151
|
Li W, Zhang C, Lu Q, Wen X, Lu C. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1743-52. [PMID: 21663998 DOI: 10.1016/j.jplph.2011.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 05/19/2023]
Abstract
Under natural conditions or in the field, plants are often subjected to a combination of different stresses such as salt stress and heat shock. Although salt stress and heat shock have been extensively studied, little is known about how their combination affects plants. We used proteomics, coupled with physiological measurements, to investigate the effect of salt stress, heat shock, and their combination on Suaeda salsa plants. A combination of salt stress and heat shock resulted in suppression of CO(2) assimilation and the photosystem II efficiency. Approximately 440 protein spots changed their expression levels upon salt stress, heat shock and their combination, and 57 proteins were identified by MS. These proteins were classified into several categories including disease/defense, photosynthesis, energy production, material transport, and signal transduction. Some proteins induced during salt stress, e.g. choline monooxygenase, chloroplastic ATP synthase subunit beta, and V-type proton ATPase catalytic subunit A, and some proteins induced during heat shock, e.g. heat shock 70kDa protein, probable ion channel DMI1, and two component sensor histidine kinase, were either unchanged or suppressed during a combination of salt stress and heat shock. In contrast, the expression of some proteins, including nucleoside diphosphate kinase 1, chlorophyll a/b binding protein, and ABC transporter I family member 1, was specifically induced during a combination of salt stress and heat shock. The potential roles of the stress-responsive proteins are discussed.
Collapse
Affiliation(s)
- Wei Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | | | | | | | | |
Collapse
|
152
|
Li J, Wang X, Zhang Y, Jia H, Bi Y. cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots. PLANTA 2011; 234:709-22. [PMID: 21617988 DOI: 10.1007/s00425-011-1439-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/09/2011] [Indexed: 05/07/2023]
Abstract
3',5'-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na(+)/K(+) ratio and a decrease in gene expression of the plasma membrane (PM) H(+)-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H(2)O(2) or CaCl(2) alleviated the NaCl-induced injury by maintaining a lower Na(+)/K(+) ratio and increasing the PM H(+)-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H(2)O(2) by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H(2)O(2) on ionic homeostasis was abolished when Ca(2+) was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, a Ca(2+) chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H(2)O(2) accumulation in salt stress, and Ca(2+) was necessary in the cGMP-mediated signaling pathway. H(2)O(2), as the downstream component of cGMP signaling pathway, stimulated PM H(+)-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.
Collapse
Affiliation(s)
- Jisheng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
153
|
Hu T, Li HY, Zhang XZ, Luo HJ, Fu JM. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2050-6. [PMID: 21813179 DOI: 10.1016/j.ecoenv.2011.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/04/2023]
Abstract
Two-month old seedlings of perennial ryegrass (Lolium perenne L.) were subjected to four different levels of salinity for 7 days. The NaCl treatments reduced turf quality and normalized transpiration rates. Both chlorophyll (Chl) a and Chl b contents decreased in the grass exposed to 255 mM relative to the control. An increase in the lipid peroxidationin was observed. The activity of leaf superoxide dismutase increased while, peroxidase and catalase activities decreased in response to NaCl treatments. The expression of Chl Cu/ZnSOD, Cyt Cu/ZnSOD, FeSOD, CAT, POD, GPX and GR was up-regulated for NaCl-treated grass. Salt stress increased accumulation of Na(+) and decreased K(+)/Na(+) ratio, Mg(2+) and P content in both shoots and roots of perennial ryegrass. The findings of this study suggest that salt stress may cause toxicity to perennial ryegrass through oxidative injury and damage to Chl and cell membrane integrity.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City, Hubei 430074, PR China
| | | | | | | | | |
Collapse
|
154
|
Kushwaha HR, Kumar G, Verma PK, Singla-Pareek SL, Pareek A. Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:996-1004. [PMID: 21482126 DOI: 10.1016/j.plaphy.2011.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Arabidopsis has been a favorite model system for plant biologist. It is anticipated that comparative analysis of this plant with other members of Brassicaceae may aid in identification of orthologs playing role as key genetic determinants for salinity response. In this endeavor, we have recently identified SOS family members from Brassica juncea in our laboratory and reported their salinity responsive transcriptional induction in seedlings of various diploid and amphidiploids species. In the present study, we have carried out detailed time kinetics for BjSOS3 expression in a salinity tolerant B. juncea var. CS52. Transcript analysis at the sensitive growth stages of plants viz. seedling and reproductive stage indicated clear differential transcriptional regulation of BjSOS3 under non-induced as well as salinity induced conditions in a time and organ specific manner, mirroring their respective tolerance physiology. Similar to its ortholog from Arabidopsis thaliana, the modeled BjSOS3 protein show typical features of a Ca(2+) binding protein with four conserved EF-hands. We have also attempted to study the binding of SOS3 protein with the modeled SOS2 protein. It has been established that SOS3 protein senses Ca(2+) though the binding is very weak; we show the down regulation of BjSOS3 mRNA in presence of calcium chelator - EGTA under the various stress conditions including ABA. In situ localization of BjSOS3-GFP fusion protein in onion peel has shown its presence strongly in plasma membrane as well as cytosol. The leads presented in the paper will assist in understanding and establishing the SOS signaling machinery in B. juncea.
Collapse
Affiliation(s)
- Hemant R Kushwaha
- Center for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
155
|
Kong XQ, Gao XH, Sun W, An J, Zhao YX, Zhang H. Cloning and functional characterization of a cation-chloride cotransporter gene OsCCC1. PLANT MOLECULAR BIOLOGY 2011; 75:567-78. [PMID: 21369877 DOI: 10.1007/s11103-011-9744-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 01/21/2011] [Indexed: 05/05/2023]
Abstract
Potassium (K+) and chloride (Cl-) are two essential elements for plant growth and development. While it is known that plants possess specific membrane transporters for transporting K+ and Cl-, it remains unclear if they actively use K+-coupled Cl- cotransporters (KCC), as used in animals, to transport K+ and Cl-. We have cloned an Oryza sativa cDNA encoding for a member of the cation-Cl- cotransporter (CCC) family. Phylogenetic analysis revealed that plant CCC proteins are highly conserved and that they have greater sequence similarity to the sub-family of animal K--Cl- cotransporters than to other cation-Cl- cotransporters. Real-time PCR revealed that the O. sativa cDNA, which was named OsCCC1, can be induced by KCl in the shoot and root and that the expression level was higher in the leaf and root tips than in any other part of the rice plant. The OsCCC1 protein was located not only in onion plasma membrane but also in O. sativa plasma membrane. The OsCCC1 gene-silenced plants grow more slowly than wild-type (WT) plants, especially under the KCl treatment regime. After 1 month of KCl treatment, the leaf tips of the gene-silenced lines were necrosed. In addition, seed germination, root length, and fresh and dry weight were distinctly lower in the gene-silenced lines than in WT plants, especially after KCl treatment. Analysis of Na+, K+, and Cl- contents of the gene-silenced lines and WT plants grown under the NaCl and KCl treatment regimes revealed that the former accumulated relatively less K+ and Cl- than the latter but that they did not differ in terms of Na+ contents, suggesting OsCCC1 may be involved in K+ and Cl- transport. Results from different tests indicated that the OsCCC1 plays a significant role in K+ and Cl- homeostasis and rice plant development.
