineered animal food along the transgenic approach for animal welfare. Modern biotechnology can improve productivity, consistency, and quality of alter animal food, fiber, and medical products. The transgenic technology is potentially valuable to alter characters of economic importance in a rapid and precise way. The food safety issue related to genetic engineering is also included in this chapter. The harm of such modified food and transgenic strategy should also be understood by the reader along with its advantages. In this context, transgenic approaches in animal biotechnology are under discussion that ranges from animal food production to their adverse effects.
Collapse
Affiliation(s)
| | - Ali Saeed
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Oguz Kul
- Veterinary Faculty, Kirikkale University, Yahsihan, Turkey
| |
Collapse
|
161
|
Marcos CM, de Oliveira HC, da Silva JDF, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. The multifaceted roles of metabolic enzymes in the Paracoccidioides species complex. Front Microbiol 2014; 5:719. [PMID: 25566229 PMCID: PMC4271699 DOI: 10.3389/fmicb.2014.00719] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de F da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
162
|
Suvanine sesterterpenes from a tropical sponge Coscinoderma sp. inhibit isocitrate lyase in the glyoxylate cycle. Mar Drugs 2014; 12:5148-59. [PMID: 25310766 PMCID: PMC4210890 DOI: 10.3390/md12105148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/06/2014] [Accepted: 09/19/2014] [Indexed: 01/28/2023] Open
Abstract
The glyoxylate cycle is a sequence of anaplerotic reactions catalyzed by the key enzymes isocitrate lyase (ICL) and malate synthase (MLS). Mutants of Candida albicans lacking ICL are markedly less virulent in mice than the wild-type. Suvanine sesterterpenes (1−9) isolated from a tropical sponge Coscinoderma sp. were evaluated for their inhibitory activities toward recombinant ICL from C. albicans. These studies led to the identification of a potent ICL inhibitor, suvanine salt (2), which possesses a sodium counterion and displays an inhibitory concentration value (IC50) of 6.35 μM. The growth phenotype of ICL deletion mutants and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses indicated that compound 2 inhibits the ICL mRNA expression in C. albicans under C2-carbon-utilizing conditions. The present data highlight the potential for suvanine sesterterpenes treatment of C. albicans infections via inhibition of ICL activity.
Collapse
|
163
|
Hacham Y, Koussevitzky S, Kirma M, Amir R. Glutathione application affects the transcript profile of genes in Arabidopsis seedling. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1444-51. [PMID: 25077999 DOI: 10.1016/j.jplph.2014.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 05/21/2023]
Abstract
Glutathione (GSH), a tripeptide thiol compound has multiple functions in plants. Recent works suggested that GSH plays a regulatory role in signaling in plants as part of their adaptation to stress. To better understand the role of GSH as a regulatory molecule, 14 days old Arabidopsis thaliana seedlings were treated with 5mM of GSH for 4h. Changes in gene expression patterns were studied by cDNA microarray analysis. The expression of 453 genes was significantly changed compared to the untreated control, of which 261 genes were up-regulated and 192 genes were down-regulated. Genes from several groups were affected, including those of sulfur metabolism, degradation and synthesis of macromolecules and transcription factors. Up-regulation of genes involved in responses to biotic stresses, or in jasmonate or salicylic acid synthesis and their signaling, suggests that GSH triggers genes that help protect the plants during stresses. In addition, GSH down regulated genes involved in plant growth and development, like those involved in cell wall synthesis and its extension, and genes associated with auxin and cytokinins response, which are related to growth and development of the plants. The results suggest that GSH might have a role in response to biotic stress by initiating defense responses and modifying plants' growth and development in an effort to tune their sessile lifestyle of plants to environmental constraints.
Collapse
Affiliation(s)
- Yael Hacham
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Shai Koussevitzky
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 12100, Israel; Tel Hai College, Upper Galilee, Israel.
| |
Collapse
|
164
|
Govender VS, Ramsugit S, Pillay M. Mycobacterium tuberculosis adhesins: potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets. Microbiology (Reading) 2014; 160:1821-1831. [DOI: 10.1099/mic.0.082206-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.
Collapse
Affiliation(s)
- Viveshree S. Govender
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| | - Saiyur Ramsugit
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| | - Manormoney Pillay
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
165
|
Bailey BA, Melnick RL, Strem MD, Crozier J, Shao J, Sicher R, Phillips-Mora W, Ali SS, Zhang D, Meinhardt L. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. MOLECULAR PLANT PATHOLOGY 2014; 15:711-29. [PMID: 24612180 PMCID: PMC6638715 DOI: 10.1111/mpp.12134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms.
Collapse
Affiliation(s)
- Bryan A Bailey
- Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Greene GH, McGary KL, Rokas A, Slot JC. Ecology drives the distribution of specialized tyrosine metabolism modules in fungi. Genome Biol Evol 2014; 6:121-32. [PMID: 24391152 PMCID: PMC3914699 DOI: 10.1093/gbe/evt208] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene clusters encoding accessory or environmentally specialized metabolic pathways likely play a significant role in the evolution of fungal genomes. Two such gene clusters encoding enzymes associated with the tyrosine metabolism pathway (KEGG #00350) have been identified in the filamentous fungus Aspergillus fumigatus. The l-tyrosine degradation (TD) gene cluster encodes a functional module that facilitates breakdown of the phenolic amino acid, l-tyrosine through a homogentisate intermediate, but is also involved in the production of pyomelanin, a fungal pathogenicity factor. The gentisate catabolism (GC) gene cluster encodes a functional module likely involved in phenolic compound degradation, which may enable metabolism of biphenolic stilbenes in multiple lineages. Our investigation of the evolution of the TD and GC gene clusters in 214 fungal genomes revealed spotty distributions partially shaped by gene cluster loss and horizontal gene transfer (HGT). Specifically, a TD gene cluster shows evidence of HGT between the extremophilic, melanized fungi Exophiala dermatitidis and Baudoinia compniacensis, and a GC gene cluster shows evidence of HGT between Sordariomycete and Dothideomycete grass pathogens. These results suggest that the distribution of specialized tyrosine metabolism modules is influenced by both the ecology and phylogeny of fungal species.
