151
|
Stegmüller J, Konishi Y, Huynh MA, Yuan Z, Dibacco S, Bonni A. Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN. Neuron 2006; 50:389-400. [PMID: 16675394 DOI: 10.1016/j.neuron.2006.03.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/12/2005] [Accepted: 03/27/2006] [Indexed: 11/22/2022]
Abstract
Axonal growth is fundamental to the establishment of neuronal connectivity in the brain. However, the cell-intrinsic mechanisms that govern axonal morphogenesis remain to be elucidated. The ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC) suppresses the growth of axons in postmitotic neurons. Here, we report that Cdh1-APC operates in the nucleus to inhibit axonal growth. We also identify the transcriptional corepressor SnoN as a key target of neuronal Cdh1-APC that promotes axonal growth. Cdh1 forms a physical complex with SnoN and stimulates the ubiquitin-dependent proteasomal degradation of SnoN in neurons. Knockdown of SnoN in neurons significantly reduces axonal growth and suppresses Cdh1 RNAi enhancement of axonal growth. In addition, SnoN knockdown in vivo suggests an essential function for SnoN in the development of granule neuron parallel fibers in the cerebellar cortex. These findings define Cdh1-APC and SnoN as components of a cell-intrinsic pathway that orchestrates axonal morphogenesis in a transcription-dependent manner in the mammalian brain.
Collapse
Affiliation(s)
- Judith Stegmüller
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
152
|
Wu Z, Nagano I, Boonmars T, Takahashi Y. Involvement of the c-Ski oncoprotein in cell cycle arrest and transformation during nurse cell formation after Trichinella spiralis infection. Int J Parasitol 2006; 36:1159-66. [PMID: 16890942 DOI: 10.1016/j.ijpara.2006.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/27/2006] [Accepted: 05/16/2006] [Indexed: 12/13/2022]
Abstract
The role of c-Ski, an oncoprotein encoded by the oncogene, c-ski, in Trichinella spiralis-infected muscle tissues during nurse cell formation, was investigated by following the expression kinetics and distribution of c-Ski (both protein and mRNA) in the infected muscle cell, as well as the expression kinetics of the transforming growth factor beta (TGF-beta) signaling pathway factor genes (TGF-beta, Smad2 and Smad4) which cooperate with c-Ski. Immunohistochemical analysis using an anti-c-Ski antibody indicated that in the early stages of infection (13 and 18 days post-infection (p.i.)) the increased expression of the c-Ski protein was limited to the eosinophilic cytoplasm and not the enlarged nuclei or basophilic cytoplasm. At a later stage of infection (23 and 28 days p.i.) the c-Ski protein was limited to the enlarged nuclei in the basophilic cytoplasm, rather than the eosinophilic cytoplasm. At 48 days p.i., the c-Ski protein was barely detectable. Real-time PCR analysis showed that expression of the c-ski gene increased from 13 days p.i., reached a peak at 23-28 days p.i. and then decreased to a low level by 48 days p.i. Expression kinetics for the TGF-beta signaling pathway factor genes (TGF-beta, Smad2 and Smad4) were similar to that of c-ski. These findings provide evidence that the c-Ski protein is involved in nurse cell formation through the TGF-beta signaling pathway process in the host cell nucleus.
Collapse
Affiliation(s)
- Z Wu
- Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan
| | | | | | | |
Collapse
|
153
|
Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Chung J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 2006; 231:534-44. [PMID: 16636301 DOI: 10.1177/153537020623100507] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activins, cytokine members of the transforming growth factor-beta superfamily, have various effects on many physiological processes, including cell proliferation, cell death, metabolism, homeostasis, differentiation, immune responses endocrine function, etc. Activins interact with two structurally related serine/threonine kinase receptors, type I and type II, and initiate downstream signaling via Smads to regulate gene expression. Understanding how activin signaling is controlled extracellularly and intracellularly would not only lead to more complete understanding of cell growth and apoptosis, but would also provide the basis for therapeutic strategies to treat cancer and other related diseases. This review focuses on the recent progress on activin-receptor interactions, regulations of activin signaling by ligand-binding proteins, receptor-binding proteins, and nucleocytoplasmic shuttling of Smad proteins.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
154
|
Bruusgaard JC, Brack AS, Hughes SM, Gundersen K. Muscle hypertrophy induced by the Ski protein: cyto-architecture and ultrastructure. ACTA ACUST UNITED AC 2006; 185:141-9. [PMID: 16168008 DOI: 10.1111/j.1365-201x.2005.01462.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Transgenic mice overexpressing the c-ski proto-oncogene driven by the MSV promoter undergo muscle hypertrophy, most notably fast fibres of the lower limb. This hypertrophy is not accompanied by a correspondingly large increase in force, and individual skinned muscle fibres exhibit a 30% reduction in force per cross-sectional area. In this respect, the MSV ski model is different from most other hypertrophy models and we here aim at describing the mechanisms for the reduced specific force. METHODS Cyoarchitecture and ultrastructure of muscle fibres from the fast extensor digitorum longus muscle of 2-3 months old MSV ski mice was studied. In addition to electron microscopy, we used in vivo intracellular injections of myonuclear dye to investigate nuclear number. RESULTS The number of nuclei did not increase in proportion to size, and consequently nuclear domains were increased compared with wild type. The fraction of the cytoplasm occupied by contractile material was reduced by 18%. In addition we observed poor intracellular alignment of Z-discs. Such staggering has been reported to reduce force in desmin deficient mice, but the amount and distribution of desmin in the MSV ski mice seemed normal. The mitochondria of MSV ski mice showed irregularly spaced cristae that were frequently disrupted. CONCLUSION The reduction in specific force observed in MSV ski mice could be explained by a reduced fraction of contractile material and reduced transversal mechanical coupling. The ultrastructural abnormalities could be related to an increase in nuclear domains.
Collapse
Affiliation(s)
- J C Bruusgaard
- Department of Molecular Biosciences, University of Oslo, Blindern, Oslo, Norway
| | | | | | | |
Collapse
|
155
|
Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori T, Suzuki S, Kitagawa M, Hishida A. Ubiquitin-dependent degradation of SnoN and Ski is increased in renal fibrosis induced by obstructive injury. Kidney Int 2006; 69:1733-40. [PMID: 16625151 DOI: 10.1038/sj.ki.5000261] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transforming growth factor-beta (TGF-beta) plays a critical role in the progression of renal fibrosis. The activity of TGF-beta is tightly controlled by various mechanisms, among which antagonizing Smad-mediated gene transcription by co-repressors represents one of the important components. We investigated the expression, degradation, and ubiquitination of Smad transcriptional co-repressors SnoN (ski-related novel gene N) and Ski (Sloan-Kettering Institute proto-oncogene) in renal fibrogenesis. We also studied the involvement of Smad-ubiquitination regulatory factor 2 (Smurf2) in ubiquitination of SnoN protein. The kidneys of mice with unilateral ureteral obstruction (UUO) and those of sham-operated mice were used. Renal lesions and the expression of TGF-beta1, type I collagen, SnoN, Ski, and Smurf2 were examined by immunohistochemistry, Western blot, and/or real-time reverse transcriptase-polymerase chain reaction. Degradation and ubiquitination of SnoN/Ski proteins were also investigated. The obstructed kidneys of UUO mice showed progressive tubulointerstitial fibrosis, high expression levels of TGF-beta1, type I collagen, SnoN and Ski mRNAs, and low levels of SnoN and Ski proteins. Both degradation and ubiquitination of SnoN/Ski proteins were markedly increased in the obstructed kidneys, in which Smurf2 expression was increased. Smurf2 immunodepletion in extracts of obstructed kidneys resulted in reduced ubiquitination of SnoN. Our results suggest that the reduction of SnoN/Ski proteins resulting from increased ubiquitin-dependent degradation is involved in the progression of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- H Fukasawa
- First Department of Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Worman HJ. Inner nuclear membrane and regulation of Smad-mediated signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:626-31. [PMID: 16574476 DOI: 10.1016/j.bbalip.2006.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/17/2006] [Accepted: 02/17/2006] [Indexed: 11/30/2022]
Abstract
Smads mediate signal transduction by cytokines of the transforming growth factor-beta family. Recent data show that intrinsic and extrinsic proteins of the inner nuclear membrane affect the activities of Smads. MAN1, an integral protein of the inner nuclear membrane, binds to receptor-regulated Smads and antagonizes signaling by transforming growth factor-beta, activin and bone morphogenic protein. Lamins A and C, extrinsic intermediate filament proteins of the inner nuclear membrane that are mutated in several human diseases, appear to regulate phosphorylation of Smads. These data demonstrate that proteins within and associated with the inner nuclear membrane lipid bilayer regulate signal transduction pathways involved in numerous developmental, physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, 10th Floor, Room 508, New York, NY 10032, USA.
