151
|
Shimomura Y, Takahashi Y, Kakuta Y, Fukuyama K. Crystal structure of Escherichia coli YfhJ protein, a member of the ISC machinery involved in assembly of iron-sulfur clusters. Proteins 2006; 60:566-9. [PMID: 15937904 DOI: 10.1002/prot.20481] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshimitsu Shimomura
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
152
|
Taneja B, Patel A, Slesarev A, Mondragón A. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases. EMBO J 2006; 25:398-408. [PMID: 16395333 PMCID: PMC1383508 DOI: 10.1038/sj.emboj.7600922] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 11/23/2005] [Indexed: 11/08/2022] Open
Abstract
Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.
Collapse
Affiliation(s)
- Bhupesh Taneja
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
| | - Asmita Patel
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
| | | | - Alfonso Mondragón
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA. Tel.: +1 847 491 7726; Fax: +1 847 467 6489; E-mail:
| |
Collapse
|
153
|
Ito M, Oyama T, Okazaki K, Morikawa K. Crystallization and preliminary X-ray analysis of the Pax6 paired domain bound to the Pax6 gene enhancer. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:1009-12. [PMID: 16511221 PMCID: PMC1978128 DOI: 10.1107/s1744309105033506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 10/18/2005] [Indexed: 11/11/2022]
Abstract
Pax6 is a member of the Pax family of transcription factors and is essential for eye development. Pax6 has two DNA-binding domains: the paired domain and the homeodomain. The Pax6 paired domain is involved in Pax6 gene autoregulation by binding to its enhancer. In this study, crystallization and preliminary X-ray diffraction analysis of the mammalian Pax6 paired domain in complex with the Pax6 gene enhancer was attempted. The Pax6 paired domain complexed with an optimized 25 bp DNA fragment was crystallized by the hanging-drop vapour-diffusion method. The crystal diffracted synchrotron radiation to 3.0/3.7 A resolution and belongs to the monoclinic space group P2(1), with unit-cell parameters a = 62.21, b = 70.69, c = 176.03 A, beta = 90.54 degrees. Diffraction data were collected to 3.7 A resolution.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | | | |
Collapse
|
154
|
Doucleff M, Malak LT, Pelton JG, Wemmer DE. The C-terminal RpoN domain of sigma54 forms an unpredicted helix-turn-helix motif similar to domains of sigma70. J Biol Chem 2005; 280:41530-6. [PMID: 16210314 DOI: 10.1074/jbc.m509010200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The "sigma" subunit of prokaryotic RNA polymerase allows gene-specific transcription initiation. Two sigma families have been identified, sigma70 and sigma54, which use distinct mechanisms to initiate transcription and share no detectable sequence homology. Although the sigma70-type factors have been well characterized structurally by x-ray crystallography, no high resolution structural information is available for the sigma54-type factors. Here we present the NMR-derived structure of the C-terminal domain of sigma54 from Aquifex aeolicus. This domain (Thr-323 to Gly-389), which contains the highly conserved RpoN box sequence, consists of a poorly structured N-terminal tail followed by a three-helix bundle, which is surprisingly similar to domains of the sigma70-type proteins. Residues of the RpoN box, which have previously been shown to be critical for DNA binding, form the second helix of an unpredicted helix-turn-helix motif. The homology of this structure with other DNA-binding proteins, combined with previous biochemical data, suggests how the C-terminal domain of sigma54 binds to DNA.
Collapse
Affiliation(s)
- Michaeleen Doucleff
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
155
|
Zhang G, Sleiman SF, Tseng RJ, Rajakumar V, Wang X, Chamberlin HM. Alteration of the DNA binding domain disrupts distinct functions of the C. elegans Pax protein EGL-38. Mech Dev 2005; 122:887-99. [PMID: 15923112 DOI: 10.1016/j.mod.2005.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 04/13/2005] [Accepted: 04/18/2005] [Indexed: 11/26/2022]
Abstract
The paired-domain-containing Pax transcription factors play an important role in the development of a range of organ, tissue and cell types. Although DNA binding elements and target genes for Pax proteins have been identified, how these proteins identify appropriate DNA elements and regulate different genes in different cellular contexts is not well understood. To investigate the relationship between Pax proteins and their targets, we have studied the in vivo and in vitro properties associated with wild-type and different mutant variants of the Caenorhabditis elegans Pax protein EGL-38. Here, we characterize the properties of four mutations that result in an amino acid substitution in the DNA binding domain of EGL-38. We find that animals bearing the different mutant alleles exhibit tissue-preferential defects in egl-38 function. The mutant proteins are also altered in their activity in an ectopic expression assay and in their in vitro DNA binding properties. Using in vitro selection, we have identified binding sites for EGL-38. However, we show that selected sites function poorly in vivo as EGL-38 response elements, indicating that sequence features in addition to DNA binding determine the efficacy of Pax response elements. The distinction between DNA binding and activity is consistent with the model that other factors commonly play a role in mediating Pax protein target site selection and function in vivo.
Collapse
Affiliation(s)
- Guojuan Zhang
- Department of Molecular Genetics, Ohio State University, 938 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
156
|
Grasberger H, Ringkananont U, Lefrancois P, Abramowicz M, Vassart G, Refetoff S. Thyroid Transcription Factor 1 Rescues PAX8/p300 Synergism Impaired by a Natural PAX8 Paired Domain Mutation with Dominant Negative Activity. Mol Endocrinol 2005; 19:1779-91. [PMID: 15718293 DOI: 10.1210/me.2004-0426] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractMutations in the paired domain transcription factor PAX8 are a rare cause of congenital hypothyroidism due to thyroid dysgenesis. We identified a novel and unique PAX8 mutation segregating in seven affected members of a three-generations family. The mutation replaces an invariant serine residue within helix 2 of the paired DNA-binding domain for phenylalanine. The mutant protein (PAX8-S48F) does not induce the thyroglobulin promoter in nonthyroid cells, but displays almost half of wild-type PAX8 activity in thyroid cells. PAX8-S48F shows no defect in expression, nuclear targeting, or DNA binding and retains the ability to synergize with thyroid transcription factor 1 (TTF-1, NKX2.1). However, we found that in nonthyroid cells, the acetylation-independent synergism with the general transcriptional adaptor p300 is completely abrogated, suggesting that PAX8-S48F may be unable to efficiently recruit p300. Reconstitution experiments in nonthyroid cells reveal that TTF-1 can partially rescue PAX8-S48F/p300 synergism and thus reproduce the situation in thyroid cells. These functional characteristics result in a dominant negative effect of PAX8-S48F on coexpressed wild-type PAX8 activity, which is not observed in paired domain mutations with DNA binding defect. Our results describe the first dominant negative missense mutation in a paired domain and provide evidence for a crucial role of the p300 coactivator in mediating the functional synergism between PAX8 and TTF-1 in thyroid-specific gene expression.
Collapse
Affiliation(s)
- Helmut Grasberger
- The University of Chicago, MC3090, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
157
|
Yao JG, Sun YH. Eyg and Ey Pax proteins act by distinct transcriptional mechanisms in Drosophila development. EMBO J 2005; 24:2602-12. [PMID: 15973436 PMCID: PMC1176454 DOI: 10.1038/sj.emboj.7600725] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 06/02/2005] [Indexed: 11/09/2022] Open
Abstract
Drosophila has two pairs of Pax genes, ey/toy and eyg/toe, that play different functions during eye development. ey specifies eye fate, while eyg promotes cell proliferation. We have determined the molecular basis for the functional diversity of Eyg and Ey. Eyg and Ey act by distinct transcriptional mechanisms. They use different DNA-binding domains for target recognition. Most interestingly, Eyg acts exclusively as a repressor, whereas Ey is an activator. Several vertebrate Pax proteins are known to switch between activator and repressor activities, but none as repressors only. Eyg may be the first Pax protein as a dedicated repressor. Vertebrates produce a Pax6 isoform, Pax6-5a, differing from Pax6 in DNA-binding properties and functions and structurally similar to Eyg/Toe. We found that Pax6-5a acts as an activator like Ey, but has DNA-binding specificity like Eyg.
