151
|
Fátyol K, Ludman M, Burgyán J. Functional dissection of a plant Argonaute. Nucleic Acids Res 2016; 44:1384-97. [PMID: 26673719 PMCID: PMC4756824 DOI: 10.1093/nar/gkv1371] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
RNA guided ribonuclease complexes play central role in RNA interference. Members of the evolutionarily conserved Argonaute protein family form the catalytic cores of these complexes. Unlike a number of other plant Argonautes, the role of AGO2 has been obscure until recently. Newer data, however, have indicated its involvement in various biotic and abiotic stress responses. Despite its suggested importance, there is no detailed characterization of this protein to date. Here we report cloning and molecular characterization of the AGO2 protein of the virological model plant Nicotiana benthamiana. We show that AGO2 can directly repress translation via various miRNA target site constellations (ORF, 3' UTR). Interestingly, although AGO2 seems to be able to silence gene expression in a slicing independent fashion, its catalytic activity is still a prerequisite for efficient translational repression. Additionally, mismatches between the 3' end of the miRNA guide strand and the 5' end of the target site enhance gene silencing by AGO2. Several functionally important amino acid residues of AGO2 have been identified that affect its small RNA loading, cleavage activity, translational repression potential and antiviral activity. The data presented here help us to understand how AGO2 aids plants to deal with stress.
Collapse
Affiliation(s)
- Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre Szent-Györgyi Albert u. 4. Gödöllő 2100, Hungary
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre Szent-Györgyi Albert u. 4. Gödöllő 2100, Hungary
| | - József Burgyán
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre Szent-Györgyi Albert u. 4. Gödöllő 2100, Hungary
| |
Collapse
|
152
|
Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize. Sci Rep 2016; 6:20520. [PMID: 26864602 PMCID: PMC4808907 DOI: 10.1038/srep20520] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/07/2016] [Indexed: 12/03/2022] Open
Abstract
The co-infection of Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV) can cause maize lethal necrosis. However, the mechanism underlying the synergistic interaction between these two viruses remains elusive. In this study, we found that the co-infection of MCMV and SCMV increased the accumulation of MCMV. Moreover, the profiles of virus-derived siRNAs (vsiRNAs) from MCMV and SCMV in single- and co-infected maize plants were obtained by high-throughput sequencing. Our data showed that synergistic infection of MCMV and SCMV increased remarkably the accumulation of vsiRNAs from MCMV, which were mainly 22 and 21 nucleotides in length. The single-nucleotide resolution maps of vsiRNAs revealed that vsiRNAs were almost continuously but heterogeneously distributed throughout MCMV and SCMV genomic RNAs, respectively. Moreover, we predicted and annotated dozens of host transcript genes targeted by vsiRNAs. Our results also showed that maize DCLs and several AGOs RNAs were differentially accumulated in maize plants with different treatments (mock, single or double inoculations), which were associated with the accumulation of vsiRNAs. Our findings suggested possible roles of vsiRNAs in the synergistic interaction of MCMV and SCMV in maize plants.
Collapse
|
153
|
Dong K, Wang Y, Zhang Z, Chai LX, Tong X, Xu J, Li D, Wang XB. Two amino acids near the N-terminus of Cucumber mosaic virus 2b play critical roles in the suppression of RNA silencing and viral infectivity. MOLECULAR PLANT PATHOLOGY 2016; 17:173-83. [PMID: 25893424 PMCID: PMC6638393 DOI: 10.1111/mpp.12270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cucumber mosaic virus (CMV) 2b suppresses RNA silencing primarily through the binding of double-stranded RNA (dsRNA) of varying sizes. However, the biologically active form of 2b remains elusive. Here, we demonstrate that the single and double alanine substitution mutants in the N-terminal 15th leucine and 18th methionine of CMV 2b exhibit drastically attenuated virulence in wild-type plants, but are efficiently rescued in mutant plants defective in RNA-dependent RNA polymerase 6 (RDR6) and Dicer-like 4 (DCL4). Moreover, the transgenic plants of 2b, but not 2blm (L15A/M18A), rescue the high infectivity of CMV-Δ2b through the suppression of antiviral silencing. L15A, M18A or both weaken 2b suppressor activity on local and systemic transgene silencing. In contrast with the high affinity of 2b to short and long dsRNAs, 2blm is significantly compromised in 21-bp duplex small interfering RNA (siRNA) binding ability, but maintains a strong affinity for long dsRNAs. In cross-linking assays, 2b can form dimers, tetramers and oligomers after treatment with glutaraldehyde, whereas 2blm only forms dimers, rather than tetramers and oligomers, in vitro. Together, these findings suggest that L15 and M18 of CMV 2b are required for high affinity to ds-siRNAs and oligomerization activity, which are essential for the suppression activity of 2b on antiviral silencing.