Collapse
Affiliation(s)
- Xiang-Qiang Kong
- Kay Laborarory of Plant Stress Research, School of Life Science, Shandong Normal University, Jinan, Shandong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
156
|
Li J, Chen G, Wang X, Zhang Y, Jia H, Bi Y. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii. PHYSIOLOGIA PLANTARUM 2011; 141:239-50. [PMID: 21077901 DOI: 10.1111/j.1399-3054.2010.01429.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low-concentration NaCl (100 mM) stimulated plasma membrane (PM) H+-ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high-concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl-induced hydrogen peroxide (H₂O₂) accumulation was abolished. Exogenous application of H₂O₂ increased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl-induced H₂O₂ accumulation, decreased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H₂O₂, and blocked by DPI. Taken together, G6PDH is involved in H₂O₂ accumulation under salt stress. H₂O₂, as a signal, upregulated PM H+-ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.
Collapse
Affiliation(s)
- Jisheng Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | |
Collapse
|
157
|
Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B. Cloning and characterization of the Salicornia brachiata Na(+)/H(+) antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 2011; 38:1965-73. [PMID: 20853145 DOI: 10.1007/s11033-010-0318-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Salinity causes multifarious adverse effects to plants. Plants response to salt stress involves numerous processes that function in coordination to alleviate both cellular hyperosmolarity and ion disequilibrium. A Na(+)/H(+) antiporter NHX1 gene has been isolated from a halophytic plant Salicornia brachiata in this study. Predicted amino acid sequence similarity, protein topology and the presence of functional domains conserved in SbNHX1 classify it as a plant vacuolar NHX gene. The SbNHX1 cDNA has an open reading frame of 1,683 bp, encoding a polypeptide of 560 amino acid residues with an estimated molecular mass 62.44 kDa. The SbNHX1 shows high amino acid similarity with other halophytic NHX gene and belongs to Class-I type NHXs. TMpred suggests that SbNHX1 contains 11 strong transmembrane (TM). Real time PCR analysis revealed that SbNHX1 transcript expresses maximum at 0.5 M. Transcript increases gradually by increasing the treatment duration at 0.5 M NaCl, however, maximum expression was observed at 48 h. The overexpression of SbNHX1 gene in tobacco plant showed NaCl tolerance. This study shows that SbNHX1 is a potential gene for salt tolerance, and can be used in future for developing salt tolerant crops.
Collapse
Affiliation(s)
- Anupama Jha
- Discipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, 364 002 Gujarat, India
| | | | | | | | | |
Collapse
|
158
|
Patel NT, Vaghela PM, Patel AD, Pandey AN. Implications of calcium nutrition on the response of Caesalpinia crista (Fabaceae) to soil salinity. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.chnaes.2010.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
159
|
Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 2010; 38:4813-22. [PMID: 21153767 DOI: 10.1007/s11033-010-0624-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
Abstract
We have cloned a Na(+)/H(+) antiporter gene (GenBank accession no EF440291, PtNHA1) from Puccinellia tenuiflora (so-called alkali grass in Chinese) roots under NaCl salt stress. Its cDNA is 3775 bp and contains a 3414 bp open reading frame. The amino acid sequences of PtNHA1 show high identities with a putative plasma membrane Na(+)/H(+) antiporter from wheat. PtNHA1 was predicted to contain 11 hypothetical transmembrane domains in the N-terminal part and to localize in the plasma membrane. Genomic DNA gel blot analysis shows that PtNHA1 is a single-copy gene in the alkali grass genome. PtNHA1 is highly expressed in leaves, roots and shoots by RNA gel blot analysis. Furthermore, PtNHA1 gene expression of alkali grass was clearly up-regulated by NaCl salt stress. Overexpression of PtNHA1 in Arabidopsis resulted in enhanced tolerance of transgenic plants to NaCl stress. The ion contents analysis shows that, compared with the wild-type (WT), less Na(+) and more K(+) were accumulated in transgenic plants under NaCl stress. The results indicate that PtNHA1 play an important role in NaCl salt stress. Additionally, compared with the WT, total activities of ascorbate peroxidase (APX) and catalase (CAT), two key reactive oxygen species (ROS) detoxifying enzymes were high in transgenic plants under salt stress, respectively. The transcript levels of two APX genes (Apx1, s/mApx) and two CAT genes (Cat1, Cat2) in transgenic plants were higher than those in WT. This suggests that overexpression of PtNHA1 results in enhanced ROS-scavenging enzymes of transgenic plants under NaCl salt stress.
Collapse
|
160
|
Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. PLANT MOLECULAR BIOLOGY 2010; 74:367-80. [PMID: 20803312 DOI: 10.1007/s11103-010-9680-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/12/2010] [Indexed: 05/19/2023]
Abstract
In Arabidopsis thaliana, the salt overly sensitive (SOS) pathway plays an essential role in maintaining ion homeostasis and conferring salt tolerance. Here we identified three SOS components in the woody plant Populus trichocarpa, designated as PtSOS1, PtSOS2 and PtSOS3. These putative SOS genes exhibited an overlapping but distinct expression pattern in poplar plants and the transcript levels of SOS1 and SOS2 were responsive to salinity stress. In poplar mesophyll protoplasts, PtSOS1 was specifically localized in the plasma membrane, whereas PtSOS2 was distributed throughout the cell, and PtSOS3 was predominantly targeted to the plasma membrane. Heterologous expression of PtSOS1, PtSOS2 and PtSOS3 could rescue salt-sensitive phenotypes of the corresponding Arabidopsis sos mutants, demonstrating that the Populus SOS proteins are functional homologues of their Arabidopsis counterpart. In addition, PtSOS3 interacted with, and recruited PtSOS2 to the plasma membrane in yeast and in planta. Reconstitution of poplar SOS pathway in yeast cells revealed that PtSOS2 and PtSOS3 acted coordinately to activate PtSOS1. Moreover, expression of the constitutively activated form of PtSOS2 partially complemented the sos3 mutant but not sos1, suggesting that PtSOS2 functions genetically downstream of SOS3 and upstream of SOS1. These results indicate a strong functional conservation of SOS pathway responsible for salt stress signaling from herbaceous to woody plants.
Collapse
Affiliation(s)
- Ren-Jie Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | | | | | | | | | | |
Collapse
|
161
|
Adaptation and Survival of Plants in High Stress Habitats via Fungal Endophyte Conferred Stress Tolerance. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-9449-0_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
162
|
Jiang X, Leidi EO, Pardo JM. How do vacuolar NHX exchangers function in plant salt tolerance? PLANT SIGNALING & BEHAVIOR 2010; 5:792-5. [PMID: 20495345 PMCID: PMC3014531 DOI: 10.4161/psb.5.7.11767] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 05/18/2023]
Abstract
Potassium (K(+)) is a major osmoticum of plant cells, and the vacuolar accumulation of this element is a especially crucial feature for plants under high-salt conditions. Emerging evidence indicates that cation/proton transporters of the NHX family are instrumental in the H(+)-linked K(+) transport that mediate active K(+) uptake at the tonoplast for the unequal partitioning of K(+) between vacuole and cytosol. However, and in spite of tenuous supporting evidence, NHX proteins are widely regarded as key players in the sequestration of sodium (Na(+)) into vacuoles to avert ion toxicity in the cytosol of plants under salinity stress. Here, we propose an updated model positing that NHX proteins fulfill a protective function to minimize salt-related stress mainly through the vacuolar compartmentalization of K(+) and, in some cases, of Na(+) as well thereby preventing toxic Na(+)-K(+) ratios in the cytosol while accruing solutes for osmotic balance.
