151
|
Husen A, Iqbal M, Sohrab SS, Ansari MKA. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s40066-018-0194-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
152
|
Arabidopsis Transcription Factor MYB102 Increases Plant Susceptibility to Aphids by Substantial Activation of Ethylene Biosynthesis. Biomolecules 2018; 8:biom8020039. [PMID: 29880735 PMCID: PMC6023100 DOI: 10.3390/biom8020039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Induction of ethylene biosynthesis by aphids increases the susceptibility of several plant species to aphids. Recent studies have indicated that some MYB transcription factors regulate the phloem-based defense against aphid infestation by modulating ethylene (ET) signaling. Arabidopsis MYB102 has previously been shown to be induced by wound signaling and regulate defense response against chewing insects. However, it remains unclear whether ArabidopsisMYB102 takes part in the defense response of plants to aphids. Here, we investigated the function of MYB102 in the response of Arabidopsis to aphid infestation. ArabidopsisMYB102 was primarily expressed in vascular tissues, and its transcription was remarkably induced by green peach aphids (GPA; Myzus persicae). The results of RNA-Sequencing revealed that overexpression of MYB102 in Arabidopsis promoted ET biosynthesis by upregulation of some 1-aminocyclopropane-1-carboxylate synthase (ACS) genes, which are rate-limiting enzymes of the ET-synthetic pathway. Enhanced ET levels led to reduced Arabidopsis resistance to GPA. Furthermore, dominant suppression of MYB102 inhibited aphid-induced increase of ET levels in Arabidopsis. In agreement with a negative regulatory role for ET in aphid defense responses, the MYB102-overexpressing lines were more susceptible to GPA than wild-type (WT) plants. Overexpression of MYB102 in Arabidopsis obviously repressed aphid-induced callose deposition. Conversely, overexpression of MYB102 failed to increase aphid susceptibility in both the ET-insensitive mutants and plants treated with inhibitors of ET signaling pathways, demonstrating that the ET was critical for promoting aphid performance conferred by overexpression of MYB102. Collectively, our findings indicate that the Arabidopsis MYB102 increases host susceptibility to GPA through the ET-dependent signaling pathways.
Collapse
|
153
|
Kim J, Park SJ, Lee IH, Chu H, Penfold CA, Kim JH, Buchanan-Wollaston V, Nam HG, Woo HR, Lim PO. Comparative transcriptome analysis in Arabidopsis ein2/ore3 and ahk3/ore12 mutants during dark-induced leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3023-3036. [PMID: 29648620 PMCID: PMC5972659 DOI: 10.1093/jxb/ery137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/29/2018] [Indexed: 05/24/2023]
Abstract
Leaf senescence involves degenerative but active biological processes that require balanced regulation of pro- and anti-senescing activities. Ethylene and cytokinin are major antagonistic regulatory hormones that control the timing and progression rate of leaf senescence. To identify the roles of these hormones in the regulation of leaf senescence in Arabidopsis, global gene expression profiles in detached leaves of the wild type, an ethylene-insensitive mutant (ein2/ore3), and a constitutive cytokinin response mutant (ahk3/ore12) were investigated during dark-induced leaf senescence. Comparative transcriptome analyses revealed that genes involved in oxidative or salt stress response were preferentially altered in the ein2/ore3 mutant, whereas genes involved in ribosome biogenesis were affected in the ahk3/ore12 mutant during dark-induced leaf senescence. Similar results were also obtained for developmental senescence. Through extensive molecular and physiological analyses in ein2/ore3 and ahk3/ore12 during dark-induced leaf senescence, together with responses when treated with cytokinin and ethylene inhibitor, we conclude that ethylene acts as a senescence-promoting factor via the transcriptional regulation of stress-related responses, whereas cytokinin acts as an anti-senescing agent by maintaining cellular activities and preserving the translational machinery. These findings provide new insights into how plants utilize two antagonistic hormones, ethylene and cytokinin, to regulate the molecular programming of leaf senescence.
Collapse
Affiliation(s)
- Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Su Jin Park
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, Republic of Korea
| | - Il Hwan Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hyosub Chu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Christopher A Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | | | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| |
Collapse
|
154
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018; 6:e4752. [PMID: 29761061 PMCID: PMC5947103 DOI: 10.7717/peerj.4752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
155
|
Zhou YB, Liu C, Tang DY, Yan L, Wang D, Yang YZ, Gui JS, Zhao XY, Li LG, Tang XD, Yu F, Li JL, Liu LL, Zhu YH, Lin JZ, Liu XM. The Receptor-Like Cytoplasmic Kinase STRK1 Phosphorylates and Activates CatC, Thereby Regulating H 2O 2 Homeostasis and Improving Salt Tolerance in Rice. THE PLANT CELL 2018; 30:1100-1118. [PMID: 29581216 PMCID: PMC6002193 DOI: 10.1105/tpc.17.01000] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/21/2018] [Accepted: 03/23/2018] [Indexed: 05/19/2023]
Abstract
Salt stress can significantly affect plant growth and agricultural productivity. Receptor-like kinases (RLKs) are believed to play essential roles in plant growth, development, and responses to abiotic stresses. Here, we identify a receptor-like cytoplasmic kinase, salt tolerance receptor-like cytoplasmic kinase 1 (STRK1), from rice (Oryza sativa) that positively regulates salt and oxidative stress tolerance. Our results show that STRK1 anchors and interacts with CatC at the plasma membrane via palmitoylation. CatC is phosphorylated mainly at Tyr-210 and is activated by STRK1. The phosphorylation mimic form CatCY210D exhibits higher catalase activity both in vitro and in planta, and salt stress enhances STRK1-mediated tyrosine phosphorylation on CatC. Compared with wild-type plants, STRK1-overexpressing plants exhibited higher catalase activity and lower accumulation of H2O2 as well as higher tolerance to salt and oxidative stress. Our findings demonstrate that STRK1 improves salt and oxidative tolerance by phosphorylating and activating CatC and thereby regulating H2O2 homeostasis. Moreover, overexpression of STRK1 in rice not only improved growth at the seedling stage but also markedly limited the grain yield loss under salt stress conditions. Together, these results offer an opportunity to improve rice grain yield under salt stress.
Collapse
Affiliation(s)
- Yan-Biao Zhou
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Cong Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Dong-Ying Tang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Lu Yan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Dan Wang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yuan-Zhu Yang
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Jin-Shan Gui
- National Key Laboratory of Plant Molecular Genetics/Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Ying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Lai-Geng Li
- National Key Laboratory of Plant Molecular Genetics/Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Dan Tang
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Feng Yu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jiang-Lin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Lan-Lan Liu
- State Key Laboratory of Hybrid Rice, Yahua Seeds Science Academy of Hunan, Changsha 410119, China
| | - Yong-Hua Zhu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jian-Zhong Lin
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuan-Ming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
156
|
Wu D, Sun Y, Wang H, Shi H, Su M, Shan H, Li T, Li Q. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene 2018; 662:10-20. [PMID: 29631006 DOI: 10.1016/j.gene.2018.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/19/2022]
Abstract
NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SlNAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SlNAC8 in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, SlNAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. SlNAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering.
Collapse
Affiliation(s)
- Dandan Wu
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Yinghao Sun
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongfei Wang
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - He Shi
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Mingxing Su
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Hongyan Shan
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Tongtong Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Qiuli Li
- College of Life Sciences, Liaoning Normal University; Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China.