Collapse
Affiliation(s)
- Kai Dong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhen Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Long-Xiang Chai
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Xu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
154
|
Fang X, Qi Y. RNAi in Plants: An Argonaute-Centered View. THE PLANT CELL 2016; 28:272-85. [PMID: 26869699 PMCID: PMC4790879 DOI: 10.1105/tpc.15.00920] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/29/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
Argonaute (AGO) family proteins are effectors of RNAi in eukaryotes. AGOs bind small RNAs and use them as guides to silence target genes or transposable elements at the transcriptional or posttranscriptional level. Eukaryotic AGO proteins share common structural and biochemical properties and function through conserved core mechanisms in RNAi pathways, yet plant AGOs have evolved specialized and diversified functions. This Review covers the general features of AGO proteins and highlights recent progress toward our understanding of the mechanisms and functions of plant AGOs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
155
|
The battle for survival between viruses and their host plants. Curr Opin Virol 2016; 17:32-38. [PMID: 26800310 DOI: 10.1016/j.coviro.2015.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
Evolution has equipped plants with defense mechanisms to counterattack virus infections. However, some viruses have acquired the capacity to escape these defense barriers. In their combats, plants use mechanisms such as antiviral RNA silencing that viruses fight against using silencing-repressors. Plants could also resist by mutating a host factor required by the virus to complete a particular step of its infectious cycle. Another successful mechanism of resistance is the hypersensitive response, where plants engineer R genes that recognize specifically their assailants. The recognition is followed by the triggering of a broad spectrum resistance. New understanding of such resistance mechanisms will probably helps to propose new means to enhance plant resistance against viruses.
Collapse
|
156
|
Margaria P, Miozzi L, Ciuffo M, Rosa C, Axtell MJ, Pappu HR, Turina M. Comparison of small RNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot tospovirus reveals host-specific responses to viral infection. Virus Res 2016; 211:38-45. [PMID: 26432447 DOI: 10.1016/j.virusres.2015.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022]
Abstract
Viral small RNAs (vsRNAs) are one of the key elements involved in RNA silencing-based defense against viruses in plants. We analyzed the vsRNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot virus (PolRSV) (Tospovirus, Bunyaviridae). VsRNAs were abundant in both hosts, but a different size profile was observed, with an abundance peak at 21 in N. benthamiana and at 22 nt in tomato. VsRNAs mapping to the PolRSV L genomic segment were under-represented in both hosts, while S and M segments were differentially and highly targeted in N. benthamiana and tomato, respectively. Differences in preferential targeting of single ORFs were observed, with over-representation of NSs ORF-derived reads in N. benthamiana. Intergenic regions (IGRs)-mapping vsRNAs were under-represented, while enrichment of vsRNAs reads mapping to the NSs positive sense strand was observed in both hosts. Comparison with a previous study on tomato spotted wilt virus (TSWV) under the same experimental conditions, showed that the relative accumulation of PolRSV-specific and endogenous sRNAs was similar to the one observed for silencing suppressor-deficient TSWV strains, suggesting possible different properties of PolRSV NSs silencing suppressor compared to that of TSWV.
Collapse
Affiliation(s)
- Paolo Margaria
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy; Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Miozzi
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Marina Ciuffo
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Axtell
- Department of Biology, and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, PO Box 646430, Pullman, WA 99164, USA
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| |
Collapse
|
157
|
Plants Encode a General siRNA Suppressor That Is Induced and Suppressed by Viruses. PLoS Biol 2015; 13:e1002326. [PMID: 26696443 PMCID: PMC4687873 DOI: 10.1371/journal.pbio.1002326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023] Open
Abstract
Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant–virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses. Viral infection of plants triggers the expression of an RNaseIII enzyme that represses the production of siRNAs by cleaving their long dsRNA precursors. Read the accompanying Synopsis. Most eukaryotes produce essential regulatory molecules called small RNAs. These molecules are produced primarily by a class of RNaseIII enzymes called DICER, which excises small RNA duplexes from long double-stranded (ds)RNA precursor molecules. Plants also encode several RNaseIII enzymes called RNASE THREE-LIKE (RTL), but the function of these proteins is largely unknown. Here, we show that RTL1 represses small RNA production by cleaving dsRNA before DICER can process them. RTL1 appears to specifically act on the templates of a class of small RNAs called siRNAs, but not on miRNA precursors, suggesting that it cleaves long-perfect (or near-perfect) dsRNA, but not short-imperfect dsRNA. We also found that RTL1 expression is induced after virus infection, suggesting that RTL1 could act as an inducible antiviral defense by destroying dsRNA intermediates of viral replication. Our findings suggest that viruses have evolved to inhibit RTL1 activity, ultimately resulting in successful viral infection.
