151
|
Williams BP, Aubry S, Hibberd JM. Molecular evolution of genes recruited into C₄ photosynthesis. TRENDS IN PLANT SCIENCE 2012; 17:213-20. [PMID: 22326564 DOI: 10.1016/j.tplants.2012.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 05/03/2023]
Abstract
The C₄ pathway is found in 62 lineages of land plants. We assess evidence for parallel versus convergent evolution of C₄ photosynthesis from three approaches: (i) studies of specific genes and cis-elements controlling their expression; (ii) phylogenetic analyses of mRNAs and inferred amino acid sequences; and (iii) analysis of C₃ and C₄ genomes and transcriptomes. Evidence suggests that although convergent evolution is common, parallel evolution can underlie both changes to gene expression and amino acid sequence. cis-elements that direct cell specificity in C₄ leaves are present in C₃ orthologues of genes recruited into C₄, probably facilitating this parallel evolution. From this, and genomic data, we propose that gene duplication followed by neofunctionalisation is not necessarily important in the evolution of C₄ biochemistry.
Collapse
Affiliation(s)
- Ben P Williams
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
152
|
Gu J, Weber K, Klemp E, Winters G, Franssen SU, Wienpahl I, Huylmans AK, Zecher K, Reusch TBH, Bornberg-Bauer E, Weber APM. Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness. Integr Biol (Camb) 2012; 4:480-93. [PMID: 22402787 DOI: 10.1039/c2ib00109h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The contribution of metabolism to heat stress may play a significant role in defining robustness and recovery of systems; either by providing the energy and metabolites required for cellular homeostasis, or through the generation of protective osmolytes. However, the mechanisms by which heat stress attenuation could be adapted through metabolic processes as a stabilizing strategy against thermal stress are still largely unclear. We address this issue through metabolomic and transcriptomic profiles for populations along a thermal cline where two seagrass species, Zostera marina and Zostera noltii, were found in close proximity. Significant changes captured by these profile comparisons could be detected, with a larger response magnitude observed in northern populations to heat stress. Sucrose, fructose, and myo-inositol were identified to be the most responsive of the 29 analyzed organic metabolites. Many key enzymes in the Calvin cycle, glycolysis and pentose phosphate pathways also showed significant differential expression. The reported comparison suggests that adaptive mechanisms are involved through metabolic pathways to dampen the impacts of heat stress, and interactions between the metabolome and proteome should be further investigated in systems biology to understand robust design features against abiotic stress.
Collapse
Affiliation(s)
- Jenny Gu
- Institute for Evolution and Biodiversity, University of Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Leakey ADB, Lau JA. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2]. Philos Trans R Soc Lond B Biol Sci 2012; 367:613-29. [PMID: 22232771 PMCID: PMC3248707 DOI: 10.1098/rstb.2011.0248] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO(2)].
Collapse
Affiliation(s)
- Andrew D B Leakey
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois, Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA.
| | | |
Collapse
|
154
|
Osborne CP, Sack L. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philos Trans R Soc Lond B Biol Sci 2012; 367:583-600. [PMID: 22232769 PMCID: PMC3248710 DOI: 10.1098/rstb.2011.0261] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.
Collapse
Affiliation(s)
- Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | |
Collapse
|
155
|
Strickler SR, Bombarely A, Mueller LA. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. AMERICAN JOURNAL OF BOTANY 2012; 99:257-66. [PMID: 22268224 DOI: 10.3732/ajb.1100292] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The application of next-generation sequencing (NGS) to transcriptomics, commonly called RNA-seq, allows the nearly complete characterization of transcriptomic events occurring in a specific tissue. It has proven particularly useful in nonmodel species, which often lack the resources available for sequenced organisms. Mainly, RNA-seq does not require a reference genome to gain useful transcriptomic information. In this review, the application of RNA-seq to nonmodel plant species will be addressed. Important experimental considerations from presequencing issues to postsequencing analysis, including sample and platform selection, and useful bioinformatics tools for assembly and data analysis, are covered. Methods of assembling RNA-seq data and analyses commonly performed with RNA-seq data, including single nucleotide polymorphism detection and analysis of differential expression, are explored. In addition, studies that have used RNA-seq to elucidate nonmodel plant transcriptomics are highlighted.
Collapse
Affiliation(s)
- Susan R Strickler
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
156
|
Schliesky S, Gowik U, Weber APM, Bräutigam A. RNA-Seq Assembly - Are We There Yet? FRONTIERS IN PLANT SCIENCE 2012; 3:220. [PMID: 23056003 PMCID: PMC3457010 DOI: 10.3389/fpls.2012.00220] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/05/2012] [Indexed: 05/20/2023]
Abstract
Transcriptomic sequence resources represent invaluable assets for research, in particular for non-model species without a sequenced genome. To date, the Next Generation Sequencing technologies 454/Roche and Illumina have been used to generate transcriptome sequence databases by mRNA-Seq for more than fifty different plant species. While some of the databases were successfully used for downstream applications, such as proteomics, the assembly parameters indicate that the assemblies do not yet accurately reflect the actual plant transcriptomes. Two different assembly strategies have been used, overlap consensus based assemblers for long reads and Eulerian path/de Bruijn graph assembler for short reads. In this review, we discuss the challenges and solutions to the transcriptome assembly problem. A list of quality control parameters and the necessary scripts to produce them are provided.