Collapse
|
167
|
Liu J, Wang QL, Chang Q, Han LN, Pei GL, Xue YQ, Jia LM, Zhang K, Duan YY, Kang ZS. Isocitrate lyase is required for urediniospore germination of Puccinia striiformis f. sp. tritici. Mol Biol Rep 2014; 41:7797-806. [DOI: 10.1007/s11033-014-3672-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 07/31/2014] [Indexed: 12/22/2022]
|
168
|
Lee SH, Moon K, Kim H, Shin J, Oh DC, Oh KB. Bahamaolide A from the marine-derived Streptomyces sp. CNQ343 inhibits isocitrate lyase in Candida albicans. Bioorg Med Chem Lett 2014; 24:4291-3. [PMID: 25052426 DOI: 10.1016/j.bmcl.2014.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/06/2014] [Accepted: 07/08/2014] [Indexed: 11/27/2022]
Abstract
Bahamaolide A, a new macrocyclic lactone isolated from the culture of marine actinomycete Streptomyces sp. CNQ343, was evaluated for its inhibitory activity toward isocitrate lyase (ICL) from Candida albicans. These studies led to the identification of bahamaolide A as a potent ICL inhibitor with IC50 value of 11.82 μM. The growth phenotype of ICL deletion mutants and quantitative RT-PCR analyses indicated that this compound inhibits the ICL mRNA expression in C. albicans under C2-carbon-utilizing conditions. The present data highlight the potential for bahamaolide A treatment of C. albicans infections via inhibition of ICL activity.
Collapse
Affiliation(s)
- So-Hyoung Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kyuho Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Heegyu Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea.
| |
Collapse
|
169
|
Moon K, Ahn CH, Shin Y, Won TH, Ko K, Lee SK, Oh KB, Shin J, Nam SI, Oh DC. New benzoxazine secondary metabolites from an arctic actinomycete. Mar Drugs 2014; 12:2526-38. [PMID: 24796308 PMCID: PMC4052304 DOI: 10.3390/md12052526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 01/14/2023] Open
Abstract
Two new secondary metabolites, arcticoside (1) and C-1027 chromophore-V (2), were isolated along with C-1027 chromophore-III and fijiolides A and B (3-5) from a culture of an Arctic marine actinomycete Streptomyces strain. The chemical structures of 1 and 2 were elucidated through NMR, mass, UV, and IR spectroscopy. The hexose moieties in 1 were determined to be d-glucose from a combination of acid hydrolysis, derivatization, and gas chromatographic analyses. Arcticoside (1) and C-1027 chromophore-V (2), which have a benzoxazine ring, inhibited Candida albicans isocitrate lyase. Chromophore-V (2) exhibited significant cytotoxicity against breast carcinoma MDA-MB231 cells and colorectal carcinoma cells (line HCT-116), with IC₅₀ values of 0.9 and 2.7 μM, respectively.
Collapse
Affiliation(s)
- Kyuho Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Chan-Hong Ahn
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea.
| | - Yoonho Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Tae Hyung Won
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea.
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| | - Seung-Il Nam
- Arctic Research Centre, Korea Polar Research Institute, Incheon 406-840, Korea.
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
170
|
Cheah HL, Lim V, Sandai D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One 2014; 9:e95951. [PMID: 24781056 PMCID: PMC4004578 DOI: 10.1371/journal.pone.0095951] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/02/2014] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Infectomic Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Doblin Sandai
- Infectomic Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
171
|
Bauzá A, Quiñonero D, Deyà PM, Frontera A. Long-Range Effects in Anion-π Interactions: Their Crucial Role in the Inhibition Mechanism ofMycobacterium TuberculosisMalate Synthase. Chemistry 2014; 20:6985-90. [DOI: 10.1002/chem.201304995] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 01/08/2023]
|
172
|
Berger A, Dohnt K, Tielen P, Jahn D, Becker J, Wittmann C. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS One 2014; 9:e88368. [PMID: 24709961 PMCID: PMC3977821 DOI: 10.1371/journal.pone.0088368] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is a human pathogen that frequently causes urinary tract and catheter-associated urinary tract infections. Here, using 13C-metabolic flux analysis, we conducted quantitative analysis of metabolic fluxes in the model strain P. aeruginosa PAO1 and 17 clinical isolates. All P. aeruginosa strains catabolized glucose through the Entner-Doudoroff pathway with fully respiratory metabolism and no overflow. Together with other NADPH supplying reactions, this high-flux pathway provided by far more NADPH than needed for anabolism: a benefit for the pathogen to counteract oxidative stress imposed by the host. P. aeruginosa recruited the pentose phosphate pathway exclusively for biosynthesis. In contrast to glycolytic metabolism, which was conserved among all isolates, the flux through pyruvate metabolism, the tricarboxylic acid cycle, and the glyoxylate shunt was highly variable, likely caused by adaptive processes in individual strains during infection. This aspect of metabolism was niche-specific with respect to the corresponding flux because strains isolated from the urinary tract clustered separately from those originating from catheter-associated infections. Interestingly, most glucose-grown strains exhibited significant flux through the glyoxylate shunt. Projection into the theoretical flux space, which was computed using elementary flux-mode analysis, indicated that P. aeruginosa metabolism is optimized for efficient growth and exhibits significant potential for increasing NADPH supply to drive oxidative stress response.
Collapse
Affiliation(s)
- Antje Berger
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Petra Tielen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Judith Becker
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
173
|
Bacterial itaconate degradation promotes pathogenicity. Nat Chem Biol 2014; 10:371-7. [PMID: 24657929 DOI: 10.1038/nchembio.1482] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/14/2014] [Indexed: 12/30/2022]
Abstract
Itaconate (methylenesuccinate) was recently identified as a mammalian metabolite whose production is substantially induced during macrophage activation. This compound is a potent inhibitor of isocitrate lyase, a key enzyme of the glyoxylate cycle, which is a pathway required for the survival of many pathogens inside the eukaryotic host. Here we show that numerous bacteria, notably many pathogens such as Yersinia pestis and Pseudomonas aeruginosa, have three genes for itaconate degradation. They encode itaconate coenzyme A (CoA) transferase, itaconyl-CoA hydratase and (S)-citramalyl-CoA lyase, formerly referred to as CitE-like protein. These genes are known to be crucial for survival of some pathogens in macrophages. The corresponding enzymes convert itaconate into the cellular building blocks pyruvate and acetyl-CoA, thus enabling the bacteria to metabolize itaconate and survive in macrophages. The itaconate degradation and detoxification pathways of Yersinia and Pseudomonas are the result of convergent evolution. This work revealed a common persistence factor operating in many pathogenic bacteria.
