151
|
Labes S, Stupp D, Wagner N, Bloch I, Lotem M, L Lahad E, Polak P, Pupko T, Tabach Y. Machine-learning of complex evolutionary signals improves classification of SNVs. NAR Genom Bioinform 2022; 4:lqac025. [PMID: 35402908 PMCID: PMC8988715 DOI: 10.1093/nargab/lqac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/08/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Conservation is a strong predictor for the pathogenicity of single-nucleotide variants (SNVs). However, some positions that present complex conservation patterns across vertebrates stray from this paradigm. Here, we analyzed the association between complex conservation patterns and the pathogenicity of SNVs in the 115 disease-genes that had sufficient variant data. We show that conservation is not a one-rule-fits-all solution since its accuracy highly depends on the analyzed set of species and genes. For example, pairwise comparisons between the human and 99 vertebrate species showed that species differ in their ability to predict the clinical outcomes of variants among different genes using conservation. Furthermore, certain genes were less amenable for conservation-based variant prediction, while others demonstrated species that optimize prediction. These insights led to developing EvoDiagnostics, which uses the conservation against each species as a feature within a random-forest machine-learning classification algorithm. EvoDiagnostics outperformed traditional conservation algorithms, deep-learning based methods and most ensemble tools in every prediction-task, highlighting the strength of optimizing conservation analysis per-species and per-gene. Overall, we suggest a new and a more biologically relevant approach for analyzing conservation, which improves prediction of variant pathogenicity.
Collapse
Affiliation(s)
- Sapir Labes
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Doron Stupp
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah University Medical Center, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| | - Ephrat L Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem9103102, Israel
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, NY10029, USA
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, and Hadassah University Medical School, The Hebrew University of Jerusalem, Jerusalem9112001, Israel
| |
Collapse
|
152
|
Miyagawa T, Tanaka S, Shimada M, Sakai N, Tanida K, Kotorii N, Kotorii T, Ariyoshi Y, Hashizume Y, Ogi K, Hiejima H, Kanbayashi T, Imanishi A, Ikegami A, Kamei Y, Hida A, Wada Y, Miyamoto M, Takami M, Kondo H, Tamura Y, Taniyama Y, Omata N, Mizuno T, Moriya S, Furuya H, Kato M, Kato K, Ishigooka J, Tsuruta K, Chiba S, Yamada N, Okawa M, Hirata K, Kuroda K, Kume K, Uchimura N, Kitada M, Kodama T, Inoue Y, Nishino S, Mishima K, Tokunaga K, Honda M. A rare genetic variant in the cleavage site of prepro-orexin is associated with idiopathic hypersomnia. NPJ Genom Med 2022; 7:29. [PMID: 35414074 PMCID: PMC9005711 DOI: 10.1038/s41525-022-00298-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Idiopathic hypersomnia (IH) is a rare, heterogeneous sleep disorder characterized by excessive daytime sleepiness. In contrast to narcolepsy type 1, which is a well-defined type of central disorders of hypersomnolence, the etiology of IH is poorly understood. No susceptibility loci associated with IH have been clearly identified, despite the tendency for familial aggregation of IH. We performed a variation screening of the prepro-orexin/hypocretin and orexin receptors genes and an association study for IH in a Japanese population, with replication (598 patients and 9826 controls). We identified a rare missense variant (g.42184347T>C; p.Lys68Arg; rs537376938) in the cleavage site of prepro-orexin that was associated with IH (minor allele frequency of 1.67% in cases versus 0.32% in controls, P = 2.7 × 10-8, odds ratio = 5.36). Two forms of orexin (orexin-A and -B) are generated from cleavage of one precursor peptide, prepro-orexin. The difference in cleavage efficiency between wild-type (Gly-Lys-Arg; GKR) and mutant (Gly-Arg-Arg; GRR) peptides was examined by assays using proprotein convertase subtilisin/kexin (PCSK) type 1 and PCSK type 2. In both PCSK1 and PCSK2 assays, the cleavage efficiency of the mutant peptide was lower than that of the wild-type peptide. We also confirmed that the prepro-orexin peptides themselves transmitted less signaling through orexin receptors than mature orexin-A and orexin-B peptides. These results indicate that a subgroup of IH is associated with decreased orexin signaling, which is believed to be a hallmark of narcolepsy type 1.
Collapse
Affiliation(s)
- Taku Miyagawa
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Susumu Tanaka
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Osaka, Japan
| | - Mihoko Shimada
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriaki Sakai
- Sleep and Circadian Neurobiology Laboratory, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kotomi Tanida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomu Kotorii
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
- Kotorii Isahaya Hospital, Nagasaki, Japan
| | | | | | - Yuji Hashizume
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Kimihiro Ogi
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroshi Hiejima
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Takashi Kanbayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
- Ibaraki Prefectural Medical Center of Psychiatry, Ibaraki, Japan
| | - Aya Imanishi
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
| | | | - Yuichi Kamei
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
- Kamisuwa Hospital, Nagano, Japan
| | - Akiko Hida
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yamato Wada
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | | | - Masanori Takami
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Hideaki Kondo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Tamura
- Department of Psychiatry and Neurology, Asahikawa Medical University, Hokkaido, Japan
| | - Yukari Taniyama
- Department of Neurology, Junwakai Memorial Hospital, Miyazaki, Japan
| | - Naoto Omata
- Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tomoyuki Mizuno
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shunpei Moriya
- Department of Psychiatry, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hirokazu Furuya
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Fukuoka, Japan
- Department of Neurology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kayoko Kato
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kazuhito Tsuruta
- Department of Neurology, Junwakai Memorial Hospital, Miyazaki, Japan
| | - Shigeru Chiba
- Department of Psychiatry and Neurology, Asahikawa Medical University, Hokkaido, Japan
| | - Naoto Yamada
- Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Masako Okawa
- Department of Sleep Medicine, Shiga University of Medical Science, Shiga, Japan
- Japan Foundation for Neuroscience and Mental Health, Tokyo, Japan
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Kenji Kuroda
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Kazuhiko Kume
- Sleep Center, Kuwamizu Hospital, Kumamoto, Japan
- Department of Stem Cell Biology, Institute of Molecular Genetics and Embryology, Kumamoto University, Kumamoto, Japan
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan
| | - Naohisa Uchimura
- Department of Neuropsychiatry, Kurume University School of Medicine, Fukuoka, Japan
| | - Masaaki Kitada
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Osaka, Japan
| | - Tohru Kodama
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
- Yoyogi Sleep Disorder Center, Neuropsychiatric Research Institute, Tokyo, Japan
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kazuo Mishima
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Seiwa Hospital, Institute of Neuropsychiatry, Tokyo, Japan
| |
Collapse
|
153
|
Jadhao S, Hoy W, Lee S, Patel HR, McMorran BJ, Flower RL, Nagaraj SH. The genomic landscape of blood groups in Indigenous Australians in remote communities. Transfusion 2022; 62:1110-1120. [PMID: 35403234 PMCID: PMC9544628 DOI: 10.1111/trf.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Background Methods and materials Results Conclusion
Collapse
Affiliation(s)
- Sudhir Jadhao
- Centre for Genomics and Personalised Health Queensland University of Technology Brisbane Queensland Australia
- Translational Research Institute Brisbane Queensland Australia
| | - Wendy Hoy
- Faculty of Medicine University of Queensland Brisbane Queensland Australia
| | - Simon Lee
- Centre for Genomics and Personalised Health Queensland University of Technology Brisbane Queensland Australia
- Translational Research Institute Brisbane Queensland Australia
| | - Hardip R. Patel
- National Centre for Indigenous Genomics Australian National University Canberra Australian Capital Territory Australia
| | - Brendan J. McMorran
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, College of Health and Medicine The Australian National University Canberra Australian Capital Territory Australia
| | - Robert L. Flower
- Research and Development Australian Red Cross Lifeblood Red Cell Reference Laboratory Brisbane Queensland Australia
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalised Health Queensland University of Technology Brisbane Queensland Australia
- Translational Research Institute Brisbane Queensland Australia
| |
Collapse
|
154
|
Xu PF, Li C, Xi SY, Chen FR, Wang J, Zhang ZQ, Liu Y, Li X, Chen ZP. Whole Exome Sequencing Reveals the Genetic Heterogeneity and Evolutionary History of Primary Gliomas and Matched Recurrences. Comput Struct Biotechnol J 2022; 20:2235-2246. [PMID: 35615029 PMCID: PMC9117816 DOI: 10.1016/j.csbj.2022.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Peng-Fei Xu
- Scientific Research Center, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 510275, PR China
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
- School of Medical, Sun Yat-Sen University, Shenzhen, Guandong 510275, PR China
| | - Cong Li
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guandong 510120, PR China
| | - Shao-Yan Xi
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Fu-Rong Chen
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Jing Wang
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
| | - Zhi-Qiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medical, Guangzhou, Guandong 510120, PR China
| | - Yan Liu
- Scientific Research Center, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 510275, PR China
| | - Xin Li
- School of Medical, Sun Yat-Sen University, Shenzhen, Guandong 510275, PR China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
- Corresponding authors.
| | - Zhong-Ping Chen
- Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, PR China
- Corresponding authors.
| |
Collapse
|
155
|
Draelos RL, Ezekian JE, Zhuang F, Moya-Mendez ME, Zhang Z, Rosamilia MB, Manivannan PKR, Henao R, Landstrom AP. GENESIS: Gene-Specific Machine Learning Models for Variants of Uncertain Significance Found in Catecholaminergic Polymorphic Ventricular Tachycardia and Long QT Syndrome-Associated Genes. Circ Arrhythm Electrophysiol 2022; 15:e010326. [PMID: 35357185 PMCID: PMC9018586 DOI: 10.1161/circep.121.010326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cardiac channelopathies such as catecholaminergic polymorphic tachycardia and long QT syndrome predispose patients to fatal arrhythmias and sudden cardiac death. As genetic testing has become common in clinical practice, variants of uncertain significance (VUS) in genes associated with catecholaminergic polymorphic ventricular tachycardia and long QT syndrome are frequently found. The objective of this study was to predict pathogenicity of catecholaminergic polymorphic ventricular tachycardia-associated RYR2 VUS and long QT syndrome-associated VUS in KCNQ1, KCNH2, and SCN5A by developing gene-specific machine learning models and assessing them using cross-validation, cellular electrophysiological data, and clinical correlation. METHODS The GENe-specific EnSemble grId Search framework was developed to identify high-performing machine learning models for RYR2, KCNQ1, KCNH2, and SCN5A using variant- and protein-specific inputs. Final models were applied to datasets of VUS identified from ClinVar and exome sequencing. Whole cell patch clamp and clinical correlation of selected VUS was performed. RESULTS The GENe-specific EnSemble grId Search models outperformed alternative methods, with area under the receiver operating characteristics up to 0.87, average precisions up to 0.83, and calibration slopes as close to 1.0 (perfect) as 1.04. Blinded voltage-clamp analysis of HEK293T cells expressing 2 predicted pathogenic variants in KCNQ1 each revealed an ≈80% reduction of peak Kv7.1 current compared with WT. Normal Kv7.1 function was observed in KCNQ1-V241I HEK cells as predicted. Though predicted benign, loss of Kv7.1 function was observed for KCNQ1-V106D HEK cells. Clinical correlation of 9/10 variants supported model predictions. CONCLUSIONS Gene-specific machine learning models may have a role in post-genetic testing diagnostic analyses by providing high performance prediction of variant pathogenicity.
Collapse
Affiliation(s)
- Rachel L Draelos
- Department of Computer Science, Trinity College of Arts and Sciences (R.L.D., F.Z.), Duke University.,Medical Scientist Training Program (R.L.D.), Duke University School of Medicine, Durham, NC
| | - Jordan E Ezekian
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Farica Zhuang
- Department of Computer Science, Trinity College of Arts and Sciences (R.L.D., F.Z.), Duke University
| | - Mary E Moya-Mendez
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Zhushan Zhang
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Michael B Rosamilia
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Perathu K R Manivannan
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Ricardo Henao
- Department of Electrical and Computer Engineering, Pratt School of Engineering (R.H.), Duke University.,Department of Biostatistics and Bioinformatics (R.H.), Duke University School of Medicine, Durham, NC
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology (J.E.Z., M.E.M.-M., Z.Z., M.B.R., P.K.R.M., A.P.L.), Duke University School of Medicine, Durham, NC.,Department of Cell Biology (A.P.L.), Duke University School of Medicine, Durham, NC
| |
Collapse
|
156
|
Oziębło D, Lee SY, Leja ML, Sarosiak A, Bałdyga N, Skarżyński H, Kim Y, Han JH, Yoo HS, Park MH, Choi BY, Ołdak M. Update on CD164 and LMX1A genes to strengthen their causative role in autosomal dominant hearing loss. Hum Genet 2022; 141:445-453. [PMID: 35254497 DOI: 10.1007/s00439-022-02443-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Novel hearing loss (HL) genes are constantly being discovered, and evidence from independent studies is essential to strengthen their position as causes of hereditary HL. To address this issue, we searched our genetic data of families with autosomal dominant HL (ADHL) who had been tested with high-throughput DNA sequencing methods. For CD164, only one pathogenic variant in one family has so far been reported. For LMX1A, just two previous studies have revealed its involvement in ADHL. In this study we found two families with the same pathogenic variant in CD164 and one family with a novel variant in LMX1A (c.686C>A; p.(Ala229Asp)) that impairs its transcriptional activity. Our data show recurrence of the same CD164 variant in two HL families of different geographic origin, which strongly suggests it is a mutational hotspot. We also provide further evidence for haploinsufficiency as the pathogenic mechanism underlying LMX1A-related ADHL.
