151
|
Wang DK, Sun ZX, Tao YZ. Application of TILLING in plant improvement. ACTA ACUST UNITED AC 2009; 33:957-64. [PMID: 17112966 DOI: 10.1016/s0379-4172(06)60130-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/15/2006] [Indexed: 10/23/2022]
Abstract
TILLING (Targeting induced local lesions in genomes) is a general reverse-genetic strategy that is used to locate an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and cost-effective detection of induced point mutations in populations of chemically mutagenized individuals. The technique can be applied not only to model organisms but also to economically important organisms in plants. Owing to its full of advantages such as simple procedure, high sensitivity, and high efficiency, TILLING provides a powerful approach for gene discovery, DNA polymorphism assessment, and plant improvement. Coupled with other genomic resources, TILLING and EcoTILLING can be used immediately as a haplotyping tool in plant breeding for identifying allelic variation in genes exhibiting expression correlating with phenotypes and establishing an allelic series at genetic loci for the traits of interest in germplasm or induced mutants.
Collapse
Affiliation(s)
- De-Kai Wang
- The Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | |
Collapse
|
152
|
Rigola D, van Oeveren J, Janssen A, Bonné A, Schneiders H, van der Poel HJA, van Orsouw NJ, Hogers RCJ, de Both MTJ, van Eijk MJT. High-throughput detection of induced mutations and natural variation using KeyPoint technology. PLoS One 2009; 4:e4761. [PMID: 19283079 PMCID: PMC2654077 DOI: 10.1371/journal.pone.0004761] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 01/21/2009] [Indexed: 01/19/2023] Open
Abstract
Reverse genetics approaches rely on the detection of sequence alterations in target genes to identify allelic variants among mutant or natural populations. Current (pre-) screening methods such as TILLING and EcoTILLING are based on the detection of single base mismatches in heteroduplexes using endonucleases such as CEL 1. However, there are drawbacks in the use of endonucleases due to their relatively poor cleavage efficiency and exonuclease activity. Moreover, pre-screening methods do not reveal information about the nature of sequence changes and their possible impact on gene function. We present KeyPoint™ technology, a high-throughput mutation/polymorphism discovery technique based on massive parallel sequencing of target genes amplified from mutant or natural populations. KeyPoint combines multi-dimensional pooling of large numbers of individual DNA samples and the use of sample identification tags (“sample barcoding”) with next-generation sequencing technology. We show the power of KeyPoint by identifying two mutants in the tomato eIF4E gene based on screening more than 3000 M2 families in a single GS FLX sequencing run, and discovery of six haplotypes of tomato eIF4E gene by re-sequencing three amplicons in a subset of 92 tomato lines from the EU-SOL core collection. We propose KeyPoint technology as a broadly applicable amplicon sequencing approach to screen mutant populations or germplasm collections for identification of (novel) allelic variation in a high-throughput fashion.
Collapse
|
153
|
Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L, Vogelzang R, Osborn T, Amasino RM, Parkin IAP, Haughn GW. Forward and reverse genetics of rapid-cycling Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:953-61. [PMID: 19132334 DOI: 10.1007/s00122-008-0952-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Accepted: 12/08/2008] [Indexed: 05/20/2023]
Abstract
Seeds of rapid-cycling Brassica oleracea were mutagenized with the chemical mutagen, ethylmethane sulfonate. The reverse genetics technique, TILLING, was used on a sample population of 1,000 plants, to determine the mutation profile. The spectrum and frequency of mutations induced by ethylmethane sulfonate was similar to that seen in other diploid species such as Arabidopsis thaliana. These data indicate that the mutagenesis was effective and demonstrate that TILLING represents an efficient reverse genetic technique in B. oleracea that will become more valuable as increasing genomic sequence data become available for this species. The extensive duplication in the B. oleracea genome is believed to result in the genetic redundancy that has been important for the evolution of morphological diversity seen in today's B. oleracea crops (broccoli, Brussels sprouts, cauliflower, cabbage, kale and kohlrabi). However, our forward genetic screens identified 120 mutants in which some aspect of development was affected. Some of these lines have been characterized genetically and in the majority of these, the mutant trait segregates as a recessive allele affecting a single locus. One dominant mutation (curly leaves) and one semi-dominant mutation (dwarf-like) were also identified. Allelism tests of two groups of mutants (glossy and dwarf) revealed that for some loci, multiple independent alleles have been identified. These data indicate that, despite genetic redundancy, mutation of many individual loci in B. oleracea results in distinct phenotypes.
Collapse
Affiliation(s)
- Edward Himelblau
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Feiz L, Martin JM, Giroux MJ. Creation and functional analysis of new Puroindoline alleles in Triticum aestivum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:247-57. [PMID: 18846362 DOI: 10.1007/s00122-008-0893-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 09/06/2008] [Indexed: 05/24/2023]
Abstract
The Hardness (Ha) locus controls grain texture and affects many end-use properties of wheat (Triticum aestivum L.). The Ha locus is functionally comprised of the Puroindoline a and b genes, Pina and Pinb, respectively. The lack of Pin allelic diversity is a major factor limiting Ha functional analyses and wheat quality improvement. In order to create new Ha alleles, a 630 member M(2) population was produced in the soft white spring cultivar Alpowa using ethylmethane sulfonate mutagenesis. The M(2) population was screened to identify new alleles of Pina and Pinb. Eighteen new Pin alleles, including eight missense alleles, were identified. F(2) populations for four of the new Pin alleles were developed after crossing each back to non-mutant Alpowa. Grain hardness was then measured on F(2:3) seeds and the impact of each allele on grain hardness was quantified. The tested mutations were responsible for between 28 and 94% of the grain hardness variation and seed weight and vigor of all mutation lines was restored among the F(2) populations. Selection of new Pin alleles following direct phenotyping or direct sequencing is a successful approach to identify new Ha alleles useful in improving wheat product quality and understanding Ha locus function.
Collapse
Affiliation(s)
- L Feiz
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Bioscience Building, Bozeman, MT, 59717-3150, USA
| | | | | |
Collapse
|
155
|
Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL. Mutation discovery for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2817-25. [PMID: 19516074 DOI: 10.1093/jxb/erp189] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Increasing crop yields to ensure food security is a major challenge. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. The forward genetic approach enables the identification of improved or novel phenotypes that can be exploited in conventional breeding programmes. Powerful reverse genetic strategies that allow the detection of induced point mutations in individuals of the mutagenized populations can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for plant breeding. This review briefly discusses recent advances in the detection of mutants and the potential of mutagenesis for crop improvement.
Collapse
Affiliation(s)
- Martin A J Parry
- Department of Plant Science, Rothamsted Research, Centre for Crop Genetic Improvement, Harpenden, Herts AL5 2JQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Saito T, Asamizu E, Mizoguchi T, Fukuda N, Matsukura C, Ezura H. Mutant Resources for the Miniature Tomato ( Solanum lycopersicum L.) ‘Micro-Tom’. ACTA ACUST UNITED AC 2009. [DOI: 10.2503/jjshs1.78.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takeshi Saito
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Erika Asamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Tsuyoshi Mizoguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Naoya Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Chiaki Matsukura
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
157
|
Moens CB, Donn TM, Wolf-Saxon ER, Ma TP. Reverse genetics in zebrafish by TILLING. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:454-9. [PMID: 19028802 DOI: 10.1093/bfgp/eln046] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TILLING, for Targeting Induced Local Lesions in Genomes, is a reverse genetics strategy that identifies mutations in specific genes of interest in chemically mutagenized populations. First described in 2000 for mutation detection in Arabidopsis, TILLING is now used in a wide range of plants including soybean, rice, barley and maize as well as for animal model systems, including Arabidopsis, Drosophila, Caenorhabditis elegans, rat, medaka and zebrafish and for the discovery of naturally occurring polymorphisms in humans. This review summarizes current TILLING methodologies as they have been applied to the zebrafish, ongoing TILLING projects and resources in the zebrafish community, and the future of zebrafish TILLING.