Collapse
Affiliation(s)
- Jih-Guang Yao
- Institute of Genetics, National Yang-Ming University, Shipai, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Y Henry Sun
- Institute of Genetics, National Yang-Ming University, Shipai, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China. Tel.: +886 2 2789 9211; Fax: +886 2 2782 6085; E-mail:
| |
Collapse
|
158
|
Cvekl A, Yang Y, Chauhan BK, Cveklova K. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2005; 48:829-44. [PMID: 15558475 PMCID: PMC2080872 DOI: 10.1387/ijdb.041866ac] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lens development is an excellent model for genetic and biochemical studies of embryonic induction, cell cycle regulation, cellular differentiation and signal transduction. Differentiation of lens is characterized by lens-preferred expression and accumulation of water-soluble proteins, crystallins. Crystallins are required for light transparency, refraction and maintenance of lens integrity. Here, we review mechanisms of lens-preferred expression of crystallin genes by employing synergism between developmentally regulated DNA-binding transcription factors: Pax6, c-Maf, MafA/L-Maf, MafB, NRL, Sox2, Sox1, RARbeta/RXRbeta, RORalpha, Prox1, Six3, gammaFBP-B and HSF2. These factors are differentially expressed in lens precursor cells, lens epithelium and primary and secondary lens fibers. They exert their function in combination with ubiquitously expressed factors (e.g. AP-1, CREB, pRb, TFIID and USF) and co-activators/chromatin remodeling proteins (e.g. ASC-2 and CBP/p300). A special function belongs to Pax6, a paired domain and homeodomain-containing protein, which is essential for lens formation. Pax6 is expressed in lens progenitor cells before the onset of crystallin expression and it serves as an important regulatory factor required for expression of c-Maf, MafA/L-Maf, Six3, Prox1 and retinoic acid signaling both in lens precursor cells and the developing lens. The roles of these factors are illustrated by promoter studies of mouse alphaA-, alphaB-, gammaF- and guinea pig zeta-crystallins. Pax6 forms functional complexes with a number of transcription factors including the retinoblastoma protein, pRb, MafA, Mitf and Sox2. We present novel data showing that pRb antagonizes Pax6-mediated activation of the alphaA-crystallin promoter likely by inhibiting binding of Pax6 to DNA.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
159
|
White RB, Lamey TM, Ziman M, Koenders A. Isolation and expression analysis of a Pax group III gene from the crustacean Cherax destructor. Dev Genes Evol 2005; 215:306-12. [PMID: 15772827 DOI: 10.1007/s00427-005-0478-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
Pax genes encode transcription factors that are critical regulators of key developmental processes in evolutionarily diverse animal phyla. Here we report the first isolation of a Pax gene from a crustacean: a Pax group III gene we have termed CdpaxIII that contains highly conserved DNA-binding domains, the paired domain and homeodomain. CdpaxIII is expressed in the embryo, in adult limb muscle during both quiescence and regeneration, and during the distinct process of epimorphic limb regeneration. Interestingly, CdpaxIII is expressed as two distinct alternate transcripts, one of which is novel in lacking a large portion of its paired domain.
Collapse
Affiliation(s)
- Robert B White
- School of Natural Sciences, Centre for Ecosystem Management, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | | | | | | |
Collapse
|
160
|
Tzoulaki I, White IMS, Hanson IM. PAX6 mutations: genotype-phenotype correlations. BMC Genet 2005; 6:27. [PMID: 15918896 PMCID: PMC1156885 DOI: 10.1186/1471-2156-6-27] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/26/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The PAX6 protein is a highly conserved transcriptional regulator that is important for normal ocular and neural development. In humans, heterozygous mutations of the PAX6 gene cause aniridia (absence of the iris) and related developmental eye diseases. PAX6 mutations are archived in the Human PAX6 Allelic Variant Database, which currently contains 309 records, 286 of which are mutations in patients with eye malformations. RESULTS We examined the records in the Human PAX6 Allelic Variant Database and documented the frequency of different mutation types, the phenotypes associated with different mutation types, the contribution of CpG transitions to the PAX6 mutation spectrum, and the distribution of chain-terminating mutations in the open reading frame. Mutations that introduce a premature termination codon into the open reading frame are predominantly associated with aniridia; in contrast, non-aniridia phenotypes are typically associated with missense mutations. Four CpG dinucleotides in exons 8, 9, 10 and 11 are major mutation hotspots, and transitions at these CpG's account for over half of all nonsense mutations in the database. Truncating mutations are distributed throughout the PAX6 coding region, except for the last half of exon 12 and the coding part of exon 13, where they are completely absent. The absence of truncating mutations in the 3' part of the coding region is statistically significant and is consistent with the idea that nonsense-mediated decay acts on PAX6 mutant alleles. CONCLUSION The PAX6 Allelic Variant Database is a valuable resource for studying genotype-phenotype correlations. The consistent association of truncating mutations with the aniridia phenotype, and the distribution of truncating mutations in the PAX6 open reading frame, suggests that nonsense-mediated decay acts on PAX6 mutant alleles.
Collapse
Affiliation(s)
- Ioanna Tzoulaki
- School of Molecular and Clinical Medicine, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian MS White
- School of Biological Sciences, Institute of Evolutionary Biology, Ashworth Laboratories, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Isabel M Hanson
- School of Molecular and Clinical Medicine, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
161
|
Cao X, Kambe F, Lu X, Kobayashi N, Ohmori S, Seo H. Glutathionylation of two cysteine residues in paired domain regulates DNA binding activity of Pax-8. J Biol Chem 2005; 280:25901-6. [PMID: 15888455 DOI: 10.1074/jbc.m411443200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported that the first two cysteine residues out of three present in paired domain (PD), a DNA-binding domain, are responsible for redox regulation of Pax-8 DNA binding activity. We show that glutathionylation of these cysteines has a regulatory role in PD binding. Wild-type PD and its mutants with substitution of cysteine to serine were synthesized and named CCC, CSS, SCS, SSC, and SSS according to the positions of substituted cysteines. They were incubated in a buffer containing various ratios of GSH/GSSG and subjected to gel shift assay. Binding of CCC, CSS, and SCS was impaired with decreasing GSH/GSSG ratio, whereas that of SSC and SSS was not affected. Because [3H]glutathione was incorporated into CCC, CSS, and SCS, but not into SSC and SSS, the binding impairment was ascribed to glutathionylation of the redox-reactive cysteines. This oxidative inactivation of PD binding was reversed by a reductant dithiothreitol and by redox factor (Ref)-1 in vitro. To explore the glutathionylation in cells, Chinese hamster ovary cells overexpressing CSS and SCS were labeled with [35S]cysteine in the presence of cycloheximide. Immunoprecipitation with an antibody against PD revealed that treatment of the cells with an oxidant diamide induced the 35S incorporation into both mutants, suggesting the PD glutathionylation in cells. Since the two cysteine residues in PD are conserved in all Pax members, this novel posttranslational modification of PD would provide a new insight into molecular basis for modulation of Pax function.
Collapse
Affiliation(s)
- Xia Cao
- Department of Endocrinology and Metabolism, Division of Molecular and Cellular Adaptation, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | |
Collapse
|
162
|
Cinar HN, Chisholm AD. Genetic analysis of the Caenorhabditis elegans pax-6 locus: roles of paired domain-containing and nonpaired domain-containing isoforms. Genetics 2005; 168:1307-22. [PMID: 15579687 PMCID: PMC1448762 DOI: 10.1534/genetics.104.031724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PAX-6 proteins are involved in eye and brain development in many animals. In the nematode Caenorhabditis elegans the pax-6 locus encodes multiple PAX-6 isoforms both with and without a paired domain. Mutations in the C. elegans pax-6 locus can be grouped into three classes. Mutations that affect paired domain-containing isoforms cause defects in epidermal morphogenesis, epidermal cell fates, and gonad cell migration and define the class I (vab-3) complementation group. The class II mutation mab-18(bx23) affects nonpaired domain-containing isoforms and transforms the fate of a sensory organ in the male tail. Class III mutations affect both paired domain and nonpaired domain isoforms; the most severe class III mutations are candidate null mutations in pax-6. Class III mutant phenotypes do not resemble a simple sum of class I and class II phenotypes. A comparison of class I and class III phenotypes indicates that PAX-6 isoforms can interact additively, synergistically, or antagonistically, depending on the cellular context.
Collapse
Affiliation(s)
- Hediye Nese Cinar
- Sinsheimer Laboratories, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
163
|
Bruun JA, Thomassen EIS, Kristiansen K, Tylden G, Holm T, Mikkola I, Bjørkøy G, Johansen T. The third helix of the homeodomain of paired class homeodomain proteins acts as a recognition helix both for DNA and protein interactions. Nucleic Acids Res 2005; 33:2661-75. [PMID: 15886395 PMCID: PMC1092277 DOI: 10.1093/nar/gki562] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transcription factor Pax6 is essential for the development of the eyes and the central nervous system of vertebrates and invertebrates. Pax6 contains two DNA-binding domains; an N-terminal paired domain and a centrally located homeodomain. We have previously shown that the vertebrate paired-less isoform of Pax6 (Pax6ΔPD), and several other homeodomain proteins, interact with the full-length isoform of Pax6 enhancing Pax6-mediated transactivation from paired domain-DNA binding sites. By mutation analyses and molecular modeling we now demonstrate that, surprisingly, the recognition helix for specific DNA binding of the homeodomains of Pax6 and Chx10 interacts with the C-terminal RED subdomain of the paired domain of Pax6. Basic residues in the recognition helix and the N-terminal arm of the homeodomain form an interaction surface that binds to an acidic patch involving residues in helices 1 and 2 of the RED subdomain. We used fluorescence resonance energy transfer assays to demonstrate such interactions between Pax6 molecules in the nuclei of living cells. Interestingly, two mutations in the homeodomain recognition helix, R57A and R58A, reduced protein–protein interactions, but not DNA binding of Pax6ΔPD. These findings suggest a critical role for the recognition helix and N-terminal arm of the paired class homeodomain in protein–protein interactions.