Collapse
Affiliation(s)
- Xingyu Jiang
- Instituto de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas, Reina Mercedes, Sevilla, Spain
| | | | | |
Collapse
|
163
|
Boyko A, Golubov A, Bilichak A, Kovalchuk I. Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2010; 51:1066-78. [PMID: 20385609 DOI: 10.1093/pcp/pcq048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Various environmental stresses influence plant genome stability. Most of these stresses, such as ionizing radiation, heavy metals and organic chemicals, represent potent DNA-damaging agents. Here, we show that exposure to NaCl, the stress that is not thought to cause direct DNA damage, results in an increase in the level of strand breaks and homologous recombination rates (RRs) in Arabidopsis thaliana plants. The effect of salt stress on the RR was found to be primarily associated with Cl(-) ions, since exposure of plants to Na(2)SO(4) did not increase the RR, whereas exposure to MgCl(2) resulted in an increase. Changes in the number of strand breaks and in the RR were also paralleled by transcriptional activation of AtRad51 and down-regulation of AtKu70. The progeny of exposed plants exhibited higher RRs, higher expression of AtRad51, lower expression of AtKu70, higher tolerance to salt and methyl methane sulfate (MMS) stresses, as well as a higher increase in RR upon further exposure to stress. Our experiments showed that NaCl is a genotoxic stress that leads to somatic and transgenerational changes in recombination rates, and these changes are primarily triggered by exposure to Cl(-) ions.
Collapse
Affiliation(s)
- Alex Boyko
- Department of Biological Sciences, 4401 University Drive, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | | | | | | |
Collapse
|
164
|
Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 2010; 20:277-86. [PMID: 20303271 DOI: 10.1016/j.tcb.2010.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 12/18/2022]
Abstract
Changes in cytosolic calcium concentration are crucial for a variety of cellular processes in all cells. It has long been appreciated that calcium is stored and released from intracellular calcium stores such as the endoplasmic reticulum. However, emerging evidence indicates that calcium is also dynamically regulated by a seemingly disparate collection of acidic organelles. In this paper, we review the defining features of these 'acidic calcium stores' and highlight recent progress in understanding the mechanisms of uptake and release of calcium from these stores. We also examine the nature of calcium buffering within the stores, and summarize the physiological and pathophysiological significance of these ubiquitous organelles in calcium signaling.
Collapse
|
165
|
Mudgal V, Madaan N, Mudgal A. Biochemical Mechanisms of Salt Tolerance in Plants: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijb.2010.136.143] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
166
|
Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonifacio A. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 2010; 52:647-57. [PMID: 19767895 DOI: 10.1139/g09-041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salt tolerance is an agronomically important trait that affects plant species around the globe. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in germination and growth of plants in saline environments. Quinoa (Chenopodium quinoa Willd.) is a halophytic, allotetraploid grain crop of the family Amaranthaceae with impressive nutritional content and an increasing worldwide market. Many quinoa varieties have considerable salt tolerance, and research suggests quinoa may utilize novel mechanisms to confer salt tolerance. Here we report the cloning and characterization of two homoeologous SOS1 loci (cqSOS1A and cqSOS1B) from C. quinoa, including full-length cDNA sequences, genomic sequences, relative expression levels, fluorescent in situ hybridization (FISH) analysis, and a phylogenetic analysis of SOS1 genes from 13 plant taxa. The cqSOS1A and cqSOS1B genes each span 23 exons spread over 3477 bp and 3486 bp of coding sequence, respectively. These sequences share a high level of similarity with SOS1 homologs of other species and contain two conserved domains, a Nhap cation-antiporter domain and a cyclic-nucleotide binding domain. Genomic sequence analysis of two BAC clones (98 357 bp and 132 770 bp) containing the homoeologous SOS1 genes suggests possible conservation of synteny across the C. quinoa sub-genomes. This report represents the first molecular characterization of salt-tolerance genes in a halophytic species in the Amaranthaceae as well as the first comparative analysis of coding and non-coding DNA sequences of the two homoeologous genomes of C. quinoa.
Collapse
Affiliation(s)
- P J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Ali Z, Schumacher HM, Heine-Dobbernack E, El-Banna A, Hafeez FY, Jacobsen HJ, Kiesecker H. Dicistronic binary vector system-A versatile tool for gene expression studies in cell cultures and plants. J Biotechnol 2010; 145:9-16. [PMID: 19835918 DOI: 10.1016/j.jbiotec.2009.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/28/2009] [Accepted: 10/04/2009] [Indexed: 10/20/2022]
Abstract
Dicistronic binary vector constructs based on pGreenII vectors for Agrobacterium mediated gene transfer alleviate the translational expression monitoring of a target gene in plants. The functionality of the transformation vectors was proven by marker gene constructs containing a mannopine synthase promoter (p-MAS) fused to a beta-glucuronidase (gus) gene followed by an internal ribosome entry site and a firefly luciferase (luc) gene. The cap-dependent translation of a physically independent target protein can be monitored by the cap-independently co-translated luciferase, because both mRNAs are located on the same strand. Among three different IRES elements, the tobamo IRES element showed highest activity in transient expression. As a proof of principle for physiological studies the gus gene was replaced by a sodium antiporter gene (Atnhx1). Comparative studies with Atnhx1 transgenic luc expressing tobacco cell cultures and pea plants (Pisum sativum L.) showed improved salt tolerance in relation to their wild type counterparts grown under corresponding conditions. A coincidence of the luc gene expression and increased sodium chloride tolerance is demonstrated by measurement of luminescence and cell growth.
Collapse
Affiliation(s)
- Zahid Ali
- German Collection of Microorganisms and Cell Cultures DSMZ GmbH, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
168
|
Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. PLANT PHYSIOLOGY 2010; 152:341-55. [PMID: 19889878 PMCID: PMC2799368 DOI: 10.1104/pp.109.145722] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/26/2009] [Indexed: 05/18/2023]
Abstract
Na(+) and K(+) homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na(+) transport or Na(+) and K(+) transport when expressed in Xenopus laevis oocytes and yeast. However, the Na(+)/K(+) selectivities of the K(+)-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5' untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K(+) permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na(+) uptake, but little Rb(+) uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na(+)-K(+) cotransport in plant cells such that extracellular K(+) stimulated OsHKT2;2-mediated Na(+) influx and vice versa. Furthermore, at millimolar Na(+) concentrations, OsHKT2;2 mediated Na(+) influx into plant cells without adding extracellular K(+). This study shows that the Na(+)/K(+) selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K(+) and Ca(2+) down-regulated OsHKT2;1-mediated Na(+) influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (X.Y., T.H., S.X., H.-Y.L., D.E.B., J.I.S.); Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China (X.Y., Y.W.); and Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710–0046, Japan (T.H., M.K.)
| |
Collapse
|
169
|
|
170
|
Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT, Tasaka M, Hasezawa SI, Nakano A, Hara-Nishimura I, Maeshima M, Fukaki H, Mimura T. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. PLANT & CELL PHYSIOLOGY 2009; 50:2023-33. [PMID: 19880402 DOI: 10.1093/pcp/pcp143] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The intracellular membrane dynamics of Arabidopsis cells under high salt treatment were investigated. When Arabidopsis was treated with high levels of NaCl in hydroponic culture, root tip cells showed rapid changes in the vacuolar volume, a decrease in the number of small acid compartments, active movement of vesicles and accumulation of Na(+) both in the central vacuole and in the vesicles around the main vacuole observed with the Na(+)-dependent fluorescence of Sodium Green. Detailed observation of Arabidopsis suspension-cultured cells under high salt treatment showed a similar pattern of response to that observed in root tip cells. Immunostaining of suspension-cultured cells with antibodies against AtNHX1 clearly showed the occurrence of dotted fluorescence in the cytoplasm only under salt treatment. We also confirmed the existence of AtNHX1 in the vacuolar membrane isolated from suspension-cultured cells with immunofluorescence. Knockout of the vacuolar Q(a)-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein VAM3/SYP22 caused an increase in salt tolerance. In mutant plants, the distribution of Na(+) between roots and shoots differed from that of wild-type plants, with Na(+) accumulating more in roots and less in the shoots of the mutant plants. The role of vesicle traffic under salt stress is discussed.