Collapse
Affiliation(s)
- Simon Schliesky
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
| | - Udo Gowik
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Developmental and Molecular Biology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Andreas P. M. Weber
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
| | - Andrea Bräutigam
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
- *Correspondence: Andrea Bräutigam, Institute for Plant Biochemistry, 26.03.01.Room 32, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
157
|
Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM. Multiple Arabidopsis genes primed for recruitment into C₄ photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:47-56. [PMID: 21883556 DOI: 10.1111/j.1365-313x.2011.04769.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
C(4) photosynthesis occurs in the most productive crops and vegetation on the planet, and has become widespread because it allows increased rates of photosynthesis compared with the ancestral C(3) pathway. Leaves of C(4) plants typically possess complicated alterations to photosynthesis, such that its reactions are compartmented between mesophyll and bundle sheath cells. Despite its complexity, the C(4) pathway has arisen independently in 62 separate lineages of land plants, and so represents one of the most striking examples of convergent evolution known. We demonstrate that elements in untranslated regions (UTRs) of multiple genes important for C(4) photosynthesis contribute to the metabolic compartmentalization characteristic of a C(4) leaf. Either the 5' or the 3' UTR is sufficient for cell specificity, indicating that functional redundancy underlies this key aspect of C(4) gene expression. Furthermore, we show that orthologous PPDK and CA genes from the C(3) plant Arabidopsis thaliana are primed for recruitment into the C(4) pathway. Elements sufficient for M-cell specificity in C(4) leaves are also present in both the 5' and 3' UTRs of these C(3) A. thaliana genes. These data indicate functional latency within the UTRs of genes from C(3) species that have been recruited into the C(4) pathway. The repeated recruitment of pre-existing cis-elements in C(3) genes may have facilitated the evolution of C(4) photosynthesis. These data also highlight the importance of alterations in trans in producing a functional C(4) leaf, and so provide insight into both the evolution and molecular basis of this important type of photosynthesis.
Collapse
Affiliation(s)
- Kaisa Kajala
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | | | | | | | | |
Collapse
|
158
|
Ludwig M. Carbonic anhydrase and the molecular evolution of C4 photosynthesis. PLANT, CELL & ENVIRONMENT 2012; 35:22-37. [PMID: 21631531 DOI: 10.1111/j.1365-3040.2011.02364.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
C(4) photosynthesis, a biochemical CO(2)-concentrating mechanism (CCM), evolved more than 60 times within the angiosperms from C(3) ancestors. The genus Flaveria, which contains species demonstrating C(3), C(3)-C(4), C(4)-like or C(4) photosynthesis, is a model for examining the molecular evolution of the C(4) pathway. Work with carbonic anhydrase (CA), and C(3) and C(4) Flaveria congeners has added significantly to the understanding of this process. The C(4) form of CA3, a β-CA, which catalyses the first reaction in the C(4) pathway by hydrating atmospheric CO(2) to bicarbonate in the cytosol of mesophyll cells (mcs), evolved from a chloroplastic C(3) ancestor. The molecular modifications to the ancestral CA3 gene included the loss of the sequence encoding the chloroplast transit peptide, and mutations in regulatory regions that resulted in high levels of expression in the C(4) mesophyll. Analyses of the CA3 proteins and regulatory elements from Flaveria photosynthetic intermediates indicated C(4) biochemistry very likely evolved in a specific, stepwise manner in this genus. The details of the mechanisms involved in the molecular evolution of other C(4) plant β-CAs are unknown; however, comparative genetics indicate gene duplication and neofunctionalization played significant roles as they did in Flaveria.
Collapse
Affiliation(s)
- Martha Ludwig
- School of Biomedical, Biomolecular and Chemical Sciences [M310], The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
159
|
Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber APM. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. THE PLANT CELL 2011; 23:4208-4220. [PMID: 22186372 PMCID: PMC3051238 DOI: 10.1105/tpc.111.230110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.