Collapse
Affiliation(s)
- Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Marcin Ludwik Leja
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Sarosiak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Bałdyga
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Hyo Soon Yoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Min Hyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul Metropolitan Government-Seoul National University, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 10 M. Mochnackiego Street, 02-042, Warsaw, Poland.
| |
Collapse
|
157
|
PirePred: An Accurate Online Consensus Tool to Interpret Newborn Screening-Related Genetic Variants in Structural Context. J Mol Diagn 2022; 24:406-425. [PMID: 35143952 DOI: 10.1016/j.jmoldx.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
PirePred is a genetic interpretation tool used for a variety of medical conditions investigated in newborn screening programs. The PirePred server retrieves, analyzes, and displays in real time genetic and structural data on 58 genes/proteins associated with medical conditions frequently investigated in the newborn. PirePred analyzes the predictions generated by 15 pathogenicity predictors and applies an optimized majority vote algorithm to classify any possible nonsynonymous single-nucleotide variant as pathogenic, benign, or of uncertain significance. PirePred predictions for variants of clear clinical significance are better than those of any of the individual predictors considered (based on accuracy, sensitivity, and negative predictive value) or are among the best ones (for positive predictive value and Matthews correlation coefficient). PirePred predictions also outperform the comparable in silico predictions offered as supporting evidence, according to American College of Medical Genetics and Genomics guidelines, by VarSome and Franklin. Also, PirePred has very high prediction coverage. To facilitate the molecular interpretation of the missense, nonsense, and frameshift variants in ClinVar, the changing amino acid residue is displayed in its structural context, which is analyzed to provide functional clues. PirePred is an accurate, robust, and easy-to-use tool for clinicians involved in neonatal screening programs and for researchers of related diseases. The server is freely accessible and provides a user-friendly gateway into the structural/functional consequences of genetic variants at the protein level.
Collapse
|
158
|
AmazonForest: In Silico Metaprediction of Pathogenic Variants. BIOLOGY 2022; 11:biology11040538. [PMID: 35453737 PMCID: PMC9024711 DOI: 10.3390/biology11040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/19/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary ClinVar is a valuable platform that stores a large set of relevant genetic associations with complex phenotypes. However, the functional impact of a partial set of such associations remains misinterpreted, due to the presence of variants with uncertain significance or with conflicting pathogenicity interpretations. To fill this gap, we present AmazonForest: a metaprediction model based on Random Forest for pathogenicity prediction. AmazonForest was used to reclassify a set of ∼101,000 variants that were predicted as having high pathogenic probability. AmazonForest is available as a web tool with a simple web interface, and also as an R object for pathogenicity predictions. Abstract ClinVar is a web platform that stores ∼789,000 genetic associations with complex diseases. A partial set of these cataloged genetic associations has challenged clinicians and geneticists, often leading to conflicting interpretations or uncertain clinical impact significance. In this study, we addressed the (re)classification of genetic variants by AmazonForest, which is a random-forest-based pathogenicity metaprediction model that works by combining functional impact data from eight prediction tools. We evaluated the performance of representation learning algorithms such as autoencoders to propose a better strategy. All metaprediction models were trained with ClinVar data, and genetic variants were annotated with eight functional impact predictors cataloged with SnpEff/SnpSift. AmazonForest implements the best random forest model with a one hot data-encoding strategy, which shows an Area Under ROC Curve of ≥0.93. AmazonForest was employed for pathogenicity prediction of a set of ∼101,000 genetic variants of uncertain significance or conflict of interpretation. Our findings revealed ∼24,000 variants with high pathogenic probability (RFprob≥0.9). In addition, we show results for Alzheimer’s Disease as a demonstration of its application in clinical interpretation of genetic variants in complex diseases. Lastly, AmazonForest is available as a web tool and R object that can be loaded to perform pathogenicity predictions.
Collapse
|
159
|
Yin X, Chan LS, Bose D, Jackson AU, VandeHaar P, Locke AE, Fuchsberger C, Stringham HM, Welch R, Yu K, Fernandes Silva L, Service SK, Zhang D, Hector EC, Young E, Ganel L, Das I, Abel H, Erdos MR, Bonnycastle LL, Kuusisto J, Stitziel NO, Hall IM, Wagner GR, Kang J, Morrison J, Burant CF, Collins FS, Ripatti S, Palotie A, Freimer NB, Mohlke KL, Scott LJ, Wen X, Fauman EB, Laakso M, Boehnke M. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat Commun 2022; 13:1644. [PMID: 35347128 PMCID: PMC8960770 DOI: 10.1038/s41467-022-29143-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/23/2022] [Indexed: 01/13/2023] Open
Abstract
Few studies have explored the impact of rare variants (minor allele frequency < 1%) on highly heritable plasma metabolites identified in metabolomic screens. The Finnish population provides an ideal opportunity for such explorations, given the multiple bottlenecks and expansions that have shaped its history, and the enrichment for many otherwise rare alleles that has resulted. Here, we report genetic associations for 1391 plasma metabolites in 6136 men from the late-settlement region of Finland. We identify 303 novel association signals, more than one third at variants rare or enriched in Finns. Many of these signals identify genes not previously implicated in metabolite genome-wide association studies and suggest mechanisms for diseases and disease-related traits.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Lap Sum Chan
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Debraj Bose
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Peter VandeHaar
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Adam E Locke
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
- Institute for Biomedicine, Eurac Research, Bolzano, 39100, Italy
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Ryan Welch
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Ketian Yu
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Susan K Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Daiwei Zhang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Emily C Hector
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erica Young
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
| | - Haley Abel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael R Erdos
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lori L Bonnycastle
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
- Center for Medicine and Clinical Research, Kuopio University Hospital, Kuopio, 70210, Finland
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, 63108, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Ira M Hall
- Center for Genomic Health, Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | | | - Jian Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Jean Morrison
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00290, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00290, Finland
- Department of Public Health, University of Helsinki, Helsinki, 00014, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, 02139, USA.
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland.
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
160
|
Gertler TS, Cherian S, DeKeyser JM, Kearney JA, George AL. K Na1.1 gain-of-function preferentially dampens excitability of murine parvalbumin-positive interneurons. Neurobiol Dis 2022; 168:105713. [PMID: 35346832 PMCID: PMC9169414 DOI: 10.1016/j.nbd.2022.105713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 10/25/2022] Open
Abstract
KCNT1 encodes the sodium-activated potassium channel KNa1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, yet how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the KNa1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that KNa1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.
Collapse
Affiliation(s)
- Tracy S Gertler
- Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
| | - Suraj Cherian
- Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
161
|
Chiang J, Moreira DC, Pytel NJ, Liu YC, Blackburn PR, Shi Z, Cardenas M, Wheeler DA, Furtado LV. A CTNNB1-altered medulloblastoma shows the immunophenotypic, DNA methylation, and transcriptomic profiles of SHH-activated, and not WNT-activated, medulloblastoma. Neuropathol Appl Neurobiol 2022; 48:e12815. [PMID: 35320876 PMCID: PMC9295902 DOI: 10.1111/nan.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/27/2022] [Accepted: 03/13/2022] [Indexed: 11/28/2022]
Abstract
Recent advancement in molecular characterisation has identified four principal molecular groups of medulloblastoma (MB), namely WNT, SHH, group 3, and group 4, and each has its characteristic clinical features, predilection for specific anatomic sites, signature genetic alterations, and distinct DNA methylome profiles [1]. Immunophenotypically, MB can be divided into WNT, SHH, and non-WNT/non-SHH groups by their expression of YAP1 and GAB1-WNT MB expresses YAP1, in addition to its characteristic nuclear b-catenin positivity, and SHH MB expresses both. In contrast, non-WNT/non-SHH MB is negative for both [2]. Thus far, CTNNB1 mutations have been considered pathognomonic of WNT MB. Furthermore, it has been shown that CTNNB1 mutations dominantly drive the WNT-activated phenotype in MB, even in the presence of alterations in the SHH pathway [3, 4].
Collapse
Affiliation(s)
| | | | | | | | | | - Zonggao Shi
- Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maria Cardenas
- Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David A Wheeler
- Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
162
|
Andrades R, Recamonde-Mendoza M. Machine learning methods for prediction of cancer driver genes: a survey paper. Brief Bioinform 2022; 23:6551145. [PMID: 35323900 DOI: 10.1093/bib/bbac062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Identifying the genes and mutations that drive the emergence of tumors is a critical step to improving our understanding of cancer and identifying new directions for disease diagnosis and treatment. Despite the large volume of genomics data, the precise detection of driver mutations and their carrying genes, known as cancer driver genes, from the millions of possible somatic mutations remains a challenge. Computational methods play an increasingly important role in discovering genomic patterns associated with cancer drivers and developing predictive models to identify these elements. Machine learning (ML), including deep learning, has been the engine behind many of these efforts and provides excellent opportunities for tackling remaining gaps in the field. Thus, this survey aims to perform a comprehensive analysis of ML-based computational approaches to identify cancer driver mutations and genes, providing an integrated, panoramic view of the broad data and algorithmic landscape within this scientific problem. We discuss how the interactions among data types and ML algorithms have been explored in previous solutions and outline current analytical limitations that deserve further attention from the scientific community. We hope that by helping readers become more familiar with significant developments in the field brought by ML, we may inspire new researchers to address open problems and advance our knowledge towards cancer driver discovery.
Collapse
Affiliation(s)
- Renan Andrades
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, Brazil.,Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre/RS, Brazil
| | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, Brazil.,Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre/RS, Brazil
| |
Collapse
|
163
|
Zhou J, Wu L, Xu P, Li Y, Ji Z, Kang X. Filamin A Is a Potential Driver of Breast Cancer Metastasis via Regulation of MMP-1. Front Oncol 2022; 12:836126. [PMID: 35359350 PMCID: PMC8962737 DOI: 10.3389/fonc.2022.836126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Recurrent metastasis is a major fatal cause of breast cancer. Regretfully, the driving force and the molecular beneath have not been fully illustrated yet. In this study, a cohort of breast cancer patients with locoregional metastasis was recruited. For them, we collected the matched samples of the primary tumor and metastatic tumor, and then we determined the mutation profiles with whole-exome sequencing (WES). On basis of the profiles, we identified a list of deleterious variants in eight susceptible genes. Of them, filamin A (FLNA) was considered a potential driver gene of metastasis, and its low expression could enhance 5 years’ relapse survival rate by 15%. To prove the finding, we constructed a stable FLNA knockout tumor cell line, which manifested that the cell abilities of proliferation, migration, and invasion were significantly weakened in response to the gene knockout. Subsequently, xenograft mouse experiments further proved that FLNA knockout could inhibit local or distal metastasis. Putting all the results together, we consolidated that FLNA could be a potential driver gene to metastasis of breast cancer, in particular triple-negative breast cancer. Additional experiments also suggested that FLNA might intervene in metastasis via the regulation of MMP-1 expression. In summary, this study demonstrates that FLNA may play as a positive regulator in cancer proliferation and recurrence. It provides new insight into breast cancer metastasis and suggests a potential new therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lvying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pengyan Xu
- Department of Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yue Li
- Department of Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Xinmei Kang, ; Zhiliang Ji,
| | - Xinmei Kang
- Department of Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Xinmei Kang, ; Zhiliang Ji,
| |
Collapse
|
164
|
Li Y, Hu M, Han L, Feng L, Yang L, Chen X, Du T, Yao H, Chen X. Case Report: Next-Generation Sequencing Identified a Novel Pair of Compound-Heterozygous Mutations of LPL Gene Causing Lipoprotein Lipase Deficiency. Front Genet 2022; 13:831133. [PMID: 35309119 PMCID: PMC8927541 DOI: 10.3389/fgene.2022.831133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein lipase deficiency (LPLD) is a rare disease characterized by the accumulation of chylomicronemia with early-onset. Common symptoms are abdominal pain, hepatosplenomegaly, eruptive xanthomas and lipemia retinalis. Serious complications include acute pancreatitis. Gene LPL is one of causative factors of LPLD. Here, we report our experience on an asymptomatic 3.5-month-old Chinese girl with only milky blood. Whole-exome sequencing was performed and identified a pair of compound-heterozygous mutations in LPL gene, c.862G>A (p.A288T) and c.461A>G (p.H154R). Both variants are predicted “deleterious” and classified as “likely pathogenic”. This study expanded the LPL mutation spectrum of disease LPLD, thereby offering exhaustive and valuable experience on early diagnosis and proper medication of LPLD.
Collapse
Affiliation(s)
- Yakun Li
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Hu
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Han
- Running Gene Inc., Beijing, China
| | - Lifang Feng
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luhong Yang
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Chen
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Du
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yao
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Chen
- Department of Endocrinology and Metabolism, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaohong Chen,
| |
Collapse
|
165
|
Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity. Am J Hum Genet 2022; 109:457-470. [PMID: 35120630 PMCID: PMC8948164 DOI: 10.1016/j.ajhg.2022.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance.