Collapse
Affiliation(s)
- Kohei Hamaji
- Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Kshatriya K, Singh JS, Singh DP. Salt tolerant mutant of Anabaena doliolum exhibiting efficient ammonium uptake and assimilation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:377-81. [PMID: 23572949 PMCID: PMC3550349 DOI: 10.1007/s12298-009-0043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Effect of salinity (NaCl, 100 mM) on growth, nitrate reductase (NR) and glutamine synthetase (GS) activities, and uptake of NH4 (+) was studied in the wild type (WT) and the NaCl-tolerant mutant type (MT) of cyanobacterium Anabaena doliolum. Results obtained in the presence of salt showed significant reduction in the growth rate of both WT and MT cells of A. doliolum by about 77.8 and 40 %, respectively over without NaCl. Similarly rate of NR activity in both WT and MT strains was reduced by 45.5 and 44.5 %, respectively. On the contrary, rate of GS activity of both the WT and MT strains in the presence 100 mM of NaCl increased by 34 and 159 %, respectively. The results of this study indicate that tolerance to NaCl in A. doliolum is more dependent on NH4 (+) assimilation rather than on nitrate assimilation in relation to N-metabolism. The increased GS activity in MT cells of the cyanobacterium is possibly because of high rate of energy dependent NH4 (+) uptake.
Collapse
Affiliation(s)
- K. Kshatriya
- />Department of Microbiology, Dr. RML Avadh University, Faizabad, 224 001 (U.P.) India
| | - Jay S. Singh
- />School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Rae Bareli Road, Lucknow, 226 025 (U.P.) India
| | - D. P. Singh
- />School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Rae Bareli Road, Lucknow, 226 025 (U.P.) India
| |
Collapse
|
172
|
Hamada A, Al-Hakimi A. Exogenous ascorbic acid or thiamine increases the resistance of sunflower and maize plants to salt stress. ACTA ACUST UNITED AC 2009. [DOI: 10.1556/aagr.57.2009.3.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increasing NaCl levels retarded the net photosynthetic rate, biosynthesis of photosynthetic pigments and membrane integrity of maize and sunflower seedlings; a serious effect was exhibited when NaCl was applied at high concentration. On the other hand, the K
+
efflux increased at increasing NaCl levels. In addition, the various salt levels induced considerable variations in the concentrations of sodium, potassium, calcium and magnesium. The vitamins applied were generally effective in partially or completely countering the inhibitory effects of salt stress on net photosynthetic rate, pigments biosynthesis and membrane integrity, exerting a stimulatory action on these parameters, especially in plants subjected to moderate and low salinity levels. The leakage of K
+
was reduced by the application of both ascorbic acid (AsA) and thiamine (B
1
). Soaking the seeds of salt-stressed plants in AsA or B
1
had a favourable effect on the accumulation of certain ions and antagonized or ameliorated the inhibitory effect of salt stress.
Collapse
Affiliation(s)
- A. Hamada
- 1 Assiut University Botany Department, Faculty of Science Assiut Egypt
| | - A. Al-Hakimi
- 2 Taiz University Biology Department, Faculty of Science Taiz Yemen
| |
Collapse
|
173
|
Wang H, Liang X, Wan Q, Wang X, Bi Y. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. PLANTA 2009; 230:293-307. [PMID: 19455351 DOI: 10.1007/s00425-009-0946-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 05/03/2009] [Indexed: 05/20/2023]
Abstract
In the present study, the role of ethylene in nitric oxide (NO)-mediated protection by modulating ion homeostasis in Arabidopsis callus under salt stress was investigated. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). Under 100 mM NaCl, etr1-3 callus displayed a greater electrolyte leakage and Na(+)/K(+) ratio but a lower plasma membrane (PM) H(+)-ATPase activity compared to WT callus. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or sodium nitroprusside (SNP, a NO donor) alleviated NaCl-induced injury by maintaining a lower Na(+)/K(+) ratio and an increased PM H(+)-ATPase activity in WT callus but not in etr1-3 callus. The SNP actions in NaCl stress were attenuated by a specific NO scavenger or an ethylene biosynthesis inhibitor in WT callus. Under 100 mM NaCl, the NO accumulation and ethylene emission appeared at early time, and NO production greatly stimulated ethylene emission in WT callus. In addition, ethylene induced the expression of PM H(+)-ATPase genes under salt stress. The recovery experiment showed that NaCl-induced injury was reversible, as signaled by the similar recovery of Na(+)/K(+) ratio and PM H(+)-ATPase activity in WT callus. Taken together, the results indicate that ethylene and NO cooperate in stimulating PM H(+)-ATPase activity to modulate ion homeostasis for salt tolerance, and ethylene may be a part of the downstream signal molecular in NO action.
Collapse
Affiliation(s)
- Huahua Wang
- Key Laboratory of Arid and Grassland Agroecology (Ministry of Education), School of Life Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
174
|
Patel AD, Bhensdadia H, Pandey AN. Effect of salinisation of soil on growth, water status and general nutrient accumulation in seedlings of Delonix regia (Fabaceae). ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.chnaes.2009.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
175
|
Roslyakova TV, Lazareva EM, Kononenko NV, Babakov AV. New isoform HvNHX3 of vacuolar Na+/H+-antiporter in barley: expression and immunolocalization. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:549-56. [PMID: 19538129 DOI: 10.1134/s0006297909050101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gene HvNHX3 encoding a new isoform of vacuolar Na+/H+-antiporter was identified in barley. This gene is expressed in roots and leaves of barley seedlings, and it encodes a protein consisting of 541 amino acid residues with predicted molecular weight 59.7 kDa. It was found that by its amino acid sequence HvNHX3 is closest to the Na+/H+-antiporter HbNHX1 of wild type from Hordeum brevisibulatum that grows on salt-marsh (solonchak) soils (95% homology). The expression of HvNHX3 during salt stress is increased several-fold in roots and leaves of barley seedlings. At the same time, the amount of HvNHX3 protein in roots does not change, but in leaves it increases significantly. It was shown using HvNHX3 immunolocalization in roots that this protein is present in all tissues, but in control plants it was clustered and in experimental plants after salt stress it was visualized as small granules. It has been proposed that HvNHX3 is converted into active form during declusterization. The conversion of HvNHX3 into its active form along with its quantitative increase in leaves during salt stress activates Na+/H+-exchange across the vacuolar membrane and Na+ release from cytoplasm, and, as a consequence, an increase of salt stress tolerance.
Collapse
Affiliation(s)
- T V Roslyakova
- Institute of Agricultural Biotechnology, Russian Agricultural Academy of Sciences, Moscow, 127550, Russia
| | | | | | | |
Collapse
|
176
|
Jain D, Roy N, Chattopadhyay D. CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One 2009; 4:e5154. [PMID: 19365545 PMCID: PMC2664467 DOI: 10.1371/journal.pone.0005154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/13/2009] [Indexed: 01/19/2023] Open
Abstract
Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF) that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum) and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p) and Calcineurin (CAN), a Ca(2+)/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE) to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance.
Collapse
Affiliation(s)
- Deepti Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Nilanjan Roy
- National Institute for Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | | |
Collapse
|
177
|
Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K. Plant NHX cation/proton antiporters. PLANT SIGNALING & BEHAVIOR 2009; 4:265-76. [PMID: 19794841 PMCID: PMC2664485 DOI: 10.4161/psb.4.4.7919] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 05/18/2023]
Abstract
Although physiological and biochemical data since long suggested that Na(+)/H(+) and K(+)/H(+) antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative Cation/Proton antiporters, the function of which is only beginning to be studied. The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants. The founding member, AtNHX1, was identified as an important salt tolerance determinant and suggested to catalyze Na(+) accumulation in vacuoles. It is, however, becoming increasingly clear, that this gene and other members of the family also play crucial roles in pH regulation and K(+) homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.