Collapse
|
158
|
Odokonyero D, Mendoza MR, Alvarado VY, Zhang J, Wang X, Scholthof HB. Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses. Virology 2015; 486:209-18. [PMID: 26454664 DOI: 10.1016/j.virol.2015.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
Abstract
The present study aimed to analyze the contribution of Nicotiana benthamiana ARGONAUTE2 (NbAGO2) to its antiviral response against different viruses. For this purpose, dsRNA hairpin technology was used to reduce NbAGO2 expression in transgenic plants as verified with RT-PCR. This reduction was specific because the expression of other NbAGOs was not affected, and did not cause obvious developmental defects under normal growth conditions. Inoculation of transgenic plants with an otherwise silencing-sensitive GFP-expressing Tomato bushy stunt virus (TBSV) variant resulted in high GFP accumulation because antiviral silencing was compromised. These transgenic plants also exhibited accelerated spread and/or enhanced susceptibility and symptoms for TBSV mutants defective for P19 or coat protein expression, other tombusviruses, Tobacco mosaic virus, and Potato virus X; but not noticeably for Foxtail mosaic virus. These findings support the notion that NbAGO2 in N. benthamiana can contribute to antiviral defense at different levels.
Collapse
Affiliation(s)
- Denis Odokonyero
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Maria R Mendoza
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Veria Y Alvarado
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA
| | - Jiantao Zhang
- Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Xiaofeng Wang
- Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
159
|
Zhang C, Wu Z, Li Y, Wu J. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants. Front Microbiol 2015; 6:1237. [PMID: 26617580 PMCID: PMC4637412 DOI: 10.3389/fmicb.2015.01237] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| | - Jianguo Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University Fuzhou, China ; Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| |
Collapse
|
160
|
Abstract
Plant genomes encode various small RNAs that function in distinct, yet overlapping, genetic and epigenetic silencing pathways. However, the abundance and diversity of small-RNA classes varies among plant species, suggesting coevolution between environmental adaptations and gene-silencing mechanisms. Biogenesis of small RNAs in plants is well understood, but we are just beginning to uncover their intricate regulation and activity. Here, we discuss the biogenesis of plant small RNAs, such as microRNAs, secondary siRNAs and heterochromatic siRNAs, and their diverse cellular and developmental functions, including in reproductive transitions, genomic imprinting and paramutation. We also discuss the diversification of small-RNA-directed silencing pathways through the expansion of RNA-dependent RNA polymerases, DICER proteins and ARGONAUTE proteins.
Collapse
|
161
|
Chattopadhyay M, Stupina VA, Gao F, Szarko CR, Kuhlmann MM, Yuan X, Shi K, Simon AE. Requirement for Host RNA-Silencing Components and the Virus-Silencing Suppressor when Second-Site Mutations Compensate for Structural Defects in the 3' Untranslated Region. J Virol 2015; 89:11603-18. [PMID: 26355083 PMCID: PMC4645682 DOI: 10.1128/jvi.01566-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/01/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Turnip crinkle virus (TCV) contains a structured 3' region with hairpins and pseudoknots that form a complex network of noncanonical RNA:RNA interactions supporting higher-order structure critical for translation and replication. We investigated several second-site mutations in the p38 coat protein open reading frame (ORF) that arose in response to a mutation in the asymmetric loop of a critical 3' untranslated region (UTR) hairpin that disrupts local higher-order structure. All tested second-site mutations improved accumulation of TCV in conjunction with a partial reversion of the primary mutation (TCV-rev1) but had neutral or a negative effect on wild-type (wt) TCV or TCV with the primary mutation. SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing indicated that these second-site mutations reside in an RNA domain that includes most of p38 (domain 2), and evidence for RNA:RNA interactions between domain 2 and 3'UTR-containing domain 1 was found. However, second-site mutations were not compensatory in the absence of p38, which is also the TCV silencing suppressor, or in dcl-2/dcl4 or ago1/ago2 backgrounds. One second-site mutation reduced silencing suppressor activity of p38 by altering one of two GW motifs that are required for p38 binding to double-stranded RNAs (dsRNAs) and interaction with RNA-induced silencing complex (RISC)-associated AGO1/AGO2. Another second-site mutation substantially reduced accumulation of TCV-rev1 in the absence of p38 or DCL2/DCL4. We suggest that the second-site mutations in the p38 ORF exert positive effects through a similar downstream mechanism, either by enhancing accumulation of beneficial DCL-produced viral small RNAs that positively regulate the accumulation of TCV-rev1 or by affecting the susceptibility of TCV-rev1 to RISC loaded with viral small RNAs. IMPORTANCE Genomes of positive-strand RNA viruses fold into high-order RNA structures. Viruses with mutations in regions critical for translation and replication often acquire second-site mutations that exert a positive compensatory effect through reestablishment of canonical base pairing with the altered region. In this study, two distal second-site mutations that individually arose in response to a primary mutation in a critical 3' UTR hairpin in the genomic RNA of turnip crinkle virus did not directly interact with the primary mutation. Although different second-site changes had different attributes, compensation was dependent on the production of the viral p38 silencing suppressor and on the presence of silencing-required DCL and AGO proteins. Our results provide an unexpected connection between a 3' UTR primary-site mutation proposed to disrupt higher-order structure and the RNA-silencing machinery.