Collapse
|
166
|
Anderson D, Lassmann T. An expanded phenotype centric benchmark of variant prioritisation tools. Hum Mutat 2022; 43:539-546. [PMID: 35224813 PMCID: PMC9313608 DOI: 10.1002/humu.24362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
Identifying the causal variant for diagnosis of genetic diseases is challenging when using next‐generation sequencing approaches and variant prioritization tools can assist in this task. These tools provide in silico predictions of variant pathogenicity, however they are agnostic to the disease under study. We previously performed a disease‐specific benchmark of 24 such tools to assess how they perform in different disease contexts. We found that the tools themselves show large differences in performance, but more importantly that the best tools for variant prioritization are dependent on the disease phenotypes being considered. Here we expand the assessment to 37 tools and refine our assessment by separating performance for nonsynonymous single nucleotide variants (nsSNVs) and missense variants (i.e., excluding nonsense variants). We found differences in performance for missense variants compared to nsSNVs and recommend three tools that stand out in terms of their performance (BayesDel, CADD, and ClinPred).
Collapse
Affiliation(s)
- Denise Anderson
- Telethon Kids Institute The University of Western Australia Subiaco Western Australia 6008 Australia
| | - Timo Lassmann
- Telethon Kids Institute The University of Western Australia Subiaco Western Australia 6008 Australia
| |
Collapse
|
167
|
Identification of ultra-rare disruptive variants in voltage-gated calcium channel-encoding genes in Japanese samples of schizophrenia and autism spectrum disorder. Transl Psychiatry 2022; 12:84. [PMID: 35220405 PMCID: PMC8882172 DOI: 10.1038/s41398-022-01851-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
Several large-scale whole-exome sequencing studies in patients with schizophrenia (SCZ) and autism spectrum disorder (ASD) have identified rare variants with modest or strong effect size as genetic risk factors. Dysregulation of cellular calcium homeostasis might be involved in SCZ/ASD pathogenesis, and genes encoding L-type voltage-gated calcium channel (VGCC) subunits Cav1.1 (CACNA1S), Cav1.2 (CACNA1C), Cav1.3 (CACNA1D), and T-type VGCC subunit Cav3.3 (CACNA1I) recently were identified as risk loci for psychiatric disorders. We performed a screening study, using the Ion Torrent Personal Genome Machine (PGM), of exon regions of these four candidate genes (CACNA1C, CACNA1D, CACNA1S, CACNA1I) in 370 Japanese patients with SCZ and 192 with ASD. Variant filtering was applied to identify biologically relevant mutations that were not registered in the dbSNP database or that have a minor allele frequency of less than 1% in East-Asian samples from databases; and are potentially disruptive, including nonsense, frameshift, canonical splicing site single nucleotide variants (SNVs), and non-synonymous SNVs predicted as damaging by five different in silico analyses. Each of these filtered mutations were confirmed by Sanger sequencing. If parental samples were available, segregation analysis was employed for measuring the inheritance pattern. Using our filter, we discovered one nonsense SNV (p.C1451* in CACNA1D), one de novo SNV (p.A36V in CACNA1C), one rare short deletion (p.E1675del in CACNA1D), and 14 NSstrict SNVs (non-synonymous SNV predicted as damaging by all of five in silico analyses). Neither p.A36V in CACNA1C nor p.C1451* in CACNA1D were found in 1871 SCZ cases, 380 ASD cases, or 1916 healthy controls in the independent sample set, suggesting that these SNVs might be ultra-rare SNVs in the Japanese population. The neuronal splicing isoform of Cav1.2 with the p.A36V mutation, discovered in the present study, showed reduced Ca2+-dependent inhibition, resulting in excessive Ca2+ entry through the mutant channel. These results suggested that this de novo SNV in CACNA1C might predispose to SCZ by affecting Ca2+ homeostasis. Thus, our analysis successfully identified several ultra-rare and potentially disruptive gene variants, lending partial support to the hypothesis that VGCC-encoding genes may contribute to the risk of SCZ/ASD.
Collapse
|
168
|
Huang W, He Q, Li M, Ding Y, Liang W, Li W, Lin J, Zhao H, Chen F. Two rare variants reveal the significance of Grainyhead‐like 3 Arginine 391 underlying non‐syndromic cleft palate only. Oral Dis 2022; 29:1632-1643. [PMID: 35189007 DOI: 10.1111/odi.14164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Non-syndromic cleft palate only (NSCPO) is one of the most common craniofacial birth defects with largely undetermined genetic etiology. It has been established that Grainyhead-like 3 (GRHL3) plays an essential role in the pathogenesis of NSCPO. This study aimed to identify and verify the first-reported GRHL3 variant underlying NSCPO among the Chinese cohort. METHODS We performed whole-exome sequencing (WES) on a Chinese NSCPO patient and identified a rare variant of GRHL3 (p.Arg391His). A validated deleterious variant p.Arg391Cys was introduced as a positive control. Zebrafish embryos injection, reporter assays, live-cell imaging, and RNA sequencing were conducted to test the pathogenicity of the variants. RESULTS Zebrafish embryos microinjection demonstrated that overexpression of the variants could disrupt the normal development of zebrafish embryos. Reporter assays showed that Arg391His disturbed transcriptional activity of GRHL3 and exerted a dominant-negative effect. Interestingly, Arg391His and Arg391Cys displayed distinct nuclear localization patterns from that of wild-type GRHL3 in live-cell imaging. Bulk RNA sequencing suggested that the two variants changed the pattern of gene expression. CONCLUSIONS In aggregate, this study identified and characterized a rare GRHL3 variant in NSCPO, revealing the critical role of Arginine 391 in GRHL3. Our findings will help facilitate understanding and genetic counseling of NSCPO.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Qing He
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi’an Jiaotong University Health Science Center 710061 Xi’an, Shaanxi China
| | - Mingzhao Li
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Yi Ding
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Xi’an Jiaotong University Health Science Center 710061 Xi’an, Shaanxi China
| | - Wei Liang
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Weiran Li
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Jiuxiang Lin
- Department of Orthodontics Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi’an Jiaotong University 710004 Xi'an, Shaanxi China
- Department of Orthodontics College of Stomatology Xi’an Jiaotong University 710004 Xi’an, Shaanxi China
| | - Feng Chen
- Central laboratory Peking University School and Hospital of Stomatology 100081 Beijing China
- National Center of Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials 100081 Beijing China
| |
Collapse
|
169
|
Pujolar JM, Jacobsen MW, Bertolini F. Comparative genomics and signatures of selection in North Atlantic eels. Mar Genomics 2022; 62:100933. [PMID: 35182837 DOI: 10.1016/j.margen.2022.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Comparative genomic approaches can identify putative private and shared signatures of selection. We performed a comparative genomic study of North Atlantic eels, European eel (Anguilla Anguilla) and American eel (A. rostrata). The two sister species are nearly undistinguishable at the phenotypic level and despite a wide non-overlapping continental distribution, they spawn in partial sympatry in the Sargasso Sea. Taking advantage of the newly assembled and annotated genome, we used genome wide RAD sequencing data of 359 individuals retrieved from Sequence Nucleotide Archive and state-of-the-art statistic tests to identify putative genomic signatures of selection in North Atlantic eels. First, using the FST and XP-EHH methods, we detected apparent islands of divergence on a total of 7 chromosomes, particularly on chromosomes 6 and 10. Gene ontology analyses suggested candidate genes mainly related to energy production, development and regulation, which could reflect strong selection on traits related to eel migration and larval duration time. Gene effect prediction using SNPeff showed a high number of SNPs in noncoding regions, pointing to a possible regulatory role. Second, using the iHS method we detected shared regions under selection on a total of 11 chromosomes. Several hypotheses might account for the detection of shared islands of selection in North Atlantic eels, including parallel evolution due to adaptation to similar environments and introgression. Future comparative genomic studies will be needed to further clarify the causes and consequences of introgression, including the directionality of these introgression events.
Collapse
Affiliation(s)
- Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Magnus Wulff Jacobsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Francesca Bertolini
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
170
|
Jiang H, Wang Y, Xu H, Lei W, Yu X, Tian H, Meng C, Wang X, Zhao Z, Jin X. Identifying Actionable Variants Using Capture-Based Targeted Sequencing in 563 Patients With Non-Small Cell Lung Carcinoma. Front Oncol 2022; 11:812433. [PMID: 35186718 PMCID: PMC8854177 DOI: 10.3389/fonc.2021.812433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
Although the NSCLC diagnostic standards recommend the detection of driver gene mutation, comprehensive genomic profiling has not been used widely in clinical practice. As to the different mutation spectrum characteristics between populations, the research based on Chinese NSCLC cohort is very important for clinical practice. Therefore, we collected 563 surgical specimens from patients with non-small cell lung carcinoma and applied capture-based sequencing using eight-gene panel. We identified 556 variants, with 416 potentially actionable variants in 54.88% (309/563) patients. These single nucleotide variants, insertions and deletions were most commonly found in EGFR (55%), followed by ERBB2 (12%), KRAS (11%), PIK3CA (9%), MET (8%), BRAF (7%), DDR2 (2%), NRAS (0.3%). By using ten protein function prediction algorithms, we also identified 30 novel potentially pathogenic variants. Ninety-eight patients harbored EFGR exon 21 p.L858R mutation and the catalytic domain of the protein tyrosine kinase (PTKc) in EGFR is largely mutated. In addition, there were nine frequent pathogenic variants found in five or more patients. This data provides the potential molecular basis for directing the treatment of lung cancer.
Collapse
Affiliation(s)
- Haiping Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Lei
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyun Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiying Tian
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cong Meng
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueying Wang
- Research and Development Department, Shenzhen Byoryn Technology Co., Ltd, Shenzhen, China
| | - Zicheng Zhao
- Research and Development Department, Shenzhen Byoryn Technology Co., Ltd, Shenzhen, China
- *Correspondence: Zicheng Zhao, ; Xiangfeng Jin,
| | - Xiangfeng Jin
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Zicheng Zhao, ; Xiangfeng Jin,
| |
Collapse
|
171
|
Little A, Hu Y, Sun Q, Jain D, Broome J, Chen MH, Thibord F, McHugh C, Surendran P, Blackwell TW, Brody JA, Bhan A, Chami N, de Vries PS, Ekunwe L, Heard-Costa N, Hobbs BD, Manichaikul A, Moon JY, Preuss MH, Ryan K, Wang Z, Wheeler M, Yanek LR, Abecasis GR, Almasy L, Beaty TH, Becker LC, Blangero J, Boerwinkle E, Butterworth AS, Choquet H, Correa A, Curran JE, Faraday N, Fornage M, Glahn DC, Hou L, Jorgenson E, Kooperberg C, Lewis JP, Lloyd-Jones DM, Loos RJF, Min YI, Mitchell BD, Morrison AC, Nickerson DA, North KE, O'Connell JR, Pankratz N, Psaty BM, Vasan RS, Rich SS, Rotter JI, Smith AV, Smith NL, Tang H, Tracy RP, Conomos MP, Laurie CA, Mathias RA, Li Y, Auer PL, Thornton T, Reiner AP, Johnson AD, Raffield LM. Whole genome sequence analysis of platelet traits in the NHLBI Trans-Omics for Precision Medicine (TOPMed) initiative. Hum Mol Genet 2022; 31:347-361. [PMID: 34553764 PMCID: PMC8825339 DOI: 10.1093/hmg/ddab252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.
Collapse
Affiliation(s)
- Amarise Little
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Caitlin McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | | | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Paul S de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ani Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA 98101, USA
| | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA 98101, USA
- Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, WA 98108, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT 05446, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | - Timothy Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
172
|
Baxi EG, Thompson T, Li J, Kaye JA, Lim RG, Wu J, Ramamoorthy D, Lima L, Vaibhav V, Matlock A, Frank A, Coyne AN, Landin B, Ornelas L, Mosmiller E, Thrower S, Farr SM, Panther L, Gomez E, Galvez E, Perez D, Meepe I, Lei S, Mandefro B, Trost H, Pinedo L, Banuelos MG, Liu C, Moran R, Garcia V, Workman M, Ho R, Wyman S, Roggenbuck J, Harms MB, Stocksdale J, Miramontes R, Wang K, Venkatraman V, Holewenski R, Sundararaman N, Pandey R, Manalo DM, Donde A, Huynh N, Adam M, Wassie BT, Vertudes E, Amirani N, Raja K, Thomas R, Hayes L, Lenail A, Cerezo A, Luppino S, Farrar A, Pothier L, Prina C, Morgan T, Jamil A, Heintzman S, Jockel-Balsarotti J, Karanja E, Markway J, McCallum M, Joslin B, Alibazoglu D, Kolb S, Ajroud-Driss S, Baloh R, Heitzman D, Miller T, Glass JD, Patel-Murray NL, Yu H, Sinani E, Vigneswaran P, Sherman AV, Ahmad O, Roy P, Beavers JC, Zeiler S, Krakauer JW, Agurto C, Cecchi G, Bellard M, Raghav Y, Sachs K, Ehrenberger T, Bruce E, Cudkowicz ME, Maragakis N, Norel R, Van Eyk JE, Finkbeiner S, Berry J, Sareen D, Thompson LM, Fraenkel E, Svendsen CN, Rothstein JD. Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nat Neurosci 2022; 25:226-237. [PMID: 35115730 PMCID: PMC8825283 DOI: 10.1038/s41593-021-01006-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including fine motor activity, speech, breathing and linguistics/cognition. The iPS spinal neurons were blood derived from each patient and these cells underwent multi-omic analytics including whole-genome sequencing, RNA transcriptomics, ATAC-sequencing and proteomics. The intent of these data is for the generation of integrated clinical and biological signatures using bioinformatics, statistics and computational biology to establish patterns that may lead to a better understanding of the underlying mechanisms of disease, including subgroup identification. A web portal for open-source sharing of all data was developed for widespread community-based data analytics.