Collapse
|
178
|
Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 2009; 191:415-24. [PMID: 19255743 DOI: 10.1007/s00203-009-0466-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 02/04/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m(-1). Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m(-1). Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m(-1). Similarly, chlorophyll content and K(+)/Na(+) of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.
Collapse
|
179
|
Takahashi R, Liu S, Takano T. Isolation and characterization of plasma membrane Na(+)/H(+) antiporter genes from salt-sensitive and salt-tolerant reed plants. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:301-9. [PMID: 18565619 DOI: 10.1016/j.jplph.2008.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 05/08/2023]
Abstract
We isolated cDNAs for Na(+)/H(+) antiporter genes (PhaNHA1s) from salt-sensitive and salt-tolerant reed plants. A phylogenetic analysis and localization analysis using yeast strains expressing PhaNHA1-GFP protein showed that PhaNHA1s were plasma membrane Na(+)/H(+) antiporters. Yeast strains expressing PhaNHA1 from salt-tolerant reed plants (PhaNHA1-n) grew well than yeast strains expressing PhaNHA1 from salt-sensitive reed plants (PhaNHA1-u) in the presence of 100mM NaCl. Furthermore, Na(+) contents of yeast cells expressing PhaNHA1-n were less than half of those of yeast cells expressing PhaNHA1-u. These results suggest that PhaNHA1-n is more efficient at excluding Na(+) from the cells than PhaNHA1-u.
Collapse
Affiliation(s)
- Ryuichi Takahashi
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1, Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | | | | |
Collapse
|
180
|
Pagliano C, La Rocca N, Andreucci F, Deák Z, Vass I, Rascio N, Barbato R. The extreme halophyte Salicornia veneta is depleted of the extrinsic PsbQ and PsbP proteins of the oxygen-evolving complex without loss of functional activity. ANNALS OF BOTANY 2009; 103:505-15. [PMID: 19033288 PMCID: PMC2707329 DOI: 10.1093/aob/mcn234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Photosystem II of oxygenic organisms is a multi-subunit protein complex made up of at least 20 subunits and requires Ca(2+) and Cl(-) as essential co-factors. While most subunits form the catalytic core responsible for water oxidation, PsbO, PsbP and PsbQ form an extrinsic domain exposed to the luminal side of the membrane. In vitro studies have shown that these subunits have a role in modulating the function of Cl(-) and Ca(2+), but their role(s) in vivo remains to be elucidated, as the relationships between ion concentrations and extrinsic polypeptides are not clear. With the aim of understanding these relationships, the photosynthetic apparatus of the extreme halophyte Salicornia veneta has been compared with that of spinach. Compared to glycophytes, halophytes have a different ionic composition, which could be expected to modulate the role of extrinsic polypeptides. METHODS Structure and function of in vivo and in vitro PSII in S. veneta were investigated and compared to spinach. Light and electron microscopy, oxygen evolution, gel electrophoresis, immunoblotting, DNA sequencing, RT-PCR and time-resolved chlorophyll fluorescence were used. KEY RESULTS Thylakoids of S. veneta did not contain PsbQ protein and its mRNA was absent. When compared to spinach, PsbP was partly depleted (30 %), as was its mRNA. All other thylakoid subunits were present in similar amounts in both species. PSII electron transfer was not affected. Fluorescence was strongly quenched upon irradiation of plants with high light, and relaxed only after prolonged dark incubation. Quenching of fluorescence was not linked to degradation of D1 protein. CONCLUSIONS In S. veneta the PsbQ protein is not necessary for photosynthesis in vivo. As the amount of PsbP is sub-stoichiometric with other PSII subunits, this protein too is largely dispensable from a catalytic standpoint. One possibility is that PsbP acts as an assembly factor for PSII.
Collapse
Affiliation(s)
- Cristina Pagliano
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale, via Bellini 25/G, 15100 Alessandria, Italy
| | - Nicoletta La Rocca
- Dipartimento di Biologia, Università di Padova, via Bassi 58/B, 35131 Padova, Italy
| | - Flora Andreucci
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale, via Bellini 25/G, 15100 Alessandria, Italy
| | - Zsuzsanna Deák
- Institute of Plant Biology, Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Nicoletta Rascio
- Dipartimento di Biologia, Università di Padova, via Bassi 58/B, 35131 Padova, Italy
| | - Roberto Barbato
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale, via Bellini 25/G, 15100 Alessandria, Italy
- For correspondence. E-mail
| |
Collapse
|
181
|
Fernandez-Garcia N, Lopez-Perez L, Hernandez M, Olmos E. Role of phi cells and the endodermis under salt stress in Brassica oleracea. THE NEW PHYTOLOGIST 2009; 181:347-360. [PMID: 19121032 DOI: 10.1111/j.1469-8137.2008.02674.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.
Collapse
Affiliation(s)
- N Fernandez-Garcia
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Murcia, Spain
| | - L Lopez-Perez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Murcia, Spain
| | - M Hernandez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Murcia, Spain
| | - E Olmos
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Murcia, Spain
| |
Collapse
|
182
|
Tattini M, Traversi ML. Responses to changes in Ca2+ supply in two Mediterranean evergreens, Phillyrea latifolia and Pistacia lentiscus, during salinity stress and subsequent relief. ANNALS OF BOTANY 2008; 102:609-22. [PMID: 18701601 PMCID: PMC2701781 DOI: 10.1093/aob/mcn134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/06/2008] [Accepted: 06/25/2008] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Changes in root-zone Ca(2+) concentration affect a plant's performance under high salinity, an issue poorly investigated for Mediterranean xerophytes, which may suffer from transient root-zone salinity stress in calcareous soils. It was hypothesized that high-Ca(2+) supply may affect differentially the response to salinity stress of species differing in their strategy of Na(+) allocation at organ level. Phillyrea latifolia and Pistacia lentiscus, which have been reported to greatly differ for Na(+) uptake and transport rates to the leaves, were studied. Methods In plants exposed to 0 mM or 200 mM NaCl and supplied with 2.0 mM or 8.0 mM Ca(2+), under 100 % solar irradiance, measurements were conducted of (a) gas exchange, PSII photochemistry and plant growth; (b) water and ionic relations; (c) the activity of superoxide dismutase and the lipid peroxidation; and (d) the concentration of individual polyphenols. Gas exchange and plant growth were also estimated during a period of relief from salinity stress. Key Results The performance of Pistacia lentiscus decreased to a significantly smaller degree than that of Phillyrea latifolia because of high salinity. Ameliorative effects of high-Ca(2+) supply were more evident in Phillyrea latifolia than in Pistacia lentiscus. High-Ca(2+) reduced steeply the Na(+) transport to the leaves in salt-treated Phillyrea latifolia, and allowed a faster recovery of gas exchange and growth rates as compared with low-Ca(2+) plants, during the period of relief from salinity. Salt-induced biochemical adjustments, mostly devoted to counter salt-induced oxidative damage, were greater in Phillyrea latifolia than in Pistacia lentiscus. CONCLUSIONS An increased Ca(2+) : Na(+) ratio may be of greater benefit for Phillyrea latifolia than for Pistacia lentiscus, as in the former, adaptive mechanisms to high root-zone salinity are primarily devoted to restrict the accumulation of potentially toxic ions in sensitive shoot organs.