Collapse
Affiliation(s)
- Thea R Pick
- Plant Biochemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP. Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation. THE PLANT CELL 2011; 23:4208-20. [PMID: 22186372 PMCID: PMC3269860 DOI: 10.1105/tpc.111.090324] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 05/18/2023]
Abstract
We systematically analyzed a developmental gradient of the third maize (Zea mays) leaf from the point of emergence into the light to the tip in 10 continuous leaf slices to study organ development and physiological and biochemical functions. Transcriptome analysis, oxygen sensitivity of photosynthesis, and photosynthetic rate measurements showed that the maize leaf undergoes a sink-to-source transition without an intermediate phase of C(3) photosynthesis or operation of a photorespiratory carbon pump. Metabolome and transcriptome analysis, chlorophyll and protein measurements, as well as dry weight determination, showed continuous gradients for all analyzed items. The absence of binary on-off switches and regulons pointed to a morphogradient along the leaf as the determining factor of developmental stage. Analysis of transcription factors for differential expression along the leaf gradient defined a list of putative regulators orchestrating the sink-to-source transition and establishment of C(4) photosynthesis. Finally, transcriptome and metabolome analysis, as well as enzyme activity measurements, and absolute quantification of selected metabolites revised the current model of maize C(4) photosynthesis. All data sets are included within the publication to serve as a resource for maize leaf systems biology.
Collapse
Affiliation(s)
- Thea R. Pick
- Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
- International Graduate Program for Plant Science (iGrad-plant), Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Andrea Bräutigam
- Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Urte Schlüter
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alisandra K. Denton
- Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
- International Graduate Program for Plant Science (iGrad-plant), Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| | - Christian Colmsee
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | - Roland Pieruschka
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften (Pflanzenwissenschaften), 52425 Juelich, Germany
| | - Uwe Rascher
- Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften (Pflanzenwissenschaften), 52425 Juelich, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas P.M. Weber
- Plant Biochemistry, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
161
|
Langdale JA. C4 cycles: past, present, and future research on C4 photosynthesis. THE PLANT CELL 2011; 23:3879-92. [PMID: 22128120 PMCID: PMC3246324 DOI: 10.1105/tpc.111.092098] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 05/18/2023]
Abstract
In the late 1960s, a vibrant new research field was ignited by the discovery that instead of fixing CO(2) into a C(3) compound, some plants initially fix CO(2) into a four-carbon (C(4)) compound. The term C(4) photosynthesis was born. In the 20 years that followed, physiologists, biochemists, and molecular and developmental biologists grappled to understand how the C(4) photosynthetic pathway was partitioned between two morphologically distinct cell types in the leaf. By the early 1990s, much was known about C(4) biochemistry, the types of leaf anatomy that facilitated the pathway, and the patterns of gene expression that underpinned the biochemistry. However, virtually nothing was known about how the pathway was regulated. It should have been an exciting time, but many of the original researchers were approaching retirement, C(4) plants were proving recalcitrant to genetic manipulation, and whole-genome sequences were not even a dream. In combination, these factors led to reduced funding and the failure to attract young people into the field; the endgame seemed to be underway. But over the last 5 years, there has been a resurgence of interest and funding, not least because of ambitious multinational projects that aim to increase crop yields by introducing C(4) traits into C(3) plants. Combined with new technologies, this renewed interest has resulted in the development of more sophisticated approaches toward understanding how the C(4) pathway evolved, how it is regulated, and how it might be manipulated. The extent of this resurgence is manifest by the publication in 2011 of more than 650 pages of reviews on different aspects of C(4). Here, I provide an overview of our current understanding, the questions that are being addressed, and the issues that lie ahead.
Collapse
Affiliation(s)
- Jane A Langdale
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
| |
Collapse
|
162
|
Chen T, Ye R, Fan X, Li X, Lin Y. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH. PHOTOSYNTHESIS RESEARCH 2011; 108:157-170. [PMID: 21739352 DOI: 10.1007/s11120-011-9668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.
Collapse
Affiliation(s)
- Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
163
|
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, Weber APM, Izui K. A plastidial sodium-dependent pyruvate transporter. Nature 2011; 476:472-5. [DOI: 10.1038/nature10250] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 06/01/2011] [Indexed: 11/09/2022]
|
164
|
Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? THE PLANT CELL 2011; 23:2087-105. [PMID: 21705644 PMCID: PMC3160039 DOI: 10.1105/tpc.111.086264] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 05/18/2023]
Abstract
Selective pressure exerted by a massive decline in atmospheric CO(2) levels 55 to 40 million years ago promoted the evolution of a novel, highly efficient mode of photosynthetic carbon assimilation known as C(4) photosynthesis. C(4) species have concurrently evolved multiple times in a broad range of plant families, and this multiple and parallel evolution of the complex C(4) trait indicates a common underlying evolutionary mechanism that might be elucidated by comparative analyses of related C(3) and C(4) species. Here, we use mRNA-Seq analysis of five species within the genus Flaveria, ranging from C(3) to C(3)-C(4) intermediate to C(4) species, to quantify the differences in the transcriptomes of closely related plant species with varying degrees of C(4)-associated characteristics. Single gene analysis defines the C(4) cycle enzymes and transporters more precisely and provides new candidates for yet unknown functions as well as identifies C(4) associated pathways. Molecular evidence for a photorespiratory CO(2) pump prior to the establishment of the C(4) cycle-based CO(2) pump is provided. Cluster analysis defines the upper limit of C(4)-related gene expression changes in mature leaves of Flaveria as 3582 alterations.