Collapse
Affiliation(s)
| | | | - Kurt Kristiansen
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø9037 Tromsø, Norway
| | | | | | - Ingvild Mikkola
- Department of Pharmacology, Institute of Pharmacy, University of Tromsø9037 Tromsø, Norway
| | | | - Terje Johansen
- To whom correspondence should be addressed. Tel: +47 776 44720; Fax: +47 776 45350;
| |
Collapse
|
164
|
Chi YI. Homeodomain revisited: a lesson from disease-causing mutations. Hum Genet 2005; 116:433-44. [PMID: 15726414 PMCID: PMC1579204 DOI: 10.1007/s00439-004-1252-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
The homeodomain is a highly conserved DNA-binding motif that is found in numerous transcription factors throughout a large variety of species from yeast to humans. These gene-specific transcription factors play critical roles in development and adult homeostasis, and therefore, any germline mutations associated with these proteins can lead to a number of congenital abnormalities. Although much has been revealed concerning the molecular architecture and the mechanism of homeodomain-DNA interactions, the study of disease-causing mutations can further provide us with instructive information as to the role of particular residues in a conserved mode of action. In this paper, I have compiled the homeodomain missense mutations found in various human diseases and re-examined the functional role of the mutational "hot spot" residues in light of the structures obtained from crystallography. These findings should be useful in understanding the essential components of the homeodomain and in attempts to design agonist or antagonists to modulate their activity and to reverse the effects caused by the mutations.
Collapse
Affiliation(s)
- Young-In Chi
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
165
|
Du S, Lawrence EJ, Strzelecki D, Rajput P, Xia SJ, Gottesman DM, Barr FG. Co-expression of alternatively spliced forms of PAX3, PAX7, PAX3-FKHR and PAX7-FKHR with distinct DNA binding and transactivation properties in rhabdomyosarcoma. Int J Cancer 2005; 115:85-92. [PMID: 15688409 DOI: 10.1002/ijc.20844] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PAX3 and PAX7 encode transcription factors implicated in the pathogenesis of rhabdomyosarcoma (RMS), including alveolar RMS in which chromosomal translocations generate PAX3-FKHR and PAX7-FKHR fusions. Previous studies of wild-type PAX3 and PAX7 identified alternative splicing events that modify the paired box and generate 2 isoforms of PAX3 (Q+ and Q-) and 4 isoforms of PAX7 (Q+GL+, Q+GL-, Q-GL+, Q-GL-). In our study, we investigated alternative splicing of the wild-type and fusion forms of PAX3 and PAX7 in alveolar and embryonal RMS and assessed the functional implications. For PAX3 and PAX3-FKHR, the Q+ and Q- isoforms were consistently co-expressed in RMS tumors with slightly higher levels of the Q+ isoform. For PAX7 and PAX7-FKHR, there was a consistent pattern of co-expression of the 4 isoforms in RMS tumors: Q+GL- > Q+GL+ >/= Q-GL- > Q-GL+. DNA binding analysis demonstrated that PAX3 and PAX3-FKHR Q- isoforms exhibit higher affinity than corresponding Q+ isoforms for class I sites and no difference for class II sites. For PAX7 and PAX7-FKHR, the relative affinity was Q-GL- > Q+GL- > Q-GL+ >/= Q+GL+ for class I sites and Q-GL-, Q+GL- > Q-GL+, Q+GL+ for class II sites. Finally, the transcriptional activities of the PAX3-FKHR and PAX7-FKHR isoforms on reporter plasmids varied over a 5-fold and 50-fold range, respectively, in accord with the differences in DNA binding activity. In conclusion, these studies reveal that PAX3, PAX7 and their fusions with FKHR are each expressed in RMS tumors as a consistent mixture of functionally distinct isoforms.
Collapse
Affiliation(s)
- Shouying Du
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Xia SJ, Barr FG. Analysis of the transforming and growth suppressive activities of the PAX3-FKHR oncoprotein. Oncogene 2004; 23:6864-71. [PMID: 15286710 DOI: 10.1038/sj.onc.1207850] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 2;13 chromosomal translocation occurs in most cases of the cancer alveolar rhabdomyosarcoma (ARMS), and juxtaposes the genes encoding the PAX3 and FKHR transcription factors. The resulting chimeric protein PAX3-FKHR is a potent transcriptional activator, and is hypothesized to function as a dominant acting oncogene. To investigate its biological function, PAX3-FKHR was transduced into three immortalized murine cell lines in either a constitutive or inducible manner. These cells only tolerate expression of low PAX3-FKHR levels, which is sufficient for transformation in NIH3T3 cells. In contrast, higher PAX3-FKHR levels, which are comparable to the endogenous level expressed in ARMS cells, result in growth suppression. To determine as to which PAX3 functional domains are needed for growth suppression and transformation, inactivating mutations were introduced into the paired box and homeodomain of PAX3-FKHR. In these experiments, the homeodomain is necessary for transformation, but not growth suppression; whereas the paired box is not required for transformation but mediates growth suppression. In summary, our findings demonstrate that the transforming and growth suppressive activities of PAX3-FKHR are dominant at different activity levels and are mediated by distinct functional domains. These findings are consistent with the hypothesis that distinct expression pathways are operative in these opposing phenotypic end points.
Collapse
Affiliation(s)
- Shujuan J Xia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
167
|
Meeus L, Gilbert B, Rydlewski C, Parma J, Roussie AL, Abramowicz M, Vilain C, Christophe D, Costagliola S, Vassart G. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J Clin Endocrinol Metab 2004; 89:4285-91. [PMID: 15356023 DOI: 10.1210/jc.2004-0166] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Thyroid dysgenesis is the most common cause of congenital hypothyroidism, a relatively frequent disease affecting 1 in 3000-4000 newborns. Whereas most cases are sporadic, mutations in transcription factors implicated in thyroid development have been shown to cause a minority of cases transmitted as monogenic Mendelian diseases. PAX8 is one of these transcription factors, and so far, five mutations have been identified in its paired domain in patients with thyroid dysgenesis. We have identified a novel mutation of PAX8, in the heterozygous state, in a father and his two children both presenting with congenital hypothyroidism associated with an in-place thyroid of normal size at birth. In addition, one of the affected siblings displayed unilateral kidney agenesis. The mutation substitutes a highly conserved serine in position 54 of the DNA-binding domain of the protein (S54G mutation) by a glycine. Functional analyses of the mutant protein (PAX8-S54G) demonstrated that it is unable to bind a specific cis-element of the thyroperoxidase gene promoter in EMSAs and that it has almost completely lost the ability to act in synergy with Titf1 to transactivate transcription from the thyroglobulin promoter/enhancer. These results indicate that loss of function mutations of the PAX8 gene may cause congenital hypothyroidism in the absence of thyroid hypoplasia.
Collapse
Affiliation(s)
- Laurent Meeus
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, 808 route de Lennik, B-1070 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Watkins S, van Pouderoyen G, Sixma TK. Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA. Nucleic Acids Res 2004; 32:4306-12. [PMID: 15304566 PMCID: PMC514390 DOI: 10.1093/nar/gkh770] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 11/14/2022] Open
Abstract
The bipartite DNA-binding domain of Tc3 transposase, Tc3A, was crystallized in complex with its transposon recognition sequence. In the structure the two DNA-binding domains form structurally related helix-turn-helix (HTH) motifs. They both bind to the major groove on a single DNA oligomer, separated by a linker that interacts closely with the minor groove. The structure resembles that of the transcription factor Pax6 DNA-binding domain, but the relative orientation of the HTH-domain is different. The DNA conformation is distorted, characterized by local narrowing of the minor groove and bends at both ends. The protein-DNA recognition takes place through base and backbone contacts, as well as shape-recognition of the distortions in the DNA. Charged interactions are primarily found in the N-terminal domain and the linker indicating that these may form the initial contact area. Two independent dimer interfaces could be relevant for bringing together transposon ends and for binding to a direct repeat site in the transposon end. In contrast to the Tn5 synaptic complex, the two Tc3A DNA-binding domains bind to a single Tc3 transposon end.
Collapse
Affiliation(s)
- Stephan Watkins
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
169
|
Lammi L, Halonen K, Pirinen S, Thesleff I, Arte S, Nieminen P. A missense mutation in PAX9 in a family with distinct phenotype of oligodontia. Eur J Hum Genet 2004; 11:866-71. [PMID: 14571272 DOI: 10.1038/sj.ejhg.5201060] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in PAX9 have been described for families in which inherited oligodontia characteristically involves permanent molars. Our study analysed one large family with dominantly inherited oligodontia clinically and genetically. In addition to permanent molars, some teeth were congenitally missing in the premolar, canine, and incisor regions. Measurements of tooth size revealed the reduced size of the proband's and his father's deciduous and permanent teeth. This phenotype is distinct from oligodontia phenotypes associated with mutations in PAX9. Sequencing of the PAX9 gene revealed a missense mutation in the beginning of the paired domain of the molecule, an arginine-to-tryptophan amino-acid change occurring in a position absolutely conserved in all sequenced paired box genes. A mutation of the homologous arginine of PAX6 has been shown to affect the target DNA specificity of PAX6. We suggest that a similar mechanism explains these distinct oligodontia phenotypes.