Collapse
Affiliation(s)
- Massimiliano Tattini
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, IVALSA, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto F.no, Firenze, Italy.
| | | |
Collapse
|
183
|
Alshammary SF. Effect of saline irrigation on growth characteristics and mineral composition of two local halophytes under Saudi environmental conditions. Pak J Biol Sci 2008; 11:2116-21. [PMID: 19266925 DOI: 10.3923/pjbs.2008.2116.2121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A field experiment was carried out to determine the growth characteristics and mineral composition of two local halophytes (Atriplex halimus and Salvadora persica) under saline irrigation at Kind Abdulaziz City for Science and Technology (KACST), Research Station Al-Muzahmyia, Riyadh. The experiment treatments were one soil (sandy), four irrigation waters of different salinities (2000, 8000, 12000 and 16000 mg L(-1) TDS), two halophytes (Salvadora persica and Atriplex halimus) and one irrigation level (irrigation at 50% depletion of moisture at field capacity). Mean fresh biomass yield and fresh plant root weight of A. halimus increased while that of S. persica decreased significantly with increasing irrigation water salinity in all the treatments. Soil salinity increased significantly with increasing water salinity. A positive correlation (r = 0.987) existed between the irrigation water salinity and the soil salinity resulting from saline irrigation. The plant tissue protein contents increased in A. halimus, but decreased in S. persica with increasing irrigation water salinity. The Na ion uptake by plant roots was significantly less than K in A. halimus compared to S. persica which indicated adjustment of plants to high soil salinity and high Na ion concentration for better growth. The order of increasing salt tolerance was A. halimus > S. persica under the existing plant growing conditions. Among the two halophytes, A. halimus showed great potential for establishing gene banks of local species, because it has more forage value due to high protein contents than S. persica for range animals.
Collapse
Affiliation(s)
- Saad F Alshammary
- Biological Resources Center, Natural Resources and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia
| |
Collapse
|
184
|
Quintero JM, Fournier JM, Benlloch M, Rodríguez-Navarro A. Na+ accumulation in root symplast of sunflower plants exposed to moderate salinity is transpiration-dependent. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1248-1254. [PMID: 18166246 DOI: 10.1016/j.jplph.2007.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/19/2007] [Accepted: 08/20/2007] [Indexed: 05/25/2023]
Abstract
Twenty-day-old sunflower plants (Helianthus annuus L. cv Sun-Gro 380) grown hydroponically under controlled conditions were used to study the effect of transpiration on Na(+) compartmentalization in roots. The plants were exposed to low Na(+) concentrations (25 mM NaCl) and different environmental humidity conditions over a short time period (8.5 h). Under these conditions, Na(+) was accumulated primarily in the root, but only the Na(+) accumulated in the root symplast was dependent on transpiration, while the Na(+) accumulated in both the shoot and the root apoplast exhibited a low transpiration dependence. Moreover, Na(+) content in the root apoplast was reached quickly (0.25 h) and increased little with time. These results suggest that, in sunflower plants under moderate salinity conditions, Na(+) uptake in the root symplast is mediated by a transport system whose activity is enhanced by transpiration.
Collapse
Affiliation(s)
- José Manuel Quintero
- Departamento de Ciencias Agroforestales, Escuela U. Ingeniería Técnica Agrícola, Universidad de Sevilla, Ctra. Utrera, Km. 1, E-41013 Sevilla, Spain.
| | | | | | | |
Collapse
|
185
|
Wang X, Liu Z, He Y. Responses and tolerance to salt stress in bryophytes. PLANT SIGNALING & BEHAVIOR 2008; 3:516-8. [PMID: 19513243 PMCID: PMC2634484 DOI: 10.4161/psb.3.8.6337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 05/09/2023]
Abstract
During exposure to salt environments, plants could perceive salt signal and transmit the signal to cellular machinery to activate adaptive responses. In bryophytes, salt signal components and transcript factor identified suggest that salt activate adaptive responses to tolerate adverse environments. The ability of bryophytes to tolerate salt is determined by multiple biochemical pathways. Transmembrane transport proteins that mediate ion fluxes play a curial role in ionic and osmotic homeostasis under salt environments. Defense proteins protect cells from denaturation and degradation, as well as from oxidative damage following exposure to salt stress in bryophytes. ABA and salt stress positively affect the expression of common genes that participate in protection plant cells from injure, and ABA may be responsible for the ability to tolerate salt stress in bryophytes. In this paper, we reveal the mechanisms of salt responses and tolerance in bryophytes, and imply conservation between higher plants and bryophytes in response and tolerance to salt stress.
Collapse
Affiliation(s)
- Xiaoqin Wang
- College of Life Sciences; Capital Normal University; Beijing, China
- College of Life Sciences; Xiamen University; Xiamen, China
| | - Zheng Liu
- Department of Plant Sciences; University of Cambridge; Cambridge, United Kingdom
| | - Yikun He
- College of Life Sciences; Capital Normal University; Beijing, China
| |
Collapse
|
186
|
Martinez-Ballesta MDC, Bastías E, Zhu C, Schäffner AR, González-Moro B, González-Murua C, Carvajal M. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. PHYSIOLOGIA PLANTARUM 2008; 132:479-90. [PMID: 18334001 DOI: 10.1111/j.1399-3054.2007.01045.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L(0) measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.
Collapse
Affiliation(s)
- Maria del Carmen Martinez-Ballesta
- Departamento de Nutrición Vegetal. Centro de Edafología y Biología Aplicada del Segura-CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
187
|
Attia H, Arnaud N, Karray N, Lachaâl M. Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. PHYSIOLOGIA PLANTARUM 2008; 132:293-305. [PMID: 18275461 DOI: 10.1111/j.1399-3054.2007.01009.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Arabidopsis thaliana plants (wild-type accessions Col and N1438) were submitted to a prolonged, mild salt stress using two types of protocols. These protocols allowed salt-treated plants to absorb nutrients either through a part of their root system maintained in control medium (split-rooted plants) or during episodes on control medium alternating with salt application (salt alternation experiment). Full-salt treatments (salt applied continuously to whole root system) resulted in severe (but non-lethal) growth inhibition. This effect was partly alleviated in split-rooted plants on mixed salt-control medium and in plants submitted to salt-control medium alternation. The activity of the various isoforms of superoxide dismutases (SODs) did not appreciably change with the treatments. The abundance of the mRNAs of the seven SOD genes present in Arabidopsis genome was determined using real-time polymerase chain reaction. The two protocols gave qualitatively identical results. The expression level was increased by full-salt treatments for some genes and diminished for other genes. However, the nature of these genes differed according to the accessions: the responses to salt of FSD1 and MSD were opposite in Col and N1438. In Col, salt treatments inhibited the expression of FSD1 and strongly stimulated that of CSD1 and MSD. In N1438, the stimulation by salt concerned FSD1 and CSD1 and MSD expression being inhibited. In both accessions, the expression of CSD2 and CSD3 was lowered by salt. For all genes, the treatments that mitigated stress partially restored SOD expression to control level. Thus, the changes in SOD transcript abundance accurately reflected the severity of the salt stress.
Collapse
Affiliation(s)
- Houneida Attia
- Physiologie et Biochimie de la Tolérance au Sel des Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
| | | | | | | |
Collapse
|
188
|
Anil VS, Rajkumar P, Kumar P, Mathew M. A Plant Ca2+ Pump, ACA2, Relieves Salt Hypersensitivity in Yeast. J Biol Chem 2008; 283:3497-3506. [DOI: 10.1074/jbc.m700766200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
189
|
Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. PLANT PHYSIOLOGY 2007; 145:1714-25. [PMID: 17965172 PMCID: PMC2151677 DOI: 10.1104/pp.107.110262] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/23/2007] [Indexed: 05/18/2023]
Abstract
Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H(+) pump activity; (3) better ability of root cells to pump Na(+) from the cytosol to the external medium; and (4) higher sensitivity to supplemental Ca(2+). At the same time, no significant difference was found between contrasting cultivars in their unidirectional (22)Na(+) influx or in the density and voltage dependence of depolarization-activated outward-rectifying K(+) channels. Overall, our results are consistent with the idea of the cytosolic K(+)-to-Na(+) ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants.