Collapse
Affiliation(s)
- Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Heinrich-Heine-University, 40225 Duesseldorf, Germany.
| | | | | | | | | |
Collapse
|
165
|
Eckardt NA. How to make a C4 plant: insight from comparative transcriptome analysis. THE PLANT CELL 2011; 23:2009. [PMID: 21705641 PMCID: PMC3160017 DOI: 10.1105/tpc.111.230612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
166
|
Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber APM. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics 2011; 12:227. [PMID: 21569327 PMCID: PMC3224338 DOI: 10.1186/1471-2164-12-227] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/11/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist. RESULTS We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly.A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format. CONCLUSIONS We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will need to concentrate mainly on resolving the issues of redundancy and paralogy during transcriptome assembly.
Collapse
Affiliation(s)
- Susanne U Franssen
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, 48149 Münster, Germany
| | - Roshan P Shrestha
- Department of Plant Biology, Michigan State University, 48823 East Lansing, MI, USA
| | - Andrea Bräutigam
- Department of Plant Biology, Michigan State University, 48823 East Lansing, MI, USA
- Institute of Plant Biochemistry, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Hüfferstrasse 1, 48149 Münster, Germany
| | - Andreas PM Weber
- Department of Plant Biology, Michigan State University, 48823 East Lansing, MI, USA
- Institute of Plant Biochemistry, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
167
|
Sage RF, Zhu XG. Exploiting the engine of C(4) photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2989-3000. [PMID: 21652533 DOI: 10.1093/jxb/err179] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ever since the discovery of C(4) photosynthesis in the mid-1960s, plant biologists have envisaged the introduction of the C(4) photosynthetic pathway into C(3) crops such as rice and soybeans. Recent advances in genomics capabilities, and new evolutionary and developmental studies indicate that C(4) engineering will be feasible in the next few decades. Furthermore, better understanding of the function of C(4) photosynthesis provides new ways to improve existing C(4) crops and bioenergy species, for example by creating varieties with ultra-high water and nitrogen use efficiencies. In the case of C(4) engineering, the main enzymes of the C(4) metabolic cycle have already been engineered into various C(3) plants. In contrast, knowledge of the genes controlling Kranz anatomy lags far behind. Combining traditional genetics, high-throughput sequencing technologies, systems biology, bioinformatics, and the use of the new C(4) model species Setaria viridis, the discovery of the key genes controlling the expression of C(4) photosynthesis can be dramatically accelerated. Sustained investment in the research areas directly related to C(4) engineering has the potential for substantial return in the decades to come, primarily by increasing crop production at a time when global food supplies are predicted to fall below world demand.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada.
| | | |
Collapse
|
168
|
Kajala K, Covshoff S, Karki S, Woodfield H, Tolley BJ, Dionora MJA, Mogul RT, Mabilangan AE, Danila FR, Hibberd JM, Quick WP. Strategies for engineering a two-celled C(4) photosynthetic pathway into rice. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3001-10. [PMID: 21335436 DOI: 10.1093/jxb/err022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Every day almost one billion people suffer from chronic hunger, and the situation is expected to deteriorate with a projected population growth to 9 billion worldwide by 2050. In order to provide adequate nutrition into the future, rice yields in Asia need to increase by 60%, a change that may be achieved by introduction of the C(4) photosynthetic cycle into rice. The international C(4) Rice Consortium was founded in order to test the feasibility of installing the C(4) engine into rice. This review provides an update on two of the many approaches employed by the C(4) Rice Consortium: namely, metabolic C(4) engineering and identification of determinants of leaf anatomy by mutant screens. The aim of the metabolic C(4) engineering approach is to generate a two-celled C(4) shuttle in rice by expressing the classical enzymes of the NADP-ME C(4) cycle in a cell-appropriate manner. The aim is also to restrict RuBisCO and glycine decarboxylase expression to the bundle sheath (BS) cells of rice in a C(4)-like fashion by specifically down-regulating their expression in rice mesophyll (M) cells. In addition to the changes in biochemistry, two-celled C(4) species show a convergence in leaf anatomy that include increased vein density and reduced numbers of M cells between veins. By screening rice activation-tagged lines and loss-of-function sorghum mutants we endeavour to identify genes controlling these key traits.