| |
Collapse
|
157
|
Fantozzi I, Huang W, Zhang J, Zhang S, Platoshyn O, Remillard CV, Thistlethwaite PA, Yuan JXJ. Divergent effects of BMP-2 on gene expression in pulmonary artery smooth muscle cells from normal subjects and patients with idiopathic pulmonary arterial hypertension. Exp Lung Res 2006; 31:783-806. [PMID: 16368652 PMCID: PMC1409757 DOI: 10.1080/01902140500461026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic proteins (BMPs) inhibit proliferation and induce apoptosis in pulmonary artery smooth muscle cells (PASMCs) from normal subjects. Dysfunction of BMP signaling due to mutations in and/or down-regulation of BMP receptors has been implicated in idiopathic pulmonary arterial hypertension (IPAH). The authors examined whether BMP differentially regulates gene expression in PASMCs from normal subjects and IPAH patients using the Affymetrix microarray analysis. BMP-2 treatment (200 nM for 24 hours) altered expression levels of 6206 genes in normal and IPAH PASMCs. Of these genes, 1063 were regulated oppositely by BMP-2: 523 genes were down-regulated by BMP-2 in normal PASMCs but up-regulated in IPAH PASMCs, whereas 540 genes were up-regulated by BMP-2 in normal PASMCs but down-regulated in IPAH PASMCs. The divergent effects of BMP-2 on gene expression profiles indicate that PASMCs may undergo significant phenotypic changes in IPAH patients during development of the disease. The transition of the antiproliferative effect of BMP-2 in normal PASMCs to its proliferative effect in IPAH patients is attributed potentially to its differential effect on expression patterns of various genes that are involved in cell proliferation and apoptosis. Among the 6206 BMP-2-sensitive genes, there are more than 1800 genes whose expression levels were negatively (correlation coefficient, r, <-0.9) or positively (with r >+ 0.9) correlated with the pulmonary arterial pressure. These results suggest that BMP-mediated gene regulation is significantly altered in PASMCs from IPAH patients and mRNA expression changes in BMP-regulated genes may be involved in the development of IPAH.
Collapse
Affiliation(s)
- Ivana Fantozzi
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Wei Huang
- Department of Bioengineering, School of Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Jifeng Zhang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Shen Zhang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Oleksandr Platoshyn
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Carmelle V Remillard
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | - Jason X-J Yuan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
158
|
Ju W, Ogawa A, Heyer J, Nierhof D, Yu L, Kucherlapati R, Shafritz DA, Böttinger EP. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 2006; 26:654-67. [PMID: 16382155 PMCID: PMC1346892 DOI: 10.1128/mcb.26.2.654-667.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Smad family proteins Smad2 and Smad3 are activated by transforming growth factor beta (TGF-beta)/activin/nodal receptors and mediate transcriptional regulation. Although differential functional roles of Smad2 and Smad3 are apparent in mammalian development, the relative functional roles of Smad2 and Smad3 in postnatal systems remain unclear. We used Cre/loxP-mediated gene targeting for hepatocyte-specific deletion of Smad2 (S2HeKO) in adult mice and generated hepatocyte-selective Smad2/Smad3 double knockouts by intercrossing AlbCre/Smad2(f/f) (S2HeKO) and Smad3-deficient Smad3ex8/ex8 (S3KO) mice. All strains were viable and had normal adult liver. However, necrogenic CCL4-induced hepatocyte proliferation was significantly increased in S2HeKO compared to Ctrl and S3KO livers, and transplanted S2HeKO hepatocytes repopulated recipient liver at dramatically increased rates compared to Ctrl hepatocytes in vivo. Using primary hepatocytes, we found that TGF-beta-induced G1 arrest, apoptosis, and epithelial-to-mesenchymal transition in Ctrl and S2HeKO but not in S3KO hepatocytes. Interestingly, S2HeKO cells spontaneously acquired mesenchymal features characteristic of epithelial-to-mesenchymal transition (EMT). Collectively, these results demonstrate that Smad2 suppresses hepatocyte growth and dedifferentiation independent of TGF-beta signaling. Smad2 is not required for TGF-beta-stimulated apoptosis, EMT, and growth inhibition in hepatocytes.
Collapse
Affiliation(s)
- Wenjun Ju
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Pl., Box 1118, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Melhuish TA, Wotton D. The Tgif2 gene contains a retained intron within the coding sequence. BMC Mol Biol 2006; 7:2. [PMID: 16436215 PMCID: PMC1402312 DOI: 10.1186/1471-2199-7-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 01/25/2006] [Indexed: 12/03/2022] Open
Abstract
Background TGIF and TGIF2 are homeodomain proteins, which act as TGFβ specific Smad transcriptional corepressors. TGIF recruits general repressors including mSin3 and CtBP. The related TGIF2 protein functions in a similar manner, but does not bind CtBP. In addition to repressing TGFβ activated gene expression, TGIF and TGIF2 repress gene expression by binding directly to DNA. TGIF and TGIF2 share two major blocks of similarity, encompassing the homeodomain, and a conserved carboxyl terminal repression domain. Here we characterize two splice variants of the Tgif2 gene from mouse and demonstrate that the Tgif2 gene contains a retained intron. Results By PCR from mouse cDNA, we identified two alternate splice forms of the Tgif2 gene. One splice variant encodes the full length 237 amino acid Tgif2, whereas the shorter form results in the removal of 39 codons from the centre of the coding region. The generation of this alternate splice form occurs with the mouse RNA, but not the human, and both splice forms are present in all mouse tissues analyzed. Human and mouse Tgif2 coding sequences contain a retained intron, which in mouse Tgif2 is removed by splicing from around 25–50% of RNAs, as assessed by RT-PCR. This splicing event is dependent on sequences within the mouse Tgif2 coding sequence. Both splice forms of mouse Tgif2 encode proteins which are active transcriptional repressors, and can repress both TGFβ dependent and independent transcription. In addition, we show that human and mouse Tgif2 interact with the transcriptional corepressor mSin3. Conclusion These data demonstrate that the Tgif2 gene contains a retained intron, within the second coding exon. This retained intron is not removed from the human mRNA at a detectable level, but is spliced out in a significant proportion of mouse RNAs. This alternate splicing is dependent entirely on sequences within the mouse Tgif2 coding sequence, suggesting the presence of an exonic splicing enhancer. Both splice forms of mouse Tgif2 produce proteins which are functional transcriptional repressors.
Collapse
Affiliation(s)
- Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Hospital West, Box 800577, HSC, Charlottesville VA 22908, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Hospital West, Box 800577, HSC, Charlottesville VA 22908, USA
| |
Collapse
|
160
|
Abstract
Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
161
|
Briones-Orta MA, Sosa-Garrocho M, Moreno-Alvarez P, Fonseca-Sánchez MA, Macías-Silva M. SnoN co-repressor binds and represses smad7 gene promoter. Biochem Biophys Res Commun 2006; 341:889-94. [PMID: 16442497 DOI: 10.1016/j.bbrc.2006.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 02/04/2023]
Abstract
SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.