Collapse
Affiliation(s)
- Emily G Baxi
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jonathan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan G Lim
- UCI MIND, University of California, Irvine, CA, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Divya Ramamoorthy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leandro Lima
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Vineet Vaibhav
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Matlock
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Frank
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barry Landin
- Computational Biology Center, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Loren Ornelas
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elizabeth Mosmiller
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Thrower
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Lindsey Panther
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Emilda Gomez
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erick Galvez
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Perez
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imara Meepe
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Lei
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Berhan Mandefro
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hannah Trost
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Louis Pinedo
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maria G Banuelos
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chunyan Liu
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruby Moran
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Veronica Garcia
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Workman
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richie Ho
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stacia Wyman
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Matthew B Harms
- Department of Neurology and Genetics, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jennifer Stocksdale
- Department of Psychiatry and Human Behavior and Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | | | - Keona Wang
- Department of Psychiatry and Human Behavior and Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ronald Holewenski
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rakhi Pandey
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Danica-Mae Manalo
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aneesh Donde
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nhan Huynh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brook T Wassie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Edward Vertudes
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Naufa Amirani
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Krishna Raja
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben Thomas
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Lindsey Hayes
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex Lenail
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aianna Cerezo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Luppino
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alanna Farrar
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lindsay Pothier
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn Prina
- Department of Neurology and Genetics, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Arish Jamil
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Sarah Heintzman
- Department of Neurology and Genetics, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | - Jesse Markway
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Molly McCallum
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Ben Joslin
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Deniz Alibazoglu
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Stephen Kolb
- Department of Neurology and Genetics, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Robert Baloh
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Tim Miller
- Department of Neurology, Washington University, St. Louis, MO, USA
| | | | | | - Hong Yu
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ervin Sinani
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prasha Vigneswaran
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander V Sherman
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar Ahmad
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Promit Roy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jay C Beavers
- Microsoft Research, Microsoft Corporation, Redmond, WA, USA
| | - Steven Zeiler
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla Agurto
- Computational Biology Center, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Guillermo Cecchi
- Computational Biology Center, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Mary Bellard
- Microsoft University Relations, Microsoft Corporation, Redmond, WA, USA
| | - Yogindra Raghav
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karen Sachs
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tobias Ehrenberger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth Bruce
- Microsoft University Relations, Microsoft Corporation, Redmond, WA, USA
| | - Merit E Cudkowicz
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raquel Norel
- Computational Biology Center, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes and the Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - James Berry
- Department of Neurology, Healey Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dhruv Sareen
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leslie M Thompson
- UCI MIND, University of California, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior and Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Clive N Svendsen
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
173
|
Conover JL, Wendel JF. Deleterious Mutations Accumulate Faster in Allopolyploid than Diploid Cotton (Gossypium) and Unequally between Subgenomes. Mol Biol Evol 2022; 39:6517786. [PMID: 35099532 PMCID: PMC8841602 DOI: 10.1093/molbev/msac024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Whole genome duplication (polyploidization) is among the most dramatic mutational processes in nature, so understanding how natural selection differs in polyploids relative to diploids is an important goal. Population genetics theory predicts that recessive deleterious mutations accumulate faster in allopolyploids than diploids due to the masking effect of redundant gene copies, but this prediction is hitherto unconfirmed. Here, we use the cotton genus (Gossypium), which contains seven allopolyploids derived from a single polyploidization event 1-2 million years ago, to investigate deleterious mutation accumulation. We use two methods of identifying deleterious mutations at the nucleotide and amino acid level, along with whole-genome resequencing of 43 individuals spanning six allopolyploid species and their two diploid progenitors, to demonstrate that deleterious mutations accumulate faster in allopolyploids than in their diploid progenitors. We find that, unlike what would be expected under models of demographic changes alone, strongly deleterious mutations show the biggest difference between ploidy levels, and this effect diminishes for moderately and mildly deleterious mutations. We further show that the proportion of nonsynonymous mutations that are deleterious differs between the two co-resident subgenomes in the allopolyploids, suggesting that homoeologous masking acts unequally between subgenomes. Our results provide a genome-wide perspective on classic notions of the significance of gene duplication that likely are broadly applicable to allopolyploids, with implications for our understanding of the evolutionary fate of deleterious mutations. Finally, we note that some measures of selection (e.g. dN/dS, πN/πS) may be biased when species of different ploidy levels are compared.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
174
|
Quintana I, Mur P, Terradas M, García-Mulero S, Aiza G, Navarro M, Piñol V, Brunet J, Moreno V, Sanz-Pamplona R, Capellá G, Valle L. Potential Involvement of NSD1, KRT24 and ACACA in the Genetic Predisposition to Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030699. [PMID: 35158968 PMCID: PMC8833793 DOI: 10.3390/cancers14030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Methods used for the identification of hereditary cancer genes have evolved in parallel to technological progress; however, much of the genetic predisposition to cancer remains unexplained. A new in silico method based on Knudson’s two-hit hypothesis recently identified ~50 putative cancer predisposing genes, but their actual association with cancer has not yet been validated. In our study, we aimed to assess the involvement of these genes in familial/early-onset colorectal cancer (CRC) using different lines of evidence. Our results indicated that most of those genes were not associated with a genetic predisposition to CRC, but suggested a possible association for NSD1, KRT24 and ACACA. Abstract The ALFRED (Allelic Loss Featuring Rare Damaging) in silico method was developed to identify cancer predisposition genes through the identification of somatic second hits. By applying ALFRED to ~10,000 tumor exomes, 49 candidate genes were identified. We aimed to assess the causal association of the identified genes with colorectal cancer (CRC) predisposition. Of the 49 genes, NSD1, HDAC10, KRT24, ACACA and TP63 were selected based on specific criteria relevant for hereditary CRC genes. Gene sequencing was performed in 736 patients with familial/early onset CRC or polyposis without germline pathogenic variants in known genes. Twelve (predicted) damaging variants in 18 patients were identified. A gene-based burden test in 1596 familial/early-onset CRC patients, 271 polyposis patients, 543 TCGA CRC patients and >134,000 controls (gnomAD, non-cancer), revealed no clear association with CRC for any of the studied genes. Nevertheless, (non-significant) over-representation of disruptive variants in NSD1, KRT24 and ACACA in CRC patients compared to controls was observed. A somatic second hit was identified in one of 20 tumors tested, corresponding to an NSD1 carrier. In conclusion, most genes identified through the ALFRED in silico method were not relevant for CRC predisposition, although a possible association was detected for NSD1, KRT24 and ACACA.
Collapse
Affiliation(s)
- Isabel Quintana
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Virginia Piñol
- Gastroenterology Unit, Hospital Universitario de Girona Dr. Josep Trueta, 17007 Girona, Spain;
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Catalan Institute of Oncology, IDIBGi, 17007 Girona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (V.M.); (R.S.-P.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell Program, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (I.Q.); (P.M.); (M.T.); (G.A.); (M.N.); (J.B.); (G.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
175
|
Dressler L, Bortolomeazzi M, Keddar MR, Misetic H, Sartini G, Acha-Sagredo A, Montorsi L, Wijewardhane N, Repana D, Nulsen J, Goldman J, Pollitt M, Davis P, Strange A, Ambrose K, Ciccarelli FD. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource. Genome Biol 2022; 23:35. [PMID: 35078504 PMCID: PMC8790917 DOI: 10.1186/s13059-022-02607-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development. Results Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation. Conclusions Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02607-z.
Collapse
|
176
|
Emilsson V, Gudmundsdottir V, Gudjonsson A, Jonmundsson T, Jonsson BG, Karim MA, Ilkov M, Staley JR, Gudmundsson EF, Launer LJ, Lindeman JH, Morton NM, Aspelund T, Lamb JR, Jennings LL, Gudnason V. Coding and regulatory variants are associated with serum protein levels and disease. Nat Commun 2022; 13:481. [PMID: 35079000 PMCID: PMC8789809 DOI: 10.1038/s41467-022-28081-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep serum proteome survey recently revealed close associations between serum protein networks and common disease. In the current study, 54,469 low-frequency and common exome-array variants were compared to 4782 protein measurements in the serum of 5343 individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum proteins with genetic signatures overlapping those of many diseases. More specifically, using a study-wide significance threshold, we find that 2021 independent exome array variants are associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by hundreds of complex disease traits, highlighting serum proteins' emerging role as biomarkers and potential causative agents of a wide range of diseases.
Collapse
Affiliation(s)
- Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Reykjavík, Iceland.
| | | | | | | | | | - Mohd A Karim
- Wellcome Trust Sanger Institute, Welcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Marjan Ilkov
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - James R Staley
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elias F Gudmundsson
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, 20892-9205, USA
| | - Jan H Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - John R Lamb
- GNF Novartis, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Reykjavík, Iceland.
| |
Collapse
|
177
|
Rodriguez S, Celay J, Goicoechea I, Jimenez C, Botta C, Garcia-Barchino MJ, Garces JJ, Larrayoz M, Santos S, Alignani D, Vilas-Zornoza A, Perez C, Garate S, Sarvide S, Lopez A, Reinhardt HC, Carrasco YR, Sanchez-Garcia I, Larrayoz MJ, Calasanz MJ, Panizo C, Prosper F, Lamo-Espinosa JM, Motta M, Tucci A, Sacco A, Gentile M, Duarte S, Vitoria H, Geraldes C, Paiva A, Puig N, Garcia-Sanz R, Roccaro AM, Fuerte G, San Miguel JF, Martinez-Climent JA, Paiva B. Preneoplastic somatic mutations including MYD88L265P in lymphoplasmacytic lymphoma. SCIENCE ADVANCES 2022; 8:eabl4644. [PMID: 35044826 PMCID: PMC8769557 DOI: 10.1126/sciadv.abl4644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88L265P is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas.
Collapse
Affiliation(s)
- Sara Rodriguez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jon Celay
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Ibai Goicoechea
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Jimenez
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria-José Garcia-Barchino
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Juan-Jose Garces
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marta Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Susana Santos
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Diego Alignani
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sonia Garate
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sarai Sarvide
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Aitziber Lopez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Hans-Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, DKTK Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)–CSIC, Madrid, Spain
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Maria-Jose Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Maria-Jose Calasanz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Carlos Panizo
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Felipe Prosper
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Maria Lamo-Espinosa
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marina Motta
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Tucci
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Massimo Gentile
- Department of Oncohematology, “Annunziata” Hospital, Cosenza, Italy
| | - Sara Duarte
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | | | | | - Artur Paiva
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Noemi Puig
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Ramon Garcia-Sanz
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Jesus F. San Miguel
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Angel Martinez-Climent
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| |
Collapse
|
178
|
Germline sequence variants contributing to cancer susceptibility in South African breast cancer patients of African ancestry. Sci Rep 2022; 12:802. [PMID: 35039564 PMCID: PMC8763903 DOI: 10.1038/s41598-022-04791-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
Since the discovery of the breast cancer susceptibility genes, BRCA1 and BRCA2, various other genes conferring an increased risk for breast cancer have been identified. Studies to evaluate sequence variants in cancer predisposition genes among women of African ancestry are limited and mostly focused on BRCA1 and BRCA2. To characterize germline sequence variants in cancer susceptibility genes, we analysed a cohort of 165 South African women of self-identified African ancestry diagnosed with breast cancer, who were unselected for family history of cancer. With the exception of four cases, all others were previously investigated for BRCA1 and BRCA2 deleterious variants, and were negative for pathogenic variants. We utilized the Illumina TruSight cancer panel for targeted sequencing of 94 cancer susceptibility genes. A total of 3.6% of patients carried a pathogenic/likely pathogenic variant in a known breast cancer susceptibility gene: 1.2% in BRCA1, 0.6% in each of BRCA2, ATM, CHEK2 and PALB, none of whom had any family history of breast cancer. The mean age of patients who carried deleterious variant in BRCA1/BRCA2 was 39 years and 8 months compared to 47 years and 3 months among women who carried a deleterious variant in other breast cancer susceptibility genes.
Collapse
|
179
|
Jiang L, Yu H, Ness S, Mao P, Guo F, Tang J, Guo Y. Comprehensive Analysis of Co-Mutations Identifies Cooperating Mechanisms of Tumorigenesis. Cancers (Basel) 2022; 14:415. [PMID: 35053577 PMCID: PMC8774165 DOI: 10.3390/cancers14020415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Somatic mutations are one of the most important factors in tumorigenesis and are the focus of most cancer-sequencing efforts. The co-occurrence of multiple mutations in one tumor has gained increasing attention as a means of identifying cooperating mutations or pathways that contribute to cancer. Using multi-omics, phenotypical, and clinical data from 29,559 cancer subjects and 1747 cancer cell lines covering 78 distinct cancer types, we show that co-mutations are associated with prognosis, drug sensitivity, and disparities in sex, age, and race. Some co-mutation combinations displayed stronger effects than their corresponding single mutations. For example, co-mutation TP53:KRAS in pancreatic adenocarcinoma is significantly associated with disease specific survival (hazard ratio = 2.87, adjusted p-value = 0.0003) and its prognostic predictive power is greater than either TP53 or KRAS as individually mutated genes. Functional analyses revealed that co-mutations with higher prognostic values have higher potential impact and cause greater dysregulation of gene expression. Furthermore, many of the prognostically significant co-mutations caused gains or losses of binding sequences of RNA binding proteins or micro RNAs with known cancer associations. Thus, detailed analyses of co-mutations can identify mechanisms that cooperate in tumorigenesis.