Collapse
Affiliation(s)
- Laura Lammi
- Institute of Dentistry, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
170
|
Apuzzo S, Abdelhakim A, Fortin AS, Gros P. Cross-talk between the paired domain and the homeodomain of Pax3: DNA binding by each domain causes a structural change in the other domain, supporting interdependence for DNA Binding. J Biol Chem 2004; 279:33601-12. [PMID: 15148315 DOI: 10.1074/jbc.m402949200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pax3 protein has two DNA binding domains, a Paired domain (PD) and a paired-type Homeo domain (HD). Although the PD and HD can bind to cognate DNA sequences when expressed individually, genetic and biochemical data indicate that the two domains are functionally interdependent in intact Pax3. The mechanistic basis of this functional interdependence is unknown and was studied by protease sensitivity. Pax3 was modified by the creation of Factor Xa cleavage sites at discrete locations in the PD, the HD, and in the linker segment joining the PD and the HD (Xa172, Xa189, and Xa216) in individual Pax3 mutants. The effect of Factor Xa insertions on protein stability and on DNA binding by the PD and the HD was measured using specific target site sequences. Independent insertions at position 100 in the linker separating the first from the second helix-turn-helix motif of the PD and at position 216 immediately upstream of the HD were found to be readily accessible to Factor Xa cleavage. The effect of DNA binding by the PD or the HD on accessibility of Factor Xa sites inserted in the same or in the other domain was monitored and quantitated for multiple mutants bearing different numbers of Xa sites at each position. In general, DNA binding reduced accessibility of all sites, suggesting a more compact and less solvent-exposed structure of DNA-bound versus DNA-free Pax3. Results of dose response and time course experiments were consistent and showed that DNA binding by the PD not only caused a local structural change in the PD but also caused a conformational change in the HD (P3OPT binding to Xa216 mutants); similarly, DNA binding by the HD also caused a conformational change in the PD (P2 binding to Xa100 mutants). These results provide a structural basis for the functional interdependence of the two DNA binding domains of Pax3.
Collapse
Affiliation(s)
- Sergio Apuzzo
- Department of Biochemistry and McGill Cancer Center, McGill University, Quebec H1E 1S9, Canada.
| | | | | | | |
Collapse
|
171
|
Cvekl A, Tamm ER. Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. Bioessays 2004; 26:374-86. [PMID: 15057935 PMCID: PMC2094210 DOI: 10.1002/bies.20009] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During development of the anterior eye segment, cells that originate from the surface epithelium or the neuroepithelium need to interact with mesenchymal cells, which predominantly originate from the neural crest. Failures of proper interaction result in a complex of developmental disorders such Peters' anomaly, Axenfeld-Rieger's syndrome or aniridia. Here we review the role of transcription factors that have been identified to be involved in the coordination of anterior eye development. Among these factors is PAX6, which is active in both epithelial and mesenchymal cells during ocular development, albeit at different doses and times. We propose that PAX6 is a key element that synchronizes the complex interaction of cell types of different origin, which are all needed for proper morphogenesis of the anterior eye. We discuss several molecular mechanisms that might explain the effects of haploinsufficiency of PAX6 and other transcription factors, and the broad variation of the resulting phenotypes.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
172
|
Chauhan BK, Yang Y, Cveklová K, Cvekl A. Functional interactions between alternatively spliced forms of Pax6 in crystallin gene regulation and in haploinsufficiency. Nucleic Acids Res 2004; 32:1696-709. [PMID: 15020706 PMCID: PMC390332 DOI: 10.1093/nar/gkh334] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pax6 is essential for development of the eye, olfactory system, brain and pancreas. Haploinsufficiency of Pax6 causes abnormal eye development. Two forms of Pax6 protein, PAX6 and PAX6(5a), differ in a 14 amino acid insertion encoded by an alternatively spliced exon 5a in the N-terminal DNA-binding paired domain (PD), and they are simultaneously expressed. Here, we show that PAX6 and PAX6(5a) together synergistically activate transcription from promoters recognized by Pax6 PD and PD5a, but not by their homeodomain. This synergism promotes activation of transcription by c-Maf and MafA on the alphaB-crystallin promoter, and is required for transcriptional co-activation by RARbeta/RXRbeta and PAX6/PAX6(5a) on the gammaF-crystallin promoter. To determine the role of this synergism in haploinsufficiency, we tested four human missense (G18W, R26G, G64V and R128C) and one nonsense (R317X) mutants, with reporters driven by Pax6 PD consensus binding sites and the alphaB-crystallin promoter. The simultaneous activity of Pax6 proteins [PAX6, mutated PAX6, PAX6(5a) and mutated PAX6(5a)] modeling haploinsufficiency yielded results not predicted by properties of individual PAX6 or PAX6(5a). Taken together, these results indicate that complex ocular phenotypes due to Pax6 haploinsufficiency originate, at least partially, from functional interactions between alternatively spliced PAX6 and PAX6(5a) variants and other factors, e.g. MafA/c-Maf.
Collapse
Affiliation(s)
- Bharesh K Chauhan
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
173
|
Mensah JK, Ogawa T, Kapadia H, Cavender AC, D'Souza RN. Functional Analysis of a Mutation in PAX9 Associated with Familial Tooth Agenesis in Humans. J Biol Chem 2004; 279:5924-33. [PMID: 14607846 DOI: 10.1074/jbc.m305648200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pax9 is a paired domain-containing transcription factor that plays an essential role in the patterning of murine dentition. In humans, mutations in PAX9 are associated with unique phenotypes of familial tooth agenesis that mainly involve posterior teeth. Among these, a frameshift mutation (219InsG) within the paired domain of PAX9 produces a protein product associated with a severe form of molar agenesis in a single family. The objectives of this study were to gain new insights into the molecular pathogenesis of the 219InsG mutation and its role in tooth agenesis. Here we describe functional defects in DNA binding and transactivation of mutant 219InsGPax9. Although wild type Pax9 binds to the high affinity paired domain recognition sequences, e5 and CD19-2(A-ins), the 219InsGPax9 mutant protein was unable to bind to these cognate DNA-binding sites. In co-transfection assays, wild type Pax9 activated reporter gene transcription although the mutant was transcriptionally inactive. Immunolocalization data show that Pax9 and 219InsGPax9 proteins are synthesized in mammalian cells but that the nuclear localization of the mutant Pax9 protein is altered. Furthermore, transactivation by the full-length Pax9 protein from paired domain binding sites was not impaired by the 219InsGPax9 mutant. The latter did not alter the DNA binding activities of wild type Pax9 in gel mobility shift assays. The combined defects in DNA binding activities and transactivation function of mutant 219InsGPAX9 likely alter the selective activation and/or repression of PAX9 effector genes during odontogenesis. This loss-of-function of PAX9 most likely results in its haploinsufficiency during the patterning of dentition and the subsequent loss of posterior teeth.
Collapse
Affiliation(s)
- John K Mensah
- Department of Orthodontics, Dental Branch, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
174
|
Chauhan BK, Yang Y, Cveklová K, Cvekl A. Functional properties of natural human PAX6 and PAX6(5a) mutants. Invest Ophthalmol Vis Sci 2004; 45:385-92. [PMID: 14744876 PMCID: PMC2080871 DOI: 10.1167/iovs.03-0968] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Pax6 is essential for development of the eye, brain, and pancreas. Two major products of PAX6 are specific DNA-binding proteins, PAX6 and PAX6(5a). PAX6(5a) contains a short insertion influencing its DNA-binding activity. Heterozygous mutations in PAX6 result in abnormal eye development implicating haploinsufficiency. Deletions of one PAX6 allele result in aniridia characterized by severe ocular phenotypes. Approximately 10% of PAX6 mutations encode missense mutations. These mutations usually cause less severe abnormalities than does aniridia. The moderate phenotypes raise the possibility that different ocular tissues are differently sensitive to specific mutations. To test this hypothesis, we probed functional properties of individual mutated Pax6 proteins in a variety of conditions. METHODS Mutations in PAX6 and PAX6(5a) were introduced by site-directed mutagenesis and tested by transfections in four cell lines using reporters containing three different Pax6 binding sites. Pax6 binding to DNA was studied by electrophoretic mobility shift assays. RESULTS Functional studies of PAX6 and PAX6(5a) and their eight natural missense (G18W, R26G, A33P, S43P, G64V, I87R, V126D and R128C) and two nonsense (R317X and S353X) disease-causing mutants revealed unexpected pleiotropic effects in gene regulation, not predicted by the PAX6-DNA crystal structure. Transactivation by PAX6 and PAX6(5a) was dependent on the location of mutation, type of DNA-binding site, and cellular environment. CONCLUSIONS This work provides evidence that activation by PAX6 and PAX6(5a) is modulated by specific cellular environments. It is likely that moderate phenotypes associated with PAX6 missense mutations originate from abnormal protein function in a restricted number of ocular cell types.