Collapse
Affiliation(s)
- Marco A Briones-Orta
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|
162
|
Li G, Heaton JH, Gelehrter TD. Role of steroid receptor coactivators in glucocorticoid and transforming growth factor beta regulation of plasminogen activator inhibitor gene expression. Mol Endocrinol 2006; 20:1025-34. [PMID: 16423881 DOI: 10.1210/me.2005-0145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TGFbeta is a major regulator of extracellular matrix deposition and a potent inducer of type-1 plasminogen activator inhibitor (PAI-1) gene expression. We have reported that liganded glucocorticoid receptor (GR) represses TGFbeta transactivation of PAI-1 in Hep3B human hepatoma cells and that it interacts functionally and physically with the C-terminal activation domain of Smad3, a mediator of TGFbeta signaling. The ligand binding domain of GR is required for GR-mediated transrepression, but the GR DNA binding domain and activation function 1 domains are not. We report here that overexpression of steroid receptor coactivator-1 (SRC-1) and GR-interacting protein-1 (GRIP-1) enhanced repression by liganded GR, and by a GR mutant defective in repression. Surprisingly, SRC-1 and GRIP-1 also enhanced TGFbeta-induced activation from the TGFbeta-responsive sequence of the PAI-1 gene by a GR-independent mechanism. Coimmunoprecipitation and mammalian one-hybrid experiments demonstrated that SRC-1 and GRIP-1 interact physically with endogenous Smad3 and functionally with the C-terminal domain of Smad3 to directly enhance transcription. Thus, the GR coactivators, SRC-1 and GRIP-1, act as both corepressors of the glucocorticoid repression of PAI-1 gene transcription, and coactivators of TGFbeta-induced activation of the PAI-1 promoter.
Collapse
Affiliation(s)
- Gangyong Li
- Department of Human Genetics, Box 0618, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | |
Collapse
|
163
|
Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T, Inamoto T, Takahara S, Itoh Y, Otsuki Y, Katsuoka Y, Miyazono K, Horie S. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst 2005; 97:1734-46. [PMID: 16333029 DOI: 10.1093/jnci/dji399] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-beta) facilitates metastasis during the advanced stages of cancer. Smad6, Smad7, and c-Ski block signaling by the TGF-beta superfamily proteins through different modes of action. We used adenovirus-mediated gene transfer of these natural inhibitors in a mouse model of breast cancer to examine the roles of TGF-beta superfamily signaling in tumor growth and metastasis. METHODS We systemically administered, by intravenous injection, adenoviruses (AdCMV) containing the mouse cDNAs for Smad7, Smad6, c-Ski, the c-Ski mutant c-Ski (ARPG), or LacZ (control) to nude mice (>19 mice/group) bearing tumors derived from mouse mammary carcinoma JygMC(A) cells, which spontaneously metastasize to lung and liver, and examined their effects on survival and metastasis. High-throughput western blotting analysis was used to examine the expression levels for 47 signal transduction proteins in JygMC(A) cells and primary tumors. We also investigated the proliferation, migration, and invasion of JygMC(A) cells that stably overexpressed Smad6 or Smad7. Nonparametric comparisons were done by Kruskal-Wallis H statistic and Wilcoxon's rank sum tests. Parametric comparisons were done by one-way analysis of variance or two-sided unpaired Student's t tests. All statistical tests were two-sided. RESULTS Control mice bearing tumors derived from JygMC(A) cells showed many metastases to the lung and liver; all animals died by 50 days after cell inoculation. By contrast, mice treated with AdCMV-Smad7 or AdCMV-c-Ski demonstrated a dramatic decrease in metastasis and statistically significantly longer survival than control mice (Smad7 versus LacZ: medium survival = 55 days versus 41 days, difference = 14 days [95% confidence interval {CI} = 6 days to 22 days], P < .001), whereas mice treated with AdCMV-Smad6 or AdCMV-c-Ski (ARPG) did not. Expression of Smad7 in JygMC(A) cells was associated with increased expression of major components of adherens and tight junctions, including E-cadherin, decreased expression of N-cadherin, and decreases in the migratory and invasive abilities of the JygMC(A) cells. CONCLUSION Smad7 inhibits metastasis, possibly by regulating cell-cell adhesion. Systemic expression of Smad7 may be a novel strategy for the prevention of metastasis of advanced cancers.
Collapse
Affiliation(s)
- Haruhito Azuma
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Qin BY, Liu C, Srinath H, Lam SS, Correia JJ, Derynck R, Lin K. Crystal structure of IRF-3 in complex with CBP. Structure 2005; 13:1269-77. [PMID: 16154084 DOI: 10.1016/j.str.2005.06.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/06/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Transcriptional activation of interferon beta (IFN-beta), an antiviral cytokine, requires the assembly of IRF-3 and CBP/p300 at the promoter region of the IFN-beta gene. The crystal structure of IRF-3 in complex with CBP reveals that CBP interacts with a hydrophobic surface on IRF-3, which in latent IRF-3 is covered by its autoinhibitory elements. This structural organization suggests that virus-induced phosphoactivation of IRF-3 triggers unfolding of the autoinhibitory elements and exposes the same hydrophobic surface for CBP interaction. The structure also reveals that the interacting CBP segment can exist in drastically different conformations, depending on the identity of the associating transcription cofactor. The finding suggests a possible regulatory mechanism in CBP/p300, by which the interacting transcription factor can specify the coactivator's conformation and influence the transcriptional outcome.
Collapse
Affiliation(s)
- Bin Y Qin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Zhu Q, Pearson-White S, Luo K. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells. Mol Cell Biol 2005; 25:10731-44. [PMID: 16314499 PMCID: PMC1316959 DOI: 10.1128/mcb.25.24.10731-10744.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 07/29/2005] [Accepted: 09/13/2005] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in some human cancer cells.
Collapse
Affiliation(s)
- Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-3204, USA
| | | | | |
Collapse
|
166
|
Scott KL, Plon SE. CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional repressor. Gene 2005; 359:119-26. [PMID: 16102918 DOI: 10.1016/j.gene.2005.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 11/29/2022]
Abstract
Checkpoint Suppressor 1 (CHES1; FOXN3) encodes a member of the forkhead/winged-helix transcription factor family. The human CHES1 cDNA was originally identified by its ability to function as a high-copy suppressor of multiple checkpoint mutants of Saccharomyces cerevisiae. Accumulating expression profile data suggest that CHES1 plays a role in tumorigenicity and responses to cancer treatments, though nothing is known regarding the transcriptional function of CHES1 or other FOXN proteins in human cells. In this report, we find that the carboxyl terminus of CHES1 fused to a heterologous DNA binding domain consistently represses reporter gene transcription in cell lines derived from tumor tissues. Using a cytoplasmic two-hybrid screening approach, we find that this portion of CHES1 interacts with Ski-interacting protein (SKIP; NCoA-62), which is a transcriptional co-regulator known to associate with repressor complexes. We verify this interaction through co-immunoprecipitation experiments performed in mammalian cells. Further analysis of the CHES1/SKIP interaction indicates that CHES1 binds to a region within the final 66 hydrophobic residues of SKIP thus defining a new protein-protein interaction domain of SKIP. These data suggest that CHES1 recruits SKIP to repress genes important for tumorigenesis and the response to cancer treatments.