Collapse
Affiliation(s)
- Maitreyi Chattopadhyay
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Vera A Stupina
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Christine R Szarko
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Micki M Kuhlmann
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Xuefeng Yuan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kerong Shi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
162
|
Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:67-76. [PMID: 26164237 DOI: 10.1016/j.pbi.2015.05.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 05/04/2023]
Abstract
In plant genomes the vast majority of transposable elements (TEs) are found in a transcriptionally silenced state that is epigenetically propagated from generation to generation. Although the mechanism of this maintenance of silencing has been well studied, it is now clear that the pathways responsible for maintaining TEs in a silenced state differ from the pathways responsible for initially targeting the TE for silencing. Recently, attention in this field has focused on investigating the molecular mechanisms that initiate and establish TE silencing. Here we review the current models of how TEs are triggered for silencing, the data supporting each model, and the key future questions in this fast moving field.
Collapse
Affiliation(s)
- Dalen Fultz
- Department of Molecular Genetics, The Ohio State University, United States
| | - Sarah G Choudury
- Department of Molecular Genetics, The Ohio State University, United States
| | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
163
|
Yu A, Saudemont B, Bouteiller N, Elvira-Matelot E, Lepère G, Parent JS, Morel JB, Cao J, Elmayan T, Vaucheret H. Second-Site Mutagenesis of a Hypomorphic argonaute1 Allele Identifies SUPERKILLER3 as an Endogenous Suppressor of Transgene Posttranscriptional Gene Silencing. PLANT PHYSIOLOGY 2015; 169:1266-74. [PMID: 26286717 PMCID: PMC4587451 DOI: 10.1104/pp.15.00585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/16/2015] [Indexed: 05/21/2023]
Abstract
Second-site mutagenesis was performed on the argonaute1-33 (ago1-33) hypomorphic mutant, which exhibits reduced sense transgene posttranscriptional gene silencing (S-PTGS). Mutations in FIERY1, a positive regulator of the cytoplasmic 5'-to-3' EXORIBONUCLEASE4 (XRN4), and in SUPERKILLER3 (SKI3), a member of the SKI complex that threads RNAs directly to the 3'-to-5' exoribonuclease of the cytoplasmic exosome, compensated AGO1 partial deficiency and restored S-PTGS with 100% efficiency. Moreover, xrn4 and ski3 single mutations provoked the entry of nonsilenced transgenes into S-PTGS and enhanced S-PTGS on partially silenced transgenes, indicating that cytoplasmic 5'-to-3' and 3'-to-5' RNA degradation generally counteract S-PTGS, likely by reducing the amount of transgene aberrant RNAs that are used by the S-PTGS pathway to build up small interfering RNAs that guide transgene RNA cleavage by AGO1. Constructs generating improperly terminated transgene messenger RNAs (mRNAs) were not more sensitive to ski3 or xrn4 than regular constructs, suggesting that improperly terminated transgene mRNAs not only are degraded from both the 3' end but also from the 5' end, likely after decapping. The facts that impairment of either 5'-to-3' or 3'-to-5' RNA degradation is sufficient to provoke the entry of transgene RNA into the S-PTGS pathway, whereas simultaneous impairment of both pathways is necessary to provoke the entry of endogenous mRNA into the S-PTGS pathway, suggest poor RNA quality upon the transcription of transgenes integrated at random genomic locations.