Collapse
Affiliation(s)
- Zhonghua Chen
- School of Agricultural Science , University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Zhao F, Song CP, He J, Zhu H. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. PLANT PHYSIOLOGY 2007; 145:1061-72. [PMID: 17905858 PMCID: PMC2048800 DOI: 10.1104/pp.107.105882] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 09/20/2007] [Indexed: 05/17/2023]
Abstract
Polyamines are known to increase in plant cells in response to a variety of stress conditions. However, the physiological roles of elevated polyamines are not understood well. Here we investigated the effects of polyamines on ion channel activities by applying patch-clamp techniques to protoplasts derived from barley (Hordeum vulgare) seedling root cells. Extracellular application of polyamines significantly blocked the inward Na(+) and K(+) currents (especially Na(+) currents) in root epidermal and cortical cells. These blocking effects of polyamines were increased with increasing polycation charge. In root xylem parenchyma, the inward K(+) currents were blocked by extracellular spermidine, while the outward K(+) currents were enhanced. At the whole-plant level, the root K(+) content, as well as the root and shoot Na(+) levels, was decreased significantly by exogenous spermidine. Together, by restricting Na(+) influx into roots and by preventing K(+) loss from shoots, polyamines were shown to improve K(+)/Na(+) homeostasis in barley seedlings. It is reasonable to propose that, therefore, elevated polyamines under salt stress should be a self-protecting response for plants to combat detrimental consequences resulted from imbalance of Na(+) and K(+).
Collapse
Affiliation(s)
- Fugeng Zhao
- School of Life Sciences, Nanjing University, Nanjing 210039, China.
| | | | | | | |
Collapse
|
191
|
Zhang F, Wang Y, Wang D. Role of nitric oxide and hydrogen peroxide during the salt resistance response. PLANT SIGNALING & BEHAVIOR 2007; 2:473-4. [PMID: 19704588 PMCID: PMC2634338 DOI: 10.4161/psb.2.6.4466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 05/20/2023]
Abstract
Ion homeostasis is essential for plant cell resistance to salt stress. Under salt stress, to avoid cellular damage and nutrient deficiency, plant cells need to maintain adequate K nutrition and a favorable K to Na ratio in the cytosol. Recent observations revealed that both nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) act as signaling molecules to regulate K to Na ratio in calluses from Populus euphratica under salt stress. Evidence indicated that NO mediating H(2)O(2) causes salt resistance via the action of plasma membrane H(+)-ATPase but that activity of plasma membrane NADPH oxidase is dependent on NO. Our study demonstrated the signaling transduction pathway. In this addendum, we proposed a testable hypothesis for NO function in regulation of H(2)O(2) mediating salt resistance.
Collapse
Affiliation(s)
- Feng Zhang
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement; College of Life Sciences and Technology; Gansu Agricultural University; Lanzhou, China
| | | | | |
Collapse
|
192
|
Nadeem SM, Zahir ZA, Naveed M, Arshad M. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 2007; 53:1141-9. [DOI: 10.1139/w07-081] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twenty rhizobacterial strains containing 1-aminocyclopropane-1-carboxylate deaminase were isolated from the rhizosphere of salt-affected maize fields. They were screened for their growth-promoting activities under axenic conditions at 1, 4, 8, and 12 dS·m–1salinity levels. Based upon the data of the axenic study, the 6 most effective strains were selected to conduct pot trials in the wire house. Besides one original salinity level (1.6 dS·m–1), 3 other salinity levels (4, 8, and 12 dS·m–1) were maintained in pots and maize seeds inoculated with selected strains of plant growth-promoting rhizobacteria, as well as uninoculated controls were sown. Results showed that the increase in salinity level decreased the growth of maize seedlings. However, inoculation with rhizobacterial strains reduced this depression effect and improved the growth and yield at all the salinity levels tested. Selected strains significantly increased plant height, root length, total biomass, cob mass, and grain yield up to 82%, 93%, 51%, 40%, and 50%, respectively, over respective uninoculated controls at the electrical conductivity of 12 dS·m–1. Among various plant growth-promoting rhizobacterial strains, S5 ( Pseudomonas syringae ), S14 ( Enterobacter aerogenes ), and S20 ( Pseudomonas fluorescens ) were the most effective strains for promoting the growth and yield of maize, even at high salt stress. The relatively better salt tolerance of inoculated plants was associated with a high K+/Na+ratio as well as high relative water and chlorophyll and low proline contents.
Collapse
Affiliation(s)
- Sajid Mahmood Nadeem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| | - Muhammad Arshad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad-38040, Pakistan
| |
Collapse
|
193
|
Mahmoud YAG, Mohamed EHFA, Abd El-Rhman Mustafa E. Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress. MYCOBIOLOGY 2007; 35:124-128. [PMID: 24015082 PMCID: PMC3763139 DOI: 10.4489/myco.2007.35.3.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Indexed: 06/02/2023]
Abstract
Ganoderma resinaceum tolerated sodium chloride salt stress within a range of 0 mM till 300 mM. It responded to salt stress with fluctuation in proline formation at different NaCl concentrations. However,the mycelial dry weight,total protein contents and exopolysaccharides did not changed considerably. Increasing sodium chloride concentration led to morphological alteration in fungal mycelia with disappearance of fungal cell wall,plasmolysis,and vacuolation as indicated with electron microscopic examination of the fungal growth.
Collapse
Affiliation(s)
- Yehia A G Mahmoud
- Tanta University, Faculty of Science, Botany Department, Tanta 31527, Egypt
| | | | | |
Collapse
|
194
|
Shi Q, Ding F, Wang X, Wei M. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:542-50. [PMID: 17606379 DOI: 10.1016/j.plaphy.2007.05.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 05/23/2007] [Indexed: 05/03/2023]
Abstract
Mitochondria are subcellular organelles with an essentially oxidative type of metabolism. The production of reactive oxygen species (ROS) in it increases under stress conditions and causes oxidative damage. In the present study, effects of exogenous sodium nitroprusside (SNP), a nitric oxide (NO) donor, on both the ROS metabolism in mitochondria and functions of plasma membrane (PM) and tonoplast were studied in cucumber seedlings treated with 100mM NaCl. NaCl treatment induced significant accumulation of H(2)O(2) and led to serious lipid peroxidation in cucumber mitochondria, and the application of 50muM SNP stimulated ROS-scavenging enzymes and reduced accumulation of H(2)O(2) in mitochondria of cucumber roots induced by NaCl. As a result, lipid peroxidation of mitochondria decreased. Further investigation showed that application of SNP alleviated the inhibition of H(+)-ATPase and H(+)-PPase in PM and/or tonoplast by NaCl. While application of sodium ferrocyanide (an analog of SNP that does not release NO) did not show the effect of SNP, furthermore, the effects of SNP were reverted by addition of hemoglobin (a NO scavenger).