Collapse
Affiliation(s)
- Kenneth L Scott
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | |
Collapse
|
167
|
Abstract
The TGF-beta family comprises many structurally related differentiation factors that act through a heteromeric receptor complex at the cell surface and an intracellular signal transducing Smad complex. The receptor complex consists of two type II and two type I transmembrane serine/threonine kinases. Upon phosphorylation by the receptors, Smad complexes translocate into the nucleus, where they cooperate with sequence-specific transcription factors to regulate gene expression. The vertebrate genome encodes many ligands, fewer type II and type I receptors, and only a few Smads. In contrast to the perceived simplicity of the signal transduction mechanism with few Smads, the cellular responses to TGF-beta ligands are complex and context dependent. This raises the question of how the specificity of the ligand-induced signaling is achieved. We review the molecular basis for the specificity and versatility of signaling by the many ligands through this conceptually simple signal transduction mechanism.
Collapse
Affiliation(s)
- Xin-Hua Feng
- Department of Molecular and Cellular Biology, Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
168
|
Arndt S, Poser I, Schubert T, Moser M, Bosserhoff AK. Cloning and functional characterization of a new Ski homolog, Fussel-18, specifically expressed in neuronal tissues. J Transl Med 2005; 85:1330-41. [PMID: 16200078 DOI: 10.1038/labinvest.3700344] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Sloan Kettering Virus (Ski) family of nuclear oncoproteins represses transforming growth factor-beta (TGF-beta) signaling through inhibition of transcriptional activity of Smad proteins. Here, we report the discovery of a new functional Smad suppressing element on chromosome 18 (Fussel-18). Fussel-18 encodes for a protein of 297 amino acids sharing characteristic structural features, significant homology and similar genomic organization with the homolog Ski family members, Ski and Ski-related novel sequence (Sno). In contrast to Ski and Sno, which are ubiquitously expressed in human tissues, in situ hybridization, RT-PCR, Western blot and immunohistochemistry revealed a highly specific expression pattern for Fussel-18 in neuronal tissues, especially in the cerebellum, the spinal cord and dorsal root ganglia, during both embryogenesis and adult stage. Functionally, we determined interaction of Fussel-18 with Smad 2 and Smad 3 together with an inhibitory activity on TGF-beta signaling. Fussel-18 is the first example of a Smad-binding protein with a highly restricted expression pattern within the nervous system.
Collapse
Affiliation(s)
- Stephanie Arndt
- University of Regensburg Medical School, Regensburg, Germany
| | | | | | | | | |
Collapse
|
169
|
van Grunsven LA, Verstappen G, Huylebroeck D, Verschueren K. Smads and chromatin modulation. Cytokine Growth Factor Rev 2005; 16:495-512. [PMID: 15979924 DOI: 10.1016/j.cytogfr.2005.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/11/2005] [Indexed: 12/29/2022]
Abstract
Smad proteins are critical intracellular effector proteins and regulators of transforming growth factor type beta (TGFbeta) modulated gene transcription. They directly convey signals that initiate at ligand-bound receptor complexes and end in the nucleus with changes in programs of gene expression. Activated Smad proteins seem to recruit chromatin modifying proteins to target genes besides cooperating with DNA-bound transcription factors. We survey here the current and still emerging knowledge on Smad-binding factors, and their different mechanisms of chromatin modification in particular, in Smad-dependent TGFbeta signaling.
Collapse
Affiliation(s)
- Leo A van Grunsven
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, Belgium
| | | | | | | |
Collapse
|
170
|
Burdette JE, Jeruss JS, Kurley SJ, Lee EJ, Woodruff TK. Activin A Mediates Growth Inhibition and Cell Cycle Arrest through Smads in Human Breast Cancer Cells. Cancer Res 2005; 65:7968-75. [PMID: 16140969 DOI: 10.1158/0008-5472.can-04-3553] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of growth factors is responsible for a variety of physiologic actions, including cell cycle regulation. Activin is a member of the TGF-beta superfamily that inhibits the proliferation of breast cancer cells. Activin functions by interacting with its type I and type II receptors to induce phosphorylation of intracellular signaling molecules known as Smads. Smads regulate transcription of many genes in a cell- and tissue-specific manner. In this study, the role of activin A in growth regulation of breast cancer cells was investigated. Activin stimulated the Smad-responsive promoter, p3TP, 2-fold over control in T47D breast cancer cells. Activin inhibited cellular proliferation of T47D breast cancer cells after 72 hours, an effect that could be abrogated by incubation with the activin type I receptor inhibitor, SB431542. Activin arrested T47D cells in the G0-G1 cell cycle phase. Smad2 and Smad3 were phosphorylated in response to activin and accumulated in the nucleus of treated T47D cells. Infection of T47D cells with adenoviral Smad3 resulted in cell cycle arrest and activation of p3TP-luciferase, whereas a adenoviral dominant-negative Smad3 blocked activin-mediated cell cycle arrest and gene transcription. Activin maintained expression of p21 and p27 cyclin-dependent kinase inhibitors involved in cell cycle control, enhanced expression of p15, reduced cyclin A expression, and reduced phosphorylation of the retinoblastoma (Rb) protein. Smad3 overexpression recapitulated activin-induced p15 expression and repression of cyclin A and Rb phosphorylation. These data indicate that activin A inhibits breast cancer cellular proliferation and activates Smads responsible for initiating cell cycle arrest.
Collapse
Affiliation(s)
- Joanna E Burdette
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
171
|
Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU, Han TH. Tsc-22 enhances TGF-beta signaling by associating with Smad4 and induces erythroid cell differentiation. Mol Cell Biochem 2005; 271:23-8. [PMID: 15881652 DOI: 10.1007/s11010-005-3456-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tsc-22 was isolated as a TGF-beta-inducible gene by differential screening of the mouse osteoblastic cell cDNA library [J Biol Chem 267 (1992) 10219]. tsc-22 mRNA is expressed in almost all organs of mice and humans and its expression is induced in a variety of cell lines by many different factors including TGF-beta, phorbol ester, serum, and progestin. tsc-22 encodes a 18-kd protein that contains a leucine zipper motif and a Tsc-box. The leucine zipper motif of the Tsc-22 protein does not have a basic DNA binding motif and when the protein was fused to a heterologous DNA binding domain, it showed various transcription-modulating activities ranging from activation to repression [J Biol Chem 274 (1999) 27439, Biochem Biophys Res Commun 278 (2000) 659]. Although these results suggest that the Tsc-22 protein functions as a transcriptional regulator recruiting various coactivators or repressors, its mechanism is not known. In this study, we examined whether Tsc-22 modulates the TGF-beta-dependant signaling pathway and found that Tsc-22 binds to and modulate the transcriptional activity of Smad3 and Smad4. Its effect on cellular differentiation was also examined.
Collapse
Affiliation(s)
- So-Jung Choi
- Department of Molecular Cell Biology and Center for Molecular Medicine, SBRI, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
172
|
Krakowski AR, Laboureau J, Mauviel A, Bissell MJ, Luo K. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-beta signaling by sequestration of the Smad proteins. Proc Natl Acad Sci U S A 2005; 102:12437-42. [PMID: 16109768 PMCID: PMC1194926 DOI: 10.1073/pnas.0504107102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TGF-beta is a ubiquitously expressed cytokine that signals through the Smad proteins to regulate many diverse cellular processes. SnoN is an important negative regulator of Smad signaling. It has been described as a nuclear protein, based on studies of ectopically expressed SnoN and endogenous SnoN in cancer cell lines. In the nucleus, SnoN binds to Smad2, Smad3, and Smad4 and represses their ability to activate transcription of TGF-beta target genes through multiple mechanisms. Here, we show that, whereas SnoN is localized exclusively in the nucleus in cancer tissues or cells, in normal tissues and nontumorigenic or primary epithelial cells, SnoN is predominantly cytoplasmic. Upon morphological differentiation or cell-cycle arrest, SnoN translocates into the nucleus. In contrast to nuclear SnoN that represses the transcriptional activity of the Smad complexes, cytoplasmic SnoN antagonizes TGF-beta signaling by sequestering the Smad proteins in the cytoplasm. Interestingly, cytoplasmic SnoN is resistant to TGF-beta-induced degradation and therefore is more potent than nuclear SnoN in repressing TGF-beta signaling. Thus, we have identified a mechanism of regulation of TGF-beta signaling via differential subcellular localization of SnoN that is likely to produce different patterns of downstream TGF-beta responses and may influence the proliferation or differentiation states of epithelial cells.