Collapse
Affiliation(s)
- Agnès Yu
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Baptiste Saudemont
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Emilie Elvira-Matelot
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Gersende Lepère
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Jean-Sébastien Parent
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Jean-Benoit Morel
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Jun Cao
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique (INRA), 78000 Versailles, France (A.Y., B.S., N.B., E.E.-M., G.L., J.-S.P., J.-B.M., T.E., H.V.); andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany (J.C.)
| |
Collapse
|
164
|
Mungbean yellow mosaic Indian virus encoded AC2 protein suppresses RNA silencing by inhibiting Arabidopsis RDR6 and AGO1 activities. Virology 2015; 486:158-72. [PMID: 26433748 DOI: 10.1016/j.virol.2015.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/14/2015] [Accepted: 08/15/2015] [Indexed: 12/25/2022]
Abstract
RNA silencing refers to a conserved RNA-directed gene regulatory mechanism in a wide range of eukaryotes. It plays an important role in many processes including growth, development, genome stability, and antiviral defense in the plants. Geminivirus encoded AC2 is identified as an RNA silencing suppressor protein, however, the mechanism of action has not been characterized. In this paper, we elucidate another mechanism of AC2-mediated suppression activity of Mungbean Yellow Mosaic India Virus (MYMIV). The AC2 protein, unlike many other suppressors, does not bind to siRNA or dsRNA species and its suppression activity is mediated through interaction with key components of the RNA silencing pathway, viz., RDR6 and AGO1. AC2 interaction inhibits the RDR6 activity, an essential component of siRNA and tasi-RNA biogenesis and AGO1, the major slicing factor of RISC. Thus the study identifies dual sites of MYMIV-AC2 interference and probably accounts for its strong RNA silencing suppression activity.
Collapse
|
165
|
Carbonell A, Carrington JC. Antiviral roles of plant ARGONAUTES. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:111-7. [PMID: 26190744 PMCID: PMC4618181 DOI: 10.1016/j.pbi.2015.06.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 05/20/2023]
Abstract
ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions.
Collapse
Affiliation(s)
- Alberto Carbonell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | |
Collapse
|
166
|
Abstract
Virus diseases greatly affect oilseed rape (Brassica napus) production. Investigating antiviral genes may lead to the development of disease-resistant varieties of oilseed rape. In this study, we examined the effects of the suppressor of gene silencing 3 in Brassica napus (BnSGS3, a putative antiviral gene) with different genus viruses by constructing BnSGS3-overexpressing (BnSGS3-Ov) and BnSGS3-silenced (BnSGS3-Si) oilseed rape (cv. Zhongshuang No. 6) plants. These three viruses are Oilseed rape mosaic virus (ORMV), Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). The native BnSGS3 expressed in all examined tissues with the highest expression in siliques. All three viruses induced BnSGS3 expression, but ORMV induced a dramatic increase in the BnSGS3-Ov plants, followed by TuMV and CMV. Upon inoculation with three different viruses, transcript abundance of BnSGS3 gene follows: BnSGS3-Ov > non-transgenic plants > BnSGS3-Si. The accumulation quantities of ORMV and TuMV exhibited a similar trend. However, CMV accumulation showed an opposite trend where virus accumulations were negatively correlated with BnSGS3 expression. The results suggest that BnSGS3 selectively inhibits CMV accumulation but promotes ORMV and TuMV accumulation. BnSGS3 should be used in different ways (up- and down-regulation) for breeding virus-resistant oilseed rape varieties.
Collapse
|
167
|
Parent JS, Jauvion V, Bouché N, Béclin C, Hachet M, Zytnicki M, Vaucheret H. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Res 2015. [PMID: 26209135 PMCID: PMC4787800 DOI: 10.1093/nar/gkv753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS.