Collapse
Affiliation(s)
- Kaisa Kajala
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge CB2 3EA, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Bräutigam A, Mullick T, Schliesky S, Weber APM. Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(3) and C(4) species. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3093-102. [PMID: 21398430 DOI: 10.1093/jxb/err029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Next-generation sequencing enables the study of species without a sequenced genome at the 'omics' level. Custom transcriptome databases are generated and global expression profiles can be compared. However, the assembly of transcriptome sequence reads into contigs remains a daunting task. In this study, five different assembly programs, both traditional overlap-based, 'read-centric' assemblers and de Bruijn graph data structure-based assemblers, were compared. To this end, artificial read libraries with and without simulated sequencing errors were constructed from Arabidopsis thaliana, based on quantitative profiles of mature leaf tissue. The open source TGICL pipeline and the commercial CLC bio genomics workbench produced the best assemblies in terms of contig length, hybrid assemblies, redundancy reduction, and error tolerance. The mature leaf transcriptomes of the C(3) species Cleome spinosa and the C(4) species Cleome gynandra were assembled and analysed. The pathways and cellular processes tagged in the transcriptome assemblies reflect processes of a mature leaf. The databases are useful for extracting transcripts related to C(4) processes as full-length or nearly full-length sequences.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Plant Biochemistry, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
170
|
Peterhansel C. Best practice procedures for the establishment of a C(4) cycle in transgenic C(3) plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3011-3019. [PMID: 21335437 DOI: 10.1093/jxb/err027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
C(4) plants established a mechanism for the concentration of CO(2) in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase in order to saturate the enzyme with substrate and substantially to reduce the alternative fixation of O(2) that results in energy losses. Transfer of the C(4) mechanism to C(3) plants has been repeatedly tested, but none of the approaches so far resulted in transgenic plants with enhanced photosynthesis or growth. Instead, often deleterious effects were observed. A true C(4) cycle requires the co-ordinated activity of multiple enzymes in different cell types and in response to diverse environmental and metabolic stimuli. This review summarizes our current knowledge about the most appropriate regulatory elements and coding sequences for the establishment of C(4) protein activities in C(3) plants. In addition, technological breakthroughs for the efficient transfer of the numerous genes probably required to transform a C(3) plant into a C(4) plant will be discussed.
Collapse
Affiliation(s)
- Christoph Peterhansel
- Institute of Botany, Leibniz University Hannover, Herrenhaeuser Straße 2, D-30419 Hannover, Germany.
| |
Collapse
|
171
|
Nelson T. The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C(4) leaves. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3039-3048. [PMID: 21414963 DOI: 10.1093/jxb/err072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
C(4) photosynthesis relies on spatial and quantitative specializations of common features of leaf anatomy, including venation pattern, bundle sheath cell and chloroplast differentiation, plasmodesmatal abundance, and secondary cell wall enhancement. It has thus far been challenging to dissect the molecular basis for these C(4)-specific alterations in spatial and quantitative patterns of regulation. The target downstream networks of genes and protein interactions that produce these fundamental anatomical features in both C(4) and C(3) species are poorly understood. The developing leaves of monocot grasses provide a base-to-tip gradient of developmental stages that can provide the platform for comprehensive molecular and anatomical data that can yield a better understanding both of the regulators and the targets that produce C(4) patterns, through a variety of gene discovery and systems analysis strategies.
Collapse
Affiliation(s)
- Timothy Nelson
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208104, New Haven, CT 06520-8104, USA.
| |
Collapse
|
172
|
Aubry S, Brown NJ, Hibberd JM. The role of proteins in C(3) plants prior to their recruitment into the C(4) pathway. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3049-59. [PMID: 21321052 DOI: 10.1093/jxb/err012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Our most productive crops and native vegetation use a modified version of photosynthesis known as the C(4) pathway. Leaves of C(4) crops have increased nitrogen and water use efficiencies compared with C(3) species. Although the modifications to leaves of C(4) plants are complex, their faster growth led to the proposal that C(4) photosynthesis should be installed in C(3) crops in order to increase yield potential. Typically, a limited set of proteins become restricted to mesophyll or bundle sheath cells, and this allows CO(2) to be concentrated around the primary carboxylase RuBisCO. The role that these proteins play in C(3) species prior to their recruitment into the C(4) pathway is addressed here. Understanding the role of these proteins in C(3) plants is likely to be of use in predicting how the metabolism of a C(3) leaf will alter as components of the C(4) pathway are introduced as part of efforts to install characteristics of C(4) photosynthesis in leaves of C(3) crops.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
173
|
Maier A, Zell MB, Maurino VG. Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C(4) and C(3) photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3061-9. [PMID: 21459769 DOI: 10.1093/jxb/err024] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the C(4) pathway of photosynthesis two types of malate decarboxylases release CO(2) in bundle sheath cells, NADP- and NAD-dependent malic enzyme (NADP-ME and NAD-ME), located in the chloroplasts and the mitochondria of these cells, respectively. The C(4) decarboxylases involved in C(4) photosynthesis did not evolve de novo; they were recruited from existing housekeeping isoforms. NADP-ME housekeeping isoforms would function in the control of malate levels during hypoxia, pathogen defence responses, and microspore separation, while NAD-ME participates in the respiration of malate in the tricarboxylic acid cycle. Recently, the existence of three enzymatic NAD-ME entities in Arabidopsis, occurring by alternative association of two subunits, was described as a novel mechanism to regulate NAD-ME activity under changing metabolic environments. The C(4) NADP-ME is thought to have evolved from a C(3) chloroplastic ancestor, which in turn would have evolved from an ancient cytosolic enzyme. In this way, the C(4) NADP-ME would have emerged through gene duplication, acquisition of a new promoter, and neo-functionalization. In contrast, there would exist a unique NAD-ME in C(4) plants, which would have been adapted to perform a dual function through changes in the kinetic and regulatory properties of the C(3) ancestors. In addition to this, for the evolution of C(4) NAD-ME, insertion of promoters or enhancers into the single-copy genes of the C(3) ancestors would have changed the expression without gene duplication.