Collapse
Affiliation(s)
- Ariel R Krakowski
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
173
|
Affiliation(s)
- Virginia Kaklamani
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
174
|
Cui Q, Lim SK, Zhao B, Hoffmann FM. Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 2005; 24:3864-74. [PMID: 15750622 DOI: 10.1038/sj.onc.1208556] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor beta (TGF-beta) stimulation results in the assembly of Smad-containing protein complexes that mediate activation or repression of TGF-beta responsive genes. To determine if disruption of specific Smad protein-protein interactions would selectively inhibit responses to TGF-beta or generally interfere with Smad-dependent signaling, we developed three Smad-binding peptide aptamers by introducing Smad interaction motifs from Smad-binding proteins CBP, FoxH1 and Lef1 into the scaffold protein E. coli thioredoxin A (Trx). All three classes of aptamers bound to Smads by GST pulldown assays and co-immunoprecipitation from mammalian cells. Expression of the aptamers in HepG2 cells did not generally inhibit Smad-dependent signaling as evaluated using seven TGF-beta responsive luciferase reporter genes. The Trx-xFoxH1b aptamer inhibited TGF-beta-induced expression from a reporter dependent on the Smad-FoxH1 interaction, A3-lux, by 50%. Trx-xFoxH1b also partially inhibited two reporters not dependent on a Smad-FoxH1 interaction, 3TP-lux and Twntop, and endogenous PAI-1 expression. Trx-Lef1 aptamer only inhibited expression of the Smad-Lef1 responsive reporter gene TwnTop. The Trx-CBP aptamer had no significant effect on reporter gene expression. The results suggest that Smad-binding peptide aptamers can be developed to selectively inhibit TGF-beta-induced gene expression.
Collapse
Affiliation(s)
- Qiqi Cui
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
175
|
Vázquez-Macías A, Ruíz-Mendoza AB, Fonseca-Sánchez MA, Briones-Orta MA, Macías-Silva M. Downregulation of Ski and SnoN co-repressors by anisomycin. FEBS Lett 2005; 579:3701-6. [PMID: 15967445 DOI: 10.1016/j.febslet.2005.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/07/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
Proteasome pathway regulates TGF-beta signaling; degradation of activated Smad2/3 and receptors turns TGF-beta signal off, while degradation of negative modulators such as Ski and SnoN maintains the signal. We have found that anisomycin is able to downregulate Ski and SnoN via proteasome as TGF-beta does, but through a mechanism independent of Smad activation. The mechanism used by anisomycin to downregulate Ski and SnoN is also independent of MAPK activation and protein synthesis inhibition. TGF-beta signal was the only pathway described causing Ski and SnoN degradation, thus this new effect of anisomycin on endogenous Ski and SnoN proteins suggests alternative processes to downregulate these negative modulators of TGF-beta signaling.
Collapse
Affiliation(s)
- Aleida Vázquez-Macías
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | | | | | | | | |
Collapse
|
176
|
Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005; 307:1621-5. [PMID: 15761153 DOI: 10.1126/science.1105776] [Citation(s) in RCA: 540] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling pathways transmit information through protein interaction networks that are dynamically regulated by complex extracellular cues. We developed LUMIER (for luminescence-based mammalian interactome mapping), an automated high-throughput technology, to map protein-protein interaction networks systematically in mammalian cells and applied it to the transforming growth factor-beta (TGFbeta) pathway. Analysis using self-organizing maps and k-means clustering identified links of the TGFbeta pathway to the p21-activated kinase (PAK) network, to the polarity complex, and to Occludin, a structural component of tight junctions. We show that Occludin regulates TGFbeta type I receptor localization for efficient TGFbeta-dependent dissolution of tight junctions during epithelial-to-mesenchymal transitions.
Collapse
Affiliation(s)
- Miriam Barrios-Rodiles
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Wilkinson DS, Ogden SK, Stratton SA, Piechan JL, Nguyen TT, Smulian GA, Barton MC. A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Mol Cell Biol 2005; 25:1200-12. [PMID: 15657445 PMCID: PMC544019 DOI: 10.1128/mcb.25.3.1200-1212.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We purified the oncoprotein SnoN and found that it functions as a corepressor of the tumor suppressor p53 in the regulation of the hepatic alpha-fetoprotein (AFP) tumor marker gene. p53 promotes SnoN and histone deacetylase interaction at an overlapping Smad binding, p53 regulatory element (SBE/p53RE) in AFP. Comparison of wild-type and p53-null mouse liver tissue by using chromatin immunoprecipitation (ChIP) reveals that the absence of p53 protein correlates with the disappearance of SnoN at the SBE/p53RE and loss of AFP developmental repression. Treatment of AFP-expressing hepatoma cells with transforming growth factor-beta1 (TGF-beta1) induced SnoN transcription and Smad2 activation, concomitant with AFP repression. ChIP assays show that TGF-beta1 stimulates p53, Smad4, P-Smad2 binding, and histone H3K9 deacetylation and methylation, at the SBE/p53RE. Depletion, by small interfering RNA, of SnoN and/or p53 in hepatoma cells disrupted repression of AFP transcription. These findings support a model of cooperativity between p53 and TGF-beta effectors in chromatin modification and transcription repression of an oncodevelopmental tumor marker gene.
Collapse
Affiliation(s)
- Deepti S Wilkinson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS. Crystal structure of the dachshund homology domain of human SKI. Structure 2005; 12:785-92. [PMID: 15130471 DOI: 10.1016/j.str.2004.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/11/2004] [Accepted: 02/11/2004] [Indexed: 11/28/2022]
Abstract
The nuclear protooncoprotein SKI negatively regulates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. It directly interacts with the Smads and, by various mechanisms, represses the transcription of TGF-beta-responsive genes. SKI is a multidomain protein that includes a domain bearing high sequence similarity with the retinal determination protein Dachshund (the Dachshund homology domain, DHD). The SKI-DHD has been implicated in SMAD-2/3, N-CoR, SKIP, and PML-RARalpha binding. The 1.65 A crystal structure of the Dachshund homology domain of human SKI is reported here. The SKI-DHD adopts a mixed alpha/beta structure which includes features found in the forkhead/winged-helix family of DNA binding proteins, although SKI-DHD is not a DNA binding domain. Residues that form a contiguous surface patch on SKI-DHD are conserved within the Ski/Sno family and with Dachshund, suggesting that this domain may mediate intermolecular interactions common to these proteins.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
179
|
Abstract
Myostatin is a secreted protein that acts as a negative regulator of skeletal muscle mass. During embryogenesis, myostatin is expressed by cells in the myotome and in developing skeletal muscle and acts to regulate the final number of muscle fibers that are formed. During adult life, myostatin protein is produced by skeletal muscle, circulates in the blood, and acts to limit muscle fiber growth. The existence of circulating tissue-specific growth inhibitors of this type was hypothesized over 40 years ago to explain how sizes of individual tissues are controlled. Skeletal muscle appears to be the first example of a tissue whose size is controlled by this type of regulatory mechanism, and myostatin appears to be the first example of the long-sought chalone.
Collapse
Affiliation(s)
- Se-Jin Lee
- Johns Hopkins University School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
180
|
Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2005; 35:83-92. [PMID: 15265520 DOI: 10.1016/j.jdermsci.2003.12.006] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 02/07/2023]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily are pleiotropic cytokines that have the ability to regulate numerous cell functions, including proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and production of extracellular matrix, allowing them to play an important role during embryonic development and for maintenance of tissue homeostasis. Three TGF-beta isoforms have been identified in mammals. They propagate their signal via a signal transduction network involving receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins. Upon phosphorylation and oligomerization, the latter move into the nucleus to regulate transcription of target genes. This review will summarize recent advances in the understanding of the mechanisms underlying SMAD modulation of extracellular matrix gene expression in the context of wound healing and tissue fibrosis.