Collapse
Affiliation(s)
- Cecilia B Moens
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, B2-152, 1100 Fairview Ave. N., Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
158
|
Coassin S, Brandstätter A, Kronenberg F. An optimized procedure for the design and evaluation of Ecotilling assays. BMC Genomics 2008; 9:510. [PMID: 18973671 PMCID: PMC2586031 DOI: 10.1186/1471-2164-9-510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/30/2008] [Indexed: 11/17/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) are the most common form of genetic variability in the human genome and play a prominent role in the heritability of phenotypes. Especially rare alleles with frequencies less than 5% may exhibit a particularly strong influence on the development of complex diseases. The detection of rare alleles by standard DNA sequencing is time-consuming and cost-intensive. Here we discuss an alternative approach for a high throughput detection of rare mutations in large population samples using Ecotilling embedded in a collection of bioinformatic analysis tools. Ecotilling originally was introduced as TILLING for the screening for rare chemically induced mutations in plants and later adopted for human samples, showing an outstanding suitability for the detection of rare alleles in humans. An actual problem in the use of Ecotilling for large mutation screening projects in humans without bioinformatic support is represented by the lack of solutions to quickly yet comprehensively evaluate each newly found variation and place it into the correct genomic context. Results We present an optimized strategy for the design, evaluation and interpretation of Ecotilling results by integrating several mostly freely available bioinformatic tools. A major focus of our investigations was the evaluation and meaningful economical combination of these software tools for the inference of different possible regulatory functions for each newly detected mutation. Conclusion Our streamlined procedure significantly facilitates the experimental design and evaluation of Ecotilling assays and strongly improves the decision process on prioritizing the newly found SNPs for further downstream analysis.
Collapse
Affiliation(s)
- Stefan Coassin
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
159
|
Skromne I, Prince VE. Current perspectives in zebrafish reverse genetics: moving forward. Dev Dyn 2008; 237:861-82. [PMID: 18330930 DOI: 10.1002/dvdy.21484] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Use of the zebrafish as a model of vertebrate development and disease has expanded dramatically over the past decade. While many articles have discussed the strengths of zebrafish forward genetics (the phenotype-driven approach), there has been less emphasis on equally important and frequently used reverse genetics (the candidate gene-driven approach). Here we review both current and prospective reverse genetic techniques that are applicable to the zebrafish model. We include discussion of pharmacological approaches, popular gain-of-function and knockdown approaches, and gene targeting strategies. We consider the need for temporal and spatial control over gain/loss of gene function, and discuss available and developing techniques to achieve this end. Our goal is both to reveal the current technical advantages of the zebrafish and to highlight those areas where work is still required to allow this system to be exploited to full advantage.
Collapse
Affiliation(s)
- Isaac Skromne
- Department of Biology, University of Miami, Coral Gables, Florida 33146, USA.
| | | |
Collapse
|
160
|
Muth J, Hartje S, Twyman RM, Hofferbert HR, Tacke E, Prüfer D. Precision breeding for novel starch variants in potato. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:576-84. [PMID: 18422889 DOI: 10.1111/j.1467-7652.2008.00340.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Potato can be used as a source of modified starches for culinary and industrial processes, but its allelic diversity and tetraploid genome make the identification of novel alleles a challenge, and breeding such alleles into elite lines is a slow and difficult process. An efficient and reliable strategy has been developed for the rapid introduction and identification of new alleles in elite potato breeding lines, based on the ethylmethanesulphonate mutagenesis of dihaploid seeds. Using the granule-bound starch synthase I gene (waxy) as a model, a series of point mutations that potentially affect gene expression or enzyme function was identified. The most promising loss-of-function allele (waxy(E1100)) carried a mutation in the 5'-splice donor site of intron 1 that caused mis-splicing and protein truncation. This was used to establish elite breeding lineages lacking granule-bound starch synthase I protein activity and producing high-amylopectin starch. This is the first report of rapid and efficient mutation analysis in potato, a genetically complex and vegetatively propagated crop.
Collapse
Affiliation(s)
- Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
161
|
Tsuji T, Niida Y. Development of a simple and highly sensitive mutation screening system by enzyme mismatch cleavage with optimized conditions for standard laboratories. Electrophoresis 2008; 29:1473-83. [PMID: 18300207 DOI: 10.1002/elps.200700729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Efficient screening of unknown DNA variations is one of the substantive matters of molecular biology even today. Historically, SSCP and heteroduplex analysis (HA) are the most commonly used methods for detecting DNA variations everywhere in the world because of their simplicity. However, the sensitivity of these methods is not satisfactory for screening purpose. Recently, several new PCR-based mutation screening methods have been developed, but most of them require special instruments and adjustment of conditions for each DNA sequence to attain the maximum sensitivity, eventually becoming as inconvenient as old methods. Enzyme mismatch cleavage (EMC) is potentially an ideal screening method. With high-performance nucleases and once experimental conditions are optimized, it requires only conventional staff and conditions remain the same for each PCR product. In this study we tested four commercially available endonucleases for EMC and optimized the electrophoresis and developing conditions. We prepared 25 known DNA variations consisting of 18 single base substitutions (8 transitions and 10 transversions, including all possible sets of mismatches) and 7 small deletions or insertions. The combination of CEL nuclease, 12% PAGE and rapid silver staining can detect all types of mutations and achieved 100% sensitivity.
Collapse
Affiliation(s)
- Takanori Tsuji
- Department of Pediatrics, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | | |
Collapse
|
162
|
Barkley NA, Wang ML, Gillaspie AG, Dean RE, Pederson GA, Jenkins TM. Discovering and verifying DNA polymorphisms in a mung bean [V. radiata (L.) R. Wilczek] collection by EcoTILLING and sequencing. BMC Res Notes 2008; 1:28. [PMID: 18710546 PMCID: PMC2518284 DOI: 10.1186/1756-0500-1-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/18/2008] [Indexed: 11/10/2022] Open
Abstract
Background Vigna radiata, which is classified in the family Fabaceae, is an important economic crop and a dietary staple in many developing countries. The species radiata can be further subdivided into varieties of which the variety sublobata is currently acknowledged as the putative progenitor of radiata. EcoTILLING was employed to identify single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELS) in a collection of Vigna radiata accessions. Findings A total of 157 DNA polymorphisms in the collection were produced from ten primer sets when using V. radiata var. sublobata as the reference. The majority of polymorphisms detected were found in putative introns. The banding patterns varied from simple to complex as the number of DNA polymorphisms between two pooled samples increased. Numerous SNPs and INDELS ranging from 4–24 and 1–6, respectively, were detected in all fragments when pooling V. radiata var. sublobata with V. radiata var. radiata. On the other hand, when accessions of V. radiata var. radiata were mixed together and digested with CEL I relatively few SNPs and no INDELS were detected. Conclusion EcoTILLING was utilized to identify polymorphisms in a collection of mung bean, which previously showed limited molecular genetic diversity and limited morphological diversity in the flowers and pod descriptors. Overall, EcoTILLING proved to be a powerful genetic analysis tool providing the rapid identification of naturally occurring variation.
Collapse
Affiliation(s)
- Noelle A Barkley
- USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment Street, Griffin, GA 30223, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Cross MJ, Waters DLE, Lee LS, Henry RJ. Endonucleolytic mutation analysis by internal labeling (EMAIL). Electrophoresis 2008; 29:1291-301. [PMID: 18288672 DOI: 10.1002/elps.200700452] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mismatch-specific endonucleases are efficient tools for the targeted scanning of populations for subtle DNA variations. Conventional protocols involve 5'-labeled amplicon substrates and the detection of digestion products by LIF electrophoresis. A shortcoming of such protocols, however, is the limited 5'-signal strength. Normally the sensitivity of fluorescent DNA analyzers is superior to that of intercalating dye/agarose systems, however, pooling capacities of the former and latter approaches to mismatch scanning are somewhat similar. Detection is further limited by significant background. We investigated the activity of CEL nucleases using amplicon substrates labeled both internally and at each 5'-terminus. The amplicons were generated from exon 8 of the rice starch synthase IIa encoding gene. Signal of both 5'-labels was significantly reduced by enzyme activity, while that of the internal label was largely unaffected. In addition, background resulting from internal labeling was a significant improvement on that associated with 5'-labeling. Sizing of the multilabeled substrates suggests that 5'-modification enhances exonucleolytic activity, resulting in the removal of the dye-labeled terminal nucleotides. We have developed an alternative approach to mismatch detection, in which amplicon labeling is achieved via the incorporation of fluorescently labeled deoxynucleotides, which we have named Endonucleolytic Mutation Analysis by Internal Labeling (EMAIL). The strength of the EMAIL assay was demonstrated by the reclassification of a rice line as being heterozygous for the starch gene. This cultivar was assigned as being homozygous by a previous resequencing study. EMAIL shows potential for the clear identification of multiple mutations amongst allelic pools.