| |
Collapse
|
157
|
Cui J, Xu P, Meng J, Li J, Jiang N, Luan Y. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:787-800. [PMID: 29234827 DOI: 10.1007/s00122-017-3035-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/01/2017] [Indexed: 05/22/2023]
Abstract
SpWRKY3 was identified as a resistance gene to Phytophthora infestans from Solanum pimpinellifolium L3708 and its transgenic tomato showed a significant resistance to P. infestans. This finding reveals the potential application of SpWRKY3 in future molecular breeding. Transcription factors (TFs) play crucial roles in the plant response to various pathogens. In this present study, we used comparative transcriptome analysis of tomatoes inoculated with and without Phytophthora infestans to identify 1103 differentially expressed genes. Seven enrichment GO terms (level 4) associated with the plant resistance to pathogens were identified. It was found that thirty-five selected TF genes from GO enriched term, sequence-specific DNA binding transcription factor activity (GO: 0003700), were induced by P. infestans. Of these TFs, the accumulation of a homologous gene of WRKY (SpWRKY3) was significantly changed after P. infestans induction, and it was also isolated form P. infestans-resistant tomato, Solanum pimpinellifolium L3708. Overexpression of SpWRKY3 in tomato positively modulated P. infestans defense response as shown by decreased number of necrotic cells, lesion sizes and disease index, while the resistance was impaired after SpWRKY3 silencing. After P. infestans infection, the expression levels of PR genes in transgenic tomato plants overexpressed SpWRKY3 were significantly higher than those in WT, while the number of necrotic cells and the reactive oxygen species (ROS) accumulation were fewer and lower. These results suggest that SpWRKY3 induces PR gene expression and reduces the ROS accumulation to protect against cell membrane injury, leading to enhanced resistance to P. infestans. Our results provide insight into SpWRKY3 as a positive regulator involved in tomato-P. infestans interaction, and its function may enhance tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Pinsan Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jingbin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
158
|
Overexpression of a SBP-Box Gene (VpSBP16) from Chinese Wild Vitis Species in Arabidopsis Improves Salinity and Drought Stress Tolerance. Int J Mol Sci 2018; 19:ijms19040940. [PMID: 29565279 PMCID: PMC5979544 DOI: 10.3390/ijms19040940] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Salinity and drought are two major abiotic stresses that limit grape productivity. Responses to stress in grape are known to be regulated by several families of transcription factors. However, little is known about the role of grape Squamosa promoter binding protein (SBP)-box transcription factor genes in response to abiotic stress. To better understand the functions of the grape SBP-box genes in abiotic stress tolerance, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP16 was amplified from Chinese wild grapevine Vitis pseudoreticulata clone "Baihe-35-1". We observed that the VpSBP16 protein fused to the green fluorescent protein (GFP) reporter accumulated in the nucleus when transiently expressed in onion epidermal cells. Moreover, VpSBP16 was shown to have transcriptional activation activity using a yeast trans-activation assay. We performed a VpSBP16 functional analysis through the characterization of transgenic Arabidopsis thaliana plants constitutively over-expressing VpSBP16. The transgenic lines had longer roots and the seeds had a higher germination rate than the wild type (WT) under osmotic stress. In addition, the accumulation of reactive oxygen species (ROS) of transgenic seedlings was significantly lower than WT in the transgenic lines, as was electrolyte leakage. VpSBP16 overexpression also elevated expression levels of stress-response genes involved in the salt overly sensitive (SOS) pathway. These results indicate that overexpression VpSBP16 in A. thaliana enhances tolerance of salt and drought stress during seed germination, as well in seedlings and mature plants, by regulating SOS and ROS signaling cascades.
Collapse
|
159
|
Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential Regulation of Genes Involved in Root Morphogenesis and Cell Wall Modification is Associated with Salinity Tolerance in Chickpea. Sci Rep 2018; 8:4855. [PMID: 29555923 PMCID: PMC5859185 DOI: 10.1038/s41598-018-23116-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Salinity is a major constraint for intrinsically salt sensitive grain legume chickpea. Chickpea exhibits large genetic variation amongst cultivars, which show better yields in saline conditions but still need to be improved further for sustainable crop production. Based on previous multi-location physiological screening, JG 11 (salt tolerant) and ICCV 2 (salt sensitive) were subjected to salt stress to evaluate their physiological and transcriptional responses. A total of ~480 million RNA-Seq reads were sequenced from root tissues which resulted in identification of 3,053 differentially expressed genes (DEGs) in response to salt stress. Reproductive stage shows high number of DEGs suggesting major transcriptional reorganization in response to salt to enable tolerance. Importantly, cationic peroxidase, Aspartic ase, NRT1/PTR, phosphatidylinositol phosphate kinase, DREB1E and ERF genes were significantly up-regulated in tolerant genotype. In addition, we identified a suite of important genes involved in cell wall modification and root morphogenesis such as dirigent proteins, expansin and casparian strip membrane proteins that could potentially confer salt tolerance. Further, phytohormonal cross-talk between ERF and PIN-FORMED genes which modulate the root growth was observed. The gene set enrichment analysis and functional annotation of these genes suggests they may be utilised as potential candidates for improving chickpea salt tolerance.
Collapse
Affiliation(s)
- Mayank Kaashyap
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith University, Queensland, Australia
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mukesh Jain
- National Institute of Plant Genome Research, New Delhi, India
| | - Dave Edwards
- School of Plant Biology, The University of Western Australia, Perth, Australia
| | - Rajeev Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Nitin Mantri
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia.
| |
Collapse
|
160
|
Dou L, He K, Higaki T, Wang X, Mao T. Ethylene Signaling Modulates Cortical Microtubule Reassembly in Response to Salt Stress. PLANT PHYSIOLOGY 2018; 176:2071-2081. [PMID: 29431630 PMCID: PMC5841701 DOI: 10.1104/pp.17.01124] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/26/2018] [Indexed: 05/23/2023]
Abstract
Regulation of cortical microtubule reorganization is essential for plant cell survival under high salinity conditions. In response to salt stress, microtubules undergo rapid depolymerization followed by reassembly to form a new microtubule network that promotes cell survival; however, the upstream regulatory mechanisms for this recovery response are largely unknown. In this study, we demonstrate that ethylene signaling facilitates salt stress-induced reassembly of cortical microtubules in Arabidopsis (Arabidopsis thaliana). Microtubule depolymerization was not affected under salt stress following the suppression of ethylene signaling with Ag+ or in ethylene-insensitive mutants, whereas microtubule reassembly was significantly inhibited. ETHYLENE-INSENSITIVE3, a key transcription factor in the ethylene signaling pathway, was shown to play a central role in microtubule reassembly under salt stress. In addition, we performed functional characterization of the microtubule-stabilizing protein WAVE-DAMPENED2-LIKE5 (WDL5), which was found to promote ethylene-associated microtubule reassembly and plant salt stress tolerance. These findings indicate that ethylene signaling regulates microtubule reassembly by up-regulating WDL5 expression in response to salt stress, thereby implicating ethylene signaling in salt-stress tolerance in plants.
Collapse
Affiliation(s)
- Liru Dou
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - KaiKai He
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuou-ku, Kumamoto 860-8555, Japan
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
161
|
Tao JJ, Wei W, Pan WJ, Lu L, Li QT, Ma JB, Zhang WK, Ma B, Chen SY, Zhang JS. An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Sci Rep 2018; 8:2707. [PMID: 29426828 PMCID: PMC5807399 DOI: 10.1038/s41598-018-21148-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Alfin-like (AL) is a small plant-specific gene family with prominent roles in root growth and abiotic stress response. Here, we aimed to identify novel stress tolerance AL genes from the stress-tolerant species Atriplex hortensis. Totally, we isolated four AhAL genes, all encoding nuclear-localized proteins with cis-element-binding and transrepression activities. Constitutive expression of AhAL1 in Arabidopsis facilitated plants to survive under saline condition, while expressing anyone of the other three AhAL genes led to salt-hypersensitive response, indicating functional divergence of AhAL family. AhAL1 also conferred enhanced drought tolerance, as judged from enhanced survival, improved growth, decreased malonaldehyde (MDA) content and reduced water loss in AhAL1-expressing plants compared to WT. In addition, abscisic acid (ABA)-mediated stomatal closure and inhibition of seed germination and primary root elongation were enhanced in AhAL1-transgenic plants. Further analysis demonstrated that AhAL1 could bind to promoter regions of GRF7, DREB1C and several group-A PP2C genes and repress their expression. Correspondingly, the expression levels of positive stress regulator genes DREB1A, DREB2A and three ABFs were all increased in AhAL1-expressing plants. Based on these results, AhAL1 was identified as a novel candidate gene for improving abiotic stress tolerance of crop plants.
Collapse
Affiliation(s)
- Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen-Jia Pan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
162
|
Wang F, Wu N, Zhang L, Ahammed GJ, Chen X, Xiang X, Zhou J, Xia X, Shi K, Yu J, Foyer CH, Zhou Y. Light Signaling-Dependent Regulation of Photoinhibition and Photoprotection in Tomato. PLANT PHYSIOLOGY 2018; 176:1311-1326. [PMID: 29146776 PMCID: PMC5813521 DOI: 10.1104/pp.17.01143] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/13/2017] [Indexed: 05/18/2023]
Abstract
Photoreceptor-mediated light signaling plays a critical role in plant growth, development, and stress responses but its contribution to the spatial regulation of photoinhibition and photoprotection within the canopy remains unclear. Here, we show that low-red/far-red (L-R/FR) ratio light conditions significantly alleviate PSII and PSI photoinhibition in the shade leaves of tomato (Solanum lycopersicum) plants. This protection is accompanied by a phytochrome A-dependent induction of LONG HYPOCOTYL5 (HY5). HY5 binds to the promoter of ABA INSENSITIVE5 (ABI5), triggering RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1)-dependent H2O2 production in the apoplast. Decreased levels of HY5, ABI5, and RBOH1 transcripts increased cold-induced photoinhibition and abolished L-R/FR-induced alleviation of photoinhibition. L-R/FR illumination induced nonphotochemical quenching (NPQ) of chlorophyll a fluorescence and increased the activities of Foyer-Halliwell-Asada cycle enzymes and cyclic electron flux (CEF) around PSI. In contrast, decreased HY5, ABI5, and RBOH1 transcript levels abolished the positive effect of L-R/FR on photoprotection. Loss of PROTON GRADIENT REGULATION5-dependent CEF led to increased photoinhibition and attenuated L-R/FR-dependent NPQ. These data demonstrate that HY5 is an important hub in the cross talk between light and cold response pathways, integrating ABA and reactive oxygen species signaling, leading to the attenuation of photoinhibition by enhanced induction of photoprotection in shade leaves.