Collapse
Affiliation(s)
- Meinhard Schiller
- INSERM U532, Institut de Recherche sur la Peau, Université Paris VII, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | | |
Collapse
|
181
|
Pan D, Estévez-Salmerón LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 2005; 280:15992-6001. [PMID: 15647271 DOI: 10.1074/jbc.m411234200] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smad proteins are critical intracellular mediators of the transforming growth factor-beta, bone morphogenic proteins (BMPs), and activin signaling. Upon ligand binding, the receptor-associated R-Smads are phosphorylated by the active type I receptor serine/threonine kinases. The phosphorylated R-Smads then form heteromeric complexes with Smad4, translocate into the nucleus, and interact with various transcription factors to regulate the expression of downstream genes. Interaction of Smad proteins with cellular partners in the cytoplasm and nucleus is a critical mechanism by which the activities and expression of the Smad proteins are modulated. Here we report a novel step of regulation of the R-Smad function at the inner nuclear membrane through a physical interaction between the integral inner nuclear membrane protein MAN1 and R-Smads. MAN1, through the RNA recognition motif, associates with R-Smads but not Smad4 at the inner nuclear membrane in a ligand-independent manner. Overexpression of MAN1 results in inhibition of R-Smad phosphorylation, heterodimerization with Smad4 and nuclear translocation, and repression of transcriptional activation of the TGFbeta, BMP2, and activin-responsive promoters. This repression of TGFbeta, BMP2, and activin signaling is dependent on the MAN1-Smad interaction because a point mutation that disrupts this interaction abolishes the transcriptional repression by MAN1. Thus, MAN1 represents a new class of R-Smad regulators and defines a previously unrecognized regulatory step at the nuclear periphery.
Collapse
Affiliation(s)
- Deng Pan
- Department of Molecular and Cell Biology, University of California, Berkeley and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Ueki N, Zhang L, Hayman MJ. Ski negatively regulates erythroid differentiation through its interaction with GATA1. Mol Cell Biol 2005; 24:10118-25. [PMID: 15542823 PMCID: PMC529047 DOI: 10.1128/mcb.24.23.10118-10125.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ski oncoprotein dramatically affects cell growth, differentiation, and/or survival. Recently, Ski was shown to act in distinct signaling pathways including those involving nuclear receptors, transforming growth factor beta, and tumor suppressors. These divergent roles of Ski are probably dependent on Ski's capacity to bind multiple partners with disparate functions. In particular, Ski alters the growth and differentiation program of erythroid progenitor cells, leading to malignant leukemia. However, the mechanism underlying this important effect has remained elusive. Here we show that Ski interacts with GATA1, a transcription factor essential in erythropoiesis. Using a Ski mutant deficient in GATA1 binding, we show that this Ski-GATA1 interaction is critical for Ski's ability to repress GATA1-mediated transcription and block erythroid differentiation. Furthermore, the repression of GATA1-mediated transcription involves Ski's ability to block DNA binding of GATA1. This finding is in marked contrast to those in previous reports on the mechanism of repression by Ski, which have described a model involving the recruitment of corepressors into DNA-bound transcription complexes. We propose that Ski cooperates in the process of transformation in erythroid cells by interfering with GATA1 function, thereby contributing to erythroleukemia.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
183
|
Lin F, Morrison JM, Wu W, Worman HJ. MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 2004; 14:437-45. [PMID: 15601644 DOI: 10.1093/hmg/ddi040] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MAN1 (also known as LEMD3) is an integral protein of the inner nuclear membrane. Recently, mutations in MAN1 have been shown to result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. We show that the nucleoplasmic, C-terminal domain of human MAN1 binds to Smad2 and Smad3 and antagonizes signaling by transforming growth factor-beta (TGF-beta). In a yeast two-hybrid screen using the C-terminal domain of MAN1 as bait, eight positive clones were obtained that encoded Smad3. In direct two-hybrid assays, this portion of MAN1 bound to Smad2 and Smad3. In glutathione-S-transferase precipitation assays, the C-terminal domain of MAN1 bound to Smad2 and Smad3 under stringent conditions. Antibodies against MAN1 were able to co-immunoprecipiate Smad2 from cells, demonstrating that they reside in the same complex in vivo. TGF-beta treatment stimulated transcription from a reporter gene in control cells, but reporter gene stimulation was significantly inhibited in cells overexpressing MAN1 or its C-terminal domain but not its N-terminal domain. TGF-beta-induced cell proliferation arrest was also inhibited in stable cell lines overexpressing MAN1. These results show that the nuclear envelope regulates a signal transduction pathway and have implications for how mutations in nuclear envelope proteins cause different human diseases.
Collapse
Affiliation(s)
- Feng Lin
- Department of Medicine and Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
184
|
Buess M, Terracciano L, Reuter J, Ballabeni P, Boulay JL, Laffer U, Metzger U, Herrmann R, Rochlitz C. Amplification of SKI is a prognostic marker in early colorectal cancer. Neoplasia 2004; 6:207-12. [PMID: 15153332 PMCID: PMC1502098 DOI: 10.1593/neo.03442] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Improved risk stratification of early colorectal cancer might help to better select patients for adjuvant treatment. Alterations in the transforming growth factor-beta (TGF-beta) pathway have frequently been found in colorectal cancer, but their impact on prognosis remains controversial. We therefore analyzed two transcriptional corepressors of the TGF-beta signaling pathway with respect to prognosis and prediction of chemotherapy benefit in early colorectal cancer. METHODS The gene copy status of SKI and SNON was analyzed by use of quantitative real-time polymerase chain reaction in 179 colorectal tumor biopsies, which had been collected from a randomized multicenter trial of the Swiss Group for Clinical Cancer Research (SAKK). RESULTS Partial or complete allelic loss was found in 41.5% and 55.2% for SKI and SNON, whereas amplification was found in 10.1% and 15.1%, respectively. Multivariate Cox analysis showed that gene amplification of SKI independently predicted reduced relapse-free [hazard ratio (HR) for relapse 2.08, P =.049] and overall survival (HR for death 2.62, P =.012). In contrast, deletion of SKI and the gene copy status of SNON were not significantly correlated with prognosis. CONCLUSION Amplification of SKI is a negative prognostic marker in early-stage colorectal cancer. This marker should help to improve risk stratification to better select patients for adjuvant therapy. Confirmatory investigations are warranted.
Collapse
Affiliation(s)
- Martin Buess
- Departments of Oncology and Research, University Hospital of Basel, Basel CH-4031, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Reinholz MM, An MW, Johnsen SA, Subramaniam M, Suman VJ, Ingle JN, Roche PC, Spelsberg TC. Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue. Breast Cancer Res Treat 2004; 86:75-88. [PMID: 15218362 DOI: 10.1023/b:brea.0000032926.74216.7d] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TGF beta/Smad signaling pathway members are potent tumor suppressors for many types of cancers. We hypothesize that breast tumors differentially express these genes and that this expression pattern plays a role in the proliferation of breast cancer. We examined the mRNA levels of TIEG, Smad7, Smad2, and Bard1 using real-time RT/PCR in 14 normal breast, five non-invasive, 57 invasive (including 29 with outcome data), and five metastatic breast tumor tissues. TIEG and Smad7 mRNA levels were lower in non-invasive tumors compared to normal breast tissues. TIEG, Bard1, and Smad2 mRNA levels were lower in invasive cancers compared to normal breast tissues. In addition, TIEG, Smad2, and Bard1, provided discriminatory ability to potentially distinguish between normal and tumor samples, N- and N+ tumors, and N-/good (no recurrence for at least 5 years) and N-/bad (recurrence within 3 years) outcome patients. TIEG mRNA levels accurately discriminated between normal breast tissue and primary tumors with a sensitivity and specificity of 96 and 93%, respectively. TIEG, in combination with Smad2, distinguished between N+ and N- primary tumors with a sensitivity and specificity of 75 and 85%, respectively. TIEG in combination with Bard1 discriminated between N-/bad outcome from N-/good tumors with a sensitivity and specificity of 83 and 82%, respectively. Our results support the hypothesis that the differential gene expression of TIEG, Smad2, and Bard1, which are tumor suppressor genes, plays a significant role in the proliferation of breast cancer. Further investigation is necessary to validate the ability of these genes to discriminate between different populations of breast cancer patients.