Collapse
Affiliation(s)
- Michael J Cross
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia.
| | | | | | | |
Collapse
|
164
|
Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S. TILLMore, a resource for the discovery of chemically induced mutants in barley. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:477-85. [PMID: 18422888 DOI: 10.1111/j.1467-7652.2008.00341.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A sodium azide-mutagenized population of barley (cv. 'Morex') was developed and utilized to identify mutants at target genes using the 'targeting induced local lesions in genomes' (TILLING) procedure. Screening for mutations at four agronomically important genes (HvCO1, Rpg1, eIF4E and NR) identified a total of 22 new mutant alleles, equivalent to the extrapolated rate of one mutation every 374 kb. All mutations except one were G/C to A/T transitions and several (approximately 68%) implied a change in protein amino acid sequence and therefore a possible effect on phenotype. The high rate of mutation detected through TILLING is in keeping with the high frequency (32.7%) of variant phenotypes observed amongst the M(3) families. Our results indicate the feasibility of using this resource for both reverse and forward genetics approaches to investigate gene function in barley and related crops.
Collapse
Affiliation(s)
- Valentina Talamè
- Department of Agroenvironmental Sciences and Technology, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
165
|
Triques K, Piednoir E, Dalmais M, Schmidt J, Le Signor C, Sharkey M, Caboche M, Sturbois B, Bendahmane A. Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 2008; 9:42. [PMID: 18433472 PMCID: PMC2386800 DOI: 10.1186/1471-2199-9-42] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 04/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA by a mismatch-specific endonuclease at mismatch sites and the analysis of the digestion product on a DNA sequencer. Important limitations of these methods are the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in pool of DNA, the cost of the analysis and the ease by which the technique could be implemented in a standard molecular biology laboratory. RESULTS The co-agroinfiltration of ENDO1 and p19 constructs into N. benthamiana leaves allowed high level of transient expression of a mismatch-specific and sensitive endonuclease, ENDO1 from Arabidopsis thaliana. We demonstrate the broad range of uses of the produced enzyme in detection of mutations. In human, we report the diagnosis of the G1691A mutation in Leiden factor-V gene associated with venous thrombosis and the fingerprinting of HIV-1 quasispecies in patients subjected to antiretroviral treatments. In plants, we report the use of ENDO1 system for detection of mutant alleles of Retinoblastoma-related gene by TILLING in Pisum sativum and discovery of natural sequence variations by Eco-TILLING in Arabidopsis thaliana. CONCLUSION We introduce a cost-effective tool based on a simplified purification protocol of a mismatch-specific and sensitive endonuclease, ENDO1. Especially, we report the successful applications of ENDO1 in mutation diagnostics in humans, fingerprinting of complex population of viruses, and in TILLING and Eco-TILLING in plants.
Collapse
Affiliation(s)
- Karine Triques
- Unité Mixte de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP5708, 91 057 Evry Cedex, France
| | - Elodie Piednoir
- Unité Mixte de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP5708, 91 057 Evry Cedex, France
| | - Marion Dalmais
- Unité Mixte de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP5708, 91 057 Evry Cedex, France
| | - Julien Schmidt
- Unité Mixte de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP5708, 91 057 Evry Cedex, France
| | - Christine Le Signor
- Unité Mixte de Recherche en Génétique et Ecophysiologie des Légumineuses, Domaine d'Epoisses, 21110 Bretenières, France
| | - Mark Sharkey
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michel Caboche
- Unité Mixte de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP5708, 91 057 Evry Cedex, France
| | - Bénédicte Sturbois
- Unité Mixte de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP5708, 91 057 Evry Cedex, France
| | - Abdelhafid Bendahmane
- Unité Mixte de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, CP5708, 91 057 Evry Cedex, France
| |
Collapse
|
166
|
Papazova N, Ghedira R, Van Glabeke S, Bartegi A, Windels P, Taverniers I, Roldan-Ruiz I, Van Bockstaele E, Milcamps A, Van Den Eede G, Depicker A, De Loose M. Stability of the T-DNA flanking regions in transgenic Arabidopsis thaliana plants under influence of abiotic stress and cultivation practices. PLANT CELL REPORTS 2008; 27:749-757. [PMID: 18087701 DOI: 10.1007/s00299-007-0495-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/08/2007] [Accepted: 12/02/2007] [Indexed: 05/25/2023]
Abstract
Genetic transformation is often associated with different rearrangements of the plant genome at the site of insertion. Therefore the question remains weather these T-DNA insertion sites are more prone to genotoxic stresses. Here, we studied the impact of propagation through generations, the influence of gene stacking and of photo oxidative stress caused by high light intensity on the stability of the transgene flanking regions in the model plant Arabidopsis thaliana. Conformational Sensitive Capillary Electrophoresis (CSCE), RFLP and sequencing were deployed in this analysis in order to study the proximal 100 bp and the long-range T-DNA flanking sequences. By screening seven transgenic lines no evidence for occurrence of mutation events were found, implying that the nucleotide sequence of the T-DNA flanking regions of the studied events is unlikely to be unstable.
Collapse
Affiliation(s)
- Nina Papazova
- Institute for Agricultural and Fisheries Research, Burg. Van Gansberghelaan 115, 9820, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C, Thompson R, Bendahmane A. UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 2008; 9:R43. [PMID: 18302733 PMCID: PMC2374714 DOI: 10.1186/gb-2008-9-2-r43] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/17/2008] [Accepted: 02/26/2008] [Indexed: 11/16/2022] Open
Abstract
The systematic characterization of gene functions in species recalcitrant to Agrobacterium-based transformation, like Pisum sativum, remains a challenge. To develop a high throughput forward and reverse genetics tool in pea, we have constructed a reference ethylmethane sulfonate mutant population and developed a database, UTILLdb, that contains phenotypic as well as sequence information on mutant genes. UTILLdb can be searched online for TILLING alleles, through the BLAST tool, or for phenotypic information about mutants by keywords.
Collapse
Affiliation(s)
- Marion Dalmais
- Unité de Recherche en Génomique Végétale, UMR INRA-CNRS, Rue Gaston Crémieux, 91057 Evry Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Ané JM, Zhu H, Frugoli J. Recent Advances in Medicago truncatula Genomics. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:256597. [PMID: 18288239 PMCID: PMC2216067 DOI: 10.1155/2008/256597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 09/14/2007] [Indexed: 05/23/2023]
Abstract
Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodulation, these two models are now widely used in a variety of biological fields from plant physiology and development to population genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community. Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed.