Collapse
Affiliation(s)
- Feng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Nan Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Luyue Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xiaoxiao Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xun Xiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, P.R. China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, P.R. China
| |
Collapse
|
163
|
Guo R, Qiao H, Zhao J, Wang X, Tu M, Guo C, Wan R, Li Z, Wang X. The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:545. [PMID: 29922304 PMCID: PMC5996931 DOI: 10.3389/fpls.2018.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 05/09/2023]
Abstract
WRKY transcription factors are known to play important roles in plant responses to various abiotic and biotic stresses. The grape WRKY gene, WRKY3 was previously reported to respond to salt and drought stress, as well as methyl jasmonate and ethylene treatments in Vitis labrusca × V. vinifera cv. 'Kyoho.' In the current study, WRKY3 from the 'Kyoho' grape cultivar was constitutively expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter. The 35S::VlWRKY3 transgenic A. thaliana plants showed improved salt and drought stress tolerance during the germination, seedling and the mature plant stages. Various physiological traits related to abiotic stress responses were evaluated to gain further insight into the role of VlWRKY3, and it was found that abiotic stress caused less damage to the transgenic seedlings than to the wild-type (WT) plants. VlWRKY3 over-expression also resulted in altered expression levels of abiotic stress-responsive genes. Moreover, the 35S::VlWRKY3 transgenic A. thaliana lines showed improved resistance to Golovinomyces cichoracearum, but increased susceptibility to Botrytis cinerea, compared with the WT plants. Collectively, these results indicate that VlWRKY3 plays important roles in responses to both abiotic and biotic stress, and modification of its expression may represent a strategy to enhance stress tolerance in crops.
Collapse
Affiliation(s)
- Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hengbo Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Jiao Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- *Correspondence: Zhi Li, Xiping Wang,
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- *Correspondence: Zhi Li, Xiping Wang,
| |
Collapse
|
164
|
Xu Z, Raza Q, Xu L, He X, Huang Y, Yi J, Zhang D, Shao HB, Ma H, Ali Z. GmWRKY49, a Salt-Responsive Nuclear Protein, Improved Root Length and Governed Better Salinity Tolerance in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:809. [PMID: 29997634 PMCID: PMC6028721 DOI: 10.3389/fpls.2018.00809] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/25/2018] [Indexed: 05/21/2023]
Abstract
Plant WRKY transcription factors (TFs) are active guardians against pathogens' insurgency, key components in developmental processes, contributors in signal transduction pathways, and regulators of diverse biotic and abiotic stress responses. In this research, we isolated, cloned, and functionally characterized a new WRKY TF GmWRKY49 from soybean. GmWRKY49 is a nuclear protein which contains two highly conserved WRKY domains and a C2H2-type zinc-finger structure. The normalized expression (log2 ratio) of GmWRKY49 was 2.75- and 1.90-fold in salt-tolerant and salt-susceptible soybean genotypes, respectively. The transcripts of GmWRKY49 could be detected in roots, stems, leaves, flowers, and almost no expression in pod tissues. The salinity-tolerance response of this gene was studied through overexpression in soybean composite seedlings and transgenic Arabidopsis. The effect of GmWRKY49 overexpression on root length of transgenic Arabidopsis was also investigated. Under salt stress, several parameters including germination rate, survival rate, root length, rosette diameter, relative electrolyte leakage, and proline content were significantly higher in composite seedlings and transgenic Arabidopsis than those in wild-type. Moreover, GmWRKY49 enhanced salinity tolerance in soybean mosaic seedlings and transgenic Arabidopsis. These results suggest that GmWRKY49 is a positive regulator of salinity tolerance in soybean and has high potential utilization for crop improvement.
Collapse
Affiliation(s)
- Zhaolong Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qasim Raza
- Department of Plant Breeding and Genetics, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- Rice Research Institute, Kala Shah Kaku, Pakistan
| | - Ling Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaolan He
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yihong Huang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinxin Yi
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dayong Zhang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hong-Bo Shao
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
- *Correspondence: Hong-Bo Shao, Hongxiang Ma, Zulfiqar Ali,
| | - Hongxiang Ma
- Institute of Grain Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Hong-Bo Shao, Hongxiang Ma, Zulfiqar Ali,
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
- *Correspondence: Hong-Bo Shao, Hongxiang Ma, Zulfiqar Ali,
| |
Collapse
|
165
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018. [PMID: 29761061 DOI: 10.7287/peerj.preprints.26860v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
166
|
Yang YX, Wu C, Ahammed GJ, Wu C, Yang Z, Wan C, Chen J. Red Light-Induced Systemic Resistance Against Root-Knot Nematode Is Mediated by a Coordinated Regulation of Salicylic Acid, Jasmonic Acid and Redox Signaling in Watermelon. FRONTIERS IN PLANT SCIENCE 2018; 9:899. [PMID: 30042771 PMCID: PMC6048386 DOI: 10.3389/fpls.2018.00899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 02/05/2023]
Abstract
Red light (RL) can stimulate plant defense against foliar diseases; however, its role in activation of systemic defense against root diseases remains unclear. Here, the effect of RL on root knot nematode Meloidogyne incognita (RKN) infestation was investigated in watermelon plants (Citrullus lanatus L.). Plants were exposed to 200 μmol m-2 s-1 photosynthetic photon flux density RL at the canopy level for 21 days using light-emitting photodiodes. The results showed that RL significantly suppressed gall formation and nematode development, which was closely associated with the RL-induced attenuation of oxidative stress in roots. Gene expression analysis showed that RL caused a transient upregulation of PR1 and WRKY70 transcripts at 7 days post inoculation in RKN-infected plants. Further investigation revealed that RL-induced systemic defense against RKN was attributed to increased jasmonic acid (JA) and salicylic acid (SA) content, and transcript levels of their biosynthetic genes in roots. Interestingly, while malondialdehyde content decreased, H2O2 accumulation increased in RL-treated RKN-plants, indicating a potential signaling role of H2O2 in mediating RL-induced systemic defense. Furthermore, analysis of enzymatic and non-enzymatic antidoxidants revealed that RL-induced enhanced defense agaist RKN was also attributed to increased activities of antioxidant enzymes as well as redox homeostasis. Taken together, these findings suggest that RL could enhance systemic resistance against RKN, which is mediated by a coordinated regulation of JA- and SA-dependent signaling, antioxidants, and redox homeostasis in watermelon plants.
Collapse
Affiliation(s)
- You-xin Yang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chaoqun Wu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Golam J. Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Caijun Wu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zemao Yang
- Germplasm Lab, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Pingxiang University, Pingxiang, China
- *Correspondence: Jinyin Chen,
| |
Collapse
|
167
|
Xie R, Pan X, Zhang J, Ma Y, He S, Zheng Y, Ma Y. Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Funct Integr Genomics 2017; 18:155-173. [DOI: 10.1007/s10142-017-0582-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
|
168
|
Hu Y, Wu Q, Peng Z, Sprague SA, Wang W, Park J, Akhunov E, Jagadish KSV, Nakata PA, Cheng N, Hirschi KD, White FF, Park S. Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Sci Rep 2017; 7:15950. [PMID: 29162892 PMCID: PMC5698295 DOI: 10.1038/s41598-017-16230-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/09/2017] [Indexed: 12/02/2022] Open
Abstract
Glutaredoxins (GRXs) modulate redox-dependent signaling pathways and have emerged as key mediators in plant responses to environmental stimuli. Here we report that RNAi-mediated suppression of Oryza sativa GRXS17 (OsGRXS17) improved drought tolerance in rice. Gene expression studies showed that OsGRXS17 was present throughout the plant and that transcript abundance increased in response to drought stress and abscisic acid (ABA) treatment. Localization studies, utilizing GFP-OsGRXS17 fusion proteins, indicated that OsGRXS17 resides in both the cytoplasm and the nuclear envelope. Under drought stress conditions, rice plants with reduced OsGRXS17 expression showed lower rates of water loss and stomatal conductance, higher relative water content, and enhanced survival compared to wild-type controls. Further characterization of the OsGRXS17 down-regulated plants revealed an elevation in H2O2 production within the guard cells, increased sensitivity to ABA, and a reduction in stomatal apertures. The findings demonstrate a critical link between OsGRXS17, the modulation of guard cell H2O2 concentrations, and stomatal closure, expanding our understanding of the mechanisms governing plant responses to drought.