Collapse
Affiliation(s)
- Bharesh K Chauhan
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
175
|
Jumlongras D, Lin JY, Chapra A, Seidman CE, Seidman JG, Maas RL, Olsen BR. A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia. Hum Genet 2003; 114:242-9. [PMID: 14689302 DOI: 10.1007/s00439-003-1066-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
PAX9, a paired domain transcription factor, has important functions in craniofacial and limb development. Heterozygous mutations of PAX9, including deletion, nonsense, or frameshift mutations that lead to a premature stop codon, and missense mutations, were previously shown to be associated with autosomal dominant oligodontia. Here, we report a novel missense mutation that lies in the highly conserved paired domain of PAX9 and that is associated with non-syndromic oligodontia in one family. The mutation, 83G-->C, is predicted to result in the substitution of arginine by proline (R28P) in the N-terminal subdomain of PAX9 paired domain. To rule out the possibility that this substitution is a rare polymorphism and to test whether the predicted amino acid substitution disrupts protein-DNA binding, we analyzed the binding of wild-type and mutant PAX9 paired domain to double-stranded DNA targets. The R28P mutation dramatically reduces DNA binding of the PAX9 paired domain and supports the hypothesis that loss of DNA binding is the pathogenic mechanism by which the mutation causes oligodontia.
Collapse
Affiliation(s)
- Dolrudee Jumlongras
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
176
|
Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J. Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 2003; 5:773-85. [PMID: 14602077 DOI: 10.1016/s1534-5807(03)00325-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PaxB from Tripedalia cystophora, a cubomedusan jellyfish possessing complex eyes (ocelli), was characterized. PaxB, the only Pax gene found in this cnidarian, is expressed in the larva, retina, lens, and statocyst. PaxB contains a Pax2/5/8-type paired domain and octapeptide, but a Pax6 prd-type homeodomain. Pax2/5/8-like properties of PaxB include a DNA binding specificity of the paired domain, activation and inhibitory domains, and the ability to rescue spa(pol), a Drosophila Pax2 eye mutant. Like Pax6, PaxB activates jellyfish crystallin and Drosophila rhodopsin rh6 promoters and induces small ectopic eyes in Drosophila. Pax6 has been considered a "master" control gene for eye development. Our data suggest that the ancestor of jellyfish PaxB, a PaxB-like protein, was the primordial Pax protein in eye evolution and that Pax6-like genes evolved in triploblasts after separation from Cnidaria, raising the possibility that cnidarian and sophisticated triploblastic eyes arose independently.
Collapse
Affiliation(s)
- Zbynek Kozmik
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
The PAX6 gene is a paradigm for our understanding of the molecular genetics of mammalian eye development. Twelve years after its identification it is one of the most intensively studied genes, both in terms of its diverse and complex functions during oculogenesis and its role in an ever-increasing variety of human congenital eye malformations. The PAX6 field has benefited greatly from the continued input of clinicians, human geneticists and developmental biologists. This review summarizes the latest data on the PAX6 mutation spectrum and recent insights into Pax6 function from the mouse.
Collapse
Affiliation(s)
- Isabel M Hanson
- Medical Genetics Section, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom.
| |
Collapse
|
178
|
Nordström K, Scholten I, Nordström J, Larhammar D, Miller D. Mutational analysis of the Acropora millepora PaxD paired domain highlights the importance of the linker region for DNA binding. Gene X 2003; 320:81-7. [PMID: 14597391 DOI: 10.1016/s0378-1119(03)00812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pax transcription factors are found in animals, from simple sponges to insects and vertebrates. The defining feature of Pax proteins is the DNA-binding paired domain (PD), which consists of two helix-turn-helix subdomains, joined with a linker region. Despite high specificity in vivo, the paired domains of different Pax proteins bind similar consensus DNA sequences in vitro. Using bandshift techniques, we show here that the paired domain of the Acropora millepora PaxD protein, which unambiguously belongs to the Pax3/7 group, does not bind to three defined paired domain-binding sites. Domain swapping experiments and site-directed mutagenesis identified two amino acid residues in the linker region of the paired domain as critical to DNA binding; G70 and S71 are highly conserved in Pax proteins, but differ in PaxD (L70 and N71). The PaxD data thus highlight the importance of the linker region, and particularly G70 and S71, in DNA binding by Pax proteins.
Collapse
Affiliation(s)
- Karin Nordström
- Department of Neuroscience, Pharmacology, Uppsala University, Box 593, Uppsala 751 24, Sweden.
| | | | | | | | | |
Collapse
|
179
|
Maier H, Ostraat R, Parenti S, Fitzsimmons D, Abraham LJ, Garvie CW, Hagman J. Requirements for selective recruitment of Ets proteins and activation of mb-1/Ig-alpha gene transcription by Pax-5 (BSAP). Nucleic Acids Res 2003; 31:5483-9. [PMID: 14500810 PMCID: PMC206479 DOI: 10.1093/nar/gkg785] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pax-5, a member of the paired domain family of transcription factors, is a key regulator of B lymphocyte-specific transcription and differentiation. A major target of Pax-5-mediated activation is the mb-1 gene, which encodes the essential transmembrane signaling protein Ig-alpha. Pax-5 recruits three members of the Ets family of transcription factors: Ets-1, Fli-1 and GABPalpha (with GABPbeta1), to assemble ternary complexes on the mb-1 promoter in vitro. Using the Pax-5:Ets-1:DNA crystal structure as a guide, we defined amino acid requirements for transcriptional activation of endogenous mb-1 genes using a novel cell-based assay. Mutations in the beta-hairpin/beta-turn of the DNA-binding domain of Pax-5 demonstrated its importance for DNA sequence recognition and activation of mb-1 transcription. Mutations of amino acids contacting Ets-1 in the crystal structure reduced or blocked mb-1 promoter activation. One of these mutations, Q22A, resulted in greatly reduced mb-1 gene transcript levels, concurrent with the loss of its ability to recruit Fli-1 to bind the promoter in vitro. In contrast, the mutation had no effect on recruitment of the related Ets protein GABPalpha (with GABPbeta1). These data further define requirements for Pax-5 function in vivo and reveal the complexity of interactions required for cooperative partnerships between transcription factors.
Collapse
Affiliation(s)
- Holly Maier
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Jang CC, Chao JL, Jones N, Yao LC, Bessarab DA, Kuo YM, Jun S, Desplan C, Beckendorf SK, Sun YH. Two Pax genes, eye gone and eyeless, act cooperatively in promoting Drosophila eye development. Development 2003; 130:2939-51. [PMID: 12756177 DOI: 10.1242/dev.00522] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the identification of a Drosophila Pax gene, eye gone (eyg), which is required for eye development. Loss-of-function eyg mutations cause reduction or absence of the eye. Similar to the Pax6 eyeless (ey) gene, ectopic expression of eyg induces extra eye formation, but at sites different from those induced by ey. Several lines of evidence suggest that eyg and ey act cooperatively: (1) eyg expression is not regulated by ey, nor does it regulate ey expression, (2) eyg-induced ectopic morphogenetic furrow formation does not require ey, nor does ey-induced ectopic eye production require eyg, (3) eyg and ey can partially substitute for the function of the other, and (4) coexpression of eyg and ey has a synergistic enhancement of ectopic eye formation. Our results also show that eyg has two major functions: to promote cell proliferation in the eye disc and to promote eye development through suppression of wg transcription.
Collapse
Affiliation(s)
- Chuen-Chuen Jang
- Institute of Genetics, National Yang-Ming University, Taipei 111, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Krizek BA. AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain. Nucleic Acids Res 2003; 31:1859-68. [PMID: 12655002 PMCID: PMC152808 DOI: 10.1093/nar/gkg292] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Arabidopsis protein AINTEGUMENTA (ANT) is an important regulator of organ growth during flower development. ANT is a member of the AP2 subclass of the AP2/ERF family of plant-specific transcription factors. These proteins contain either one or two copies of a DNA-binding domain called the AP2 domain. Here, it is shown that ANT can act as a transcriptional activator in yeast through binding to a consensus ANT-binding site. This activity was used as the basis for a genetic screen to identify amino acids that are critical for the DNA binding ability of ANT. Mutants that showed reduced or no activation of a reporter gene under the control of ANT-binding sites were identified. The mutations identified in the screen as well as additional site-directed mutations suggest that the mode of DNA recognition by members of the AP2 subfamily is distinct from that of ERF proteins. Surprisingly, it appears that each AP2 domain of ANT uses different amino acids to contact DNA. Identification of several linker mutations argues that this sequence acts in the positioning of each AP2 domain on the DNA or makes direct DNA contacts.