Collapse
Affiliation(s)
- Jean-Michel Ané
- Department of Agronomy,
University of Wisconsin,
Madison, WI 53706,
USA
| | - Hongyan Zhu
- Department of Plant and Soil Sciences,
University of Kentucky, Lexington, KY 40546,
USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry,
Clemson University,
100 Jordan Hall,
Clemson, SC 29634,
USA
| |
Collapse
|
169
|
Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J. A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. THE NEW PHYTOLOGIST 2008; 180:751-65. [PMID: 18811617 DOI: 10.1111/j.1469-8137.2008.02619.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two ethylmethanesulfonate (EMS) mutant populations of the semi-winter rapeseed cv. Ningyou7 were constructed with high mutant load, to provide a TILLING platform for functional genomics in Brassica napus, and for introduction of novel allelic variation in rapeseed breeding. Forward genetic screening of mutants from the M2 populations resulted in identification of a large number of novel phenotypes. Reverse genetic screening focused on the potentially multi-paralogous gene FAE1 (fatty acid elongase1), which controls seed erucic acid synthesis in rapeseed. A B. napus BAC library was screened, and loci in a reference mapping population (TNDH) were mapped to conclude that there are two paralogous copies of FAE1, one on each of the B. napus A and C genomes. A new procedure is demonstrated to identify novel mutations in situations where two or more very similar paralogous gene copies exist in a genome. The procedure involves TILLING of single plants, using existing SNPs as a positive control, and is able to distinguish novel mutations based on primer pairs designed to amplify both FAE1 paralogues simultaneously. The procedure was applied to 1344 M2 plants, with 19 mutations identified, of which three were functionally compromised with reduced seed erucic acid content.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Kamata N, Komeda Y. An inversion identified in acl1-1 mutant functions as an enhancer of the acl1-1 phenotype. Genes Genet Syst 2008; 83:293-300. [DOI: 10.1266/ggs.83.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Naoko Kamata
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo
| | - Yoshibumi Komeda
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo
| |
Collapse
|
171
|
Szarejko I, Forster BP. Doubled haploidy and induced mutation. EUPHYTICA 2007; 158:359-370. [PMID: 0 DOI: 10.1007/s10681-006-9241-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 07/12/2006] [Indexed: 05/19/2023]
|
172
|
Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1116-25. [PMID: 17651368 DOI: 10.1111/j.1365-313x.2007.03201.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.
Collapse
Affiliation(s)
- Karine Triques
- URGV, Unité de Recherche en Génomique Végétale, UMR INRA CNRS. 2, Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Kumar R, Kushalappa K, Godt D, Pidkowich MS, Pastorelli S, Hepworth SR, Haughn GW. The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. THE PLANT CELL 2007; 19:2719-35. [PMID: 17873098 PMCID: PMC2048708 DOI: 10.1105/tpc.106.048769] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In Arabidopsis thaliana, the BEL1-like TALE homeodomain protein family consists of 13 members that form heterodimeric complexes with the Class 1 KNOX TALE homeodomain proteins, including SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). The BEL1-like protein BELLRINGER (BLR) functions together with STM and BP in the shoot apex to regulate meristem identity and function and to promote correct shoot architecture. We have characterized two additional BEL1-LIKE HOMEODOMAIN (BLH) proteins, SAWTOOTH1 (BLH2/SAW1) and SAWTOOTH2 (BLH4/SAW2) that, in contrast with BLR, are expressed in lateral organs and negatively regulate BP expression. saw1 and saw2 single mutants have no obvious phenotype, but the saw1 saw2 double mutant has increased leaf serrations and revolute margins, indicating that SAW1 and SAW2 act redundantly to limit leaf margin growth. Consistent with this hypothesis, overexpression of SAW1 suppresses overall growth of the plant shoot. BP is ectopically expressed in the leaf serrations of saw1 saw2 double mutants. Ectopic expression of Class 1 KNOX genes in leaves has been observed previously in loss-of-function mutants of ASYMMETRIC LEAVES (AS1). Overexpression of SAW1 in an as1 mutant suppresses the as1 leaf phenotype and reduces ectopic BP leaf expression. Taken together, our data suggest that BLH2/SAW1 and BLH4/SAW2 establish leaf shape by repressing growth in specific subdomains of the leaf at least in part by repressing expression of one or more of the KNOX genes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
174
|
Forster BP, Heberle-Bors E, Kasha KJ, Touraev A. The resurgence of haploids in higher plants. TRENDS IN PLANT SCIENCE 2007; 12:368-75. [PMID: 17629539 DOI: 10.1016/j.tplants.2007.06.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/05/2007] [Accepted: 06/29/2007] [Indexed: 05/02/2023]
Abstract
The life cycle of plants proceeds via alternating generations of sporophytes and gametophytes. The dominant and most obvious life form of higher plants is the free-living sporophyte. The sporophyte is the product of fertilization of male and female gametes and contains a set of chromosomes from each parent; its genomic constitution is 2n. Chromosome reduction at meiosis means cells of the gametophytes carry half the sporophytic complement of chromosomes (n). Plant haploid research began with the discovery that sporophytes can be produced in higher plants carrying the gametic chromosome number (n instead of 2n) and that their chromosome number can subsequently be doubled up by colchicine treatment. Recent technological innovations, greater understanding of underlying control mechanisms and an expansion of end-user applications has brought about a resurgence of interest in haploids in higher plants.
Collapse
|
175
|
Rothan C, Causse M. Natural and artificially induced genetic variability in crop and model plant species for plant systems biology. EXS 2007; 97:21-53. [PMID: 17432262 DOI: 10.1007/978-3-7643-7439-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sequencing of plant genomes which was completed a few years ago for Arabidopsis thaliana and Oryza sativa is currently underway for numerous crop plants of commercial value such as maize, poplar, tomato grape or tobacco. In addition, hundreds of thousands of expressed sequence tags (ESTs) are publicly available that may well represent 40-60% of the genes present in plant genomes. Despite its importance for life sciences, genome information is only an initial step towards understanding gene function (functional genomics) and deciphering the complex relationships between individual genes in the framework of gene networks. In this chapter we introduce and discuss means of generating and identifying genetic diversity, i.e., means to genetically perturb a biological system and to subsequently analyse the systems response, e.g., the changes in plant morphology and chemical composition. Generating and identifying genetic diversity is in its own right a highly powerful resource of information and is established as an invaluable tool for systems biology.
Collapse
Affiliation(s)
- Christophe Rothan
- INRA-UMR 619 Biologie des Fruits, IBVI-INRA Bordeaux, BP 81, 71 Av. EdouardBourlaux, 33883 Villenave d'Ornon, France.
| | | |
Collapse
|
176
|
Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL. TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. PLANT PHYSIOLOGY 2007; 144:806-20. [PMID: 17468221 PMCID: PMC1914161 DOI: 10.1104/pp.107.097063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In all plant species studied to date, sucrose synthase occurs as multiple isoforms. The specific functions of the different isoforms are for the most part not clear. Six isoforms of sucrose synthase have been identified in the model legume Lotus japonicus, the same number as in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The genes encoding these isoforms are differentially expressed in all plant organs examined, although one, LjSUS4, is only expressed in flowers. LjSUS1 is the most highly expressed in all plant organs tested, except root nodules, where LjSUS3 accounts for more than 60% of the total SUS transcripts. One gene, LjSUS2, produces two transcripts due to alternative splicing, a feature not observed in other species to date. We have isolated plants carrying ethyl methanesulfonate-induced mutations in several SUS genes by targeting-induced local lesions in genomes reverse genetics and examined the effect of null alleles of two genes, LjSUS1 and LjSUS3, on nodule function. No differences were observed between the mutants and wild-type plants under glasshouse conditions, but there was evidence for a nitrogen-starvation phenotype in the sus3-1 mutant and severe impairment of growth in the sus1-1/sus3-1 double mutant under specific environmental conditions. Nodules of sus3-1 mutant plants retained a capacity for nitrogen fixation under all conditions. Thus, nitrogen fixation can occur in L. japonicus nodules even in the absence of LjSUS3 (the major nodule-induced isoform of SUS), so LjSUS1 must also contribute to the maintenance of nitrogen assimilation.
Collapse
Affiliation(s)
- Irmtraud Horst
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Recombinant nucleases CEL I from celery and SP I from spinach for mutation detection. BMC Biotechnol 2007; 7:29. [PMID: 17543120 PMCID: PMC1896157 DOI: 10.1186/1472-6750-7-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 06/01/2007] [Indexed: 12/02/2022] Open
Abstract
Background The detection of unknown mutations is important in research and medicine. For this purpose, a mismatch-specific endonuclease CEL I from celery has been established as a useful tool in high throughput projects. Previously, CEL I-like activities were described only in a variety of plants and could not be expressed in an active form in bacteria. Results We describe expression of active recombinant plant mismatch endonucleases and modification of their activities. We also report the cloning of a CEL I ortholog from Spinacia oleracea (spinach) which we termed SP I nuclease. Active CEL I and SP I nucleases were expressed as C-terminal hexahistidine fusions and affinity purified from the cell culture media. Both recombinant enzymes were active in mutation detection in BRCA1 gene of patient-derived DNA. Native SP nuclease purified from spinach is unable to incise at single-nucleotide substitutions and loops containing a guanine nucleotide, but the recombinant SP I nuclease can cut at these sites. Conclusion The insect cell-expressed CEL I orthologs may not be identical to their native counterparts purified from plant tissues. The present expression system should facilitate further development of CEL I-based mutation detection technologies.