Collapse
Affiliation(s)
- Ying Hu
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, 66506, USA.,Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Qingyu Wu
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, 66506, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhao Peng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.,Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Stuart A Sprague
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jungeun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Paul A Nakata
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ninghui Cheng
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kendal D Hirschi
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. .,Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA.
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
169
|
Lv X, Ge S, Jalal Ahammed G, Xiang X, Guo Z, Yu J, Zhou Y. Crosstalk between Nitric Oxide and MPK1/2 Mediates Cold Acclimation-induced Chilling Tolerance in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:1963-1975. [PMID: 29036450 DOI: 10.1093/pcp/pcx134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The participation of nitric oxide (NO) in the responses of plants towards biotic and abiotic stresses is well established. However, the mechanism involved particularly in cold acclimation-induced chilling tolerance remains elusive. Here we show the cold acclimation induced-chilling tolerance was associated with inductions of nitrate reductase (NR)-dependent NO production, S-nitrosylated glutathione reductase (GSNOR) activity and mitogen-activated protein kinases MPK1/2 activation in tomato plants. Silencing of NR resulted in decreased GSNOR activity and MPK1/2 activation, which subsequently compromised cold acclimation-induced chilling tolerance. By contrast, silencing of GSNOR caused decreased NR activity, increased NO accumulation and MPK1/2 activation, and enhanced cold acclimation-induced chilling tolerance. Furthermore, co-silencing of MPK1 and MPK2 attenuated the NR-dependent NO production and cold acclimation-induced tolerance to chilling. Results from present study suggest the importance of MPK1/2 for the induction of NR-dependent NO generation, while the accumulation of nitrosylated glutathione from NO-derived reactive nitrogen species could potentially S-nitrosylate NR. These findings provide new insight into the crosstalk of NO and MPK1/2 in cold acclimation-induced chilling tolerance in tomato plants.
Collapse
Affiliation(s)
- Xiangzhang Lv
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shibei Ge
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xun Xiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
170
|
Sen S, Chakraborty J, Ghosh P, Basu D, Das S. Chickpea WRKY70 Regulates the Expression of a Homeodomain-Leucine Zipper (HD-Zip) I Transcription Factor CaHDZ12, which Confers Abiotic Stress Tolerance in Transgenic Tobacco and Chickpea. PLANT & CELL PHYSIOLOGY 2017; 58:1934-1952. [PMID: 29016956 DOI: 10.1093/pcp/pcx126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Drought and salinity are the two major environmental constraints that severely affect global agricultural productivity. Plant-specific HD-Zip transcription factors are involved in plant growth, development and stress responses. In the present study, we explored the functional characteristics and regulation of a novel HD-Zip (I) gene from chickpea, CaHDZ12, in response to water-deficit and salt-stress conditions. Transgenic tobacco lines over-expressing CaHDZ12 exhibited improved tolerance to osmotic stresses and increased sensitivity to abscisic acid (ABA). Physiological compatibility of transgenic lines was found to be more robust compared to the wild-type plants under drought and salinity stress. Additionally, expression of several stress-responsive genes was significantly induced in CaHDZ12 transgenic plants. On the other hand, silencing of CaHDZ12 in chickpea resulted in increased sensitivity to salt and drought stresses. Analysis of different promoter deletion mutants identified CaWRKY70 transcription factor as a transcriptional regulator of CaHDZ12 expression. In vivo and in vitro interaction studies detected an association between CaWRKY70 and CaHDZ12 promoter during stress responses. Epigenetic modifications underlying histone acetylation at the CaHDZ12 promoter region play a significant role in stress-induced activation of this gene. Collectively, our study describes a crucial and unique mechanistic link between two distinct transcription factors in regulating plant adaptive stress response.
Collapse
Affiliation(s)
- Senjuti Sen
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata-700054, West Bengal, India
| | - Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata-700054, West Bengal, India
| | - Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata-700054, West Bengal, India
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata-700054, West Bengal, India
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata-700054, West Bengal, India
| |
Collapse
|
171
|
Zhang M, Zhang GQ, Kang HH, Zhou SM, Wang W. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2017; 58:1673-1688. [PMID: 29016965 DOI: 10.1093/pcp/pcx101] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 07/15/2017] [Indexed: 05/25/2023]
Abstract
High salinity is one of the most severe environmental stresses and limits the growth and yield of diverse crop plants. We isolated a gene named TaPUB1 from wheat (Triticum aestivum L. cv HF9703) that encodes a novel protein containing a U-box domain, the precursor RNA processing 19p (Prp19) superfamily and WD-40 repeats. Real-time reverse transcription-PCR analysis showed that TaPUB1 transcript accumulation was up-regulated by high salinity, drought and phytohormones, suggesting that it plays a role in the abiotic-related defense response. We overexpressed TaPUB1 in Nicotiana benthamiana to evaluate the function of TaPUB1 in the regulation of the salt stress response. Transgenic N. benthamiana plants (OE) with constitutively overexpressed TaPUB1 under the control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter exhibited a higher germination rate, less growth inhibition, less Chl loss and higher photosynthetic capacity than wild-type (WT) plants under salt stress conditions. These results demonstrated the increased tolerance of OE plants to salt stress compared with the WT. The OE plants had lower osmotic potential (OP), reduced Na+ toxicity and less reactive oxygen species accumulation compared with the WT, which may be related to their higher level of osmolytes, lower Na+/K+ ratio and higher antioxidant enzyme activities under salt stress conditions. Consistent with these results, the up-regulated expression of osmic- and antioxidant-related genes in OE plants indicated a role for TaPUB1 in plant salt tolerance.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guang-Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Han-Han Kang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shu-Mei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
172
|
Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z, Ye W. GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 2017; 12:e0181450. [PMID: 28723926 PMCID: PMC5517032 DOI: 10.1371/journal.pone.0181450] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 12/03/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.), an important source of natural fiber, can tolerate relatively high salinity and drought stresses. In the present study, a plasma membrane Na+/H+ antiporter gene, GhSOS1, was cloned from a salt-tolerant genotype of G. hirsutum, Zhong 9807. The expression level of GhSOS1 in cotton roots was significantly upregulated in the presence of high concentrations of NaCl (200 mM), while its transcript abundance was increased when exposed to low temperature and drought stresses. Localization analysis using onion epidermal cells showed that the GhSOS1 protein was localized to the plasma membrane. The overexpression of GhSOS1 in Arabidopsis enhanced tolerance to salt stress, as indicated by a lower MDA content and decreased Na+/K+ ratio in transgenic plants. Moreover, the transcript levels of stress-related genes were significantly higher in GhSOS1 overexpression lines than in wild-type plants under salt treatment. Hence, GhSOS1 may be a potential target gene for enhancing salt tolerance in transgenic plants.
Collapse
Affiliation(s)
- Xiugui Chen
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Xiaoning Guo
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Weili Fan
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
173
|
Gao F, Zhou J, Deng RY, Zhao HX, Li CL, Chen H, Suzuki T, Park SU, Wu Q. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:81-90. [PMID: 28460279 DOI: 10.1016/j.jplph.2017.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/28/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is a traditional coarse cereal that exhibits strong plasticity in its adaptation to harsh and complicated environmental stresses. In an attempt to study the strong tolerance of tartary buckwheat, the FtMYB9 gene, which encodes an R2R3-MYB transcription factor protein, was functionally investigated. FtMYB9 expression was rapidly and strongly induced by ABA, cold, salt, and drought treatments in the seedling stage. A yeast one-hybrid system assay indicated that FtMYB9 is an activator of transcriptional activity, consistent with its roles as a transcription factor. Its overexpression in plants resulted in increased sensitivity to ABA at the germination and seedling stages compared to wild type. The overexpression of FtMYB9 increased tolerance to drought and salt stresses by the activation of some stress-related genes from both ABA-independent and ABA-dependent pathways in transgenic Arabidopsis. Furthermore, enhanced proline content and the activation of the P5CS1 gene implied that FtMYB9 may be involved in proline synthesis in plants. Collectively, these results suggest that FtMYB9 functions as a novel R2R3-MYB TF which plays positive roles in salt and drought tolerance by regulating different stress-responsive signaling pathways.