Collapse
Affiliation(s)
- Limin Jiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Hui Yu
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| | - Scott Ness
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| | - Peng Mao
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan Guo
- Department of Internal Medicine, Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (S.N.); (P.M.)
| |
Collapse
|
180
|
Wirtz MK, Sykes R, Samples J, Edmunds B, Choi D, Keene DR, Tufa SF, Sun YY, Keller KE. Identification of Missense Extracellular Matrix Gene Variants in a Large Glaucoma Pedigree and Investigation of the N700S Thrombospondin-1 Variant in Normal and Glaucomatous Trabecular Meshwork Cells. Curr Eye Res 2022; 47:79-90. [PMID: 34143713 PMCID: PMC8733052 DOI: 10.1080/02713683.2021.1945109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is a complex heterogeneous disease. While several POAG genes have been identified, a high proportion of estimated heritability remains unexplained. Elevated intraocular pressure (IOP) is a leading POAG risk factor and dysfunctional extracellular matrix (ECM) in the trabecular meshwork (TM) contributes to elevated IOP. In this study, we sought to identify missense variants in ECM genes that correlate with ocular hypertensive POAG. METHODS Whole-genome sequencing was used to identify genetic variants in five members of a large POAG family (n = 68) with elevated IOP. The remaining family members were screened by Sanger sequencing. Unrelated normal (NTM) and glaucomatous (GTM) cells were sequenced for the identified variants. The ECM protein levels were determined by Western immunoblotting and confocal and electron microscopy investigated ECM ultrastructural organization. RESULTS Three ECM gene variants were significantly associated with POAG or elevated IOP in a large POAG pedigree. These included rs2228262 (N700S; thrombospondin-1 (THBS1, TSP1)), rs112913396 (D563 G; collagen type VI, alpha 3 (COL6A3)) and rs34759087 (E987K; laminin subunit beta 2 (LAMB2)). Screening of unrelated TM cells (n = 27) showed higher prevalence of the THBS1 variant but not the LAMB2 variant, in GTM cells (39%) than NTM cells (11%). The rare COL6A3 variant was not detected. TSP1 protein was upregulated and COL6A3 was down-regulated in TM cells with N700S subject to mechanical stretch, an in vitro method that mimics elevated IOP. Immunofluorescence showed increased TSP1 immunostaining in cell strains with N700S compared to wild-type TM cells. Ultrastructural studies showed ECM disorganization and altered collagen type VI distribution in GTM versus NTM cells. CONCLUSIONS Our results suggest that missense variants in ECM genes may not cause catastrophic changes to the TM, but over many years, subtle changes in ECM may accumulate and cause structural disorganization of the outflow resistance leading to elevated IOP in POAG patients.
Collapse
Affiliation(s)
- Mary K. Wirtz
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Renee Sykes
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | | | - Beth Edmunds
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Dongseok Choi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239.,OHSU-PSU School of Public Health Oregon Health & Science University, Portland, OR 97239.,Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | | | - Sara F. Tufa
- Shriners Hospitals for Children, Portland, OR 97239
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239.,To whom correspondence should be addressed: 503 494 2366,
| |
Collapse
|
181
|
Maksemous N, Blayney CD, Sutherland HG, Smith RA, Lea RA, Tran KN, Ibrahim O, McArthur JR, Haupt LM, Cader MZ, Finol-Urdaneta RK, Adams DJ, Griffiths LR. Investigation of CACNA1I Cav3.3 Dysfunction in Hemiplegic Migraine. Front Mol Neurosci 2022; 15:892820. [PMID: 35928792 PMCID: PMC9345121 DOI: 10.3389/fnmol.2022.892820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Familial hemiplegic migraine (FHM) is a severe neurogenetic disorder for which three causal genes, CACNA1A, SCN1A, and ATP1A2, have been implicated. However, more than 80% of referred diagnostic cases of hemiplegic migraine (HM) are negative for exonic mutations in these known FHM genes, suggesting the involvement of other genes. Using whole-exome sequencing data from 187 mutation-negative HM cases, we identified rare variants in the CACNA1I gene encoding the T-type calcium channel Cav3.3. Burden testing of CACNA1I variants showed a statistically significant increase in allelic burden in the HM case group compared to gnomAD (OR = 2.30, P = 0.00005) and the UK Biobank (OR = 2.32, P = 0.0004) databases. Dysfunction in T-type calcium channels, including Cav3.3, has been implicated in a range of neurological conditions, suggesting a potential role in HM. Using patch-clamp electrophysiology, we compared the biophysical properties of five Cav3.3 variants (p.R111G, p.M128L, p.D302G, p.R307H, and p.Q1158H) to wild-type (WT) channels expressed in HEK293T cells. We observed numerous functional alterations across the channels with Cav3.3-Q1158H showing the greatest differences compared to WT channels, including reduced current density, right-shifted voltage dependence of activation and inactivation, and slower current kinetics. Interestingly, we also found significant differences in the conductance properties exhibited by the Cav3.3-R307H and -Q1158H variants compared to WT channels under conditions of acidosis and alkalosis. In light of these data, we suggest that rare variants in CACNA1I may contribute to HM etiology.
Collapse
Affiliation(s)
- Neven Maksemous
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Claire D Blayney
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert A Smith
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod A Lea
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kim Ngan Tran
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Omar Ibrahim
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Larisa M Haupt
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - M Zameel Cader
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, The Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
182
|
Koenig SN, Cavus O, Williams J, Bernier M, Tonniges J, Sucharski H, Dew T, Akel M, Baker P, Madiai F, De Giorgi F, Scietti L, Faravelli S, Forneris F, Mohler PJ, Bradley EA. New mechanistic insights to PLOD1-mediated human vascular disease. Transl Res 2022; 239:1-17. [PMID: 34400365 PMCID: PMC8671190 DOI: 10.1016/j.trsl.2021.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Heritable thoracic aortic disease and familial thoracic aortic aneurysm/dissection are important causes of human morbidity/mortality, most without identifiable genetic cause. In a family with familial thoracic aortic aneurysm/dissection, we identified a missense p. (Ser178Arg) variant in PLOD1 segregating with disease, and evaluated PLOD1 enzymatic activity, collagen characteristics and in human aortic vascular smooth muscle cells, studied the effect on function. Comparison with homologous PLOD3 enzyme indicated that the pathogenic variant may affect the N-terminal glycosyltransferase domain, suggesting unprecedented PLOD1 activity. In vitro assays demonstrated that wild-type PLOD1 is capable of processing UDP-glycan donor substrates, and that the variant affects the folding stability of the glycosyltransferase domain and associated enzymatic functions. The PLOD1 substrate lysine was elevated in the proband, however the enzymatic product hydroxylysine and total collagen content was not different, albeit despite collagen fibril narrowing and preservation of collagen turnover. In VSMCs overexpressing wild-type PLOD1, there was upregulation in procollagen gene expression (secretory function) which was attenuated in the variant, consistent with loss-of-function. In comparison, si-PLOD1 cells demonstrated hypercontractility and upregulation of contractile markers, providing evidence for phenotypic switching. Together, the findings suggest that the PLOD1 product is preserved, however newly identified glucosyltransferase activity of PLOD1 appears to be affected by folding stability of the variant, and is associated with compensatory vascular smooth muscle cells phenotypic switching to support collagen production, albeit with less robust fibril girth. Future studies should focus on the impact of PLOD1 folding/variant stability on the tertiary structure of collagen and ECM interactions.
Collapse
Affiliation(s)
- Sara N Koenig
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Omer Cavus
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Jordan Williams
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Matthew Bernier
- The Ohio State University Mass Spectrometry and Proteomics Facility, Office of Research, Columbus, Ohio
| | - Jeff Tonniges
- The Ohio State University Microscopy and Imaging Facility (CMIF), Office of Research, Columbus, Ohio
| | - Holly Sucharski
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Trevor Dew
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Muhannad Akel
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Peter Baker
- Nationwide Children's Hospital, Department of Pathology, Columbus, Ohio
| | - Francesca Madiai
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Peter J Mohler
- The Ohio State University College of Medicine, Department of Physiology and Cell Biology, Columbus, Ohio; The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio
| | - Elisa A Bradley
- The Dorothy Davis Heart and Lung Research Institute and the Frick Center for Heart Failure and Arrhythmia, The Ohio State University, Columbus, Ohio; The Ohio State University College of Medicine and Wexner Medical Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Columbus, Ohio.
| |
Collapse
|
183
|
Computational Resources for the Interpretation of Variations in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:177-198. [DOI: 10.1007/978-3-030-91836-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
184
|
Pan Z, Tian H, Fang T, Liu Z, Liu X, Dou G, Huang G, Zhang Z, Chen G, Wang W, Zhuo C. OGDHL Variant rs2293239: A Potential Genetic Driver of Chinese Familial Depressive Disorder. Front Psychiatry 2022; 13:771950. [PMID: 35370858 PMCID: PMC8971628 DOI: 10.3389/fpsyt.2022.771950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Depressive disorders are a severe psychiatric and social problem that affect more than 4% of the global population. Depressive disorders have explicit hereditary characteristics; however, the precise driving genetic force behind these disorders has not yet been clearly illustrated. In the present study, we recruited a three-generation Chinese pedigree in which 5 of 17 members had long-term depression. We conducted whole-exome sequencing to identify the genetic mutation profiles of the family, and a list of susceptible genetic variations that were highly associated with depression onset was revealed via multiple omics analysis. In particular, a non-synonymous single nucleotide variation in the oxoglutarate dehydrogenase-like (OGDHL) gene, rs2293239 (p.Asn725Ser), was identified as one of the major driving genetic forces for depression onset in the family. This variant causes an important conformational change in the transketolase domain of OGDHL, thus reducing its binding affinity with the cofactor thiamine pyrophosphate and eventually resulting in the abnormal accumulation of glutamate in the brain. Brain imaging analysis further linked the rs2293239 variant with an enlarged amygdala and cerebellum in depressive family members. In summary, the present study enhances the current genetic understanding of depressive disorders. It also provides new options for prioritizing better clinical therapeutic regimens, as well as identifying a new protein target for the design of highly specific drugs to treat depressive disorders.
Collapse
Affiliation(s)
- Zhi Pan
- Key Laboratory of Genetic Psychiatry, Wenzhou Seventh People Hospital, Wenzhou, China
| | - Hongjun Tian
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Tao Fang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Zhidong Liu
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xiangdong Liu
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangqian Dou
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guoyong Huang
- Key Laboratory of Genetic Psychiatry, Wenzhou Seventh People Hospital, Wenzhou, China
| | - Zhenqing Zhang
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Guangdong Chen
- Key Laboratory of Genetic Psychiatry, Wenzhou Seventh People Hospital, Wenzhou, China
| | - Wenqiang Wang
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
185
|
Tamana S, Xenophontos M, Minaidou A, Stephanou C, Harteveld CL, Bento C, Traeger-Synodinos J, Fylaktou I, Yasin NM, Abdul Hamid FS, Esa E, Halim-Fikri H, Zilfalil BA, Kakouri AC, Kleanthous M, Kountouris P. Evaluation of in silico predictors on short nucleotide variants in HBA1, HBA2, and HBB associated with haemoglobinopathies. eLife 2022; 11:79713. [PMID: 36453528 PMCID: PMC9731569 DOI: 10.7554/elife.79713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Haemoglobinopathies are the commonest monogenic diseases worldwide and are caused by variants in the globin gene clusters. With over 2400 variants detected to date, their interpretation using the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) guidelines is challenging and computational evidence can provide valuable input about their functional annotation. While many in silico predictors have already been developed, their performance varies for different genes and diseases. In this study, we evaluate 31 in silico predictors using a dataset of 1627 variants in HBA1, HBA2, and HBB. By varying the decision threshold for each tool, we analyse their performance (a) as binary classifiers of pathogenicity and (b) by using different non-overlapping pathogenic and benign thresholds for their optimal use in the ACMG/AMP framework. Our results show that CADD, Eigen-PC, and REVEL are the overall top performers, with the former reaching moderate strength level for pathogenic prediction. Eigen-PC and REVEL achieve the highest accuracies for missense variants, while CADD is also a reliable predictor of non-missense variants. Moreover, SpliceAI is the top performing splicing predictor, reaching strong level of evidence, while GERP++ and phyloP are the most accurate conservation tools. This study provides evidence about the optimal use of computational tools in globin gene clusters under the ACMG/AMP framework.