Collapse
|
178
|
Draper BW, McCallum CM, Moens CB. nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 2007; 305:589-98. [PMID: 17418113 PMCID: PMC1986726 DOI: 10.1016/j.ydbio.2007.03.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 03/06/2007] [Accepted: 03/06/2007] [Indexed: 11/16/2022]
Abstract
Development of the germline requires the specification and survival of primordial germ cells (PGCs) in the embryo as well as the maintenance of gamete production during the reproductive life of the adult. These processes appear to be fundamental to all Metazoans, and some components of the genetic pathway regulating germ cell development and function are evolutionarily conserved. In both vertebrates and invertebrates, nanos-related genes, which encode RNA-binding zinc finger proteins, have been shown to play essential and conserved roles during germ cell formation. In Drosophila, maternally supplied nanos is required for survival of PGCs in the embryo, while in adults, nanos is required for the continued production of oocytes by maintaining germline stem cells self-renewal. In mice and zebrafish, nanos orthologs are required for PGC survival during embryogenesis, but a role in adults has not been explored. We show here that nanos1 in zebrafish is expressed in early stage oocytes in the adult female germline. We have identified a mutation in nanos1 using a reverse genetics method and show that young female nanos mutants contain oocytes, but fail to maintain oocyte production. This progressive loss of fertility in homozygous females is not a phenotype that has been described previously in the zebrafish and underlines the value of a reverse genetics approach in this model system.
Collapse
Affiliation(s)
- Bruce W Draper
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Research Center, P.O. Box 19024, Seattle, WA 98109, USA
| | | | | |
Collapse
|
179
|
Miyashita Y, Dolferus R, Ismond KP, Good AG. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:1108-21. [PMID: 17319845 DOI: 10.1111/j.1365-313x.2006.03023.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Alanine aminotransferase (AlaAT) catalyses the reversible transfer of an amino group from glutamate to pyruvate to form 2-oxoglutarate and alanine. The regulation of AlaAT in several plant species has been studied in response to low-oxygen stress, light and nitrogen application. In this study, induction of Arabidopsis AlaAT1 and AlaAT2 during hypoxia was observed at the transcriptional level, and an increase in enzyme activity was detected in hypoxically treated roots. In addition, the tissue-specific expression of AlaAT1 and AlaAT2 was analysed using promoter:GUS fusions. The GUS staining patterns indicated that both AlaAT genes are expressed predominantly in vascular tissues. We manipulated AlaAT expression to determine the relative importance of this enzyme in low-oxygen stress tolerance and nitrogen metabolism. This was done by analysing T-DNA mutants and over-expressing barley AlaAT in Arabidopsis. The AlaAT1 knockout mutant (alaat1-1) showed a dramatic reduction in AlaAT activity, suggesting that AlaAT1 is the major AlaAT isozyme in Arabidopsis. Over-expression of barley AlaAT significantly increased the AlaAT activity in the transgenic plants. These plants were analysed for metabolic changes over a period of hypoxic stress and during their subsequent recovery. The results showed that alaat1-1 plants accumulate more alanine than wild-type plants during the early phase of hypoxia, and the decline in accumulated alanine was delayed in the alaat1-1 line during the post-hypoxia recovery period. When alanine was supplied as the nitrogen source, alaat1-1 plants utilized alanine less efficiently than wild-type plants did. These results indicate that the primary role of AlaAT1 is to break down alanine when it is in excess. Therefore, AlaAT appears to be crucial for the rapid conversion of alanine to pyruvate during recovery from low-oxygen stress.
Collapse
Affiliation(s)
- Yo Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | | | | | | |
Collapse
|
180
|
Maule AJ, Caranta C, Boulton MI. Sources of natural resistance to plant viruses: status and prospects. MOLECULAR PLANT PATHOLOGY 2007; 8:223-31. [PMID: 20507494 DOI: 10.1111/j.1364-3703.2007.00386.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SUMMARY Globally, virus diseases are common in agricultural crops and have a major agronomic impact. They are countered through the deployment of genetic resistance against the virus, or through the use of a range of farming practices based upon the propagation of virus-free plant material and the exclusion of the virus vectors from the growing crop. We review here the current status of our knowledge of natural virus resistance genes, and consider the future prospects for the deployment of these genes against virus infection.
Collapse
Affiliation(s)
- Andrew J Maule
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
181
|
Rakshit S, Rakshit A, Matsumura H, Takahashi Y, Hasegawa Y, Ito A, Ishii T, Miyashita NT, Terauchi R. Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:731-43. [PMID: 17219210 DOI: 10.1007/s00122-006-0473-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 10/25/2006] [Indexed: 05/13/2023]
Abstract
Polymorphism over approximately 26 kb of DNA sequence spanning 22 loci and one region distributed on chromosomes 1, 2, 3 and 4 was studied in 30 accessions of cultivated rice, Oryza sativa, and its wild relatives. Phylogenetic analysis using all the DNA sequences suggested that O. sativa ssp. indica and ssp. japonica were independently domesticated from a wild species O. rufipogon. O. sativa ssp. indica contained substantial genetic diversity (pi = 0.0024), whereas ssp. japonica exhibited extremely low nucleotide diversity (pi = 0.0001) suggesting the origin of the latter from a small number of founders. O. sativa ssp. japonica contained a larger number of derived and fixed non-synonymous substitutions as compared to ssp. indica. Nucleotide diversity and genealogical history substantially varied across the 22 loci. A locus, RLD15 on chromosome 2, showed a distinct genealogy with ssp. japonica sequences distantly separated from those of O. rufipogon and O. sativa ssp. indica. Linkage disequilibrium (LD) was analyzed in two different regions. LD in O. rufipogon decays within 5 kb, whereas it extends to approximately 50 kb in O. sativa ssp. indica.
Collapse
Affiliation(s)
- Sujay Rakshit
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, 024-0003 Iwate, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Young LW, Parham C, Zhong Z, Chapman D, Reaney MJT. Non-destructive diffraction enhanced imaging of seeds. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2513-23. [PMID: 17595197 DOI: 10.1093/jxb/erm116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Techniques that make possible the non-destructive continuous observation of plant anatomy and developmental processes provide novel insights into these phenomena. Non-destructive imaging of seeds was demonstrated using the synchrotron-based X-ray imaging technique, diffraction enhanced imaging (DEI). The seed images obtained had good contrast and definition, allowing anatomical structures and physiological events to be observed. Structures such as hypocotyl-root axes, cotyledons, seed coats, air cavities, and embryo-less Brassica napus L. seeds were readily observed using DEI. Embryo axes, scutella, pericarp furrows, coleoptiles, and roots were observable over a time-course in individual germinating Triticum aestivum L. caryopses. Novel anatomical and physiological observations were also made that would have been difficult to make continuously using other techniques. The physical principles behind DEI make it a unique imaging technique. Contrast in DEI is the result of X-ray refraction at the density differences occurring at tissue boundaries, scatter caused by regions containing ordered molecules such as cellulose fibres, and attenuation. Sectioning of samples and the infusion of stains or other contrast agents are not necessary. Furthermore, as high-energy X-rays are used (30-40 keV), little X-ray absorption occurs, resulting in low levels of radiation damage. Consequently, studies of developmental processes may be performed on individuals. Individual germinating B. napus and T. aestivum seeds were imaged at several time points without incurring any apparent radiation damage. DEI offers a unique way of examining plant anatomy, development, and physiology, and provides images that are complementary to those obtained through other techniques.