Collapse
Affiliation(s)
- Monica M Reinholz
- Division of Experimental Pathology, Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Mizuhara E, Nakatani T, Minaki Y, Sakamoto Y, Ono Y. Corl1, a novel neuronal lineage-specific transcriptional corepressor for the homeodomain transcription factor Lbx1. J Biol Chem 2004; 280:3645-55. [PMID: 15528197 DOI: 10.1074/jbc.m411652200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During development, neuronal identity is determined by a combination of numerous transcription factors. However, the mechanisms of synergistic action of these factors in transcriptional regulation and subsequent cell fate specification are largely unknown. In this study, we identified a novel gene, Corl1, encoding a nuclear protein with homology to the Ski oncoprotein. Corl1 was highly selectively expressed in the central nervous system (CNS). In the embryonic CNS, Corl1 was expressed in a certain subset of postmitotic neurons generated posterior to the midbrain-hindbrain border. In the developing spinal cord, Corl1 was selectively expressed in the dorsal horn interneurons where a homeodomain transcription factor, Lbx1, is required for proper specification. Corl1 was localized in a nuclear dot-like structure and interacted with general transcriptional corepressors. In addition, Corl1 showed transcriptional repression activity in the GAL4-fusion system, indicating its involvement in the regulation of transcriptional repression. Furthermore, Corl1 interacted with Lbx1 and cooperatively repressed transcription, suggesting that it acts as a transcriptional corepressor for Lbx1 in regulating cell fate determination in the dorsal spinal cord. Corl1 corepressor activity did not depend on Gro/TLE activity, and Gro/TLE also functioned as a corepressor for Lbx1. Thus, Lbx1 can select two independent partners, Corl1 and Gro/TLE, as corepressors. Identification of a novel transcriptional corepressor with neuronal subtype-restricted expression might provide insights into the mechanisms of cell fate determination in neurons.
Collapse
Affiliation(s)
- Eri Mizuhara
- KAN Research Institute Inc., 93 Chudoji-Awata-cho, Shimogyo-ku, Kyoto 600-8815, Japan
| | | | | | | | | |
Collapse
|
187
|
Macdonald M, Wan Y, Wang W, Roberts E, Cheung TH, Erickson R, Knuesel MT, Liu X. Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene 2004; 23:5643-53. [PMID: 15122324 DOI: 10.1038/sj.onc.1207733] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is known that excess amounts of Ski, or any member of its proto-oncoprotein family, causes disruption of the transforming growth factor beta signal transduction pathway, thus causing oncogenic transformation of cells. Previous studies indicate that Ski is a relatively unstable protein whose expression levels can be regulated by ubiquitin-mediated proteolysis. Here, we investigate the mechanism by which the stability of Ski is regulated. We show that the steady-state levels of Ski protein are controlled post-translationally by cell cycle-dependent proteolysis, wherein Ski is degraded during the interphase of the cell cycle but is relatively stable during mitosis. Furthermore, we demonstrate that the ubiquitin-conjugating enzyme Cdc34 mediates cell cycle-dependent Ski degradation both in vitro and in vivo. Overexpression of dominant-negative Cdc34 stabilizes Ski and enhances its ability to antagonize TGF-beta signaling. Our data suggest that regulated proteolysis of Ski is one of the key mechanisms that control the threshold levels of this proto-oncoprotein, and thus prevents epithelial cells from becoming TGF-beta resistant.
Collapse
Affiliation(s)
- Mara Macdonald
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C, Suter U. The Protooncogene Ski Controls Schwann Cell Proliferation and Myelination. Neuron 2004; 43:499-511. [PMID: 15312649 DOI: 10.1016/j.neuron.2004.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/29/2004] [Accepted: 07/28/2004] [Indexed: 01/11/2023]
Abstract
Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.
Collapse
Affiliation(s)
- Suzana Atanasoski
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Frontelo P, Leader JE, Yoo N, Potocki AC, Crawford M, Kulik M, Lechleider RJ. Suv39h histone methyltransferases interact with Smads and cooperate in BMP-induced repression. Oncogene 2004; 23:5242-51. [PMID: 15107829 DOI: 10.1038/sj.onc.1207660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Smad proteins transduce signals from transforming growth factor-beta (TGF-beta) superfamily ligands to regulate the expression of target genes. In order to identify novel partners of Smad proteins in transcriptional regulation, we performed a two-hybrid screen using Smad5, a protein that is activated predominantly by bone morphogenetic protein (BMP) signaling. We identified an interaction between Smad5 and suppressor of variegation 3-9 homolog 2 (Suv39h2), a chromatin modifier enzyme. Suv39h proteins are histone methyltransferases that methylate histone H3 on lysine 9, resulting in transcriptional repression or silencing of target genes. Biochemical studies in mammalian cells demonstrated that Smad5 binds to both known mammalian isoforms of Suv39h proteins, and that Smad proteins activated by the TGF-beta signaling pathway, Smad2 and Smad3, do not bind with significant affinity. Functional studies using the muscle creatine kinase (MCK) promoter, which is suppressed by BMP signaling, demonstrate that Suv39h proteins and Smads cooperate to repress promoter activity. These data suggest a model where association of Smad proteins with Suv39h methyltransferases can repress or silence genes involved in developmental processes, and argues that inefficient gene repression may result in the alteration of the differentiated phenotype. Thus, examination of the Smad-Suv interaction may provide insight into the mechanism of phenotypic determination mediated by BMP signaling.
Collapse
Affiliation(s)
- Pilar Frontelo
- Department of Cell Biology, Georgetown University Medical School, Box 571436, Washington, DC 20057-1436, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Suzuki H, Yagi K, Kondo M, Kato M, Miyazono K, Miyazawa K. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene 2004; 23:5068-76. [PMID: 15107821 DOI: 10.1038/sj.onc.1207690] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
c-Ski inhibits transforming growth factor-beta (TGF-beta) signaling through interaction with Smad proteins. c-Ski represses Smad-mediated transcriptional activation, probably through its action as a transcriptional co-repressor. c-Ski also inhibits TGF-beta-induced downregulation of genes such as c-myc. However, mechanisms for transcriptional regulation of target genes by c-Ski have not been fully determined. In this study, we examined how c-Ski inhibits both TGF-beta-induced transcriptional activation and repression. DNA-affinity precipitation analysis revealed that c-Ski enhances the binding of Smad2 and 4, and to a lesser extent Smad3, to both CAGA and TGF-beta1 inhibitory element probes. A c-Ski mutant, which is unable to interact with Smad4, failed to enhance the binding of Smad complex on these probes and to inhibit the Smad-responsive promoter. These results suggest that stabilization of inactive Smad complexes on DNA is a critical event in c-Ski-mediated inhibition of TGF-beta signaling.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
191
|
Chong PA, Ozdamar B, Wrana JL, Forman-Kay JD. Disorder in a target for the smad2 mad homology 2 domain and its implications for binding and specificity. J Biol Chem 2004; 279:40707-14. [PMID: 15231848 DOI: 10.1074/jbc.m404375200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Smad2 Mad homology 2 (MH2) domain binds to a diverse group of proteins which do not share a common sequence motif. We have used NMR to investigate the structure of one of these interacting proteins, the Smad binding domain (SBD) of Smad anchor for receptor activation (SARA). Our results indicate that the unbound SBD is highly disordered and forms no stable secondary or tertiary structures. Additionally we have used fluorescence binding studies to study the interaction between the MH2 domain and SBD and find that no region of the SBD dominates the interaction between the MH2 and the SBD. Our results are consistent with a series of hydrophobic patches on the MH2 that are able to recognize disordered regions of proteins. These findings elucidate a mechanism by which a single domain (MH2) can specifically recognize a diverse set of proteins which are unrelated by sequence, lead to a clearer picture of how MH2 domains function in the transforming growth factor-beta-signaling pathway and suggest possible mechanisms for controlling interactions with MH2 domains.