Collapse
Affiliation(s)
- Alexandra Maier
- Botanisches Institut, Biozentrum Köln, Universität zu Köln, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | | | | |
Collapse
|
174
|
Abstract
C4 photosynthesis is an adaptation that evolved to alleviate the detrimental effects of photorespiration as a result of the gradual decline in atmospheric carbon dioxide levels. In most C4 plants, two cell types, bundle sheath and mesophyll, cooperate in carbon fixation, and, in so doing, are able to alleviate photorespiratory losses. Although much of the biochemistry is well characterized, little is known about the genetic mechanisms underlying the cell-type specificity driving C4 . However, several studies have shown that regulation acts at multiple levels, including transcriptional, post-transcriptional, post-translational and epigenetic. One example of such a regulatory mechanism is the cell-specific accumulation of major photorespiratory transcripts/proteins in bundle sheath cells, where ribulose-1,5-bisphosphate carboxylase/oxygenase is localized. Although many of the genes are expressed in the bundle sheath, some are expressed in both cell types, implicating post-transcriptional control mechanisms. Recently, ultra-high-throughput sequencing techniques and sophisticated mass spectrometry instrumentation have provided new opportunities to further our understanding of C4 regulation. Computational pipelines are being developed to accommodate the mass of data associated with these techniques. Finally, we discuss a readily transformable C4 grass--Setaria viridis--that has great potential to serve as a model for the genetic dissection of C4 photosynthesis in the grasses.
Collapse
Affiliation(s)
- Lin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14850, USA
| | - Richard B Peterson
- Department of Biochemistry & Genetics, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Thomas P Brutnell
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
175
|
Koteyeva NK, Voznesenskaya EV, Roalson EH, Edwards GE. Diversity in forms of C4 in the genus Cleome (Cleomaceae). ANNALS OF BOTANY 2011; 107:269-83. [PMID: 21147832 PMCID: PMC3025737 DOI: 10.1093/aob/mcq239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/31/2010] [Accepted: 11/11/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Cleomaceae is one of 19 angiosperm families in which C(4) photosynthesis has been reported. The aim of the study was to determine the type, and diversity, of structural and functional forms of C(4) in genus Cleome. Methods Plants of Cleome species were grown from seeds, and leaves were subjected to carbon isotope analysis, light and scanning electron microscopy, western blot analysis of proteins, and in situ immunolocalization for ribulose bisphosphate carboxylase oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC). KEY RESULTS Three species with C(4)-type carbon isotope values occurring in separate lineages in the genus (Cleome angustifolia, C. gynandra and C. oxalidea) were shown to have features of C(4) photosynthesis in leaves and cotyledons. Immunolocalization studies show that PEPC is localized in mesophyll (M) cells and Rubisco is selectively localized in bundle sheath (BS) cells in leaves and cotyledons, characteristic of species with Kranz anatomy. Analyses of leaves for key photosynthetic enzymes show they have high expression of markers for the C(4) cycle (compared with the C(3)-C(4) intermediate C. paradoxa and the C(3) species C. africana). All three are biochemically NAD-malic enzyme sub-type, with higher granal development in BS than in M chloroplasts, characteristic of this biochemical sub-type. Cleome gynandra and C. oxalidea have atriplicoid-type Kranz anatomy with multiple simple Kranz units around individual veins. However, C. angustifolia anatomy is represented by a double layer of concentric chlorenchyma forming a single compound Kranz unit by surrounding all the vascular bundles and water storage cells. CONCLUSIONS NAD-malic enzyme-type C(4) photosynthesis evolved multiple times in the family Cleomaceae, twice with atriplicoid-type anatomy in compound leaves having flat, broad leaflets in the pantropical species C. gynandra and the Australian species C. oxalidea, and once by forming a single Kranz unit in compound leaves with semi-terete leaflets in the African species C. angustifolia. The leaf morphology of C. angustifolia, which is similar to that of the sister, C(3)-C(4) intermediate African species C. paradoxa, suggests adaptation of this lineage to arid environments, which is supported by biogeographical information.