Collapse
Affiliation(s)
- Beth A Krizek
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
182
|
Mishra R, Gorlov IP, Chao LY, Singh S, Saunders GF. PAX6, paired domain influences sequence recognition by the homeodomain. J Biol Chem 2002; 277:49488-94. [PMID: 12388550 DOI: 10.1074/jbc.m206478200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAX6 functions as a transcription factor and has two DNA-binding domains, a paired domain (PD) and a homeodomain (HD), joined by a glycine-rich linker and followed by a proline-serine-threonine-rich (PST) transactivation region at the C terminus. The mechanism of PAX6 function is not clearly understood, and few target genes in vertebrates have been identified. In this report we described the functional analyses of patient missense mutations from the paired domain region of PAX6 and a paireddomain-less isoform (PD-less) of Pax6 that lacks the paired domain and part of the glycine-rich linker. The PD-less was expressed in the brain, eyes, and pancreas of mouse. The level of expression of this isoform was relatively higher in brain. The mutation sites PAX6-L46R and -C52R were located in the PD of PAX6 on either end of the 5a-polypeptide insert of the alternatively spliced form of PAX6, PAX6-5a. Another PAX6 mutant V53L described in this report was adjacent to C52R. We created corresponding mutations in PAX6 and PAX6-5a, and evaluated their transcriptional activation and DNA binding properties. The PD mutants of PAX6 (L46R, C52R, and V53L) exhibited lower transactivation activities and variable DNA binding ability than wild-type PAX6 with PD DNA-binding consensus sequences. The mutated amino acids containing PAX6-5a isoforms showed unexpected transactivation properties with a reporter containing HD DNA-binding sequences. PAX6-5a-C52R, and -V53L showed lower transactivation activities, but PAX6-5a-L46R had greater transactivation ability than PAX6-5a. The PD-less isoform of Pax6 lost its transactivational ability but could bind to the HD DNA-binding sequences. Functional analysis of the PD-less isoform of Pax6 as well as findings related to missense mutations in the PD suggest that the PD of PAX6 is required for HD function.
Collapse
Affiliation(s)
- Rajnikant Mishra
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
183
|
Abstract
Pax6 is a transcription factor essential for the development of tissues including the eyes, central nervous system and endocrine glands of vertebrates and invertebrates. It regulates the expression of a broad range of molecules, including transcription factors, cell adhesion and short-range cell-cell signalling molecules, hormones and structural proteins. It has been implicated in a number of key biological processes including cell proliferation, migration, adhesion and signalling both in normal development and in oncogenesis. The mechanisms by which Pax6 regulates its downstream targets likely involve the use of different splice variants and interactions with multiple proteins, allowing it to generate different effects in different cells. Extrapolation to developmental transcription factors in general suggests that variation in the nature of individual factors is likely to contribute to the emergence of differences between tissues.
Collapse
Affiliation(s)
- T Ian Simpson
- Genes and Development Research Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
184
|
Krempler F, Esterbauer H, Weitgasser R, Ebenbichler C, Patsch JR, Miller K, Xie M, Linnemayr V, Oberkofler H, Patsch W. A functional polymorphism in the promoter of UCP2 enhances obesity risk but reduces type 2 diabetes risk in obese middle-aged humans. Diabetes 2002; 51:3331-5. [PMID: 12401727 DOI: 10.2337/diabetes.51.11.3331] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Obesity is frequently associated with type 2 diabetes. We previously observed an association of a functional G/A polymorphism in the uncoupling protein 2 (UCP2) promoter with obesity. The wild-type G allele was associated with reduced adipose tissue mRNA expression in vivo, reduced transcriptional activity in vitro, and increased risk of obesity. On the other hand, studies in animal and cell culture models identified pancreatic beta-cell UCP2 expression as a main determinant of the insulin secretory response to glucose. We therefore ascertained associations of the -866G/A polymorphism with beta-cell function and diabetes risk in obesity. We show here that the pancreatic transcription factor PAX6 preferentially binds to and more effectively trans activates the variant than the wild-type UCP2 promoter allele in the beta-cell line INS1-E. By studying 39 obese nondiabetic humans, we observed genotype differences in beta-cell function; wild-type subjects displayed a greater disposition index (the product of insulin sensitivity and acute insulin response to glucose) than subjects with the variant allele (P < 0.03). By comparing obese subjects with and without type 2 diabetes, we observed genotype-associated differences in diabetes prevalence that translated into a twofold age-adjusted risk reduction in wild-type subjects. Thus, the more common UCP2 promoter G allele, while being conducive for obesity, affords relative protection against type 2 diabetes.
Collapse
Affiliation(s)
- Franz Krempler
- Department of Internal Medicine, Krankenhaus Hallein, Hallein, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Cao X, Kambe F, Ohmori S, Seo H. Oxidoreductive modification of two cysteine residues in paired domain by Ref-1 regulates DNA-binding activity of Pax-8. Biochem Biophys Res Commun 2002; 297:288-93. [PMID: 12237116 DOI: 10.1016/s0006-291x(02)02196-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have reported reversible oxidoreductive regulation of DNA-binding activity of Pax-8: oxidation inhibits its binding and subsequent reduction restores the binding. Here, we show that Cys-45 and Cys-57 in the paired domain of rat Pax-8, which are conserved in all Pax members, are responsible for the redox regulation of its binding. Electrophoretic mobility shift assay using deletion mutants and mutants with substitution of cysteine with serine revealed that oxidation by diamide of either Cys-45 or Cys-57 loses the DNA binding of Pax-8. An intracellular oxidoreductive enzyme redox factor-1 (Ref-1) could reduce the oxidized Cys-45 or Cys-57 and restored the binding. Furthermore, reporter gene assay showed that transcriptional activity of wild-type Pax-8 was enhanced by co-expression of Ref-1. When the mutant with double substitutions of Cys-45 and Cys-57, which was insensitive to oxidation, was transfected, the basal transactivation level was much higher than that of wild-type Pax-8, while it was not enhanced by Ref-1. These results demonstrated that oxidoreductive modification of Cys-45 and Cys-57 via Ref-1 plays a role in redox regulation of Pax-8 in living cells.
Collapse
Affiliation(s)
- Xia Cao
- Division of Molecular and Cellular Adaptation, Department of Endocrinology and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | | | | | | |
Collapse
|
186
|
Sun H, Merugu S, Gu X, Kang YY, Dickinson DP, Callaerts P, Li WH. Identification of essential amino acid changes in paired domain evolution using a novel combination of evolutionary analysis and in vitro and in vivo studies. Mol Biol Evol 2002; 19:1490-500. [PMID: 12200477 DOI: 10.1093/oxfordjournals.molbev.a004212] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pax genes are defined by the presence of a paired box that encodes a DNA-binding domain of 128 amino acids. They are involved in the development of the central nervous system, organogenesis, and oncogenesis. The known Pax genes are divided into five groups within two supergroups. By means of a novel combination of evolutionary analysis, in vitro binding assays and in vivo functional analyses, we have identified the key residues that determine the differing DNA-binding properties of the two supergroups and of the Pax-2, 5, 8 and Pax-6 subgroups within supergroup I. The differences in binding properties between the two supergroups are largely caused by amino acid changes at residues 20 and 121 of the paired domain. Although the paired domains of the Pax-2, 5, 8 and the Pax-6 group differ by >19 amino acids, their distinct DNA-binding properties are determined almost completely by a single amino acid change. Thus, a small number of amino acid changes can account in large part for the divergence in binding properties among the known paired domains. Our approach for selecting candidate sites responsible for the functional divergence between genes should also be useful for studying other gene families.
Collapse
Affiliation(s)
- Hongmin Sun
- Human Genetics Center, University of Texas-Houston, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Chauhan BK, Reed NA, Zhang W, Duncan MK, Kilimann MW, Cvekl A. Identification of genes downstream of Pax6 in the mouse lens using cDNA microarrays. J Biol Chem 2002; 277:11539-48. [PMID: 11790784 DOI: 10.1074/jbc.m110531200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pax6 is a transcription factor that regulates the development of the visual, olfactory, and central nervous systems, pituitary, and pancreas. Pax6 is required for induction, growth, and maintenance of the lens; however, few direct Pax6 target genes are known. This study was designed to identify batteries of differentially expressed genes in three related systems: 8-week old Pax6 heterozygous lenses, 8-week old Pax6 heterozygous eyes, and transgenic lenses overexpressing PAX6(5a), using high throughput cDNA microarrays containing about 9700 genes. Initially, we obtained almost 400 differentially expressed genes in lenses from mice heterozygous for a Pax6 deletion, suggesting that Pax6 haploinsufficiency causes global changes in the lens transcriptome. Comparisons between the three sets of analyses revealed that paralemmin, molybdopterin synthase sulfurylase, Tel6 oncogene (ETV6), a cleavage-specific factor (Cpsf1) and tangerin A were abnormally expressed in all three experimental models. Semiquantitative reverse transcription (RT)-PCR analysis confirmed that all five of these genes were differentially expressed in Pax-6 heterozygous and Pax6(5a) transgenic lenses. Western blotting and immunohistochemistry demonstrated that paralemmin is found at high levels in the adult lens and confirmed its down-regulation in the Pax6(5a)-transgenic lenses. Collectively, our data provide insights into the genetic programs regulated by Pax6 in the lens.