Collapse
|
174
|
Geng Z, Zhu W, Su H, Zhao Y, Zhang KQ, Yang J. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Biotechnol Adv 2014; 32:390-402. [DOI: 10.1016/j.biotechadv.2013.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 11/11/2013] [Accepted: 12/16/2013] [Indexed: 01/01/2023]
|
175
|
Shahbaaz M, Hassan MI, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS One 2013; 8:e84263. [PMID: 24391926 PMCID: PMC3877243 DOI: 10.1371/journal.pone.0084263] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae is a Gram negative bacterium that belongs to the family Pasteurellaceae, causes bacteremia, pneumonia and acute bacterial meningitis in infants. The emergence of multi-drug resistance H. influenzae strain in clinical isolates demands the development of better/new drugs against this pathogen. Our study combines a number of bioinformatics tools for function predictions of previously not assigned proteins in the genome of H. influenzae. This genome was extensively analyzed and found 1,657 functional proteins in which function of 429 proteins are unknown, termed as hypothetical proteins (HPs). Amino acid sequences of all 429 HPs were extensively annotated and we successfully assigned the function to 296 HPs with high confidence. We also characterized the function of 124 HPs precisely, but with less confidence. We believed that sequence of a protein can be used as a framework to explain known functional properties. Here we have combined the latest versions of protein family databases, protein motifs, intrinsic features from the amino acid sequence, pathway and genome context methods to assign a precise function to hypothetical proteins for which no experimental information is available. We found these HPs belong to various classes of proteins such as enzymes, transporters, carriers, receptors, signal transducers, binding proteins, virulence and other proteins. The outcome of this work will be helpful for a better understanding of the mechanism of pathogenesis and in finding novel therapeutic targets for H. influenzae.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
176
|
Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity. Appl Microbiol Biotechnol 2013; 98:2555-63. [PMID: 24323290 DOI: 10.1007/s00253-013-5432-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
Malate synthase (Mls), a key enzyme in the glyoxylate cycle, is required for virulence in microbial pathogens. In this study, we identified the AoMls gene from the nematode-trapping fungus Arthobotrys oligospora. The gene contains 4 introns and encodes a polypeptide of 540 amino acids. To characterize the function of AoMls in A. oligospora, we disrupted it by homologous recombination, and the ΔAoMls mutants were confirmed by PCR and Southern blot analyses. The growth rate and colony morphology of the ΔAoMls mutants showed no obvious difference from the wild-type strains on potato dextrose agar (PDA) plate. However, the disruption of gene AoMls led to a significant reduction in conidiation, failure to utilize fatty acids and sodium acetate for growth, and its conidia were unable to germinate on minimal medium supplemented with sodium oleate. In addition, the trap formation was retarded in the ΔAoMls mutants, which only produced immature traps containing one or two rings. Moreover, the nematicidal activity of the ΔAoMls mutants was significantly decreased. Our results suggest that the gene AoMls plays an important role in conidiation, trap formation and pathogenicity of A. oligospora.
Collapse
|
177
|
Vandroemme J, Cottyn B, Baeyen S, De Vos P, Maes M. Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics 2013; 14:829. [PMID: 24274055 PMCID: PMC4046712 DOI: 10.1186/1471-2164-14-829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 11/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xanthomonas fragariae (Xf) is a bacterial strawberry pathogen and an A2 quarantine organism on strawberry planting stock in the EU. It is taxonomically and metabolically distinct within the genus Xanthomonas, and known for its host specificity. As part of a broader pathogenicity study, the genome of a Belgian, virulent Xf strain (LMG 25863) was assembled to draft status and examined for its pathogenicity related gene content. RESULTS The Xf draft genome (4.2 Mb) was considerably smaller than most known Xanthomonas genomes (~5 Mb). Only half of the genes coding for TonB-dependent transporters and cell-wall degrading enzymes that are typically present in other Xanthomonas genomes, were found in Xf. Other missing genes/regions with a possible impact on its plant-host interaction were: i) the three loci for xylan degradation and metabolism, ii) a locus coding for a ß-ketoadipate phenolics catabolism pathway, iii) xcs, one of two Type II Secretion System coding regions in Xanthomonas, and iv) the genes coding for the glyoxylate shunt pathway. Conversely, the Xf genome revealed a high content of externally derived DNA and several uncommon, possibly virulence-related features: a Type VI Secretion System, a second Type IV Secretion System and a distinct Type III Secretion System effector repertoire comprised of multiple rare effectors and several putative new ones. CONCLUSIONS The draft genome sequence of LMG 25863 confirms the distinct phylogenetic position of Xf within the genus Xanthomonas and reveals a patchwork of both lost and newly acquired genomic features. These features may help explain the specific, mostly endophytic association of Xf with the strawberry plant.
Collapse
Affiliation(s)
- Joachim Vandroemme
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
- />Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent, 9000 Belgium
| | - Bart Cottyn
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| | - Steve Baeyen
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent, 9000 Belgium
| | - Martine Maes
- />Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit - Crop Protection, Merelbeke, Belgium
| |
Collapse
|
178
|
Dubey MK, Broberg A, Jensen DF, Karlsson M. Role of the methylcitrate cycle in growth, antagonism and induction of systemic defence responses in the fungal biocontrol agent Trichoderma atroviride. MICROBIOLOGY-SGM 2013; 159:2492-2500. [PMID: 24100269 DOI: 10.1099/mic.0.070466-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methylisocitrate lyase (MCL), a signature enzyme of the methylcitrate cycle, which cleaves methylisocitrate to pyruvate and succinate, is required for propionate metabolism, for secondary metabolite production and for virulence in bacteria and fungi. Here we investigate the role of the methylcitrate cycle by generating an mcl deletion mutant in the fungal biocontrol agent Trichoderma atroviride. Gene expression analysis shows that a basal expression of mcl is observed in all growth conditions tested. Phenotypic analysis of an mcl deletion mutant suggests the requirement of MCL in propionate resistance, growth, conidial pigmentation and germination, and abiotic stress tolerance. A plate confrontation assay did not show a difference between the WT and the Δmcl strain in antagonism towards Botrytis cinerea. However, the Δmcl strain displays reduced antagonism towards B. cinerea based on a secretion assay. Furthermore, an in vitro root colonization assay shows that the Δmcl strain had reduced ability to colonize Arabidopsis thaliana roots, which results in reduced induction of systemic resistance towards B. cinerea. These data show that MCL is important not only for growth and development in T. atroviride but also in antagonism, root colonization and induction of defence responses in plants.