Collapse
Affiliation(s)
- Stella Tamana
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Maria Xenophontos
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Anna Minaidou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Coralea Stephanou
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Cornelis L Harteveld
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus,Leiden University Medical CenterLeidenNetherlands
| | - Celeste Bento
- Centro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | | | - Irene Fylaktou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of AthensAthensGreece
| | - Norafiza Mohd Yasin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Health of Institutes (NIH), Ministry of Health MalaysiaSelangorMalaysia
| | - Faidatul Syazlin Abdul Hamid
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Health of Institutes (NIH), Ministry of Health MalaysiaSelangorMalaysia
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Health of Institutes (NIH), Ministry of Health MalaysiaSelangorMalaysia
| | - Hashim Halim-Fikri
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Health Campus, Universiti Sains MalaysiaKelantanMalaysia
| | - Bin Alwi Zilfalil
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains MalaysiaKelantanMalaysia
| | - Andrea C Kakouri
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | | | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Petros Kountouris
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| |
Collapse
|
186
|
Qiao Y, Chen Y, Tan C, Sun X, Chen X, Chen J. Screening and Functional Analysis of TEK Mutations in Chinese Children With Primary Congenital Glaucoma. Front Genet 2021; 12:764509. [PMID: 34956319 PMCID: PMC8703195 DOI: 10.3389/fgene.2021.764509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Purposes: Recent studies have suggested that loss-of-function mutations of the tunica intima endothelial receptor tyrosine kinase (TEK) are responsible for approximately 5% of primary congenital glaucoma (PCG) cases in diverse populations. However, the causative role of TEK mutations has not been studied in Chinese PCG patients. Here, we report the mutation spectrum of TEK after screening a large cohort of PCG patients of Chinese Han origin and analyze the identified variants in functional assays. Methods: TEK-targeted next-generation sequencing (NGS) was performed in 200 PCG patients. Candidate variants were prioritized by mutation type and allele frequency in public datasets. Plasmids containing wild type and identified variants of TEK were constructed and used to assess protein expression, solubility, receptor auto-phosphorylation, and response to ligand stimulation in cell-based assays. Results: Ten missense and one nonsense heterozygous variants were detected by NGS in 11 families. The clinical features of TEK variants carriers were comparable to that of TEK-mutated patients identified in other populations and CYP1B1-mutated individuals from in-house database. Functional analysis confirmed four variants involving evolutionarily conserved residues to be loss-of-function, while one variant (p.R1003H) located in tyrosine kinase domain seemed to be an activating mutation. However, our results did not support the pathogenicity of the other five variants (p.H52R, p.M131I, p.M228V, p.H494Y, and p.L888P). Conclusion: We provide evidence for TEK variants to be causative in Chinese PCG patients for the first time. Attention needs to be paid to TEK mutations in future genetic testing.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen Tan
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xueli Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
187
|
Sanchez Klose FP, Björnsdottir H, Dahlstrand Rudin A, Persson T, Khamzeh A, Sundqvist M, Thorbert-Mros S, Dieckmann R, Christenson K, Bylund J. A rare CTSC mutation in Papillon-Lefèvre Syndrome results in abolished serine protease activity and reduced NET formation but otherwise normal neutrophil function. PLoS One 2021; 16:e0261724. [PMID: 34932608 PMCID: PMC8691626 DOI: 10.1371/journal.pone.0261724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Papillon-Lefèvre Syndrome (PLS) is an autosomal recessive monogenic disease caused by loss-of-function mutations in the CTSC gene, thus preventing the synthesis of the protease Cathepsin C (CTSC) in a proteolytically active form. CTSC is responsible for the activation of the pro-forms of the neutrophil serine proteases (NSPs; Elastase, Proteinase 3 and Cathepsin G), suggesting its involvement in a variety of neutrophil functions. In PLS neutrophils, the lack of CTSC protease activity leads to inactivity of the NSPs. Clinically, PLS is characterized by an early, typically pre-pubertal, onset of severe periodontal pathology and palmoplantar hyperkeratosis. However, PLS is not considered an immune deficiency as patients do not typically suffer from recurrent and severe (bacterial and fungal) infections. In this study we investigated an unusual CTSC mutation in two siblings with PLS, a 503A>G substitution in exon 4 of the CTSC gene, expected to result in an amino acid replacement from tyrosine to cysteine at position 168 of the CTSC protein. Both patients bearing this mutation presented with pronounced periodontal pathology. The characteristics and functions of neutrophils from patients homozygous for the 503A>G CTSC mutation were compared to another previously described PLS mutation (755A>T), and a small cohort of healthy volunteers. Neutrophil lysates from patients with the 503A>G substitution lacked CTSC protein and did not display any CTSC or NSP activity, yet neutrophil counts, morphology, priming, chemotaxis, radical production, and regulation of apoptosis were without any overt signs of alteration. However, NET formation upon PMA-stimulation was found to be severely depressed, but not abolished, in PLS neutrophils.
Collapse
Affiliation(s)
- Felix P. Sanchez Klose
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tishana Persson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sara Thorbert-Mros
- Specialist Clinic of Periodontics, Gothenburg, Public Dental Service, Region Västra Götaland, Sweden
| | - Régis Dieckmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
188
|
Sepulveda-Yanez JH, Alvarez-Saravia D, Fernandez-Goycoolea J, Aldridge J, van Bergen CAM, Posthuma W, Uribe-Paredes R, Veelken H, Navarrete MA. Integration of Mutational Signature Analysis with 3D Chromatin Data Unveils Differential AID-Related Mutagenesis in Indolent Lymphomas. Int J Mol Sci 2021; 22:13015. [PMID: 34884820 PMCID: PMC8657711 DOI: 10.3390/ijms222313015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Activation-induced deaminase (AID) is required for somatic hypermutation in immunoglobulin genes, but also induces off-target mutations. Follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), the most frequent types of indolent B-cell tumors, are exposed to AID activity during lymphomagenesis. We designed a workflow integrating de novo mutational signatures extraction and fitting of COSMIC (Catalogue Of Somatic Mutations In Cancer) signatures, with tridimensional chromatin conformation data (Hi-C). We applied the workflow to exome sequencing data from lymphoma samples. In 33 FL and 30 CLL samples, 42% and 34% of the contextual mutations could be traced to a known AID motif. We demonstrate that both CLL and FL share mutational processes dominated by spontaneous deamination, failures in DNA repair, and AID activity. The processes had equiproportional distribution across active and nonactive chromatin compartments in CLL. In contrast, canonical AID activity and failures in DNA repair pathways in FL were significantly higher within the active chromatin compartment. Analysis of DNA repair genes revealed a higher prevalence of base excision repair gene mutations (p = 0.02) in FL than CLL. These data indicate that AID activity drives the genetic landscapes of FL and CLL. However, the final result of AID-induced mutagenesis differs between these lymphomas depending on chromatin compartmentalization and mutations in DNA repair pathways.
Collapse
MESH Headings
- Alleles
- Chromatin/metabolism
- Cytidine Deaminase/genetics
- DNA Mutational Analysis
- DNA Repair/genetics
- Databases, Genetic
- Gene Frequency
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Julieta H. Sepulveda-Yanez
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.H.S.-Y.); (C.A.M.v.B.); (H.V.)
- School of Medicine, University of Magallanes, Punta Arenas 6210427, Chile;
- Centro Asistencial Docente y de Investigación, University of Magallanes, Punta Arenas 6210005, Chile
| | - Diego Alvarez-Saravia
- School of Medicine, University of Magallanes, Punta Arenas 6210427, Chile;
- Centro Asistencial Docente y de Investigación, University of Magallanes, Punta Arenas 6210005, Chile
| | | | - Jacqueline Aldridge
- Department of Computer Engineering, University of Magallanes, Punta Arenas 6210427, Chile; (J.A.); (R.U.-P.)
| | - Cornelis A. M. van Bergen
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.H.S.-Y.); (C.A.M.v.B.); (H.V.)
| | - Ward Posthuma
- Department of Oncology, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands;
| | - Roberto Uribe-Paredes
- Department of Computer Engineering, University of Magallanes, Punta Arenas 6210427, Chile; (J.A.); (R.U.-P.)
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.H.S.-Y.); (C.A.M.v.B.); (H.V.)
| | - Marcelo A. Navarrete
- School of Medicine, University of Magallanes, Punta Arenas 6210427, Chile;
- Centro Asistencial Docente y de Investigación, University of Magallanes, Punta Arenas 6210005, Chile
| |
Collapse
|
189
|
van Rheenen W, van der Spek RAA, Bakker MK, van Vugt JJFA, Hop PJ, Zwamborn RAJ, de Klein N, Westra HJ, Bakker OB, Deelen P, Shireby G, Hannon E, Moisse M, Baird D, Restuadi R, Dolzhenko E, Dekker AM, Gawor K, Westeneng HJ, Tazelaar GHP, van Eijk KR, Kooyman M, Byrne RP, Doherty M, Heverin M, Al Khleifat A, Iacoangeli A, Shatunov A, Ticozzi N, Cooper-Knock J, Smith BN, Gromicho M, Chandran S, Pal S, Morrison KE, Shaw PJ, Hardy J, Orrell RW, Sendtner M, Meyer T, Başak N, van der Kooi AJ, Ratti A, Fogh I, Gellera C, Lauria G, Corti S, Cereda C, Sproviero D, D'Alfonso S, Sorarù G, Siciliano G, Filosto M, Padovani A, Chiò A, Calvo A, Moglia C, Brunetti M, Canosa A, Grassano M, Beghi E, Pupillo E, Logroscino G, Nefussy B, Osmanovic A, Nordin A, Lerner Y, Zabari M, Gotkine M, Baloh RH, Bell S, Vourc'h P, Corcia P, Couratier P, Millecamps S, Meininger V, Salachas F, Mora Pardina JS, Assialioui A, Rojas-García R, Dion PA, Ross JP, Ludolph AC, Weishaupt JH, Brenner D, Freischmidt A, Bensimon G, Brice A, Durr A, Payan CAM, Saker-Delye S, Wood NW, Topp S, Rademakers R, Tittmann L, Lieb W, Franke A, Ripke S, Braun A, Kraft J, Whiteman DC, Olsen CM, Uitterlinden AG, Hofman A, Rietschel M, Cichon S, Nöthen MM, Amouyel P, Traynor BJ, Singleton AB, Mitne Neto M, Cauchi RJ, Ophoff RA, Wiedau-Pazos M, Lomen-Hoerth C, van Deerlin VM, Grosskreutz J, Roediger A, Gaur N, Jörk A, Barthel T, Theele E, Ilse B, Stubendorff B, Witte OW, Steinbach R, Hübner CA, Graff C, Brylev L, Fominykh V, Demeshonok V, Ataulina A, Rogelj B, Koritnik B, Zidar J, Ravnik-Glavač M, Glavač D, Stević Z, Drory V, Povedano M, Blair IP, Kiernan MC, Benyamin B, Henderson RD, Furlong S, Mathers S, McCombe PA, Needham M, Ngo ST, Nicholson GA, Pamphlett R, Rowe DB, Steyn FJ, Williams KL, Mather KA, Sachdev PS, Henders AK, Wallace L, de Carvalho M, Pinto S, Petri S, Weber M, Rouleau GA, Silani V, Curtis CJ, Breen G, Glass JD, Brown RH, Landers JE, Shaw CE, Andersen PM, Groen EJN, van Es MA, Pasterkamp RJ, Fan D, Garton FC, McRae AF, Davey Smith G, Gaunt TR, Eberle MA, Mill J, McLaughlin RL, Hardiman O, Kenna KP, Wray NR, Tsai E, Runz H, Franke L, Al-Chalabi A, Van Damme P, van den Berg LH, Veldink JH. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 2021; 53:1636-1648. [PMID: 34873335 PMCID: PMC8648564 DOI: 10.1038/s41588-021-00973-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.