Collapse
Affiliation(s)
- Bharesh K Chauhan
- Department of Ophthalmology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
188
|
Králová J, Czerny T, Spanielová H, Ratajová V, Kozmik Z. Complex regulatory element within the gammaE- and gammaF-crystallin enhancers mediates Pax6 regulation and is required for induction by retinoic acid. Gene 2002; 286:271-82. [PMID: 11943482 DOI: 10.1016/s0378-1119(02)00425-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paired domain, DNA-binding domain of Pax6 and other Pax transcription factors, is composed of two subdomains (PAI and RED), each recognizing distinct half-sites of the bipartite binding site in adjacent major grooves of the DNA helix. The alternatively spliced Pax6(5a) isoform containing 14 extra amino acids within the PAI domain recognizes the 5aCON sequence consisting of four interdigitated 5' half-sites of the bipartite consensus sequence. A genome database search for similar tetrameric Pax6(A) recognition sequences led to the identification of a Pax6-binding site in the lens-specific enhancer of the mouse E- and F-crystallin genes. This binding site combines the properties of bipartite and tetrameric recognition sequences and, by mutational analysis, is shown to mediate Pax6-dependent regulation of the E- and F-crystallin promoter constructs both in primary chicken lens cells and in chicken embryo fibroblasts. The Pax6-binding site is adjacent to a previously identified retinoic acid response element and is itself required for retinoic acid induction of the F- and E-crystallin genes, suggesting that Pax proteins and retinoic acid receptors cooperate in transcriptional regulation. In summary, our protein-DNA binding and transactivation studies suggest that -crystallin genes are under the control of a multifunctional enhancer element that mediates Pax6 regulation as well as retinoic acid-mediated induction.
Collapse
Affiliation(s)
- Jarmila Králová
- Institute of Molecular Genetics, Flemingovo 2, 16637 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
189
|
Goldhaber-Gordon I, Early MH, Gray MK, Baker TA. Sequence and positional requirements for DNA sites in a mu transpososome. J Biol Chem 2002; 277:7703-12. [PMID: 11756424 DOI: 10.1074/jbc.m110342200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transposition of bacteriophage Mu uses two DNA cleavage sites and six transposase recognition sites, with each recognition site divided into two half-sites. The recognition sites can activate transposition of non-Mu DNA sequences if a complete set of Mu sequences is not available. We have analyzed 18 sequences from a non-Mu DNA molecule, selected in a functional assay for the ability to be transposed by MuA transposase. These sequences are remarkably diverse. Nonetheless, when viewed as a group they resemble a Mu DNA end, with a cleavage site and a single recognition site. Analysis of these "pseudo-Mu ends" indicates that most positions in the cleavage and recognition sites contribute sequence-specific information that helps drive transposition, though only the strongest contributors are apparent from mutagenesis data. The sequence analysis also suggests variability in the alignment of recognition half-sites. Transposition assays of specifically designed DNA substrates support the conclusion that the transposition machinery is flexible enough to permit variability in half-site spacing and also perhaps variability in the placement of the recognition site with respect to the cleavage site. This variability causes only local perturbations in the protein-DNA complex, as indicated by experiments in which altered and unaltered DNA substrates are paired.
Collapse
Affiliation(s)
- Ilana Goldhaber-Gordon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
190
|
McIver KS, Myles RL. Two DNA-binding domains of Mga are required for virulence gene activation in the group A streptococcus. Mol Microbiol 2002; 43:1591-601. [PMID: 11952907 DOI: 10.1046/j.1365-2958.2002.02849.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mga is a DNA-binding protein that activates expression of several important virulence genes in the group A streptococcus (GAS), including those encoding M protein (emm), C5a peptidase (scpA) and Mga (mga). To determine the functionality of four potential helix-turn-helix DNA-binding motifs (HTH1-HTH4) identified within the amino-terminus of Mga, alanine substitutions were introduced within each domain in a MBP-Mga fusion allele and purified proteins were assayed for binding to Mga-specific promoter fragments (Pmga, PscpA and Pemm) in vitro. Although HTH-1 and HTH-2 mutations showed wild type DNA-binding activity, an altered HTH-3 domain resulted in reduced binding to the three promoters and an HTH-4 mutant was devoid of detectable binding activity. Plasmid-encoded expression of the HTH-3 and HTH-4 alleles from a constitutive promoter (Pspac) in the mga-deleted GAS strain JRS519 demonstrated that Mga-regulated emm expression correlated directly to the DNA-binding activity observed for each mutant protein in vitro. Single-copy expression of HTH-3 and HTH-4 from their native Pmga resulted in a dramatic reduction in autoregulated mga expression in both mutant strains. Thus, Mga appears to contain two DNA-binding domains (HTH-3 and HTH-4) that are required for direct activation of the Mga virulence regulon in vivo.
Collapse
Affiliation(s)
- Kevin S McIver
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA.
| | | |
Collapse
|
191
|
Abstract
The Pax gene family encodes a group of transcription factors that have been conserved through millions of years of evolution and play roles in early development. Pax proteins have been implicated as regulators of organogenesis and as key factors in maintaining pluripotency of stem cell populations during development. Mutations of the Pax genes cause profound developmental defects in organisms as diverse as flies, mice and humans. Here, we review crucial and illustrative roles of Pax gene products in cell-fate specification and developmental biology.
Collapse
Affiliation(s)
- Neil Chi
- Cardiovascular Division, University of Pennsylvania Health System, 954 BRB II, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | |
Collapse
|
192
|
Tanaka Y, Nureki O, Kurumizaka H, Fukai S, Kawaguchi S, Ikuta M, Iwahara J, Okazaki T, Yokoyama S. Crystal structure of the CENP-B protein-DNA complex: the DNA-binding domains of CENP-B induce kinks in the CENP-B box DNA. EMBO J 2001; 20:6612-8. [PMID: 11726497 PMCID: PMC125324 DOI: 10.1093/emboj/20.23.6612] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human centromere protein B (CENP-B), one of the centromere components, specifically binds a 17 bp sequence (the CENP-B box), which appears in every other alpha-satellite repeat. In the present study, the crystal structure of the complex of the DNA-binding region (129 residues) of CENP-B and the CENP-B box DNA has been determined at 2.5 A resolution. The DNA-binding region forms two helix-turn-helix domains, which are bound to adjacent major grooves of the DNA. The DNA is kinked at the two recognition helix contact sites, and the DNA region between the kinks is straight. Among the major groove protein-bound DNAs, this 'kink-straight-kink' bend contrasts with ordinary 'round bends' (gradual bending between two protein contact sites). The larger kink (43 degrees ) is induced by a novel mechanism, 'phosphate bridging by an arginine-rich helix': the recognition helix with an arginine cluster is inserted perpendicularly into the major groove and bridges the groove through direct interactions with the phosphate groups. The overall bending angle is 59 degrees, which may be important for the centromere-specific chromatin structure.
Collapse
Affiliation(s)
- Yoshinori Tanaka
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Osamu Nureki
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Hitoshi Kurumizaka
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Shuya Fukai
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Shinichi Kawaguchi
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Mari Ikuta
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Junji Iwahara
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Tsuneko Okazaki
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| | - Shigeyuki Yokoyama
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Cellular Signaling Laboratory, RIKEN Harima Institute at SPring8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5143 and Institute for Comprehensive Medical Science, Fujita Health University and CREST of JST, Toyoake-shi, Aichi 470-1192, Japan Corresponding author e-mail: Y.Tanaka, O.Nureki and H.Kurumizaka contributed equally to this work
| |
Collapse
|
193
|
Shimajiri Y, Sanke T, Furuta H, Hanabusa T, Nakagawa T, Fujitani Y, Kajimoto Y, Takasu N, Nanjo K. A missense mutation of Pax4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes 2001; 50:2864-9. [PMID: 11723072 DOI: 10.2337/diabetes.50.12.2864] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pax4 is one of the transcription factors that play an important role in the differentiation of islet beta-cells. We scanned the Pax4 gene in 200 unrelated Japanese type 2 diabetic patients and found a missense mutation (R121W) in 6 heterozygous patients and 1 homozygous patient (mutant allele frequency 2.0%). The mutation was not found in 161 nondiabetic subjects. The R121W mutation was located in the paired domain and was thought to affect its transcription activity through lack of DNA binding. Six of seven patients had family history of diabetes or impaired glucose tolerance, and four of seven had transient insulin therapy at the onset. One of them, a homozygous carrier, had relatively early onset diabetes and slowly fell into an insulin-dependent state without an autoimmune-mediated process. This is the first report of a Pax4 gene mutation that exhibits loss of function and seems to be associated with type 2 diabetes. This work provides significant implications for the Pax4 gene as one of the predisposing genes for type 2 diabetes in the Japanese.
Collapse
Affiliation(s)
- Y Shimajiri
- First Department of Medicine, Wakayama University of Medical Science, Wakayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Pax5 regulates the B cell-specific expression of the mb-1 gene together with members of the Ets family of transcriptional activators. The Ets proteins on their own bind poorly to the Pax5/Ets binding site, but can be recruited to the site by cooperative interactions with Pax5. The structure of the ETS domain of Ets-1 and the paired domain of Pax5 bound to DNA reveals the molecular details of the selective recruitment of different Ets proteins by Pax5. Comparison with structures of Ets-1 alone bound to both high- and low-affinity DNA sites reveals that Pax5 alters the Ets-1 contacts with DNA. The ability of one protein to alter the DNA sequence-specific contacts of another provides a general mechanism for combinatorial regulation of transcription.