Collapse
Affiliation(s)
- Mukesh K Dubey
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Anders Broberg
- Uppsala BioCenter, Department of Chemistry, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| |
Collapse
|
179
|
Zhao X, Wang P, Zhu G, Wang B, Zhu G. Enzymatic characterization of a type II isocitrate dehydrogenase from pathogenic Leptospira interrogans serovar Lai strain 56601. Appl Biochem Biotechnol 2013; 172:487-96. [PMID: 24092452 DOI: 10.1007/s12010-013-0521-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/15/2013] [Indexed: 01/20/2023]
Abstract
Leptospira interrogans, a Gram-negative pathogen, could cause infections in a wide variety of mammalian hosts, but due to their fastidious cultivation requirements and the lack of genetic systems, the pathogenic factor is still not clear. Isocitrate dehydrogenase (IDH) is a key enzyme in the tricarboxylation (TCA) cycle, which could have an important impact on the growth and pathogenesis of the bacteria. In the present study, we first report the cloning, heterologous expression, and detailed characterization of the IDH gene from L. interrogans serovar Lai strain 56601(LiIDH). The molecular weight of LiIDH was determined to be 87 kDa by filtration chromatography, suggesting LiIDH is a typical homodimer. The optimum activity of LiIDH was found at 60 °C, and its optimum pH was 7.0 (Mn(2+)) and 8.0 (Mg(2+)). Heat inactivation studies showed that heat treatment for 20 min at 50 °C caused a 50 % loss of enzyme activity. LiIDH was completely divalent cation dependent as other typical dimeric IDHs and Mg(2+) was its best activator. The recombinant LiIDH specificities (kcat/Km values for NADP(+) and NAD(+)) in the presence of Mg(2+) and Mn(2+) were 6,269-fold and 1,000-fold greater for NADP(+) than NAD(+), respectively. This current work is expected to shed light on the functions of metabolic enzymes in L. interrogans and provide useful information for LiIDH to be considered as a possible candidate for serological diagnostics and detection of L. interrogans infection.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Molecular Biology and Biotechnology and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, Anhui, China
| | | | | | | | | |
Collapse
|
180
|
Riko R, Nakamura H, Shindo K. Studies on pyranonigrins-isolation of pyranonigrin E and biosynthetic studies on pyranonigrin A. J Antibiot (Tokyo) 2013; 67:179-81. [PMID: 24084681 DOI: 10.1038/ja.2013.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/05/2013] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Risa Riko
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan
| | - Hitomi Nakamura
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan
| |
Collapse
|
181
|
Bae M, Kim H, Shin Y, Kim BY, Lee SK, Oh KB, Shin J, Oh DC. Separacenes A-D, novel polyene polyols from the marine actinomycete, Streptomyces sp. Mar Drugs 2013; 11:2882-93. [PMID: 23945600 PMCID: PMC3766871 DOI: 10.3390/md11082882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 12/02/2022] Open
Abstract
Separacenes A–D (1–4), novel polyene polyols, were isolated from Streptomyces sp. collected from the southern area of Jeju Island, Korea. The chemical structures of 1–4 were established by NMR, mass, UV, and IR spectroscopy as well as the modified Mosher’s method. Separacenes A–B (1–2), which share an identical planar structure but possess different relative configurations, bear tetraene units flanked by two diol moieties, whereas the stereoisomeric separacenes C–D (3–4) possess a triene moiety between two diol substructures. Separacenes A–D each contain a terminal olefinic methylene. Separacene A displayed inhibitory activity against Candida albicans isocitrate lyase and weak cytotoxicity against both the colon carcinoma cell line HCT-116 and the lung cancer cell line A549.
Collapse
Affiliation(s)
- Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea; E-Mails: (M.B.); (Y.S.); (S.K.L.); (J.S.)
| | - Heegyu Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea; E-Mails: (H.K.); (K.-B.O.)
| | - Yoonho Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea; E-Mails: (M.B.); (Y.S.); (S.K.L.); (J.S.)
| | - Byung Yong Kim
- Division of Agricultural Microbiology, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea; E-Mail:
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea; E-Mails: (M.B.); (Y.S.); (S.K.L.); (J.S.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea; E-Mails: (H.K.); (K.-B.O.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea; E-Mails: (M.B.); (Y.S.); (S.K.L.); (J.S.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea; E-Mails: (M.B.); (Y.S.); (S.K.L.); (J.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-288-024-91; Fax: +82-276-283-22
| |
Collapse
|
182
|
Dubey MK, Broberg A, Sooriyaarachchi S, Ubhayasekera W, Jensen DF, Karlsson M. The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride. Fungal Genet Biol 2013; 58-59:33-41. [PMID: 23850601 DOI: 10.1016/j.fgb.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/23/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
Isocitrate lyase (ICL), a signature enzyme of the glyoxylate cycle, is required for metabolism of non-fermentable carbon compounds like acetate or ethanol, and virulence in bacteria and fungi. In the present study, we investigate the role of the glyoxylate cycle in the fungal biocontrol agent Trichoderma atroviride by generating icl deletion and complementation mutants. Phenotypic analyses of the deletion mutant Δicl suggest that ICL is required for normal growth, conidial pigmentation and germination, and abiotic stress tolerance. The Δicl strain display reduced antagonism towards Botrytis cinerea in plate confrontation assays. Secretion and sandwich assays further show that secreted factors are partly responsible for the reduced antagonism. Furthermore, in vitro root colonization assays shows that the Δicl strain retains the ability to internally colonize Arabidopsis thaliana roots. However, the Δicl strain has a reduced ability to induce systemic defence in A. thaliana leaves that results in reduced protection against B. cinerea. These data shows that ICL and the glyoxylate cycle are important for biocontrol traits in T. atroviride, including direct antagonism and induction of defence responses in plants.