Collapse
Affiliation(s)
- Fei Gao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan Province, China
| | - Jing Zhou
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan Province, China
| | - Ren-Yu Deng
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan Province, China
| | - Hai-Xia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan Province, China
| | - Cheng-Lei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan Province, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan Province, China
| | - Tatsuro Suzuki
- Kyushu Okinawa Agricultural Research Center, NARO, Japan
| | - Sang-Un Park
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Gung-Dong, South Korea
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014 Sichuan Province, China.
| |
Collapse
|
174
|
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, Tang X. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate. BMC Genomics 2017; 18:444. [PMID: 28587595 PMCID: PMC5461738 DOI: 10.1186/s12864-017-3825-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/28/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Lamprosema indicate is a major leaf feeding insect pest to soybean, which has caused serious yield losses in central and southern China. To explore the defense mechanisms of soybean resistance to Lamprosema indicate, a highly resistant line (Gantai-2-2) and a highly susceptible line (Wan 82-178) were exposed to Lamprosema indicate larval feedings for 0 h and 48 h, and the differential proteomic analyses of these two lines were carried out. RESULTS The results showed that 31 differentially expressed proteins (DEPs) were identified in the Gantai-2-2 when comparing 48 h feeding with 0 h feeding, and 53 DEPs were identified in the Wan 82-178. 28 DEPs were identified when comparing Gantai-2-2 with Wan 82-178 at 0 h feeding. The bioinformatic analysis results showed that most of the DEPs were associated with ribosome, linoleic acid metabolism, flavonoid biosynthesis, phenylpropanoid biosynthesis, peroxisome, stilbenoid, diarylheptanoid and gingerol biosynthesis, glutathione metabolism, pant hormone signal transduction, and flavone and flavonol biosynthesis, as well as other resistance related metabolic pathways. The MRM analysis showed that the iTRAQ results were reliable. CONCLUSIONS According to the analysis of the DEPs results, the soybean defended or resisted the Lamprosema indicate damage by the induction of a synthesis of anti-digestive proteins which inhibit the growth and development of insects, reactive oxygen species scavenging, signaling pathways, secondary metabolites synthesis, and so on.
Collapse
Affiliation(s)
- Weiying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zudong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhaoyan Cai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Huaizhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Zhenguang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Shouzhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| | - Xiangmin Tang
- Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007 China
| |
Collapse
|
175
|
de Carvalho M, Acencio ML, Laitz AVN, de Araújo LM, de Lara Campos Arcuri M, do Nascimento LC, Maia IG. Impacts of the overexpression of a tomato translationally controlled tumor protein (TCTP) in tobacco revealed by phenotypic and transcriptomic analysis. PLANT CELL REPORTS 2017; 36:887-900. [PMID: 28260122 DOI: 10.1007/s00299-017-2117-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE Overexpression of a tomato TCTP impacts plant biomass production and performance under stress. These phenotypic alterations were associated with the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. The translationally controlled tumor protein (TCTP) is a multifaceted and highly conserved eukaryotic protein. In plants, despite the existence of functional data implicating this protein in cell proliferation and growth, the detailed physiological roles of many plant TCTPs remain poorly understood. Here we focused on a yet uncharacterized TCTP from tomato (SlTCTP). We show that, when overexpressed in tobacco, SlTCTP may promote plant biomass production and affect performance under salt and osmotic stress. Transcriptomic analysis of the transgenic plants revealed the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. This induced photosynthetic gene expression was paralleled by an increase in the photosynthetic rate and stomatal conductance of the transgenic plants. Moreover, the transcriptional modulation of genes involved in ABA-mediated regulation of stomatal movement was detected. On the other hand, genes playing a pivotal role in ethylene biosynthesis were found to be down-regulated in the transgenic lines, thus suggesting deregulated ethylene accumulation in these plants. Overall, these results point to a role of TCTP in photosynthesis and hormone signaling.
Collapse
Affiliation(s)
- Márcio de Carvalho
- Departamento de Genética, Instituto de Biociências, UNESP, Botucatu, SP, 18618-970, Brazil
| | - Márcio Luís Acencio
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu, SP, Brazil
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, 8905, MH 7491, Norway
| | | | | | | | - Leandro Costa do Nascimento
- Laboratório Central de Tecnologias de Alto Desempenho em Ciências da Vida (LaCTAD), UNICAMP, Campinas, SP, Brazil
| | - Ivan G Maia
- Departamento de Genética, Instituto de Biociências, UNESP, Botucatu, SP, 18618-970, Brazil.
| |
Collapse
|
176
|
Gharbi E, Martínez JP, Benahmed H, Hichri I, Dobrev PI, Motyka V, Quinet M, Lutts S. Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:77-89. [PMID: 28330565 DOI: 10.1016/j.plantsci.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 05/14/2023]
Abstract
A holistic approach was used to investigate the hormonal profile in relation with osmotic adjustment under salinity in Solanum lycopersicum and its halophyte wild relative Solanum chilense. Plants were subjected to 125mM NaCl for 7days. Solanum chilense displayed a contrasting behaviour comparatively to S. lycopersicum, not only for mineral nutrition, but also regarding the modalities of osmotic adjustment and phytohormonal profiling. The extent of osmotic adjustment was higher in S. chilense than in S. lycopersicum. Ions K+ and Na+ were the major contributors of osmotic adjustment in S. chilense, accounting respectively for 47 and 60% of osmotic potential. In contrast the contributions of proline and soluble sugars remained marginal for the two species although salt-induced accumulation of proline was higher in S. lycopersicum than in S. chilense. Both species also differed for their hormonal status under salinity and concentrations of most hormonal compounds were higher in S. chilense than in S. lycopersicum. Interestingly, salicylic acid, ethylene and cytokinins were positively correlated with osmotic potential in S. chilense under salinity while these hormones were negatively correlated with osmotic adjustment in S. lycopersicum. Our results suggested that the capacity to use inorganic ions as osmotica may improve salt resistance in S.chilense and that phytohormones could be involved in this process.
Collapse
Affiliation(s)
- Emna Gharbi
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium; Laboratoire d'Ecologie végétale, Faculté des Sciences, Université de Tunis El Manar, Tunisia
| | | | - Hela Benahmed
- Laboratoire d'Ecologie végétale, Faculté des Sciences, Université de Tunis El Manar, Tunisia
| | - Imène Hichri
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Petre I Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Muriel Quinet
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
177
|
Marriboina S, Sengupta D, Kumar S, Reddy AR. Physiological and molecular insights into the high salinity tolerance of Pongamia pinnata (L.) pierre, a potential biofuel tree species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:102-111. [PMID: 28330553 DOI: 10.1016/j.plantsci.2017.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 05/23/2023]
Abstract
Soil salinity is gradually becoming a threat to the global economy by affecting agricultural productivity worldwide. Here, we analyze the salinity tolerance of Pongamia pinnata with an insight into the underlying physiological and molecular responses. Despite a reduction in net photosynthetic rate, P. pinnata efficiently maintained its leaf water potentials even at 500mM NaCl for 15days and displayed no visible stress symptoms. Na+ localization analysis using CoroNa-Green AM revealed effective Na+ sequestration in the roots when compared to leaves. Elemental analysis demonstrated that roots accumulated more of Na+ while K+ content was higher in leaves. At the molecular level, salt stress significantly induced the expression levels of salt overly sensitive1 (SOS1), SOS2, SOS3, high affinity K+ transporter (HKT1), ABA biosynthetic and receptor genes (NCED and PYL4), guaiacol peroxidase (POD) exclusively in roots while tonoplast localized Na+/H+ exchanger (NHX1) was significantly enhanced in leaves. Our results clearly demonstrate that leaves and roots of Pongamia exhibit differential responses under salt stress although roots are more efficient in sequestering the Na+ ions. The present study provides crucial inputs for understanding salt tolerance in a tree species which can be further utilized for developing salt tolerance in higher plants.