Collapse
Affiliation(s)
- Qinghua Shi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | | | | | | |
Collapse
|
195
|
Comparative expression analysis of three genes from the Arabidopsis vacuolar Na+/H+ antiporter (AtNHX) family in relation to abiotic stresses. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0278-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
196
|
Kusano T, Yamaguchi K, Berberich T, Takahashi Y. The polyamine spermine rescues Arabidopsis from salinity and drought stresses. PLANT SIGNALING & BEHAVIOR 2007; 2:251-2. [PMID: 19704669 PMCID: PMC2634138 DOI: 10.4161/psb.2.4.3866] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/16/2007] [Indexed: 05/18/2023]
Abstract
There are accumulating reports that polyamines are involved in abiotic stress response. However, the role played by the polyamines is not fully elucidated. In the present studies, we assessed whether spermine among the polyamines plays a certain role against high salt and drought stresses using an Arabidopsis (acl5/spms) mutant plant that does not produce spermine, and found that it was hypersensitive to those stresses. In each case the hypersensitive phenotype was mitigated by application of exogenous spermine. The spermine-deficient mutant plants also showed a phenotype resembling Ca(2+)-deficiency. The NaCl-hypersensitivity and Ca(2+)-deficiency of acl5/spms double-knockout mutant resembled the phenotypes displayed by the AtGluR2- and CAX1-overexpressing transgenic plants. The two latter genes encode a glutamate receptor-type, Ca(2+)-ion influx channel at cytoplasmic membrane and a vacuolar Ca(2+)/H(+) antiporter, respectively. The data suggest that regulated expression of the Ca(2+)-pathway members is critical to adapt to those stresses, and that spermine plays a certain role to control the stress-induced Ca(2+) dynamics. Incorporating the current information from the literature, especially regarding action of polyamines on various ion channels, we present models describing a defensive role of spermine in high salt and drought stresses in Arabidopsis.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Graduate School of Life Sciences; Tohoku University; Miyagi, Japan
| | | | | | | |
Collapse
|
197
|
Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. PLANT, CELL & ENVIRONMENT 2007; 30:775-85. [PMID: 17547650 DOI: 10.1111/j.1365-3040.2007.01667.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H2O2) function as signalling molecules in plants under abiotic and biotic stresses. Calluses from Populus euphratica, which show salt tolerance, were used to study the interaction of NO and H2O2 in plant adaptation to salt resistance. The nitric oxide synthase (NOS) activity was identified in the calluses, and this activity was induced under 150 mM NaCl treatment. Under 150 mM NaCl treatment, the sodium (Na) percentage decreased, but the potassium (K) percentage and the K/Na ratio increased in P. euphratica calluses. Application of glucose/glucose oxidase (G/GO, a H2O2 donor) and sodium nitroprusside (SNP, a NO donor) revealed that both H2O2 and NO resulted in increased K/Na ratio in a concentration-dependent manner. Diphenylene iodonium (DPI, an NADPH oxidase inhibitor) counteracted H2O2 and NO effect by increasing the Na percentage, decreasing the K percentage and K/Na ratio. NG-monomethyl-L-Arg monoacetate (NMMA, an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (PTIO, a specific NO scavenger) only reversed NO effect, but did not block H2O2 effect. The increased activity of plasma membrane (PM) H+ -ATPase caused by salt stress was reversed by treatment with DPI and NMMA. Exogenous H2O2 increased the activity of PM H+ -ATPase, but the effect could not be diminished by NMMA and PTIO. The NO-induced increase of PM H+ -ATPase can be reversed by NMMA and PTIO, but not by DPI. Western blot analysis demonstrated that NO and H2O2 stimulated the expression of PM H+ -ATPase in P. euphratica calluses. These results indicate that NO and H2O2 served as intermediate molecules in inducing salt resistance in the calluses from P. euphratica under slat stress by increasing the K/Na ratio, which was dependent on the increased PM H+ -ATPase activity.
Collapse
Affiliation(s)
- Feng Zhang
- Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | | | | | | | | | | |
Collapse
|
198
|
M'rah S, Ouerghi Z, Eymery F, Rey P, Hajji M, Grignon C, Lachaâl M. Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:375-84. [PMID: 17074409 DOI: 10.1016/j.jplph.2006.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 07/11/2006] [Indexed: 05/12/2023]
Abstract
Thellungiella halophila and Arabidopsis thaliana were irrigated with medium containing NaCl at various concentrations. The salt treatment resulted in a restriction of rosette biomass deposition in both species. In A. thaliana leaves, this inhibition was stronger than for T. halophila and was associated with strong inhibition of both leaf initiation and leaf expansion. At highest medium salinity, A. thaliana accumulated Na(+) and Cl(-) at higher levels than T. halophila, but similar leaf dehydration was observed in the two species. Proline accumulation, which increased with NaCl concentration, did not differentiate the two species. The magnitude of the electrolyte leakage and the level of lipid peroxidation (assessed through hydroxy fatty acid content) were modest in T. halophila and quite marked in A. thaliana. The detrimental effects of the salt on photosynthetic activity and stomatal conductance of A. thaliana leaves were much more important than in T. halophila leaves. The abundance of the CDSP32 thioredoxin, a critical component of the defence system against oxidative damage and lipid peroxidation, was found to be higher in T. halophila than in A. thaliana under control conditions and salt treatment. These results suggest that the rosette leaves of T. halophila exhibit more efficient protective mechanisms against Na(+) metabolic toxicity than those of A. thaliana.
Collapse
Affiliation(s)
- Sabah M'rah
- Physiologie et Biochimie de la Tolérance au Sel des Plantes, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
| | | | | | | | | | | | | |
Collapse
|
199
|
Garciadeblás B, Haro R, Benito B. Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. PLANT MOLECULAR BIOLOGY 2007; 63:479-90. [PMID: 17103013 DOI: 10.1007/s11103-006-9102-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Two cDNAs isolated from Cymodocea nodosa, CnSOS1A, and CnSOSIB encode proteins with high-sequence similarities to SOS1 plant transporters. CnSOS1A expressed in a yeast Na+-efflux mutant under the control of a constitutive expression promoter mimicked AtSOS1 from Arabidopsis; the wild type cDNA did not improve the growth of the recipient strain in the presence of Na+, but a cDNA mutant that expresses a truncated protein suppressed the defect of the yeast mutant. In similar experiments, CnSOS1B was not effective. Conditional expression, under the control of an arabinose responsive promoter, of the CnSOSIA and CnSOS1B cDNAs in an Escherichia coli mutant defective in Na+ efflux was toxic, and functional analyses were inconclusive. The same constructs transformed into an E. coli K+-uptake mutant revealed that CnSOS1A was also toxic, but that it slightly suppressed defective growth at low K+. Truncation in the C-terminal hydrophilic tail of CnSOS1A relieved the toxicity and proved that CnSOS1A was an excellent low-affinity K+ and Rb+ transporter. CnSOS1B mediated a transient, extremely rapid K+ or Rb+ influx. Similar tests with AtSOS1 revealed that it was not toxic and that the whole protein exhibited excellent K+ and Rb+ uptake characteristics in bacteria.
Collapse
Affiliation(s)
- Blanca Garciadeblás
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
200
|
Yang Y, Zhang F, Zhao M, An L, Zhang L, Chen N. Properties of plasma membrane H+ -ATPase in salt-treated Populus euphratica callus. PLANT CELL REPORTS 2007; 26:229-35. [PMID: 16912866 DOI: 10.1007/s00299-006-0220-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Revised: 06/28/2006] [Accepted: 07/19/2006] [Indexed: 05/11/2023]
Abstract
The plasma membrane (PM) vesicles from Populus euphratica (P. euphratica) callus were isolated to investigate the properties of the PM H(+)-ATPase. An enrichment of sealed and oriented right-side-out PM vesicles was demonstrated by measurement of the purity and orientation of membrane vesicles in the upper phase fraction. Analysis of pH optimum, temperature effects and kinetic properties showed that the properties of the PM H(+)-ATPase from woody plant P. euphratica callus were consistent with those from herbaceous species. Application of various thiol reagents to the reaction revealed that reduced thiol groups were essential to maintain the PM H(+)-ATPase activity. In addition, there was increased H(+)-ATPase activity in the PM vesicles when callus was exposed to NaCl. Western blotting analysis demonstrated an enhancement of H(+)-ATPase content in NaCl-treated P. euphratica callus compared with the control.
Collapse
Affiliation(s)
- Yingli Yang
- School of Life Science, Northwest Normal University, Lanzhou, PR China.
| | | | | | | | | | | |
Collapse
|