Collapse
Affiliation(s)
- Mukesh K Dubey
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
183
|
Xia J, Zhang CR, Zhang S, Li FF, Feng MG, Wang XW, Liu SS. Analysis of whitefly transcriptional responses to Beauveria bassiana infection reveals new insights into insect-fungus interactions. PLoS One 2013; 8:e68185. [PMID: 23861870 PMCID: PMC3702578 DOI: 10.1371/journal.pone.0068185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Background The fungal pathogen, Beauveria bassiana, is an efficient biocontrol agent against a variety of agricultural pests. A thorough understanding of the basic principles of insect-fungus interactions may enable the genetic modification of Beauveria bassiana to enhance its virulence. However, the molecular mechanism of insect response to Beauveria bassiana infection is poorly understood, let alone the identification of fungal virulent factors involved in pathogenesis. Methodology/Principal Findings Here, next generation sequencing technology was applied to examine the expression of whitefly (Bemisia tabaci) genes in response to the infection of Beauveria bassiana. Results showed that, compared to control, 654 and 1,681genes were differentially expressed at 48 hours and 72 hours post-infected whiteflies, respectively. Functional and enrichment analyses indicated that the DNA damage stimulus response and drug metabolism were important anti-fungi strategies of the whitefly. Mitogen-activated protein kinase (MAPK) pathway was also likely involved in the whitefly defense responses. Furthermore, the notable suppression of general metabolism and ion transport genes observed in 72 hours post-infected B. tabaci might be manipulated by fungal secreted effectors. By mapping the sequencing tags to B. bassiana genome, we also identified a number of differentially expressed fungal genes between the early and late infection stages. These genes are generally associated with fungal cell wall synthesis and energy metabolism. The expression of fungal cell wall protein genes might play an important role in fungal pathogenesis and the dramatically up-regulated enzymes of carbon metabolism indicate the increasing usage of energy during the fungal infection. Conclusions/Significance To our knowledge, this is the first report on the molecular mechanism of fungus-whitefly interactions. Our results provide a road map for future investigations on insect-pathogen interactions and genetically modifying the fungus to enhance its efficiency in whitefly control.
Collapse
Affiliation(s)
- Jun Xia
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Chang-Rong Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Shan Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Fang-Fang Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
| | - Ming-Guang Feng
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
- * E-mail: (XW); (SL)
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Hangzhou, People's Republic of China
- * E-mail: (XW); (SL)
| |
Collapse
|
184
|
Otzen C, Müller S, Jacobsen ID, Brock M. Phylogenetic and phenotypic characterisation of the 3-ketoacyl-CoA thiolase gene family from the opportunistic human pathogenic fungus Candida albicans. FEMS Yeast Res 2013; 13:553-64. [PMID: 23758791 DOI: 10.1111/1567-1364.12057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 11/27/2022] Open
Abstract
Gene families are common to all kingdoms of live and most likely derived from gene duplications with subsequent specification for the adaptation to environmental conditions. However, the exact contribution of single members to cellular physiology is difficult to predict. Here, we analysed a family of 3-ketoacyl-CoA thiolases composed of Pot1p, Fox3p and Pot13p from the dimorphic yeast Candida albicans and studied their contribution to fatty acid utilisation and virulence. The presence of three 3-ketoacyl-CoA thiolases in C. albicans contrasts the existence of only one single gene in closely related Saccharomycetales such as Saccharomyces cerevisiae. Phylogenetic analyses revealed that two of the thiolases, Pot1p and Fox3p, were closely related to the S. cerevisiae Pot1p. The third protein clustered with yet uncharacterised thiolases from filamentous fungi. Single, double and triple mutants were generated for phenotypic characterisations. While Pot1p was of general importance for utilisation of fatty acids, Fox3p partially contributed to fatty acid utilisation at elevated temperatures. No phenotype was detectable for pot13 deletions. When virulence of the different mutants was assessed in an embryonated chicken egg infection model, no significant attenuation was observed for any of the mutants, confirming previous assumptions that β-oxidation is dispensable for C. albicans virulence.
Collapse
Affiliation(s)
- Christian Otzen
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | | | | | | |
Collapse
|
185
|
Inhibition of Candida albicans isocitrate lyase activity by cadiolides and synoilides from the ascidian Synoicum sp. Bioorg Med Chem Lett 2013; 23:4099-101. [DOI: 10.1016/j.bmcl.2013.05.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022]
|
186
|
Krieger IV, Freundlich JS, Gawandi VB, Roberts JP, Gawandi VB, Sun Q, Owen JL, Fraile MT, Huss SI, Lavandera JL, Ioerger TR, Sacchettini JC. Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase. ACTA ACUST UNITED AC 2013; 19:1556-67. [PMID: 23261599 DOI: 10.1016/j.chembiol.2012.09.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 11/16/2022]
Abstract
The glyoxylate shunt plays an important role in fatty acid metabolism and has been shown to be critical to survival of several pathogens involved in chronic infections. For Mycobacterium tuberculosis (Mtb), a strain with a defective glyoxylate shunt was previously shown to be unable to establish infection in a mouse model. We report the development of phenyl-diketo acid (PDKA) inhibitors of malate synthase (GlcB), one of two glyoxylate shunt enzymes, using structure-based methods. PDKA inhibitors were active against Mtb grown on acetate, and overexpression of GlcB ameliorated this inhibition. Crystal structures of complexes of GlcB with PDKA inhibitors guided optimization of potency. A selected PDKA compound demonstrated efficacy in a mouse model of tuberculosis. The discovery of these PDKA derivatives provides chemical validation of GlcB as an attractive target for tuberculosis therapeutics.