Collapse
Affiliation(s)
- Sureshbabu Marriboina
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debashree Sengupta
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Sumit Kumar
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Attipalli R Reddy
- Photosynthesis and Stress Biology Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
178
|
Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R. EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 2017; 7:44637. [PMID: 28300216 PMCID: PMC5353744 DOI: 10.1038/srep44637] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Ethylene biosynthesis and the ethylene signaling pathway regulate plant salt tolerance by activating the expression of downstream target genes such as those related to ROS and Na+/K+ homeostasis. The Salt Overly Sensitive (SOS) pathway regulates Na+/K+ homeostasis in Arabidopsis under salt stress. However, the connection between these two pathways is unclear. Through genetic screening, we identified two sos2 alleles as salt sensitive mutants in the ein3-1 background. Neither Ethylene-Insensitive 2 (EIN2) nor EIN3 changed the expression patterns of SOS genes including SOS1, SOS2, SOS3 and SOS3-like Calcium Binding Protein 8 (SCaBP8), but SOS2 activated the expression of one target gene of EIN3, Ethylene and Salt-inducible ERF 1 (ESE1). Moreover, Ser/Thr protein kinase SOS2 phosphorylated EIN3 in vitro mainly at the S325 site and weakly at the S35, T42 and S606 sites. EIN3 S325A mutation reduced its transcriptional activating activity on ESE1 promoter:GUS in a transient GUS assay, and impaired its ability to rescue ein3-1 salt hypersensitivity. Furthermore, SOS2 activated salt-responsive ESE1 target gene expression under salt stress. Therefore, EIN3-SOS2 might link the ethylene signaling pathway and the SOS pathway in Arabidopsis salt responses.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Dexin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| |
Collapse
|
179
|
Connolly BM, Guiden PW, Orrock JL. Past freeze-thaw events onPinusseeds increase seedling herbivory. Ecosphere 2017. [DOI: 10.1002/ecs2.1748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Brian M. Connolly
- Department of Zoology; University of Wisconsin; 250 N. Mills Street Madison Wisconsin 53706 USA
| | - Peter W. Guiden
- Department of Zoology; University of Wisconsin; 250 N. Mills Street Madison Wisconsin 53706 USA
| | - John L. Orrock
- Department of Zoology; University of Wisconsin; 250 N. Mills Street Madison Wisconsin 53706 USA
| |
Collapse
|
180
|
Song T, Xu H, Sun N, Jiang L, Tian P, Yong Y, Yang W, Cai H, Cui G. Metabolomic Analysis of Alfalfa ( Medicago sativa L.) Root-Symbiotic Rhizobia Responses under Alkali Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1208. [PMID: 28744296 PMCID: PMC5504246 DOI: 10.3389/fpls.2017.01208] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/26/2017] [Indexed: 05/03/2023]
Abstract
Alkaline salts (e.g., NaHCO3 and Na2CO3) causes more severe morphological and physiological damage to plants than neutral salts (e.g., NaCl and Na2SO4) due to differences in pH. The mechanism by which plants respond to alkali stress is not fully understood, especially in plants having symbotic relationships such as alfalfa (Medicago sativa L.). Therefore, a study was designed to evaluate the metabolic response of the root-nodule symbiosis in alfalfa under alkali stress using comparative metabolomics. Rhizobium-nodulized (RI group) and non-nodulized (NI group) alfalfa roots were treated with 200 mmol/L NaHCO3 and, roots samples were analyzed for malondialdehydyde (MDA), proline, glutathione (GSH), superoxide dismutase (SOD), and peroxidase (POD) content. Additionally, metabolite profiling was conducted using gas chromatography combined with time-of-flight mass spectrometry (GC/TOF-MS). Phenotypically, the RI alfalfa exhibited a greater resistance to alkali stress than the NI plants examined. Physiological analysis and metabolic profiling revealed that RI plants accumulated more antioxidants (SOD, POD, GSH), osmolytes (sugar, glycols, proline), organic acids (succinic acid, fumaric acid, and alpha-ketoglutaric acid), and metabolites that are involved in nitrogen fixation. Our pairwise metabolomics comparisons revealed that RI alfalfa plants exhibited a distinct metabolic profile associated with alkali putative tolerance relative to NI alfalfa plants. Data provide new information about the relationship between non-nodulized, rhizobium-nodulized alfalfa and alkali resistance.
Collapse
Affiliation(s)
- Tingting Song
- College of Animal Sciences and Technology, Northeast Agricultural UniversityHarbin, China
| | - Huihui Xu
- College of Life Sciences, Northeast Agricultural UniversityHarbin, China
| | - Na Sun
- College of Life Sciences, Northeast Agricultural UniversityHarbin, China
| | - Liu Jiang
- College of Life Sciences, Northeast Agricultural UniversityHarbin, China
| | - Pu Tian
- College of Life Sciences, Northeast Agricultural UniversityHarbin, China
| | - Yueyuan Yong
- College of Life Sciences, Northeast Agricultural UniversityHarbin, China
| | - Weiwei Yang
- College of Life Sciences, Northeast Agricultural UniversityHarbin, China
| | - Hua Cai
- College of Life Sciences, Northeast Agricultural UniversityHarbin, China
- *Correspondence: Hua Cai
| | - Guowen Cui
- College of Animal Sciences and Technology, Northeast Agricultural UniversityHarbin, China
- Guowen Cui
| |
Collapse
|
181
|
Ghosh R, Gururani MA, Ponpandian LN, Mishra RC, Park SC, Jeong MJ, Bae H. Expression Analysis of Sound Vibration-Regulated Genes by Touch Treatment in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:100. [PMID: 28197168 PMCID: PMC5281610 DOI: 10.3389/fpls.2017.00100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Sound vibration (SV) is considered to be a mechanical stimulus which gives rise to various physiological and molecular changes in plants. Previously, we identified 17 SV-regulated genes (SRGs) which were up-regulated by SV treatments in Arabidopsis. Here, we analyzed the expression pattern of similar genes after an exposure of 500 Hertz at 80 decibels, for various time periods. Simultaneously, we confirmed the SV-mediated expression of these genes under lighted condition as many of them were reported to be dark-induced. For this, we designed an improved SV treatment chamber. Additionally, we checked the electrolyte leakage (EL), photosynthetic performance and expression of mechanosensitive (MS) ion channel genes after 5 days of SV treatment in the illuminated chamber. EL was higher, and the photosynthetic performance index was lower in the SV-treated plants compared to control. Seven out of the 13 MS ion channel genes were differentially expressed after the SV treatment. Simultaneously, we checked the touch-mediated expression pattern of 17 SRGs and 13 MS ion channel genes. The distinct expression pattern of 6 SRGs and 1 MS ion channel gene generate an idea that SV as a stimulus is different from touch. Developmental stage-specific expression profiling suggested that the majority of the SRGs were expressed spatiotemporally in different developmental stages of Arabidopsis, especially in imbibed seed, seedlings and leaves.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Department of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Mayank A. Gururani
- Department of Biology, College of Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | | | - Ratnesh C. Mishra
- Department of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Soo-Chul Park
- National Institute of Agricultural Sciences, Rural Development AdministrationWanju, South Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Sciences, Rural Development AdministrationWanju, South Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
- *Correspondence: Hanhong Bae,
| |
Collapse
|
182
|
Gong W, Xu F, Sun J, Peng Z, He S, Pan Z, Du X. iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:2113. [PMID: 29326733 PMCID: PMC5733471 DOI: 10.3389/fpls.2017.02113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/27/2017] [Indexed: 05/21/2023]
Abstract
Cotton yields are greatly reduced under high salinity stress conditions, although cotton is considered a moderately salt-tolerant crop. Understanding at the molecular level how cotton responds to salt stress will help in developing salt tolerant varieties. Here, we combined physiological analysis with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics of seedling leaves of 2 genotypes differing in salinity tolerance to 200 mM (18.3 dS/m) NaCl stress. Salt stress produced significant stress symptoms in the sensitive genotype Nan Dan Ba Di Da Hua (N), including lower relative water and chlorophyll contents and higher relative electrolyte leakage and Na+/K+ ratio in leaf samples, compared with those in the tolerant genotype Earlistaple 7 (Z). A total of 58 differentially abundant salt-responsive proteins were identified. Asp-Glu-Ala-Asp (DEAD)-box ATP-dependent RNA helicase 3 and protochlorophyllide reductase were markedly suppressed after salt treatment, whereas the phosphate-related differentially abundant proteins (DAPs) phosphoethanolamine N-methyltransferase 1 and 14-3-3-like protein E were induced, and all these proteins may play significant roles in salt stress. Twenty-nine salt-responsive proteins were also genotype specific, and 62.1 and 27.6% of these were related to chloroplast and defense responses, respectively. Based on the Arabidopsis thaliana protein interaction database, orthologs of 25 proteins showed interactions in Arabidopsis, and among these, a calmodulin protein was predicted to have 212 functional partners. In addition, the Golgi apparatus and calcium may be important for salt secretion in cotton. Through integrative proteome and transcriptome analysis, 16 DAPs were matched to differentially expressed genes and verified using qRT-PCR. On the basis of these findings, we proposed that some proteins related to chloroplast, ATP, ribosomal, and phosphate metabolism as well as to the Golgi apparatus and calcium may play key roles in the short-term salt stress response of cotton seedling leaves.