Collapse
|
183
|
Till BJ, Zerr T, Comai L, Henikoff S. A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 2006; 1:2465-77. [PMID: 17406493 DOI: 10.1038/nprot.2006.329] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe Targeting-Induced Local Lesions IN Genomes (TILLING), a reverse-genetic strategy for the discovery and mapping of induced mutations. TILLING is suitable for essentially any organism that can be mutagenized. The TILLING procedure has also been adapted for the discovery and cataloguing of natural polymorphisms, a method called Ecotilling. To discover nucleotide changes within a particular gene, PCR is performed with gene-specific primers that are end-labeled with fluorescent molecules. After PCR, samples are denatured and annealed to form heteroduplexes between polymorphic DNA strands. Mismatched base pairs in these heteroduplexes are cleaved by digestion with a single-strand specific nuclease. The resulting products are size-fractionated using denaturing polyacrylamide gel electrophoresis and visualized by fluorescence detection. The migration of cleaved products indicates the approximate location of nucleotide polymorphisms. Throughput is increased and costs are reduced by sample pooling, multi-well liquid handling and automated gel band mapping. Once genomic DNA samples have been obtained, pooled and arrayed, thousands of samples can be screened daily.
Collapse
Affiliation(s)
- Bradley J Till
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
184
|
Lamour KH, Finley L, Hurtado-Gonzales O, Gobena D, Tierney M, Meijer HJG. Targeted gene mutation in Phytophthora spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1359-67. [PMID: 17153920 DOI: 10.1094/mpmi-19-1359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genus Phytophthora belongs to the oomycetes and is composed of plant pathogens. Currently, there are no strategies to mutate specific genes for members of this genus. Whole genome sequences are available or being prepared for Phytophthora sojae, P. ramorum, P. infestans, and P. capsici and the development of molecular biological techniques for functional genomics is encouraged. This article describes the adaptation of the reverse-genetic strategy of targeting induced local lesions in genomes (TILLING) to isolate gene-specific mutants in Phytophthora spp. A genomic library of 2,400 ethylnitrosourea (ENU) mutants of P. sojae was created and screened for induced point mutations in the genes encoding a necrosisinducing protein (PsojNIP) and a Phytophthora-specific phospholipase D (PsPXTM-PLD). Mutations were detected in single individuals and included silent, missense, and nonsense changes. Homozygous mutant isolates carrying a potentially deleterious missense mutation in PsojNIP and a premature stop codon in PsPXTM-PLD were identified. No phenotypic effect has yet been found for the homozygous mutant of PsojNIP. For those of PsPXTM-PLD, a reduction in growth rate and an appressed mycelial growth was observed. This demonstrates the feasibility of target-selected gene disruption for Phytophthora spp. and adds an important tool for functional genomic investigation.
Collapse
Affiliation(s)
- Kurt H Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Rm 205 Ellington Plant Science, 2431 Joe Johnson Dr., Knoxville 37996, USA.
| | | | | | | | | | | |
Collapse
|
185
|
Gilchrist EJ, O'Neil NJ, Rose AM, Zetka MC, Haughn GW. TILLING is an effective reverse genetics technique for Caenorhabditis elegans. BMC Genomics 2006; 7:262. [PMID: 17049087 PMCID: PMC1626091 DOI: 10.1186/1471-2164-7-262] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 10/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TILLING (Targeting Induced Local Lesions in Genomes) is a reverse genetic technique based on the use of a mismatch-specific enzyme that identifies mutations in a target gene through heteroduplex analysis. We tested this technique in Caenorhabditis elegans, a model organism in which genomics tools have been well developed, but limitations in reverse genetics have restricted the number of heritable mutations that have been identified. RESULTS To determine whether TILLING represents an effective reverse genetic strategy for C. elegans we generated an EMS-mutagenised population of approximately 1500 individuals and screened for mutations in 10 genes. A total of 71 mutations were identified by TILLING, providing multiple mutant alleles for every gene tested. Some of the mutations identified are predicted to be silent, either because they are in non-coding DNA or because they affect the third bp of a codon which does not change the amino acid encoded by that codon. However, 59% of the mutations identified are missense alleles resulting in a change in one of the amino acids in the protein product of the gene, and 3% are putative null alleles which are predicted to eliminate gene function. We compared the types of mutation identified by TILLING with those previously reported from forward EMS screens and found that 96% of TILLING mutations were G/C-to-A/T transitions, a rate significantly higher than that found in forward genetic screens where transversions and deletions were also observed. The mutation rate we achieved was 1/293 kb, which is comparable to the mutation rate observed for TILLING in other organisms. CONCLUSION We conclude that TILLING is an effective and cost-efficient reverse genetics tool in C. elegans. It complements other reverse genetic techniques in this organism, can provide an allelic series of mutations for any locus and does not appear to have any bias in terms of gene size or location. For eight of the 10 target genes screened, TILLING has provided the first genetically heritable mutations which can be used to study their functions in vivo.
Collapse
Affiliation(s)
- Erin J Gilchrist
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nigel J O'Neil
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Monique C Zetka
- Department of Biology, McGill University, Stewart Building N5/16, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - George W Haughn
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
186
|
Till BJ, Zerr T, Bowers E, Greene EA, Comai L, Henikoff S. High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling. Nucleic Acids Res 2006; 34:e99. [PMID: 16893952 PMCID: PMC1540726 DOI: 10.1093/nar/gkl479] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human individuals differ from one another at only approximately 0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease.
Collapse
Affiliation(s)
- Bradley J Till
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Smits BMG, Mudde JB, van de Belt J, Verheul M, Olivier J, Homberg J, Guryev V, Cools AR, Ellenbroek BA, Plasterk RHA, Cuppen E. Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis. Pharmacogenet Genomics 2006; 16:159-69. [PMID: 16495775 DOI: 10.1097/01.fpc.0000184960.82903.8f] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The rat is one of the most important model organisms for biomedical and pharmacological research. However, the generation of novel models for studying specific aspects of human diseases largely depends on selection for specific traits using existing rat strains, thereby solely depending on naturally occurring variation. This study aims to provide the tools to manipulate the rat genome in a more directed way. METHODS We developed robust, automated, and scaleable reverse genetic methodology based on ENU (N-ethyl-N-nitrosourea)-driven target-selected mutagenesis. Optimal mutagenesis conditions have been determined in three different rat strains and a universal, rapid, and cost-effective dideoxy resequencing-based screening setup was established for mutation discovery. The effectiveness of the approach is illustrated by the identification of 120 induced mutations in a set of genes of interest, including six that result in unique rat knockout models due to the introduction of premature stop codons. In addition, 56 mutations were found that change amino acids, including critical residues in transmembrane domains of receptors and channels. CONCLUSIONS The approach described here allows for the systematic generation of knockout and protein function altering alleles in the rat. The resulting induced rat models will be powerful tools for studying many aspects of a wide variety of human diseases.
Collapse
|
188
|
Sood R, English MA, Jones M, Mullikin J, Wang DM, Anderson M, Wu D, Chandrasekharappa SC, Yu J, Zhang J, Paul Liu P. Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 2006; 39:220-7. [PMID: 16828311 DOI: 10.1016/j.ymeth.2006.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 04/07/2006] [Indexed: 11/21/2022] Open
Abstract
Animal models provide an in vivo system to study gene function by transgenic and knockout approaches. Targeted knockout approaches have been very successful in mice, but are currently not feasible in zebrafish due to the inability to grow embryonic stem cells. As an alternative, a reverse genetic approach that utilizes screening by resequencing and/or TILLING (Targeting Induced Local Lesions INGenomes) of mutagenized genomes has recently gained popularity in the zebrafish field. Spermatogonia of healthy males are mutagenized using ENU (N-ethyl-N-nitrosourea) and F1 progeny is collected by breeding treated males with healthy wild type females. Sperm and DNA banks are generated from F1 males. DNA is screened for ENU-induced mutations by sequencing or TILLING. These mutations can then be studied by in vitro fertilization (IVF) from the cryopreserved sperm of the corresponding F1 male followed by breeding to homozygosity. A high-throughput method of screening for rare heterozygotes and efficient recovery of mutant lines are important in identification of a large number of mutations using this approach. This article provides optimized protocols for resequencing and TILLING based on our experiences. We performed a pilot screen on 1235 F1 males by resequencing 54 exons from 17 genes and analyzed the sequencing data using multiple programs to maximize the mutation detection with minimal false positive detection. As an alternative to sequencing, we developed the protocols for TILLING by capillary electrophoresis using an ABI Genetic analyzer 3100 platform followed by fragment analysis using GeneScan and Genotyper softwares. PCR products generated by fluorescently labeled universal primers and tailed exon-specific primers were pooled 4-fold prior to heteroduplex formation. Overall, our pilot screen shows that a combination of TILLING and sequencing is optimal for achieving cost-effective, high-throughput screening of a large number of samples. Amplicons with fewer common SNPs are ideal for TILLING whereas amplicons with multiple SNPs and in/del polymorphisms are best suited for sequencing followed by analysis with SNPdetector.