Collapse
Affiliation(s)
- Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Quartararo CE, Hazra S, Hadi T, Blanchard JS. Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis. Biochemistry 2013; 52:1765-75. [PMID: 23409873 PMCID: PMC3706558 DOI: 10.1021/bi400037w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is the leading cause of death due to a bacterial infection. The success of the Mtb pathogen has largely been attributed to the nonreplicating, persistence phase of the life cycle, for which the glyoxylate shunt is required. In Escherichia coli, flux through the shunt is controlled by regulation of isocitrate dehydrogenase (ICDH). In Mtb, the mechanism of regulation is unknown, and currently, there is no mechanistic or structural information about ICDH. We optimized expression and purification to a yield sufficiently high to perform the first detailed kinetic and structural studies of Mtb ICDH-1. A large solvent kinetic isotope effect [(D2O)V = 3.0 ± 0.2, and (D2O)(V/Kisocitrate) = 1.5 ± 0.3] and a smaller primary kinetic isotope effect [(D)V = 1.3 ± 0.1, and (D)(V/K[2R-(2)H]isocitrate) = 1.5 ± 0.2] allowed us to perform the first multiple kinetic isotope effect studies on any ICDH and suggest a chemical mechanism. In this mechanism, protonation of the enolate to form product α-ketoglutarate is the rate-limiting step. We report the first structure of Mtb ICDH-1 to 2.18 Å by X-ray crystallography with NADPH and Mn(2+) bound. It is a homodimer in which each subunit has a Rossmann fold, and a common top domain of interlocking β sheets. Mtb ICDH-1 is most structurally similar to the R132H mutant human ICDH found in glioblastomas. Similar to human R132H ICDH, Mtb ICDH-1 also catalyzes the formation of α-hydroxyglutarate. Our data suggest that regulation of Mtb ICDH-1 is novel.
Collapse
Affiliation(s)
- Christine E. Quartararo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Saugata Hazra
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Timin Hadi
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461.,To whom correspondence should be addressed: Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461. Phone: (718) 430-3096. Fax: (718) 430-8565.
| |
Collapse
|
188
|
Chung JCS, Rzhepishevska O, Ramstedt M, Welch M. Type III secretion system expression in oxygen-limited Pseudomonas aeruginosa cultures is stimulated by isocitrate lyase activity. Open Biol 2013; 3:120131. [PMID: 23363478 PMCID: PMC3603453 DOI: 10.1098/rsob.120131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and a common cause of chronic infections in individuals with cystic fibrosis (CF). Oxygen limitation was recently reported to regulate the expression of a major virulence determinant in P. aeruginosa, the type III secretion system (T3SS). Here, we show that expression of the T3SS in oxygen-limited growth conditions is strongly dependent on the glyoxylate shunt enzyme, isocitrate lyase (ICL; encoded by aceA), which was previously shown to be highly expressed in CF isolates. ICL-dependent regulation of the T3SS did not alter the expression level of the master transcriptional regulator, ExsA, but did affect expression of the T3 structural proteins, effectors and regulators (ExsC, ExsD and ExsE). An aceA mutant displayed enhanced biofilm formation during anaerobic growth, which suggested that AceA-dependent modulation of type III secretion might impinge upon the RetS/LadS signalling pathways. Indeed, our data suggest that RetS is able to mediate some of its effects through AceA, as expression of aceA in trans partially restored T3SS expression in a retS mutant. Our findings indicate that AceA is a key player in the metabolic regulation of T3SS expression during oxygen-limited growth of P. aeruginosa. To the best of our knowledge, this is the first demonstration that the T3SS can be regulated by factors that do not affect ExsA expression levels.
Collapse
Affiliation(s)
- Jade C S Chung
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | |
Collapse
|
189
|
Campos-Garcia J, Diaz-Perez C, Diaz-Perez AL. Residues Asn214, Gln211, Glu219 and Gln221 contained in the subfamily 3 catalytic signature of the isocitrate lyase from Pseudomonas aeruginosa are involved in its catalytic and thermal properties. World J Microbiol Biotechnol 2013; 29:991-9. [PMID: 23338961 DOI: 10.1007/s11274-013-1258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/08/2013] [Indexed: 11/26/2022]
Abstract
Isocitrate lyase, encoded by the aceA gene, plays an important role in the ability of Pseudomonas aeruginosa to grow on fatty acids, acetate, acyclic terpenes, and amino acids. Phylogenetic analysis indicated that the ICL superfamily is divided in two families: the ICL family, which includes five subfamilies, and the 2-methylisocitrate lyase (MICL) family. ICL from P. aeruginosa (ICL-Pa) was identified in a different ICL node (subfamily 3) than other Pseudomonas ICL enzymes (grouped in subfamily 1). Analysis also showed that psychrophilic bacteria are mainly grouped in ICL subfamily 3, whose ICL proteins contain the highly conserved catalytic pattern QIENQVSDEKQCGHQD. We performed site-directed mutagenesis, enzymatic activity, and structure modeling of conserved residues in mutated ICLs by using ICL-Pa as a model. Our results indicated that the N214 residue is essential for catalytic function, while mutating the Q211, E219, and Q221 residues impairs its catalytic and thermostability properties. Our findings suggest that conserved residues in the subfamily 3 signature of ICL-Pa play important roles in catalysis and thermostability and are likely associated with the catalytic loop structural conformation.
Collapse
Affiliation(s)
- Jesus Campos-Garcia
- Laboratorio de Biotecnologia, Instituto de Investigaciones Quimico-Biologicas, Universidad Michoacana de San Nicolas de Hidalgo, 58030 Morelia, Michoacan, Mexico.
| | | | | |
Collapse
|
190
|
Genome Sequence of Rhizobium lupini HPC(L) Isolated from Saline Desert Soil, Kutch (Gujarat). GENOME ANNOUNCEMENTS 2013; 1:genomeA00071-12. [PMID: 23405347 PMCID: PMC3569347 DOI: 10.1128/genomea.00071-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/20/2022]
Abstract
The Rhizobium lupini strain HPC(L) was isolated from saline desert soil. It grows on minimal media supplemented with CaCO3 as a carbon source. It can also grow under both oligotrophic and heteroptrophic conditions. We report the annotated genome sequence of this strain in a 5.27-Mb scaffold.