Collapse
|
183
|
Zhang L, Zhang L, Xia C, Gao L, Hao C, Zhao G, Jia J, Kong X. A Novel Wheat C-bZIP Gene, TabZIP14-B, Participates in Salt and Freezing Tolerance in Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:710. [PMID: 28536588 PMCID: PMC5422549 DOI: 10.3389/fpls.2017.00710] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 05/19/2023]
Abstract
The group C-bZIP transcription factors (TFs) are involved in diverse biological processes, such as the regulation of seed storage protein (SSP) production and the responses to pathogen challenge and abiotic stress. However, our knowledge of the abiotic functions of group C-bZIP genes in wheat remains limited. Here, we present the function of a novel TabZIP14-B gene in wheat. This gene belongs to the group C-bZIP TFs and contains six exons and five introns; three haplotypes were identified among accessions of tetraploid and hexaploid wheat. A subcellular localization analysis indicated that TabZIP14-B was targeted to the nucleus of tobacco epidermal cells. A transactivation assay demonstrated that TabZIP14-B showed transcriptional activation ability and was capable of binding the abscisic acid (ABA) responsive element (ABRE) in yeast. RT-qPCR revealed that TabZIP14-B was expressed in the roots, stems, leaves, and young spikes and was up-regulated by exogenous ABA, salt, low-temperature, and polyethylene glycol (PEG) stress treatments. Furthermore, Arabidopsis plants overexpressing TabZIP14-B exhibited enhanced tolerance to salt, freezing stresses and ABA sensitivity. Overexpression of TabZIP14-B resulted in increased expression of the AtRD29A, AtCOR47, AtRD20, AtGSTF6, and AtRAB18 genes and changes in several physiological characteristics. These results suggest that TabZIP14-B could function as a positive regulator in mediating the abiotic stress response.
Collapse
Affiliation(s)
- Lina Zhang
- School of Life Science, Northwest Normal UniversityLanzhou, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Lichao Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chuan Xia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Lifeng Gao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guangyao Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jizeng Jia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiuying Kong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Xiuying Kong,
| |
Collapse
|
184
|
Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA. Short Term Effect of Salt Shock on Ethylene and Polyamines Depends on Plant Salt Sensitivity. FRONTIERS IN PLANT SCIENCE 2017; 8:855. [PMID: 28588603 PMCID: PMC5440749 DOI: 10.3389/fpls.2017.00855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/08/2017] [Indexed: 05/08/2023]
Abstract
In the present manuscript the short term effect (3-24 h) of a saline shock (NaCl 100 mM) on fresh weight, water content, respiration rate, ethylene production and Na+, Cl-, ACC and polyamine concentration was studied in four plant species with different salt sensitivity, pepper, lettuce, spinach, and beetroot. Higher reduction in fresh weight and water content as a consequence of saline shock was found in pepper and lettuce plants than in spinach and beetroot, the latter behaving as more salinity tolerant. In general, salinity led to rapid increases in respiration rate, ethylene production and ACC and polyamine (putrescine, spermidine, and spermine) concentrations in shoot and root. These increases were related to plant salinity sensitivity, since they were higher in the most sensitive species and vice versa. However, ethylene and respiration rates in salt stressed plants recovered similar values to controls after 24 h of treatment in salt tolerant plants, while still remaining high in the most sensitive. On the other hand, sudden increases in putrescine, spermidine, and spermine concentration were higher and occurred earlier in pepper and lettuce, the most sensitive species, than in spinach and beetroot, the less sensitive ones. These increases tended to disappear after 24 h, except in lettuce. These changes would support the conclusion that ethylene and polyamine increases could be considered as a plant response to saline shock and related to the plant species sensitivity to this stress. In addition, no competition between polyamines and ethylene biosynthesis for their common precursor was observed.
Collapse
Affiliation(s)
- Pedro J. Zapata
- Departamento de Tecnología Agroalimentaria, Universidad Miguel HernándezOrihuela, Spain
| | - María Serrano
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - Manuel F. García-Legaz
- Departamento de Agroquímica y Medioambiente, Universidad Miguel HernándezOrihuela, Spain
| | - M. T. Pretel
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
| | - M. A. Botella
- Departamento de Biología Aplicada, Universidad Miguel HernándezOrihuela, Spain
- *Correspondence: M. A. Botella,
| |
Collapse
|
185
|
Dou M, Fan S, Yang S, Huang R, Yu H, Feng X. Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice. Int J Mol Sci 2016; 18:ijms18010002. [PMID: 28025485 PMCID: PMC5297637 DOI: 10.3390/ijms18010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.
Collapse
Affiliation(s)
- Mingzhu Dou
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Sanhong Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Rongfeng Huang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Huiyun Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xianzhong Feng
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
186
|
Wang BQ, Liu JH, Gong XQ, Long CA, Li GH. Characterization of the expression of the stress-responsive PpERS1 gene from peach and analysis of its promoter using transgenic tomato. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:383-393. [PMID: 31274999 PMCID: PMC6587038 DOI: 10.5511/plantbiotechnology.16.1102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/02/2016] [Indexed: 06/09/2023]
Abstract
The PpERS1 gene, which encodes an ethylene receptor and responds to abiotic and biotic stresses, was cloned from peach (Prunus persica L. Batsch cv Okubao). The genomic DNA sequence of PpERS1 comprises seven exons which are separated by six introns, interestingly alternative splicing of the first intron produced three different PpERS1 transcripts. In addition, a 2.8-kb sequence including the promoter of PpERS1 was isolated and analyzed by placing expressing of the GUS reporter gene under its control. Several putative cis-elements were identified in the promoter of PpERS1, including two ethylene-responsive elements (EREs), five W boxes, and four putative binding sites for MYB-type transcription factors. Deletion analysis indicated the presence of an enhancer element in the PpERS1 promoter. Temporal and spatial expression analysis of the PpERS1 promoter using histochemical GUS staining showed GUS activity in all tissues examined throughout the development of transgenic tomato plants. Exposure to various stresses caused similar changes in expression patterns in peach and transgenic tomato plants. Overall, our results suggested that PpERS1 gene might play important roles in response to multiple stresses via signal transduction mediated by ethylene receptors. The characterization of the PpERS1 promoter contributes to our understanding of the transcriptional regulation of this ethylene receptor in peach.
Collapse
Affiliation(s)
- Bao-Quan Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Qing Gong
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-An Long
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| | - Guo-Huai Li
- Key Laboratory of Horticultural Plant Biology of Ministry of Education College of Horticulture and Forestry Sciences Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
187
|
Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Sci Rep 2016; 6:36867. [PMID: 27845361 PMCID: PMC5109278 DOI: 10.1038/srep36867] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023] Open
Abstract
The involvement of ethylene and abscisic acid in providing stress tolerance and defence response to plants is widely recognized. However, little is known about the cross-talk between glutathione with ethylene and abscisic acid to combat stress in planta. Here, transcriptome analysis of combined cold and osmotic stress treated Arabidopsis mutants were carried out to elucidate the crosstalk between the abscisic acid, ethylene and glutathione. Microarray experiment revealed the differential regulation of about 2313 and 4131 transcripts in ein2 (ethylene insensitive mutant) and aba1.6 (abscisic acid mutant) respectively. Functional analysis exposed common down-regulated stress and defence, secondary metabolite biosynthesis viz. phenylpropanoid, lignin and flavonols, redox and transcription factors related genes in ein2, aba1.6 and pad2.1 (glutathione mutant) in response to combined stress treatment. The reduced glutathione content was less in stress treated mutants in comparison to Col-0. Again, selective down-regulated transcripts in stress treated mutants were noted up-regulated after glutathione feeding. Some of the important differentially expressed genes were also validated by comparative proteomics analysis of stress treated mutants. In summary, our results suggested the role of ethylene and abscisic acid in inducing stress-responsive genes and proteins by activating glutathione biosynthesis to combat abiotic stress conditions in plant system.
Collapse
|
188
|
Comparative transcriptome profiling of chilling tolerant rice chromosome segment substitution line in response to early chilling stress. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0471-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
189
|
Tu M, Wang X, Feng T, Sun X, Wang Y, Huang L, Gao M, Wang Y, Wang X. Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:311-323. [PMID: 27717468 DOI: 10.1016/j.plantsci.2016.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 05/03/2023]
Abstract
Drought is one of the most serious factors that limit agricultural productivity and there is considerable interest in understanding the molecular bases of drought responses and their regulation. While numbers of basic leucine zipper (bZIP) transcription factors (TFs) are known to play key roles in response of plants to various abiotic stresses, only a few group K bZIP TFs have been functionally characterized in the context of stress signaling. In this study, we characterized the expression of the grape (Vitis vinifera) group K bZIP gene, VlbZIP36, and found evidence for its involvement in response to drought and the stress-associated phytohormone abscisic acid (ABA). Transgenic Arabidopsis thaliana lines over-expressing VlbZIP36 under the control of a constitutive promoter showed enhanced dehydration tolerance during the seed germination stage, as well as in the seedling and mature plant stages. The results indicated that VlbZIP36 plays a role in drought tolerance by improving the water status, through limiting water loss, and mitigating cellular damage. The latter was evidenced by reduced cell death, lower electrolyte leakage in the transgenic plants, as well as by increased activities of antioxidant enzymes. We concluded that VlbZIP36 enhances drought tolerance through the transcriptional regulation of ABA-/stress-related genes.