Collapse
Affiliation(s)
- Nuria K. Koteyeva
- Laboratory of Anatomy and Morphology, V. L. Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376, St. Petersburg, Russia
| | - Elena V. Voznesenskaya
- Laboratory of Anatomy and Morphology, V. L. Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376, St. Petersburg, Russia
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gerald E. Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
176
|
Ingram AL, Christin PA, Osborne CP. Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). ANNALS OF BOTANY 2011; 107:321-5. [PMID: 21098824 PMCID: PMC3025728 DOI: 10.1093/aob/mcq226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/28/2010] [Accepted: 10/25/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS The main assemblage of the grass subfamily Chloridoideae is the largest known clade of C(4) plant species, with the notable exception of Eragrostis walteri Pilg., whose leaf anatomy has been described as typical of C(3) plants. Eragrostis walteri is therefore classically hypothesized to represent an exceptional example of evolutionary reversion from C(4) to C(3) photosynthesis. Here this hypothesis is tested by verifying the photosynthetic type of E. walteri and its classification. METHODS Carbon isotope analyses were used to determine the photosynthetic pathway of several E. walteri accessions, and phylogenetic analyses of plastid rbcL and ndhF and nuclear internal transcribed spacer DNA sequences were used to establish the phylogenetic position of the species. RESULTS Carbon isotope analyses confirmed that E. walteri is a C(3) plant. However, phylogenetic analyses demonstrate that this species has been misclassified, showing that E. walteri is positioned outside Chloridoideae in Arundinoideae, a subfamily comprised entirely of C(3) species. CONCLUSIONS The long-standing hypothesis of C(4) to C(3) reversion in E. walteri is rejected, and the classification of this species needs to be re-evaluated.
Collapse
Affiliation(s)
- Amanda L Ingram
- Department of Biology, Wabash College, Crawfordsville, IN 47933, USA.
| | | | | |
Collapse
|
177
|
Breuers FKH, Bräutigam A, Weber APM. The Plastid Outer Envelope - A Highly Dynamic Interface between Plastid and Cytoplasm. FRONTIERS IN PLANT SCIENCE 2011; 2:97. [PMID: 22629266 PMCID: PMC3355566 DOI: 10.3389/fpls.2011.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/29/2011] [Indexed: 05/09/2023]
Abstract
Plastids are the defining organelles of all photosynthetic eukaryotes. They are the site of photosynthesis and of a large number of other essential metabolic pathways, such as fatty acid and amino acid biosyntheses, sulfur and nitrogen assimilation, and aromatic and terpenoid compound production, to mention only a few examples. The metabolism of plastids is heavily intertwined and connected with that of the surrounding cytosol, thus causing massive traffic of metabolic precursors, intermediates, and products. Two layers of biological membranes that are called the inner (IE) and the outer (OE) plastid envelope membranes bound the plastids of Archaeplastida. While the IE is generally accepted as the osmo-regulatory barrier between cytosol and stroma, the OE was considered to represent an unspecific molecular sieve, permeable for molecules of up to 10 kDa. However, after the discovery of small substrate specific pores in the OE, this view has come under scrutiny. In addition to controlling metabolic fluxes between plastid and cytosol, the OE is also crucial for protein import into the chloroplast. It contains the receptors and translocation channel of the TOC complex that is required for the canonical post-translational import of nuclear-encoded, plastid-targeted proteins. Further, the OE is a metabolically active compartment of the chloroplast, being involved in, e.g., fatty acid metabolism and membrane lipid production. Also, recent findings hint on the OE as a defense platform against several biotic and abiotic stress conditions, such as cold acclimation, freezing tolerance, and phosphate deprivation. Moreover, dynamic non-covalent interactions between the OE and the endomembrane system are thought to play important roles in lipid and non-canonical protein trafficking between plastid and endoplasmic reticulum. While proteomics and bioinformatics has provided us with comprehensive but still incomplete information on proteins localized in the plastid IE, the stroma, and the thylakoids, our knowledge of the protein composition of the plastid OE is far from complete. In this article, we report on the recent progress in discovering novel OE proteins to draw a conclusive picture of the OE. A "parts list" of the plastid OE will be presented, using data generated by proteomics of plastids isolated from various plant sources.