Collapse
|
191
|
Fahnoe KC, Flanagan ME, Gibson G, Shanmugasundaram V, Che Y, Tomaras AP. Non-traditional antibacterial screening approaches for the identification of novel inhibitors of the glyoxylate shunt in gram-negative pathogens. PLoS One 2012; 7:e51732. [PMID: 23240059 PMCID: PMC3519852 DOI: 10.1371/journal.pone.0051732] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/08/2012] [Indexed: 01/06/2023] Open
Abstract
Antibacterial compounds that affect bacterial viability have traditionally been identified, confirmed, and characterized in standard laboratory media. The historical success of identifying new antibiotics via this route has justifiably established a traditional means of screening for new antimicrobials. The emergence of multi-drug-resistant (MDR) bacterial pathogens has expedited the need for new antibiotics, though many in the industry have questioned the source(s) of these new compounds. As many pharmaceutical companies' chemical libraries have been exhaustively screened via the traditional route, we have concluded that all compounds with any antibacterial potential have been identified. While new compound libraries and platforms are being pursued, it also seems prudent to screen the libraries we currently have in hand using alternative screening approaches. One strategy involves screening under conditions that better reflect the environment pathogens experience during an infection, and identifying in vivo essential targets and pathways that are dispensable for growth in standard laboratory media in vitro. Here we describe a novel screening strategy for identifying compounds that inhibit the glyoxylate shunt in Pseudomonas aeruginosa, a pathway that is required for bacterial survival in the pulmonary environment. We demonstrate that these compounds, which were not previously identified using traditional screening approaches, have broad-spectrum antibacterial activity when they are tested under in vivo-relevant conditions. We also show that these compounds have potent activity on both enzymes that comprise the glyoxylate shunt, a feature that was supported by computational homology modeling. By dual-targeting both enzymes in this pathway, we would expect to see a reduced propensity for resistance development to these compounds. Taken together, these data suggest that understanding the in vivo environment that bacterial pathogens must tolerate, and adjusting the antibacterial screening paradigm to reflect those conditions, could identify novel antibiotics for the treatment of serious MDR pathogens.
Collapse
Affiliation(s)
- Kelly C. Fahnoe
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Mark E. Flanagan
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Glenn Gibson
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Veerabahu Shanmugasundaram
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Ye Che
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
| | - Andrew P. Tomaras
- Antibacterials Research Unit, Pfizer Worldwide Research & Development, Groton, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
192
|
Rech GE, Vargas WA, Sukno SA, Thon MR. Identification of positive selection in disease response genes within members of the Poaceae. PLANT SIGNALING & BEHAVIOR 2012; 7:1667-75. [PMID: 23073005 PMCID: PMC3578908 DOI: 10.4161/psb.22362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Millions of years of coevolution between plants and pathogens can leave footprints on their genomes and genes involved on this interaction are expected to show patterns of positive selection in which novel, beneficial alleles are rapidly fixed within the population. Using information about upregulated genes in maize during Colletotrichum graminicola infection and resources available in the Phytozome database, we looked for evidence of positive selection in the Poaceae lineage, acting on protein coding sequences related with plant defense. We found six genes with evidence of positive selection and another eight with sites showing episodic selection. Some of them have already been described as evolving under positive selection, but others are reported here for the first time including genes encoding isocitrate lyase, dehydrogenases, a multidrug transporter, a protein containing a putative leucine-rich repeat and other proteins with unknown functions. Mapping positively selected residues onto the predicted 3-D structure of proteins showed that most of them are located on the surface, where proteins are in contact with other molecules. We present here a set of Poaceae genes that are likely to be involved in plant defense mechanisms and have evidence of positive selection. These genes are excellent candidates for future functional validation.
Collapse
Affiliation(s)
- Gabriel E. Rech
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE); Departamento de Microbiología y Genética; Universidad de Salamanca; Villamayor, Spain
| | - Walter A. Vargas
- Centro Hispano-Luso de Investigaciones Agrarias (CIALE); Departamento de Microbiología y Genética; Universidad de Salamanca; Villamayor, Spain
| | | | | |
Collapse
|
193
|
Fan J, Cui Y, Huang J, Wang W, Yin W, Hu Z, Li Y. Suppression subtractive hybridization reveals transcript profiling of Chlorella under heterotrophy to photoautotrophy transition. PLoS One 2012; 7:e50414. [PMID: 23209737 PMCID: PMC3510161 DOI: 10.1371/journal.pone.0050414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/19/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. METHODOLOGY/PRINCIPAL FINDINGS In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs) were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1%) from the forward library and 62 (21.8%) from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. CONCLUSIONS/SIGNIFICANCE The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds great potential for further improving its lipid and nutrient production.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yanbin Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jianke Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Weiliang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Weibo Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail: (YL); (ZH)
| | - Yuanguang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- * E-mail: (YL); (ZH)
| |
Collapse
|
194
|
Mizuno H, Kawahigashi H, Kawahara Y, Kanamori H, Ogata J, Minami H, Itoh T, Matsumoto T. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-interaction. BMC PLANT BIOLOGY 2012; 12:121. [PMID: 22838966 PMCID: PMC3480847 DOI: 10.1186/1471-2229-12-121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 07/29/2012] [Indexed: 05/06/2023]
Abstract
BACKGROUND Sorghum (Sorghum bicolor L. Moench) is a rich source of natural phytochemicals. We performed massive parallel sequencing of mRNA to identify differentially expressed genes after sorghum BTx623 had been infected with Bipolaris sorghicola, a necrotrophic fungus causing a sorghum disease called target leaf spot. RESULT Seventy-six-base-pair reads from mRNAs of mock- or pathogen-infected leaves were sequenced. Unannotated transcripts were predicted on the basis of the piling-up of mapped short reads. Differentially expressed genes were identified statistically; particular genes in tandemly duplicated putative paralogs were highly upregulated. Pathogen infection activated the glyoxylate shunt in the TCA cycle; this changes the role of the TCA cycle from energy production to synthesis of cell components. The secondary metabolic pathways of phytoalexin synthesis and of sulfur-dependent detoxification were activated by upregulation of the genes encoding amino acid metabolizing enzymes located at the branch point between primary and secondary metabolism. Coordinated gene expression could guide the metabolic pathway for accumulation of the sorghum-specific phytochemicals 3-deoxyanthocyanidin and dhurrin. Key enzymes for synthesizing these sorghum-specific phytochemicals were not found in the corresponding region of the rice genome. CONCLUSION Pathogen infection dramatically changed the expression of particular paralogs that putatively encode enzymes involved in the sorghum-specific metabolic network.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- National Institute of Agrobiological Sciences (NIAS), Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroyuki Kawahigashi
- National Institute of Agrobiological Sciences (NIAS), Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoshihiro Kawahara
- National Institute of Agrobiological Sciences (NIAS), Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroyuki Kanamori
- National Institute of Agrobiological Sciences (NIAS), Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| | - Jun Ogata
- National Institute of Agrobiological Sciences (NIAS), Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Minami
- Mitsubishi Space Software Co. Ltd, Takezono 1-6-1, Tsukuba, Ibaraki 305-0032, Japan
| | - Takeshi Itoh
- National Institute of Agrobiological Sciences (NIAS), Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| | - Takashi Matsumoto
- National Institute of Agrobiological Sciences (NIAS), Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
195
|
Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek 2012; 102:447-61. [DOI: 10.1007/s10482-012-9777-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
|
196
|
Kim DG, Moon K, Kim SH, Park SH, Park S, Lee SK, Oh KB, Shin J, Oh DC. Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2012; 75:959-967. [PMID: 22574670 DOI: 10.1021/np3001915] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bahamaolides A and B (1 and 2), two new 36-membered macrocyclic lactones, were isolated from the culture of the marine actinomycete Streptomyces sp. derived from a sediment sample collected at North Cat Cay in the Bahamas. The planar structures of 1 and 2, bearing a hexaenone and nine consecutive skipped hydroxy groups, were determined by 1D and 2D NMR, mass, IR, and UV spectra. The absolute configurations of the bahamaolides were established by combined multistep chemical reactions and spectroscopic analysis. Bahamaolide A displayed significant inhibitory activity against Candida albicans isocitrate lyase and antifungal activity against various pathogenic fungi.