Collapse
Affiliation(s)
- Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tongying Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaomeng Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaqiong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
190
|
Islam F, Ali B, Wang J, Farooq MA, Gill RA, Ali S, Wang D, Zhou W. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:82-95. [PMID: 27258572 DOI: 10.1016/j.plaphy.2016.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 04/30/2023]
Abstract
Plants are simultaneously exposed to a combination of biotic and abiotic stresses in field conditions. Crops respond to the combined stress in a unique way which cannot be understood by extrapolating the results of individual stress. In the present study, effects of individual and combined stress of herbicide (2,4-dichlorophenoxyacetic acid) and salinity (NaCl) on two Oryza sativa cultivars (ZJ 88 and XS 134) were investigated. Both herbicide and saline stress affected the plant growth differentially and produced oxidative stress in rice cultivars. Interestingly, the combination of herbicide and salinity showed a significant protection to both rice cultivars by reducing ROS (H2O2, O2(-)) and lipid peroxidation through modulation of enzymatic (SOD, POD, CAT and APX) and non-enzymatic (TSP, sugars, phenolic and proline) antioxidants. In addition, active regulation of transcript levels of genes encoding Na(+) and K(+) (OsHKT1;5, OsLti6a,b, OsHKT2;1, OsSOS1, OsCNGC1, OsNHX1 and OsAKT1) transporter proteins reduced sodium and enhanced potassium accumulation under combined stress, resulted a better growth and ionic homeostasis in both rice cultivars. The production of ABA and IAA was significantly higher in cultivar XS 134 compared to cultivar ZJ 88 under control conditions. However, combined herbicide and saline stress enhanced the accumulation of phytohormones (IAA and ABA) and transcription of ethylene in cultivar ZJ 88, which might be one of the factors responsible for poor salt tolerance in sensitive cultivar. These findings indicated that herbicide application under saline stress confers tolerance to salinity in rice cultivars, likely by reducing oxidative damage, modulating mineral absorption, upgradation of antioxidant defense and by dynamic regulation of key genes involved in Na(+) and K(+) homeostasis in plants.
Collapse
Affiliation(s)
- Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Rafaqat A Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Danying Wang
- R&D Center of Rice Production Technology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
191
|
Zhang M, Smith JAC, Harberd NP, Jiang C. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:651-9. [PMID: 27233644 DOI: 10.1007/s11103-016-0488-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
192
|
Wang H, Sun Y, Chang J, Zheng F, Pei H, Yi Y, Chang C, Dong CH. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. PLANT MOLECULAR BIOLOGY 2016; 91:471-484. [PMID: 27097903 DOI: 10.1007/s11103-016-0482-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.
Collapse
Affiliation(s)
- Honglin Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yue Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhong Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Fangfang Zheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haixia Pei
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanjun Yi
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
193
|
Yao W, Wang L, Zhou B, Wang S, Li R, Jiang T. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:23-31. [PMID: 27123829 DOI: 10.1016/j.jplph.2016.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 05/21/2023]
Abstract
Ethylene response factors (ERFs) belong to a large plant-specific transcription factor family, which play a significant role in plant development and stress responses. Poplar ERF76 gene, a member of ERF TF family, can be up-regulated in response to salt stress, osmotic stress, and ABA treatment. The ERF76 protein was confirmed to be targeted preferentially in the nucleus of onion cell by particle bombardment. In order to understand the functions of ERF76 gene in salt stress response, we conducted temporal and spatial expression analysis of ERF76 gene in poplar. Then the ERF76 cDNA fragment containing an ORF was cloned from di-haploid Populus simonii×P. nigra and transferred into tobacco (Nicotiana tobacum) genome by Agrobacterium-mediated leaf disc method. Under salt stress, transgenic tobacco over-expressing ERF76 gene showed a significant increase in seed germination rate, plant height, root length, and fresh weight, as well as in relative water content (RWC), superoxide dismutase (SOD) activity, peroxidase (POD) activity, and proline content, compared to control tobacco lines. In contrast, transgenic tobacco lines displayed a decrease in malondialdehyde (MDA) accumulation, relative electrical conductivity (REC) and reactive oxygen species (ROS) accumulation in response to salt stress, compared to control tobacco lines. Over all, the results indicated that ERF76 gene plays a critical role in salt tolerance in transgenic tobacco.
Collapse
Affiliation(s)
- Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Lei Wang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Shengji Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Renhua Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China.
| |
Collapse
|
194
|
Park HJ, Kim WY, Yun DJ. A New Insight of Salt Stress Signaling in Plant. Mol Cells 2016; 39:447-59. [PMID: 27239814 PMCID: PMC4916396 DOI: 10.14348/molcells.2016.0083] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
- Institute of Agriculture & Life Sciences, Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| |
Collapse
|
195
|
Herrera Paredes S, Lebeis SL. Giving back to the community: microbial mechanisms of plant–soil interactions. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12684] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sur Herrera Paredes
- Department of Biology Howard Hughes Medical Institute, Curriculum in Bioinformatics and Computational Biology University of North Carolina Chapel Hill North Carolina 27599‐3280 USA
| | - Sarah L. Lebeis
- Department of Microbiology University of Tennessee Knoxville Tennessee 37996‐0845 USA
| |
Collapse
|
196
|
Li YH, Wu QS, Huang X, Liu SH, Zhang HN, Zhang Z, Sun GM. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. FRONTIERS IN PLANT SCIENCE 2016; 7:710. [PMID: 27252725 PMCID: PMC4878293 DOI: 10.3389/fpls.2016.00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/09/2016] [Indexed: 05/29/2023]
Abstract
Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon.
Collapse
Affiliation(s)
- Yun-He Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of AgricultureZhanjiang, China
| | - Qing-Song Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Xia Huang
- The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Sheng-Hui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Hong-Na Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Zhi Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Guang-Ming Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| |
Collapse
|
197
|
Aloisi I, Parrotta L, Ruiz KB, Landi C, Bini L, Cai G, Biondi S, Del Duca S. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts. FRONTIERS IN PLANT SCIENCE 2016; 7:656. [PMID: 27242857 PMCID: PMC4870233 DOI: 10.3389/fpls.2016.00656] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/28/2016] [Indexed: 05/27/2023]
Abstract
Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.
Collapse
Affiliation(s)
- Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| | - Karina B. Ruiz
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
- Departamento de Producción Agrícola, Universidad de ChileSantiago, Chile
| | - Claudia Landi
- Department of Life Sciences, University of SienaSiena, Italy
| | - Luca Bini
- Department of Life Sciences, University of SienaSiena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of SienaSiena, Italy
| | - Stefania Biondi
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of BolognaBologna, Italy
| |
Collapse
|
198
|
Jiang G, Yin D, Zhao J, Chen H, Guo L, Zhu L, Zhai W. The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight. Sci Rep 2016; 6:26104. [PMID: 27185545 PMCID: PMC4868969 DOI: 10.1038/srep26104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/26/2016] [Indexed: 11/08/2022] Open
Abstract
Thylakoid membrane-bound ascorbate peroxidase (tAPX) is a major H2O2-scavenging enzyme. To clarify its functions in tolerance to rice bacterial blight, we produced rice lines overexpressing and suppressing tAPX (OsAPX8). The overexpressing lines exhibited increased tolerance to bacterial pathogen. The RNA interference (RNAi) lines were considerably more sensitive than the control plant. Further analysis of the H2O2 content in these transgenic plants indicated that the H2O2 accumulation of OsAPX8-overexpressing plants was considerably less than that of wild-type and RNAi plants upon challenge with bacterial pathogen. Interestingly, H2O2 was the most important factor for the serious leaf dehydration and withering of rice without major resistance genes and was not the cause of hypersensitivity. It addition, wall tightening or loosening can occur according to the level of H2O2. In addition, OsAPX8 interacted with the susceptibility protein Os8N3/Xa13, and their binding repressed the reaction of OsAPX8 in tolerance to bacterial blight.
Collapse
Affiliation(s)
- Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dedong Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiying Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Honglin Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lequn Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
199
|
Zhai Y, Zhang L, Xia C, Fu S, Zhao G, Jia J, Kong X. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants. Biochem Biophys Res Commun 2016; 473:1321-1327. [PMID: 27091431 DOI: 10.1016/j.bbrc.2016.04.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/26/2022]
Abstract
Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Yiqian Zhai
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lichao Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuan Xia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Silu Fu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangyao Zhao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
200
|
Yu Y, Wang J, Shi H, Gu J, Dong J, Deng XW, Huang R. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination. PLANT PHYSIOLOGY 2016; 170:2340-50. [PMID: 26850275 PMCID: PMC4825130 DOI: 10.1104/pp.15.01724] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production.
Collapse
Affiliation(s)
- Yanwen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Juan Wang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Hui Shi
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Juntao Gu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Jingao Dong
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Xing Wang Deng
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Rongfeng Huang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| |
Collapse
|