Collapse
Affiliation(s)
- C W Garvie
- Department of Biophysics and Biophysical Chemistry, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
195
|
Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT, McKee DD, Moore JT, Willson TM. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 2001; 98:13919-24. [PMID: 11698662 PMCID: PMC61142 DOI: 10.1073/pnas.241410198] [Citation(s) in RCA: 416] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Indexed: 12/17/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are transcriptional regulators of glucose, lipid, and cholesterol metabolism. We report the x-ray crystal structure of the ligand binding domain of PPAR alpha (NR1C1) as a complex with the agonist ligand GW409544 and a coactivator motif from the steroid receptor coactivator 1. Through comparison of the crystal structures of the ligand binding domains of the three human PPARs, we have identified molecular determinants of subtype selectivity. A single amino acid, which is tyrosine in PPAR alpha and histidine in PPAR gamma, imparts subtype selectivity for both thiazolidinedione and nonthiazolidinedione ligands. The availability of high-resolution cocrystal structures of the three PPAR subtypes will aid the design of drugs for the treatments of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- H E Xu
- Nuclear Receptor Discovery Research, GlaxoSmithKline, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Dangi B, Pelupessey P, Martin RG, Rosner JL, Louis JM, Gronenborn AM. Structure and dynamics of MarA-DNA complexes: an NMR investigation. J Mol Biol 2001; 314:113-27. [PMID: 11724537 DOI: 10.1006/jmbi.2001.5106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An unanswered question regarding gene regulation is how certain proteins are capable of binding to DNA with high affinity at specific but highly degenerate consensus sequences. We have investigated the interactions between the Escherichia coli transcription factor, MarA, and its diverse binding sites using NMR techniques. Complete resonance assignments for the backbone of the MarA protein complexed with DNA oligomers corresponding to its binding sites at the mar, fumC, micF and the fpr promoters were obtained. Secondary structure analysis based on chemical shifts reveals that regions identified as helical in the X-ray structure of the MarA-mar complex are present in the solution structure, although some of the helices are less well defined. The chemical shift differences between the four complexes confirm that helix 3 and helix 6 constitute the major DNA-binding elements. However, in striking contrast with the X-ray data: (i) the protein appears to be present in two or more conformations in each of the complexes; (ii) no slowly exchanging N(zeta)H(2) protons (indicative of hydrogen bonded groups) were observed by NMR for the two arginine residues proposed to form crucial hydrogen bonds in the X-ray structure; and (iii) regions at the N terminus, not observed in the X-ray structure, may be involved in DNA-binding. Taken together, the NMR results indicate that MarA in its complexes with DNA target sites is in a highly dynamic state, allowing for small but significant rearrangements of the side-chains and/or backbone to bind to the different DNA sequences.
Collapse
Affiliation(s)
- B Dangi
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA
| | | | | | | | | | | |
Collapse
|
197
|
D'Elia AV, Tell G, Paron I, Pellizzari L, Lonigro R, Damante G. Missense mutations of human homeoboxes: A review. Hum Mutat 2001; 18:361-74. [PMID: 11668629 DOI: 10.1002/humu.1207] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The homeodomain (encoded by the homeobox) is the DNA-binding domain of a large variety of transcriptional regulators involved in controlling cell fate decisions and development. Mutations of homeobox-containing genes cause several diseases in humans. A variety of missense mutations giving rise to human diseases have been described. These mutations are an excellent model to better understand homeodomain molecular functions. To this end, homeobox missense mutations giving rise to human diseases are reviewed. Seventy-four independent homeobox mutations have been observed in 17 different genes. In the same genes, 30 missense mutations outside the homeobox have been observed, indicating that the homeodomain is more easily affected by single amino acids changes than the rest of the protein. Most missense mutations have dominant effects. Several data indicate that dominance is mostly due to haploinsufficiency. Among proteins having the homeodomain as the only DNA-binding domain, three "hot spot" regions can be delineated: 1) at codon encoding for Arg5; 2) at codon encoding for Arg31; and 3) at codons encoding for amino acids of recognition helix. In the latter, mutations at codons encoding for Arg residues at positions 52 and 53 are prevalent. In the recognition helix, Arg residues at positions 52 and 53 establish contacts with phosphates in the DNA backbone. Missense mutations of amino acids that contribute to sequence discrimination (such as those at positions 50 and 54) are present only in a minority of cases. Similar data have been obtained when missense mutations of proteins possessing an additional DNA-binding domain have been analyzed. The only exception is observed in the POU1F1 (PIT1) homeodomain, in which Arg58 is a "hot spot" for mutations, but is not involved in DNA recognition.
Collapse
Affiliation(s)
- A V D'Elia
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
198
|
Abstract
Proteins that recognize specific DNA sequences play a central role in the regulation of transcription. The tremendous increase in structural information on protein-DNA complexes has uncovered a remarkable structural diversity in DNA binding folds, while at the same time revealing common themes in binding to target sites in the genome.
Collapse
Affiliation(s)
- C W Garvie
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
199
|
Fitzsimmons D, Lutz R, Wheat W, Chamberlin HM, Hagman J. Highly conserved amino acids in Pax and Ets proteins are required for DNA binding and ternary complex assembly. Nucleic Acids Res 2001; 29:4154-65. [PMID: 11600704 PMCID: PMC60220 DOI: 10.1093/nar/29.20.4154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Combinatorial association of DNA-binding proteins on composite binding sites enhances their nucleotide sequence specificity and functional synergy. As a paradigm for these interactions, Pax-5 (BSAP) assembles ternary complexes with Ets proteins on the B cell-specific mb-1 promoter through interactions between their respective DNA-binding domains. Pax-5 recruits Ets-1 to bind the promoter, but not the closely related Ets protein SAP1a. Here we show that, while several different mutations increase binding of SAP1a to an optimized Ets binding site, only conversion of Val68 to an acidic amino acid facilitates ternary complex assembly with Pax-5 on the mb-1 promoter. This suggests that enhanced DNA binding by SAP1a is not sufficient for recruitment by Pax-5, but instead involves protein-protein interactions mediated by the acidic side chain. Recruitment of Ets proteins by Pax-5 requires Gln22 within the N-terminal beta-hairpin motif of its paired domain. The beta-hairpin also participates in recognition of a subset of Pax-5-binding sites. Thus, Pax-5 incorporates protein-protein interaction and DNA recognition functions in a single motif. The Caenorhabditis elegans Pax protein EGL-38 also binds specifically to the mb-1 promoter and recruits murine Ets-1 or the C.elegans Ets protein T08H4.3, but not the related LIN-1 protein. Together, our results define specific amino acid requirements for Pax-Ets ternary complex assembly and show that the mechanism is conserved between evolutionarily related proteins of diverse animal species. Moreover, the data suggest that interactions between Pax and Ets proteins are an important mechanism that regulates fundamental biological processes in worms and humans.
Collapse
Affiliation(s)
- D Fitzsimmons
- Integrated Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
200
|
Sun H, Dickinson DP, Costello J, Li WH. Isolation of Cladonema Pax-B genes and studies of the DNA-binding properties of cnidarian Pax paired domains. Mol Biol Evol 2001; 18:1905-18. [PMID: 11557796 DOI: 10.1093/oxfordjournals.molbev.a003731] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pax genes encode nuclear transcription factors that are involved in developmental control. They contain a conserved DNA-binding domain, the paired domain. The DNA-binding specificity of paired domains is directly related to the gene regulation function of Pax proteins. Pax genes were previously divided into five groups on the basis of a phylogenetic analysis of paired domains. In this study, two highly similar cnidarian Pax-B genes from Cladonema californicum, a jellyfish with eyes, were found and sequenced. In an effort to understand the function of the cnidarian Pax genes isolated in this and a previous study, we characterized the consensus DNA sequences bound by the cnidarian paired domains using a PCR-based method and electrophoretic mobility shift assays. The consensus DNA sequences obtained are very similar to those bound by mammalian Pax proteins. Comparison of known consensus sequences indicates that they are all partially palindromic, but this characteristic is most prominent in cnidarians, which suggests that the DNA sequences bound by the ancestral paired domain could have been palindromic. Also, cnidarian paired domains, like those of Pax-2/5/8, possess a broader binding specificity than other paired domains, which implies that the common ancestor of Pax-2/5/8 and Pax-4/6 paired domains could also have had a similar broad DNA-binding specificity. Thus far, a definitive Pax-6 gene has not been found in several cnidarian species examined, which is consistent with a later origin of the Pax-6 gene and raises two possibilities: the Pax genes of cnidarians are multifunctional and control two or more developmental pathways, including eye development, or they use a Pax-independent pathway for eye development. Whether this pathway does exist and is unique to cnidarians or it whether it represents a true master control under which Pax-6 was later included remains to be determined.
Collapse
Affiliation(s)
- H Sun
- Howard Hughes Medical Institute, University of Michigan Medical Center, USA
| | | | | | | |
Collapse
|