Collapse
Affiliation(s)
- Dong-Gyu Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Butler MS, Yoganathan K, Buss AD, Ng S. Identification of aluminium dioxalate in fungal cultures grown on vermiculite. J Antibiot (Tokyo) 2012; 65:275-6. [DOI: 10.1038/ja.2012.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
198
|
Yates SP, Edwards TE, Bryan CM, Stein AJ, Van Voorhis WC, Myler PJ, Stewart LJ, Zheng J, Jia Z. Structural basis of the substrate specificity of bifunctional isocitrate dehydrogenase kinase/phosphatase. Biochemistry 2011; 50:8103-6. [PMID: 21870819 DOI: 10.1021/bi200809p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isocitrate dehydrogenase kinase/phosphatase (AceK) regulates entry into the glyoxylate bypass by reversibly phosphorylating isocitrate dehydrogenase (ICDH). On the basis of the recently determined structure of the AceK-ICDH complex from Escherichia coli, we have classified the structures of homodimeric NADP(+)-ICDHs to rationalize and predict which organisms likely contain substrates for AceK. One example is Burkholderia pseudomallei (Bp). Here we report a crystal structure of Bp-ICDH that exhibits the necessary structural elements required for AceK recognition. Kinetic analyses provided further confirmation that Bp-ICDH is a substrate for AceK. We conclude that the highly stringent AceK binding sites on ICDH are maintained only in Gram-negative bacteria.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Hydrogen-stimulated carbon acquisition and conservation in Salmonella enterica serovar Typhimurium. J Bacteriol 2011; 193:5824-32. [PMID: 21856852 DOI: 10.1128/jb.05456-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Typhimurium can utilize molecular hydrogen for growth and amino acid transport during anaerobic growth. Via microarray we identified H(2) gas-affected gene expression changes in Salmonella. The addition of H(2) caused altered expression of 597 genes, of which 176 genes were upregulated and 421 were downregulated. The significantly H(2)-upregulated genes include those that encode proteins involved in the transport of iron, manganese, amino acids, nucleosides, and sugars. Genes encoding isocitrate lyase (aceA) and malate synthase (aceB), both involved in the carbon conserving glyoxylate pathway, and genes encoding the enzymes of the d-glucarate and d-glycerate pathways (gudT, gudD, garR, garL, garK) are significantly upregulated by H(2). Cells grown with H(2) showed markedly increased AceA enzyme activity compared to cells without H(2). Mutant strains with deletion of either aceA or aceB had reduced H(2)-dependent growth rates. Genes encoding the glutamine-specific transporters (glnH, glnP, glnQ) were upregulated by H(2), and cells grown with H(2) showed increased [(14)C]glutamine uptake. Similarly, the mannose uptake system genes (manX, manY) were upregulated by H(2,) and cells grown with H(2) showed about 2.0-fold-increased [(14)C]d-mannose uptake compared to the cells grown without H(2). Hydrogen stimulates the expression of genes involved in nutrient and carbon acquisition and carbon-conserving pathways, linking carbon and energy metabolism to sustain H(2)-dependent growth.
Collapse
|
200
|
Quartararo CE, Blanchard JS. Kinetic and chemical mechanism of malate synthase from Mycobacterium tuberculosis. Biochemistry 2011; 50:6879-87. [PMID: 21728344 DOI: 10.1021/bi2007299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Malate synthase catalyzes the Claisen-like condensation of acetyl-coenzyme A (AcCoA) and glyoxylate in the glyoxylate shunt of the citric acid cycle. The Mycobacterium tuberculosis malate synthase G gene, glcB, was cloned, and the N-terminal His(6)-tagged 80 kDa protein was expressed in soluble form and purified by metal affinity chromatography. A chromogenic 4,4'-dithiodipyridine assay did not yield linear kinetics, but the generation of an active site-directed mutant, C619S, gave an active enzyme and linear kinetics. The resulting mutant exhibited kinetics comparable to those of the wild type and was used for the full kinetic analysis. Initial velocity studies were intersecting, suggesting a sequential mechanism, which was confirmed by product and dead-end inhibition. The inhibition studies delineated the ordered binding of glyoxylate followed by AcCoA and the ordered release of CoA followed by malate. The pH dependencies of k(cat) and k(cat)/K(gly) are both bell-shaped, and catalysis depends on a general base (pK = 5.3) and a general acid (pK = 9.2). Primary kinetic isotope effects determined using [C(2)H(3)-methyl]acetyl-CoA suggested that proton removal and carbon-carbon bond formation were partially rate-limiting. Solvent kinetic isotope effects on k(cat) suggested the hydrolysis of the malyl-CoA intermediate was also partially rate-limiting. Multiple kinetic isotope effects, utilizing D(2)O and [C(2)H(3)-methyl]acetyl-CoA, confirmed a stepwise mechanism in which the step exhibiting primary kinetic isotope effects precedes the step exhibiting the solvent isotope effects. We combined the kinetic data and the pH dependence of the kinetic parameters with existing structural and mutagenesis data to propose a chemical mechanism for malate synthase from M. tuberculosis.
Collapse
Affiliation(s)
- Christine E Quartararo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | |
Collapse
|