Collapse
Affiliation(s)
- Raman Sood
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Greber B, Tandara H, Lehrach H, Himmelbauer H. Comparison of PCR-based mutation detection methods and application for identification of mouse Sult1a1 mutant embryonic stem cell clones using pooled templates. Hum Mutat 2006; 25:483-90. [PMID: 15832303 DOI: 10.1002/humu.20168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reverse genetic approaches to generate mutants of model species are useful tools to assess functions of unknown genes. Recent work has demonstrated the feasibility of such strategies in several organisms, exploiting the power of chemical mutagenesis to disrupt genes randomly throughout the genome. To increase the throughput of gene-driven mutant identification, efficient mutation screening protocols are needed. Given the availability of sequence information for large numbers of unknown genes in many species, mutation detection protocols are preferably based on PCR. Using a set of defined mutations in the Hprt1 gene of mouse embryonic stem (ES) cells, we have systematically compared several PCR-based point mutation and deletion detection methods available for their ability to identify lesions in pooled samples, which is a major criterion for an efficient large-scale mutation screening assay. Results indicate that point mutations are most effectively identified by heteroduplex cleavage using CEL I endonuclease. Small deletions can most effectively be detected employing the recently described "poison" primer PCR technique. Further, we employed the CEL I assay followed by conventional agarose gel electrophoresis analysis for screening a library of chemically mutagenized ES cell clones. This resulted in the isolation of several clones harboring mutations in the mouse Sult1a1 locus, demonstrating the high-throughput compatibility of this approach using simple and inexpensive laboratory equipment.
Collapse
Affiliation(s)
- Boris Greber
- Max-Planck-Institute of Molecular Genetics, Berlin, Germany
| | | | | | | |
Collapse
|
190
|
Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 2006; 133:1091-100. [PMID: 16481352 DOI: 10.1242/dev.02280] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Arp2/3 complex, a highly conserved nucleator of F-actin polymerization,is essential for a variety of eukaryotic cellular processes, including epidermal cell morphogenesis in Arabidopsis thaliana. Efficient nucleation of actin filaments by the Arp2/3 complex requires the presence of an activator such as a member of the Scar/WAVE family. In mammalian cells, a multiprotein complex consisting of WAVE, PIR121/Sra-1, Nap1, Abi-2 and HSPC300 mediates responsiveness of WAVE to upstream regulators such as Rac. Essential roles in WAVE complex assembly or function have been demonstrated for PIR121/Sra-1, Nap1 and Abi-2, but the significance of HSPC300 in this complex is unclear. Plant homologs of all mammalian WAVE complex components have been identified, including HSPC300, the mammalian homolog of maize BRICK1 (BRK1). We show that, like mutations disrupting the Arabidopsis homologs of PIR121/Sra-1, Nap1 and Scar/WAVE, mutations in the Arabidopsis BRK1gene result in trichome and pavement cell morphology defects (and associated alterations in the F-actin cytoskeleton of expanding cells) similar to those caused by mutations disrupting the ARP2/3 complex itself. Analysis of double mutants provides genetic evidence that BRK1 functions in a pathway with the ARP2/3 complex. BRK1 is required for accumulation of SCAR1 protein in vivo,potentially explaining the apparently essential role of BRK1 in ARP2/3 complex function.
Collapse
Affiliation(s)
- Stevan Djakovic
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
191
|
Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:145-67. [PMID: 17177793 DOI: 10.1111/j.1467-7652.2005.00169.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cell walls are dynamic structures that represent key determinants of overall plant form, plant growth and development, and the responses of plants to environmental and pathogen-induced stresses. Walls play centrally important roles in the quality and processing of plant-based foods for both human and animal consumption, and in the production of fibres during pulp and paper manufacture. In the future, wall material that constitutes the major proportion of cereal straws and other crop residues will find increasing application as a source of renewable fuel and composite manufacture. Although the chemical structures of most wall constituents have been defined in detail, the enzymes involved in their synthesis and remodelling remain largely undefined, particularly those involved in polysaccharide biosynthesis. There have been real recent advances in our understanding of cellulose biosynthesis in plants, but, with few exceptions, the identities and modes of action of polysaccharide synthases and other glycosyltransferases that mediate the biosynthesis of the major non-cellulosic wall polysaccharides are not known. Nevertheless, emerging functional genomics and molecular genetics technologies are now allowing us to re-examine the central questions related to wall biosynthesis. The availability of the rice, Populus trichocarpa and Arabidopsis genome sequences, a variety of mutant populations, high-density genetic maps for cereals and other industrially important plants, high-throughput genome and transcript analysis systems, extensive publicly available genomics resources and an increasing armoury of analysis systems for the definition of candidate gene function will together allow us to take a systems approach to the description of wall biosynthesis in plants.
Collapse
Affiliation(s)
- Naser Farrokhi
- School of Agriculture and Wine, and Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
192
|
Waugh R, Leader DJ, McCallum N, Caldwell D. Harvesting the potential of induced biological diversity. TRENDS IN PLANT SCIENCE 2006; 11:71-9. [PMID: 16406304 DOI: 10.1016/j.tplants.2005.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/28/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
For most of the past century, chemical and physical mutagens have been used in plant genetic research to introduce novel genetic variation. In crop improvement, more than 2000 plant varieties that contain induced mutations have been released for cultivation having faced none of the regulatory restrictions imposed on genetically modified material. In plant science, mutational approaches have found extensive use in forward genetics and for enhancer and suppressor screens - particularly in model organisms where positional cloning is easily achieved. However, new approaches that combine mutagenesis with novel and sensitive methods to detect induced DNA sequence variation are establishing a new niche for mutagenesis in the expanding area of (crop) plant functional genomics and providing a bridge that links discovery in models to application in crops.
Collapse
Affiliation(s)
- Robbie Waugh
- Scottish Crop Research Institute, Invergowrie, Dundee, UK DD2 5DA.
| | | | | | | |
Collapse
|
193
|
Comai L, Henikoff S. TILLING: practical single-nucleotide mutation discovery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:684-94. [PMID: 16441355 DOI: 10.1111/j.1365-313x.2006.02670.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In the post-genomic sequencing era, an expanding portfolio of genomic technologies has been applied to the study of gene function. Reverse genetics approaches that provide targeted inactivation of genes identified by sequence analysis include TILLING (for Targeting Local Lesions IN Genomes). TILLING searches the genomes of mutagenized organisms for mutations in a chosen gene, typically single base-pair substitutions. This review covers practical aspects of the technology, ranging from building the mutagenized population to mutation discovery, and discusses possible improvements to current protocols and the impact of new genomic methods for mutation discovery in relation to the future of the TILLING approach.
Collapse
Affiliation(s)
- Luca Comai
- Department of Biology, Box 355325, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
194
|
Robaglia C, Caranta C. Translation initiation factors: a weak link in plant RNA virus infection. TRENDS IN PLANT SCIENCE 2006; 11:40-5. [PMID: 16343979 DOI: 10.1016/j.tplants.2005.11.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 10/11/2005] [Accepted: 11/25/2005] [Indexed: 05/05/2023]
Abstract
Recessive resistance genes against plant viruses have been recognized for a long time but their molecular nature has only recently been linked to components of the eukaryotic translation initiation complex. Translation initiation factors, and particularly the eIF4E and eIF4G protein families, were found to be essential determinants in the outcome of RNA virus infections. Viruses affected by these genes belong mainly to potyviruses; natural viral resistance mechanisms as well as mutagenesis analysis in Arabidopsis all converged to identify the same set of translation initiation factors. Their role in plant resistance against RNA viruses remains to be elucidated. Although the interaction with the protein synthesis machinery is probably a key element for successful RNA virus infection, other possible mechanisms will also be discussed.