Collapse
Affiliation(s)
- P Andrew Chong
- Department of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto M5G 1X8, Canada
| | | | | | | |
Collapse
|
192
|
Abstract
Ski and SnoN are unique proto-oncoproteins in that they can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Recent studies using in vitro and in vivo approaches have begun to unravel the complex roles of Ski and SnoN in tumorigenesis and embryonic development. The identification of Ski and SnoN as important negative regulators of signal transduction by the transforming growth factor-beta superfamily of cytokines provides a valuable molecular basis for the complex functions of Ski and SnoN.
Collapse
Affiliation(s)
- Kunxin Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 237 Hildebrand Hall, Mail code 3206, Berkeley, CA 94720-3206, USA.
| |
Collapse
|
193
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
194
|
Abstract
The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.
Collapse
Affiliation(s)
- Natalia G Denissova
- Center for Advanced Biotechnology and Medicine, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 679 Hoes Land, Piscataway, NJ 08854, USA
| | | |
Collapse
|
195
|
Smith L, Dahler AL, Cavanagh LL, Popa C, Barnes LM, Serewko-Auret MMM, Fai Wong C, Saunders NA. Modulation of proliferation-specific and differentiation-specific markers in human keratinocytes by SMAD7. Exp Cell Res 2004; 294:356-65. [PMID: 15023526 DOI: 10.1016/j.yexcr.2003.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/08/2003] [Indexed: 10/26/2022]
Abstract
We examined the potential role of SMAD7 in human epidermal keratinocyte differentiation. Overexpression of SMAD7 inhibited the activity of the proliferation-specific promoters for the keratin 14 and cdc2 genes and reduced the expression of the mRNA for the proliferation-specific genes cdc2 and E2F1. The ability of SMAD7 to suppress cdc2 promoter activity was lost in transformed keratinocyte cell lines and was mediated by a domain(s) located between aa 195-395 of SMAD7. This domain lies outside the domain required to inhibit TGFbeta1 signaling, suggesting that this activity is mediated by a novel functional domain(s). Examination of AP1, NFkappaB, serum response element, Gli, wnt, and E2F responsive reporters indicated that SMAD7 significantly suppressed the E2F responsive reporter and modestly increased AP1 activity in proliferating keratinocytes. These data suggest that SMAD7 may have a role in TGFbeta-independent signaling events in proliferating/undifferentiated keratinocytes. The effects of SMAD7 in differentiated keratinocytes indicated a more traditional role for SMAD7 as an inhibitor of TGFbeta action. SMAD7 was unable to initiate the expression of differentiation markers but was able to superinduce/derepress differentiation-specific markers and genes in differentiated keratinocytes. This latter role is consistent with the ability of SMAD7 to inhibit TGFbeta-mediated suppression of keratinocyte differentiation and suggest that the opposing actions of SMAD7 and TGFbeta may serve to modulate squamous differentiation.
Collapse
Affiliation(s)
- Louise Smith
- Epithelial Pathobiology Group, Cancer Biology Programme, Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Members of the transforming growth factor beta (TGF-beta) family of multifunctional peptides are involved in almost every aspect of development. Model systems, ranging from genetically tractable invertebrates to genetically engineered mice, have been used to determine the mechanisms of TGF-beta signaling in normal development and in pathological situations. Furthermore, mutations in genes for the ligands, receptors, extracellular modulators, and intracellular signaling molecules have been associated with several human disorders. The most common are those associated with the development and maintenance of the skeletal system and axial patterning. This review focuses on the mechanisms of TGF-beta signaling with special emphasis on the molecules involved in human disorders of patterning and skeletal development.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama, Birmingham 35294-0005, USA.
| | | |
Collapse
|
197
|
Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD, Busiguina S, Rual JF, Ibarrola N, Chaklos ST, Bertin N, Vaglio P, Edgley ML, King KV, Albert PS, Vandenhaute J, Pandey A, Riddle DL, Ruvkun G, Vidal M. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-beta signaling network. Mol Cell 2004; 13:469-82. [PMID: 14992718 DOI: 10.1016/s1097-2765(04)00033-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 12/16/2003] [Accepted: 12/23/2003] [Indexed: 11/24/2022]
Abstract
To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems biology approach to this and other signaling modules.
Collapse
Affiliation(s)
- Muneesh Tewari
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 2004; 23:1972-84. [PMID: 15021885 DOI: 10.1038/sj.onc.1207436] [Citation(s) in RCA: 390] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) is the prototypical protein in a family of E3 ubiquitin ligases that have a common domain architecture. They are comprised of a catalytic C-terminal HECT domain and N-terminal C2 domain and WW domains responsible for cellular localization and substrate recognition. These proteins are found throughout eukaryotes and regulate diverse biological processes through the targeted degradation of proteins that generally have a PPxY motif for WW domain recognition, and are found in the nucleus and at the plasma membrane. Whereas the yeast Saccharomyces cerevisiae uses a single protein, Rsp5p, to carry out these functions, evolution has provided higher eukaryotes with several related Nedd4 proteins that appear to have specialized roles. In this review we discuss how knowledge of individual domain function has provided insight into the physiological roles of the Nedd4 proteins and describe recent results that suggest discrete functions for individual family members.
Collapse
Affiliation(s)
- Robert J Ingham
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
| | | | | |
Collapse
|
199
|
Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, Yang HK, Kim SJ. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 2004; 23:1333-41. [PMID: 14647420 DOI: 10.1038/sj.onc.1207259] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Loss of the tumor suppressive effect of transforming growth factor-beta (TGF-beta) has been commonly found at later stages in carcinogenic progression. Although the genes encoding TGF-beta receptors and Smads have been found genetically altered in certain human cancers, no mutation in Smad3 has been observed. Therefore, suppression of Smad3 expression may mediate key oncogenic properties of TGF-beta. First, we observed that 37.5% of human gastric cancer tissues showed low to undetectable levels of Smad3 and that in nine human gastric cancer cell lines examined, two showed deficient Smad3 expression. Introduction of Smad3 into human gastric cancer cells that did not express Smad3, restored TGF-beta responsiveness: induction of p21 and p15 gene expression, and growth inhibition in response to TGF-beta. Furthermore, these Smad3-expressing cells showed markedly decreased and delayed tumorigenicity in vivo. These findings suggest that Smad3 expression may have a critical role in tumor suppression in the early stages of gastric carcinogenesis.
Collapse
Affiliation(s)
- Sang-Uk Han
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 2004; 24:2546-59. [PMID: 14993291 PMCID: PMC355825 DOI: 10.1128/mcb.24.6.2546-2559.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 05/20/2003] [Accepted: 12/19/2003] [Indexed: 12/15/2022] Open
Abstract
Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor beta (TGF-beta) signal. The ability of the Smads to act as transcriptional activators via TGF-beta-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-beta target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-beta-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-beta, and this repression is required for the manifestation of the TGF-beta cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-beta-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-beta inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.
Collapse
Affiliation(s)
- Joshua P Frederick
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|