Collapse
Affiliation(s)
- Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Rick A A van der Spek
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mark K Bakker
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Paul J Hop
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ramona A J Zwamborn
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Niek de Klein
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Olivier B Bakker
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gemma Shireby
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Denis Baird
- Translational Biology, Biogen, Boston, MA, USA
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, UK
| | - Restuadi Restuadi
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | | | - Annelot M Dekker
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klara Gawor
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gijs H P Tazelaar
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kristel R van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten Kooyman
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ross P Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Mark Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nicola Ticozzi
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Bradley N Smith
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marta Gromicho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Karen E Morrison
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Richard W Orrell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Meyer
- Charité University Hospital, Humboldt University, Berlin, Germany
| | - Nazli Başak
- Koç University, School of Medicine, KUTTAM-NDAL, Istanbul, Turkey
| | | | - Antonia Ratti
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Isabella Fogh
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', MIlan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Daisy Sproviero
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Maura Brunetti
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Neurologia 1, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Maurizio Grassano
- 'Rita Levi Montalcini' Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
| | - Ettore Beghi
- Laboratory of Neurological Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisabetta Pupillo
- Laboratory of Neurological Diseases, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, University of Bari at 'Pia Fondazione Card G. Panico' Hospital, Bari, Italy
| | - Beatrice Nefussy
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alma Osmanovic
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), University Hospital Essen, Essen, Germany
| | - Angelica Nordin
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Yossef Lerner
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
| | - Michal Zabari
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
| | - Marc Gotkine
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem, Israel
| | - Robert H Baloh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Neuromuscular Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaughn Bell
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Neuromuscular Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick Vourc'h
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, Tours, France
- UMR 1253, Université de Tours, Inserm, Tours, France
| | - Philippe Corcia
- UMR 1253, Université de Tours, Inserm, Tours, France
- Centre de référence sur la SLA, CHU de Tours, Tours, France
| | - Philippe Couratier
- Centre de référence sur la SLA, CHRU de Limoges, Limoges, France
- UMR 1094, Université de Limoges, Inserm, Limoges, France
| | - Stéphanie Millecamps
- ICM, Institut du Cerveau, Inserm, CNRS, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - François Salachas
- ICM, Institut du Cerveau, Inserm, CNRS, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Centre de référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - Abdelilah Assialioui
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ricardo Rojas-García
- MND Clinic, Neurology Department, Hospital de la Santa Creu i Sant Pau de Barcelona, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jay P Ross
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Jochen H Weishaupt
- Division of Neurodegeneration, Department of Neurology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Brenner
- Division of Neurodegeneration, Department of Neurology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Axel Freischmidt
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Gilbert Bensimon
- Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière, UPMC Pharmacologie, AP-HP, Paris, France
- Pharmacologie Sorbonne Université, Paris, France
- Institut du Cerveau, Paris Brain Institute ICM, Paris, France
- Laboratoire de Biostatistique, Epidémiologie Clinique, Santé Publique Innovation et Méthodologie (BESPIM), CHU-Nîmes, Nîmes, France
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Christine A M Payan
- Département de Pharmacologie Clinique, Hôpital de la Pitié-Salpêtrière, UPMC Pharmacologie, AP-HP, Paris, France
| | | | - Nicholas W Wood
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Simon Topp
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Lukas Tittmann
- Popgen Biobank and Institute of Epidemiology, Christian Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Popgen Biobank and Institute of Epidemiology, Christian Albrechts-University Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - David C Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andre G Uitterlinden
- Department of Internal Medicine, Genetics Laboratory, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marcella Rietschel
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Central Institute of Mental Health, Mannheim, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, Bonn, Germany
- Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine INM-1, Research Center Juelich, Juelich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, Bonn, Germany
| | - Philippe Amouyel
- INSERM UMR1167-RID-AGE LabEx DISTALZ-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Centre Hospitalier of the University of Lille, Institut Pasteur de Lille, Lille, France
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Porter Neuroscience Research Center, Bethesda, MD, USA
| | | | - Ruben J Cauchi
- Centre for Molecular Medicine and Biobanking and Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Roel A Ophoff
- University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Martina Wiedau-Pazos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Vivianna M van Deerlin
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Precision Neurology Unit, Department of Neurology, University Hospital Schleswig-Holstein, University of Luebeck, Luebeck, Germany
| | | | - Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Alexander Jörk
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tabea Barthel
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Erik Theele
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Benjamin Ilse
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Robert Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lev Brylev
- Department of Neurology, Bujanov Moscow Clinical Hospital, Moscow, Russia
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Moscow, Russia
| | - Vera Fominykh
- Department of Neurology, Bujanov Moscow Clinical Hospital, Moscow, Russia
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences, Moscow, Russia
| | - Vera Demeshonok
- ALS-Care Center, 'GAOORDI', Medical Clinic of the St. Petersburg, St. Petersburg, Russia
| | - Anastasia Ataulina
- Department of Neurology, Bujanov Moscow Clinical Hospital, Moscow, Russia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Biomedical Research Institute BRIS, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Ljubljana ALS Centre, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Janez Zidar
- Ljubljana ALS Centre, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Zorica Stević
- Clinic of Neurology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vivian Drory
- Neuromuscular Diseases Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Monica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Beben Benyamin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Precision Health and Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Robert D Henderson
- Centre for Clinical Research, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Sarah Furlong
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale, Victoria, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Merrilee Needham
- Fiona Stanley Hospital, Perth, Western Australia, Australia
- Notre Dame University, Fremantle, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Shyuan T Ngo
- Centre for Clinical Research, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Garth A Nicholson
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Roger Pamphlett
- Discipline of Pathology and Department of Neuropathology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Dominic B Rowe
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- The School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuroscience Research Australia Institute, Randwick, New South Wales, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, UNSW, Randwick, New South Wales, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Pinto
- Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Vincenzo Silani
- Department of Neurology, Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Charles J Curtis
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Gerome Breen
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Jonathan D Glass
- Department Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Ewout J N Groen
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dongsheng Fan
- Department of Neurology, Third Hospital, Peking University, Beijing, China
| | - Fleur C Garton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, Bristol, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, Bristol, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kevin P Kenna
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ellen Tsai
- Translational Biology, Biogen, Boston, MA, USA
| | - Heiko Runz
- Translational Biology, Biogen, Boston, MA, USA
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- King's College Hospital, London, UK
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
190
|
Akinci A, Kara A, Özgür A, Turkkahraman D, Aksu S. Genomic analysis to screen potential genes and mutations in children with non-syndromic early onset severe obesity: a multicentre study in Turkey. Mol Biol Rep 2021; 49:1883-1893. [PMID: 34850337 DOI: 10.1007/s11033-021-06999-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Obesity is a complex genetic-based pediatric disorder which triggers life-threatening conditions. Therefore, the understanding the molecular mechanisms of obesity has been a significant approach in medicine. Computational methods allow rapid and comprehensive pathway analysis, which is important for generation of diagnosis and treatment of obesity. METHODS AND RESULTS Aims of our study are to comprehensively investigate genetic characteristics of obesity in children with non-syndromic, early-onset (< 7 years), and severe obesity (BMI-SDS > 3) through computational approaches. First, the mutational analyses of 41 of obesity-related genes in 126 children with non-syndromic early-onset severe obesity and 76 healthy non-obese controls were performed using the next generation sequencing (NGS) technique, and the NGS data analyzed by using bioinformatics methods. Then, the relationship between pathogenic variants and anthropometric/biochemical parameters was further evaluated. Obtained results demonstrated that the 15 genes (ADIPOQ, ADRB2, ADRB3, IRS1, LEPR, NPY, POMC, PPARG, PPARGC1A, PPARGC1B, PTPN1, SLC22A1, SLC2A4, SREBF1 and UCP1) which directly related to obesity found linked together via biological pathways and/or functions. Among these genes, IRS1, PPARGC1A, and SLC2A4 stand out as the most central ones. Furthermore, 12 of non-synonymous pathogenic variants, including six novels, were detected on ADIPOQ (G90S and D242G), ADRB2 (V87M), PPARGC1A (E680G, A477T, and R656H), UCP1 (Q44R), and IRS1 (R302Q, R301H, R301C, H250P, and H250N) genes. CONCLUSION We propose that 12 of non-synonymous pathogenic variations detected on ADIPOQ, ADRB2, PPARGC1A, UCP1, and IRS1 genes might have a cumulative effect on the development and progression of obesity.
Collapse
Affiliation(s)
- Aysehan Akinci
- Pediatric Endocrinology and Diabetes Department, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Altan Kara
- Genetic Engineering and Bioinformatic Department, TUBITAK Marmara Research Center, Gebze, Turkey.
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Doga Turkkahraman
- Pediatric Endocrinology Department, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| | - Soner Aksu
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Health and Technology University, İstanbul, Turkey
| |
Collapse
|
191
|
Shoda T, Kaufman KM, Wen T, Caldwell JM, Osswald GA, Purnima P, Zimmermann N, Collins MH, Rehn K, Foote H, Eby MD, Zhang W, Ben-Baruch Morgenstern N, Ballaban AY, Habel JE, Kottyan LC, Abonia JP, Mukkada VA, Putnam PE, Martin LJ, Rothenberg ME. Desmoplakin and periplakin genetically and functionally contribute to eosinophilic esophagitis. Nat Commun 2021; 12:6795. [PMID: 34815391 PMCID: PMC8611043 DOI: 10.1038/s41467-021-26939-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory disease with a complex underlying genetic etiology. Herein, we conduct whole-exome sequencing of a multigeneration EoE pedigree (discovery set) and 61 additional multiplex families with EoE (replication set). A series of rare, heterozygous, missense variants are identified in the genes encoding the desmosome-associated proteins DSP and PPL in 21% of the multiplex families. Esophageal biopsies from patients with these variants retain dilated intercellular spaces and decrease DSP and PPL expression even during disease remission. These variants affect barrier integrity, cell motility and RhoGTPase activity in esophageal epithelial cells and have increased susceptibility to calpain-14-mediated degradation. An acquired loss of esophageal DSP and PPL is present in non-familial EoE. Taken together, herein, we uncover a pathogenic role for desmosomal dysfunction in EoE, providing a deeper mechanistic understanding of tissue-specific allergic responses.
Collapse
Affiliation(s)
- Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Research, Cincinnati Veterans Affairs Medical Center, 3200 Vine St, Cincinnati, OH, 45220, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Garrett A Osswald
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Pathre Purnima
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Margaret H Collins
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Kira Rehn
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Heather Foote
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Michael D Eby
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Wenying Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Adina Y Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Jeff E Habel
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - J Pablo Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Vincent A Mukkada
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Philip E Putnam
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
192
|
Li J, Lim RG, Kaye JA, Dardov V, Coyne AN, Wu J, Milani P, Cheng A, Thompson TG, Ornelas L, Frank A, Adam M, Banuelos MG, Casale M, Cox V, Escalante-Chong R, Daigle JG, Gomez E, Hayes L, Holewenski R, Lei S, Lenail A, Lima L, Mandefro B, Matlock A, Panther L, Patel-Murray NL, Pham J, Ramamoorthy D, Sachs K, Shelley B, Stocksdale J, Trost H, Wilhelm M, Venkatraman V, Wassie BT, Wyman S, Yang S, Van Eyk JE, Lloyd TE, Finkbeiner S, Fraenkel E, Rothstein JD, Sareen D, Svendsen CN, Thompson LM. An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. iScience 2021; 24:103221. [PMID: 34746695 PMCID: PMC8554488 DOI: 10.1016/j.isci.2021.103221] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures.
Collapse
Affiliation(s)
- Jonathan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ryan G. Lim
- UCI MIND, University of California, Irvine, CA 92697, USA
| | - Julia A. Kaye
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Victoria Dardov
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Pamela Milani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Cheng
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | | | - Loren Ornelas
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Aaron Frank
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria G. Banuelos
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Malcolm Casale
- UCI MIND, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Veerle Cox
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Renan Escalante-Chong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Gavin Daigle
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Emilda Gomez
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Lindsey Hayes
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Ronald Holewenski
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Lei
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Alex Lenail
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leandro Lima
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Berhan Mandefro
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Andrea Matlock
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lindsay Panther
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | - Jacqueline Pham
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Divya Ramamoorthy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen Sachs
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brandon Shelley
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jennifer Stocksdale
- UCI MIND, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Hannah Trost
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Mark Wilhelm
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brook T. Wassie
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stacia Wyman
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, USA
| | - Stephanie Yang
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | | | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Barbra Streisand Heart Center, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thomas E. Lloyd
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MA 212056, USA
| | - Dhruv Sareen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Clive N. Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Leslie M. Thompson
- UCI MIND, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
193
|
Borges P, Pasqualim G, Matte U. Which Is the Best In Silico Program for the Missense Variations in IDUA Gene? A Comparison of 33 Programs Plus a Conservation Score and Evaluation of 586 Missense Variants. Front Mol Biosci 2021; 8:752797. [PMID: 34746235 PMCID: PMC8566697 DOI: 10.3389/fmolb.2021.752797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease characterized by the deficiency of alpha-L-iduronidase (IDUA), an enzyme involved in glycosaminoglycan degradation. More than 200 disease-causing variants have been reported and characterized in the IDUA gene. It also has several variants of unknown significance (VUS) and literature conflicting interpretations of pathogenicity. This study evaluated 586 variants obtained from the literature review, five population databases, in addition to dbSNP, Human Genome Mutation Database (HGMD), and ClinVar. For the variants described in the literature, two datasets were created based on the strength of the criteria. The stricter criteria subset had 108 variants with expression study, analysis of healthy controls, and/or complete gene sequence. The less stringent criteria subset had additional 52 variants found in the literature review, HGMD or ClinVar, and dbSNP with an allele frequency higher than 0.001. The other 426 variants were considered VUS. The two strength criteria datasets were used to evaluate 33 programs plus a conservation score. BayesDel (addAF and noAF), PON-P2 (genome and protein), and ClinPred algorithms showed the best sensitivity, specificity, accuracy, and kappa value for both criteria subsets. The VUS were evaluated with these five algorithms. Based on the results, 122 variants had total consensus among the five predictors, with 57 classified as predicted deleterious and 65 as predicted neutral. For variants not included in PON-P2, 88 variants were considered deleterious and 92 neutral by all other predictors. The remaining 124 did not obtain a consensus among predictors.