Collapse
Affiliation(s)
- Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, CEA-CNRS-Université Aix-Marseille II, Faculté des Sciences de Luminy, F-13009 Marseille, France.
| | | |
Collapse
|
195
|
Sakuraba Y, Sezutsu H, Takahasi KR, Tsuchihashi K, Ichikawa R, Fujimoto N, Kaneko S, Nakai Y, Uchiyama M, Goda N, Motoi R, Ikeda A, Karashima Y, Inoue M, Kaneda H, Masuya H, Minowa O, Noguchi H, Toyoda A, Sakaki Y, Wakana S, Noda T, Shiroishi T, Gondo Y. Molecular characterization of ENU mouse mutagenesis and archives. Biochem Biophys Res Commun 2005; 336:609-16. [PMID: 16139793 DOI: 10.1016/j.bbrc.2005.08.134] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
The large-scale mouse mutagenesis with ENU has provided forward-genetic resources for functional genomics. The frozen sperm archive of ENU-mutagenized generation-1 (G1) mice could also provide a "mutant mouse library" that allows us to conduct reverse genetics in any particular target genes. We have archived frozen sperm as well as genomic DNA from 9224 G1 mice. By genome-wide screening of 63 target loci covering a sum of 197 Mbp of the mouse genome, a total of 148 ENU-induced mutations have been directly identified. The sites of mutations were primarily identified by temperature gradient capillary electrophoresis method followed by direct sequencing. The molecular characterization revealed that all the identified mutations were point mutations and mostly independent events except a few cases of redundant mutations. The base-substitution spectra in this study were different from those of the phenotype-based mutagenesis. The ENU-based gene-driven mutagenesis in the mouse now becomes feasible and practical.
Collapse
Affiliation(s)
- Yoshiyuki Sakuraba
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Facchini PJ, Bird DA, Bourgault R, Hagel JM, Liscombe DK, MacLeod BP, Zulak KG. Opium poppy: a model system to investigate alkaloid biosynthesis in plants. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Remarkable progress on the biology of plant secondary metabolism has recently been realized. The application of advanced biochemistry, molecular, cellular, and genomic methodologies has revealed biological paradigms unique to the biosynthesis of secondary metabolites, including alkaloids, flavonoids, glucosinolates, phenylpropanoids, and terpenoids. The use of model plant systems has facilitated integrative research on the biosynthesis and regulation of each group of natural products. The model legume, Medicago truncatula Gaertn., plays a key role in studies on phenylpropanoid and flavonoid metabolism. Mint ( Mentha × piperita L.) and various conifers are the systems of choice to investigate terpenoid metabolism, whereas members of the mustard family (Brassica spp.) are central to work on glucosinolate pathways. Arabidopsis thaliana (L.) Heynh. is also used to study the biosynthesis of most secondary compounds, except alkaloids. Unlike other categories of secondary metabolites, the many structural types of alkaloids are biosynthetically unrelated. The biology of each group is unique, although common paradigms are also apparent. Opium poppy ( Papaver somniferum L.) produces a large number of benzylisoquinoline alkaloids and has begun to challenge Madigascar periwinkle ( Catharanthus roseus (L.) G. Don), which accumulates monoterpenoid indole alkaloids, as the most versatile model system to study alkaloid metabolism. An overview of recent progress on the biology of plant alkaloid biosynthesis, with a focus on benzylisoquinoline alkaloid pathways in opium poppy and related species, highlights the emergence of opium poppy as an important model system to investigate secondary metabolism.
Collapse
Affiliation(s)
- Peter J. Facchini
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David A. Bird
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richard Bourgault
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jillian M. Hagel
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David K. Liscombe
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Benjamin P. MacLeod
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Katherine G. Zulak
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
197
|
Yeung AT, Hattangadi D, Blakesley L, Nicolas E. Enzymatic mutation detection technologies. Biotechniques 2005; 38:749-58. [PMID: 15948293 DOI: 10.2144/05385rv01] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mutation is as necessary for life as fidelity is in DNA replication. The study of mutations reveals the normal functions of genes, messages, proteins, the causes of many diseases, and the variability of responses among individuals. Indeed, recent mutations that have not yet become polymorphisms are often deleterious and pertinent to the disease history of afflicted individuals. This review discusses the principles behind a variety of methods for the detection of mutations and factors that should be considered in future methods design. One enzymatic approach in particular using orthologs of the CEL I nuclease that show high specificity for all mismatches, appears to be easy and robust. Further developments of this and other methods will allow mutation detection to become an integral component of individualized medicine.
Collapse
|
198
|
Abstract
Transgenic methods have been successfully applied to trait improvement in a number of crops. However, reverse genetics studies by transgenic means are not practical in many commercially important crops, hampering investigations into gene function and the development of novel and improved cultivars. A nontransgenic method for reverse genetics called Targeting Induced Local Lesions IN Genomes (TILLING) has been developed as a method for inducing and identifying novel genetic variation, and has been demonstrated in the model plant, Arabidopsis thaliana. Recently, TILLING has been extended to the improvement of crop plants and shows great promise as a general method for both functional genomics and modulation of key traits in diverse crops.
Collapse
Affiliation(s)
- Ann J Slade
- Anawah Inc., 1102 Columbia Street, Suite 600, Seattle, WA 98104, USA
| | | |
Collapse
|
199
|
Greber B, Lehrach H, Himmelbauer H. Mouse splice mutant generation from ENU-treated ES cells--a gene-driven approach. Genomics 2005; 85:557-62. [PMID: 15820307 DOI: 10.1016/j.ygeno.2005.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 01/25/2005] [Indexed: 11/29/2022]
Abstract
Mutant mice are important for elucidating mammalian gene functions and for modeling human disease phenotypes. In recent years, chemical mutagenesis has become an increasingly popular method to disrupt gene functions due to its high efficiency of inducing mutations throughout the genome. Mutagenesis of embryonic stem (ES) cells offers the possibility of gene-driven approaches, which, however, require efficient mutation detection procedures to screen archives of mutated samples for lesions in particular genes. We have developed an approach that focuses on the detection of splice mutations in highly pooled cDNA samples using exon-skipping PCR primers. As a proof of concept, splice mutants for the Kit gene were isolated from a library comprising approximately 40,000 ES cell clones treated with N-ethyl-N-nitrosourea followed by transmission through the mouse germ-line. The approach will be useful for the production of mouse models for human disease-related splice mutations and as a general gene disruption strategy.
Collapse
Affiliation(s)
- Boris Greber
- Department of Vertebrate Genomics, Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | |
Collapse
|
200
|
Kim MJ, Hirono I, Aoki T. Detection of quinolone-resistance genes in Photobacterium damselae subsp. piscicida strains by targeting-induced local lesions in genomes. JOURNAL OF FISH DISEASES 2005; 28:463-71. [PMID: 16159364 DOI: 10.1111/j.1365-2761.2005.00652.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Quinolone-resistant strains of the fish-pathogenic bacterium, Photobacterium damselae subsp. piscicida are distributed widely in cultured yellowtail, Seriola quinqueradiata (Temminck & Schlegel), in Japan. The quinolone resistance-determining region (QRDR) was amplified with degenerate primers, followed by cassette ligation-mediated PCR. Open reading frames encoding proteins of 875 and 755 amino acid residues were detected in the gyrA and parC genes, respectively. Resistant strains of P. damselae subsp. piscicida carried a point mutation only in the gyrA QRDR leading to a Ser-to-Ile substitution at residue position 83. No amino acid alterations were discovered in the ParC sequence. A mutation in the gyrA gene was also detected in nalidixic acid-resistant mutants of strain SP96002 obtained from agar medium containing increased levels of quinolone. These results suggest that GyrA, as in other Gram-negative bacteria, is a target of quinolone in P. damselae subsp. piscicida. Furthermore, we attempted to detect a point mutation using targeting-induced local lesions in genomes (TILLING), which is a general strategy used for the detection of a variety of induced point mutations and naturally occurring polymorphisms. We developed a new detection method for the rapid and large-scale identification of quinolone-resistant strains of P. damselae subsp. piscicida using TILLING.
Collapse
Affiliation(s)
- M-J Kim
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | |
Collapse
|