Collapse
Affiliation(s)
| | - Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
- *Correspondence: Andreas P. M. Weber, Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
178
|
Fernie AR, Klee HJ. The use of natural genetic diversity in the understanding of metabolic organization and regulation. FRONTIERS IN PLANT SCIENCE 2011; 2:59. [PMID: 22645543 PMCID: PMC3355787 DOI: 10.3389/fpls.2011.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/12/2011] [Indexed: 05/02/2023]
Abstract
The study of metabolic regulation has traditionally focused on analysis of specific enzymes, emphasizing kinetic properties, and the influence of protein interactions and post-translational modifications. More recently, reverse genetic approaches permit researchers to directly determine the effects of a deficiency or a surplus of a given enzyme on the biochemistry and physiology of a plant. Furthermore, in many model species, gene expression atlases that give important spatial information concerning the quantitative expression level of metabolism-associated genes are being produced. In parallel, "top-down" approaches to understand metabolic regulation have recently been instigated whereby broad genetic diversity is screened for metabolic traits and the genetic basis of this diversity is defined thereafter. In this article we will review recent examples of this latter approach both in the model species Arabidopsis thaliana and the crop species tomato (Solanum lycopersicum). In addition to highlighting examples in which this genetic diversity approach has proven promising, we will discuss the challenges associated with this approach and provide a perspective for its future utility.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany. e-mail:
| | - Harry J. Klee
- Horticultural Sciences Department and the Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| |
Collapse
|
179
|
Bräutigam A, Weber AP. Do metabolite transport processes limit photosynthesis? PLANT PHYSIOLOGY 2011; 155:43-8. [PMID: 20855521 PMCID: PMC3075745 DOI: 10.1104/pp.110.164970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/19/2010] [Indexed: 05/17/2023]
|
180
|
Gowik U, Westhoff P. The path from C3 to C4 photosynthesis. PLANT PHYSIOLOGY 2011; 155:56-63. [PMID: 20940348 PMCID: PMC3075750 DOI: 10.1104/pp.110.165308] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/10/2010] [Indexed: 05/17/2023]
Affiliation(s)
- Udo Gowik
- Institut für Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany.
| | | |
Collapse
|
181
|
Nunes-Nesi A, Araújo WL, Fernie AR. Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis. PLANT PHYSIOLOGY 2011; 155:101-7. [PMID: 20966153 PMCID: PMC3075771 DOI: 10.1104/pp.110.163816] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/20/2010] [Indexed: 05/17/2023]
|
182
|
Facchinelli F, Weber APM. The metabolite transporters of the plastid envelope: an update. FRONTIERS IN PLANT SCIENCE 2011; 2:50. [PMID: 22645538 PMCID: PMC3355759 DOI: 10.3389/fpls.2011.00050] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/23/2011] [Indexed: 05/19/2023]
Abstract
The engulfment of a photoautotrophic cyanobacterium by a primitive mitochondria-bearing eukaryote traces back to more than 1.2 billion years ago. This single endosymbiotic event not only provided the early petroalgae with the metabolic capacity to perform oxygenic photosynthesis, but also introduced a plethora of other metabolic routes ranging from fatty acids and amino acids biosynthesis, nitrogen and sulfur assimilation to secondary compounds synthesis. This implicated the integration and coordination of the newly acquired metabolic entity with the host metabolism. The interface between the host cytosol and the plastidic stroma became of crucial importance in sorting precursors and products between the plastid and other cellular compartments. The plastid envelope membranes fulfill different tasks: they perform important metabolic functions, as they are involved in the synthesis of carotenoids, chlorophylls, and galactolipids. In addition, since most genes of cyanobacterial origin have been transferred to the nucleus, plastidial proteins encoded by nuclear genes are post-translationally transported across the envelopes through the TIC-TOC import machinery. Most importantly, chloroplasts supply the photoautotrophic cell with photosynthates in form of reduced carbon. The innermost bilayer of the plastidic envelope represents the permeability barrier for the metabolites involved in the carbon cycle and is literally stuffed with transporter proteins facilitating their transfer. The intracellular metabolite transporters consist of polytopic proteins containing membrane spans usually in the number of four or more α-helices. Phylogenetic analyses revealed that connecting the plastid with the host metabolism was mainly a process driven by the host cell. In Arabidopsis, 58% of the metabolite transporters are of host origin, whereas only 12% are attributable to the cyanobacterial endosymbiont. This review focuses on the metabolite transporters of the inner envelope membrane of plastids, in particular the electrochemical potential-driven class of transporters. Recent advances in elucidating the plastidial complement of metabolite transporters are provided, with an update on phylogenetic relationship of selected proteins.
Collapse
Affiliation(s)
- Fabio Facchinelli
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf Düsseldorf, Germany
| | | |
Collapse
|
183
|
Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. THE PLANT CELL 2010; 22:3509-42. [PMID: 21081695 PMCID: PMC3015116 DOI: 10.1105/tpc.110.079764] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 05/17/2023]
Abstract
C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Brian Connolly
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Mingshu Huang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Edwin Reidel
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Cankui Zhang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Yukari Asakura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Nazmul H. Bhuiyan
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Robert Turgeon
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
184
|
Westhoff P, Gowik U. Evolution of C4 photosynthesis--looking for the master switch. PLANT PHYSIOLOGY 2010; 154:598-601. [PMID: 20921192 PMCID: PMC2948986 DOI: 10.1104/pp.110.161729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/03/2010] [Indexed: 05/21/2023]
Affiliation(s)
- Peter Westhoff
- Institut für Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Duesseldorf, Germany.
| | | |
Collapse
|