Collapse
Affiliation(s)
- Pâmella Borges
- Cell, Tissue and Gene Laboratory, Clinicas Hospital of Porto Alegre (HCPA), Porto Alegre, Brazil.,Bioinformatics Core, Experimental Research Centre, HCPA, Porto Alegre, Brazil.,Graduate Programme in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriela Pasqualim
- Genetics Laboratory, Biological Sciences Institute, Federal University of Rio Grande (FURG), Porto Alegre, Brazil
| | - Ursula Matte
- Cell, Tissue and Gene Laboratory, Clinicas Hospital of Porto Alegre (HCPA), Porto Alegre, Brazil.,Bioinformatics Core, Experimental Research Centre, HCPA, Porto Alegre, Brazil.,Graduate Programme in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Department of Genetics, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
194
|
Deaton AM, Parker MM, Ward LD, Flynn-Carroll AO, BonDurant L, Hinkle G, Akbari P, Lotta LA, Baras A, Nioi P. Gene-level analysis of rare variants in 379,066 whole exome sequences identifies an association of GIGYF1 loss of function with type 2 diabetes. Sci Rep 2021; 11:21565. [PMID: 34732801 PMCID: PMC8566487 DOI: 10.1038/s41598-021-99091-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022] Open
Abstract
Sequencing of large cohorts offers an unprecedented opportunity to identify rare genetic variants and to find novel contributors to human disease. We used gene-based collapsing tests to identify genes associated with glucose, HbA1c and type 2 diabetes (T2D) diagnosis in 379,066 exome-sequenced participants in the UK Biobank. We identified associations for variants in GCK, HNF1A and PDX1, which are known to be involved in Mendelian forms of diabetes. Notably, we uncovered novel associations for GIGYF1, a gene not previously implicated by human genetics in diabetes. GIGYF1 predicted loss of function (pLOF) variants associated with increased levels of glucose (0.77 mmol/L increase, p = 4.42 × 10–12) and HbA1c (4.33 mmol/mol, p = 1.28 × 10–14) as well as T2D diagnosis (OR = 4.15, p = 6.14 × 10–11). Multiple rare variants contributed to these associations, including singleton variants. GIGYF1 pLOF also associated with decreased cholesterol levels as well as an increased risk of hypothyroidism. The association of GIGYF1 pLOF with T2D diagnosis replicated in an independent cohort from the Geisinger Health System. In addition, a common variant association for glucose and T2D was identified at the GIGYF1 locus. Our results highlight the role of GIGYF1 in regulating insulin signaling and protecting from diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Parsa Akbari
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Luca A Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Paul Nioi
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
195
|
AlAjmi MF, Khan S, Choudhury A, Mohammad T, Noor S, Hussain A, Lu W, Eapen MS, Chimankar V, Hansbro PM, Sohal SS, Elasbali AM, Hassan MI. Impact of Deleterious Mutations on Structure, Function and Stability of Serum/Glucocorticoid Regulated Kinase 1: A Gene to Diseases Correlation. Front Mol Biosci 2021; 8:780284. [PMID: 34805284 PMCID: PMC8597711 DOI: 10.3389/fmolb.2021.780284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a Ser/Thr protein kinase involved in regulating cell survival, growth, proliferation, and migration. Its elevated expression and dysfunction are reported in breast, prostate, hepatocellular, lung adenoma, and renal carcinomas. We have analyzed the SGK1 mutations to explore their impact at the sequence and structure level by utilizing state-of-the-art computational approaches. Several pathogenic and destabilizing mutations were identified based on their impact on SGK1 and analyzed in detail. Three amino acid substitutions, K127M, T256A, and Y298A, in the kinase domain of SGK1 were identified and incorporated structurally into original coordinates of SGK1 to explore their time evolution impact using all-atom molecular dynamic (MD) simulations for 200 ns. MD results indicate substantial conformational alterations in SGK1, thus its functional loss, particularly upon T256A mutation. This study provides meaningful insights into SGK1 dysfunction upon mutation, leading to disease progression, including cancer, and neurodegeneration.
Collapse
Affiliation(s)
- Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town, South Africa
| | - Arunabh Choudhury
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
196
|
Li SH, Liu Y, Yeh CF, Fu Y, Yeung CKL, Lee CC, Chiu CC, Kuo TH, Chan FT, Chen YC, Ko WY, Yao CT. Not out of the woods yet: Signatures of the prolonged negative genetic consequences of a population bottleneck in a rapidly re-expanding wader, the black-faced spoonbill Platalea minor. Mol Ecol 2021; 31:529-545. [PMID: 34726290 DOI: 10.1111/mec.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
The long-term persistence of a population which has suffered a bottleneck partly depends on how historical demographic dynamics impacted its genetic diversity and the accumulation of deleterious mutations. Here we provide genomic evidence for the genetic effect of a recent population bottleneck in the endangered black-faced spoonbill (Platalea minor) after its rapid population recovery. Our data suggest that the bird's effective population size, Ne , had been relatively stable (7500-9000) since 22,000 years ago; however, a recent brief yet severe bottleneck (Ne = 20) which we here estimated to occur around the 1940s wiped out >99% of its historical Ne in roughly three generations. Despite a >15-fold population recovery since 1988, we found that black-faced spoonbill population has higher levels of inbreeding (7.4 times more runs of homozygosity) than its sister species, the royal spoonbill (P. regia), which is not thought to have undergone a marked population contraction. Although the two spoonbills have similar levels of genome-wide genetic diversity, our results suggest that selection on more genes was relaxed in the black-faced spoonbill; moreover individual black-faced spoonbills carry more putatively deleterious mutations (Grantham's score > 50), and may therefore express more deleterious phenotypic effects than royal spoonbills. Here we demonstrate the value of using genomic indices to monitor levels of genetic erosion, inbreeding and mutation load in species with conservation concerns. To mitigate the prolonged negative genetic effect of a population bottleneck, we recommend that all possible measures should be employed to maintain population growth of a threatened species.
Collapse
Affiliation(s)
- Shou-Hsien Li
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou, China
| | - Chia-Fen Yeh
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yuchen Fu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chun-Cheng Lee
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chi-Cheng Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Fang-Tse Chan
- Division of Zoology, Taiwan Endemic Species Research Institute, Nantou, Taiwan
| | - Yu-Chia Chen
- Department of Life Sciences, National Yanming Medical University, Taipei, Taiwan
| | - Wen-Ya Ko
- Department of Life Sciences, National Yanming Medical University, Taipei, Taiwan
| | - Cheng-Te Yao
- High Altitude Research Station, Taiwan Endemic Species Research Institute, Nantou, Taiwan
| |
Collapse
|
197
|
Zhang W, Liu Z, Lin Y, Wang R, Xu J, He Y, Zhang F, Wu L, Chen D. A novel synonymous ABCA3 variant identified in a Chinese family with lethal neonatal respiratory failure. BMC Med Genomics 2021; 14:256. [PMID: 34715861 PMCID: PMC8556997 DOI: 10.1186/s12920-021-01098-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Lethal respiratory failure is primarily caused by a deficiency of pulmonary surfactant, and is the main cause of neonatal death among preterm infants. Pulmonary surfactant metabolism dysfunction caused by variants in the ABCA3 gene is a rare disease with very poor prognosis. Currently, the mechanisms associated with some ABCA3 variants have been determined, including protein mistrafficking and impaired phospholipid transport. However, some novel variants and their underlying pathogenesis has not been fully elucidated yet. In this study we aimed to identify the genetic features in a family with lethal respiratory failure. Methods We studied members of two generations of a Chinese family, including a female proband, her parents, her monozygotic twin sister, and her older sister. Trio whole exome sequencing (WES) were used on the proband and her parents to identify the ABCA3 variants. Sanger sequencing and real-time quantitative polymerase chain reaction (PCR) were used on the monozygotic twin sister of proband to validate the ABCA3 synonymous variant and exon deletion, respectively. The potential pathogenicity of the identified synonymous variant was predicted using the splice site algorithms dbscSNV11_AdaBoost, dbscSNV11_RandomForest, and Human Splicing Finder (HSF). Results All patients showed severe respiratory distress, which could not be relieved by mechanical ventilation, supplementation of surfactant, or steroid therapy, and died at an early age. WES analysis revealed that the proband had compound heterozygous ABCA3 variants, including a novel synonymous variant c.G873A (p.Lys291Lys) in exon 8 inherited from the mother, and a heterozygous deletion of exons 4–7 inherited from the father. The synonymous variant was consistently predicted to be a cryptic splice donor site that may lead to aberrant splicing of the pre-mRNA by three different splice site algorithms. The deletion of exons 4–7 of the ABCA3 gene was determined to be a likely pathogenic variant. The variants were confirmed in the monozygotic twin sister of proband by Sanger sequencing and qPCR respectively. The older sister of proband was not available to determine if she also carried both ABCA3 variants, but it is highly likely based on her clinical course. Conclusions We identified a novel synonymous variant and a deletion in the ABCA3 gene that may be responsible for the pathogenesis in patients in this family. These results add to the known mutational spectrum of the ABCA3 gene. The study of ABCA3 variants may be helpful for the implementation of patient-specific therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01098-4.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Zhiyong Liu
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Ruiquan Wang
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Jinglin Xu
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Ying He
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Fengfeng Zhang
- Xiamen Genokon Medical Technology Co., Ltd., Xiamen, 361000, Fujian Province, China
| | - Lianqiang Wu
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| | - Dongmei Chen
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
198
|
Krasnov GS, Ghukasyan LG, Abramov IS, Nasedkina TV. Determination of the Subclonal Tumor Structure in Childhood Acute Myeloid Leukemia and Acral Melanoma by Next-Generation Sequencing. Mol Biol 2021. [DOI: 10.1134/s0026893321040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
199
|
Wu Y, Liu H, Li R, Sun S, Weile J, Roth FP. Improved pathogenicity prediction for rare human missense variants. Am J Hum Genet 2021; 108:1891-1906. [PMID: 34551312 PMCID: PMC8546039 DOI: 10.1016/j.ajhg.2021.08.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023] Open
Abstract
The success of personalized genomic medicine depends on our ability to assess the pathogenicity of rare human variants, including the important class of missense variation. There are many challenges in training accurate computational systems, e.g., in finding the balance between quantity, quality, and bias in the variant sets used as training examples and avoiding predictive features that can accentuate the effects of bias. Here, we describe VARITY, which judiciously exploits a larger reservoir of training examples with uncertain accuracy and representativity. To limit circularity and bias, VARITY excludes features informed by variant annotation and protein identity. To provide a rationale for each prediction, we quantified the contribution of features and feature combinations to the pathogenicity inference of each variant. VARITY outperformed all previous computational methods evaluated, identifying at least 10% more pathogenic variants at thresholds achieving high (90% precision) stringency.
Collapse
|
200
|
Wang M, Lee-Kim VS, Atri DS, Elowe NH, Yu J, Garvie CW, Won HH, Hadaya JE, MacDonald BT, Trindade K, Melander O, Rader DJ, Natarajan P, Kathiresan S, Kaushik VK, Khera AV, Gupta RM. Rare, Damaging DNA Variants in CORIN and Risk of Coronary Artery Disease: Insights From Functional Genomics and Large-Scale Sequencing Analyses. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003399. [PMID: 34592835 DOI: 10.1161/circgen.121.003399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Corin is a protease expressed in cardiomyocytes that plays a key role in salt handling and intravascular volume homeostasis via activation of natriuretic peptides. It is unknown if Corin loss-of-function (LOF) is causally associated with risk of coronary artery disease (CAD). METHODS We analyzed all coding CORIN variants in an Italian case-control study of CAD. We functionally tested all 64 rare missense mutations in Western Blot and Mass Spectroscopy assays for proatrial natriuretic peptide cleavage. An expanded rare variant association analysis for Corin LOF mutations was conducted in whole exome sequencing data from 37 799 CAD cases and 212 184 controls. RESULTS We observed LOF variants in CORIN in 8 of 1803 (0.4%) CAD cases versus 0 of 1725 controls (P, 0.007). Of 64 rare missense variants profiled, 21 (33%) demonstrated <30% of wild-type activity and were deemed damaging in the 2 functional assays for Corin activity. In a rare variant association study that aggregated rare LOF and functionally validated damaging missense variants from the Italian study, we observed no association with CAD-21 of 1803 CAD cases versus 12 of 1725 controls with adjusted odds ratio of 1.61 ([95% CI, 0.79-3.29]; P=0.17). In the expanded sequencing dataset, there was no relationship between rare LOF variants with CAD was also observed (odds ratio, 1.15 [95% CI, 0.89-1.49]; P=0.30). Consistent with the genetic analysis, we observed no relationship between circulating Corin concentrations with incident CAD events among 4744 participants of a prospective cohort study-sex-stratified hazard ratio per SD increment of 0.96 ([95% CI, 0.87-1.07], P=0.48). CONCLUSIONS Functional testing of missense mutations improved the accuracy of rare variant association analysis. Despite compelling pathophysiology and a preliminary observation suggesting association, we observed no relationship between rare damaging variants in CORIN or circulating Corin concentrations with risk of CAD.
Collapse
Affiliation(s)
- Minxian Wang
- Program in Medical and Population Genetics (M.W., J.E.H., P.N., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Center for Genomic Medicine (M.W., P.N., S.K., A.V.K.), Massachusetts General Hospital, Boston
| | - Vivian S Lee-Kim
- Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Divisions of Genetics and Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (V.S.L.-K., D.S.A.)
| | - Deepak S Atri
- Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Divisions of Genetics and Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (V.S.L.-K., D.S.A.)
| | - Nadine H Elowe
- Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - John Yu
- Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Colin W Garvie
- Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Gyeonggi, South Korea (H.-H.W.)
| | - Joseph E Hadaya
- Program in Medical and Population Genetics (M.W., J.E.H., P.N., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Bryan T MacDonald
- Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kevin Trindade
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.T., D.J.R.)
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Skåne, Sweden (O.M.).,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden (O.M.)
| | - Daniel J Rader
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.T., D.J.R.)
| | - Pradeep Natarajan
- Program in Medical and Population Genetics (M.W., J.E.H., P.N., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Center for Genomic Medicine (M.W., P.N., S.K., A.V.K.), Massachusetts General Hospital, Boston.,Division of Cardiology (P.N., S.K., A.V.K.), Massachusetts General Hospital, Boston
| | - Sekar Kathiresan
- Center for Genomic Medicine (M.W., P.N., S.K., A.V.K.), Massachusetts General Hospital, Boston.,Division of Cardiology (P.N., S.K., A.V.K.), Massachusetts General Hospital, Boston.,Verve Therapeutics, Cambridge, MA (S.K.)
| | - Virendar K Kaushik
- Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amit V Khera
- Program in Medical and Population Genetics (M.W., J.E.H., P.N., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Center for Genomic Medicine (M.W., P.N., S.K., A.V.K.), Massachusetts General Hospital, Boston.,Division of Cardiology (P.N., S.K., A.V.K.), Massachusetts General Hospital, Boston
| | - Rajat M Gupta
- Program in Medical and Population Genetics (M.W., J.E.H., P.N., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA.,Cardiovascular Disease Initiative (M.W., V.S.L.-K., D.S.A., N.H.E., J.Y., C.W.G., B.T.M., P.N., V.K.K., A.V.K., R.M.G.), Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|