Collapse
Affiliation(s)
| | - Vincent Jauvion
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | - Christophe Béclin
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| | | | | | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR1318, INRA, 78000 Versailles, France
| |
Collapse
|
168
|
Hong W, Qian D, Sun R, Jiang L, Wang Y, Wei C, Zhang Z, Li Y. OsRDR6 plays role in host defense against double-stranded RNA virus, Rice Dwarf Phytoreovirus. Sci Rep 2015; 5:11324. [PMID: 26165755 PMCID: PMC4499934 DOI: 10.1038/srep11324] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/13/2015] [Indexed: 11/29/2022] Open
Abstract
RNAi is a major antiviral defense response in plant and animal model systems. RNA-dependent RNA polymerase 6 (RDR6) is an essential component of RNAi, which plays an important role in the resistance against viruses in the model plants. We found previously that rice RDR6 (OsRDR6) functioned in the defense against Rice stripe virus (RSV), and Rice Dwarf Phytoreovirus (RDV) infection resulted in down-regulation of expression of RDR6. Here we report our new findings on the function of OsRDR6 against RDV. Our result showed that down-regulation of OsRDR6 through the antisense (OsRDR6AS) strategy increased rice susceptibility to RDV infection while over-expression of OsRDR6 had no effect on RDV infection. The accumulation of RDV vsiRNAs was reduced in the OsRDR6AS plants. In the OsRDR6 over-expressed plants, the levels of OsRDR6 RNA transcript and protein were much higher than that in the control plants. Interestingly, the accumulation level of OsRDR6 protein became undetectable after RDV infection. This finding indicated that the translation and/or stability of OsRDR6 protein were negatively impacted upon RDV infection. This new finding provides a new light on the function of RDR6 in plant defense response and the cross-talking between factors encoded by host plant and double-stranded RNA viruses.
Collapse
Affiliation(s)
- Wei Hong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dan Qian
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Runhong Sun
- 1] State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China [2] Institute of Plant Protection, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Crop Pest Control, Zhengzhou 450002, China
| | - Lin Jiang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chunhong Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhongkai Zhang
- Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
169
|
Zhao M, San León D, Mesel F, García JA, Simón-Mateo C. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance. PLoS One 2015; 10:e0132281. [PMID: 26147769 PMCID: PMC4492489 DOI: 10.1371/journal.pone.0132281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022] Open
Abstract
The use of syn-tasiRNAs has been proposed as an RNA interference technique alternative to those previously described: hairpin based, virus induced gene silencing or artificial miRNAs. In this study we engineered the TAS1c locus to impair Plum pox virus (PPV) infection by replacing the five native siRNAs with two 210-bp fragments from the CP and the 3´NCR regions of the PPV genome. Deep sequencing analysis of the small RNA species produced by both constructs in planta has shown that phased processing of the syn-tasiRNAs is construct-specific. While in syn-tasiR-CP construct the processing was as predicted 21-nt phased in register with miR173-guided cleavage, the processing of syn-tasiR-3NCR is far from what was expected. A 22-nt species from the miR173-guided cleavage was a guide of two series of phased small RNAs, one of them in an exact 21-nt register, and the other one in a mixed of 21-/22-nt frame. In addition, both constructs produced abundant PPV-derived small RNAs in the absence of miR173 as a consequence of a strong sense post-transcriptional gene silencing induction. The antiviral effect of both constructs was also evaluated in the presence or absence of miR173 and showed that the impairment of PPV infection was not significantly higher when miR173 was present. The results show that syn-tasiRNAs processing depends on construct-specific factors that should be further studied before the so-called MIGS (miRNA-induced gene silencing) technology can be used reliably.
Collapse
Affiliation(s)
- Mingmin Zhao
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David San León
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Frida Mesel
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| |
Collapse
|
170
|
Gursinsky T, Pirovano W, Gambino G, Friedrich S, Behrens SE, Pantaleo V. Homeologs of the Nicotiana benthamiana Antiviral ARGONAUTE1 Show Different Susceptibilities to microRNA168-Mediated Control. PLANT PHYSIOLOGY 2015; 168:938-52. [PMID: 26015446 PMCID: PMC4741319 DOI: 10.1104/pp.15.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/20/2015] [Indexed: 05/21/2023]
Abstract
The plant ARGONAUTE1 protein (AGO1) is a central functional component of the posttranscriptional regulation of gene expression and the RNA silencing-based antiviral defense. By genomic and molecular approaches, we here reveal the presence of two homeologs of the AGO1-like gene in Nicotiana benthamiana, NbAGO1-1H and NbAGO1-1L. Both homeologs retain the capacity to transcribe messenger RNAs (mRNAs), which mainly differ in one 18-nucleotide insertion/deletion (indel). The indel does not modify the frame of the open reading frame, and it is located eight nucleotides upstream of the target site of a microRNA, miR168, which is an important modulator of AGO1 expression. We demonstrate that there is a differential accumulation of the two NbAGO1-1 homeolog mRNAs at conditions where miR168 is up-regulated, such as during a tombusvirus infection. The data reported suggest that the indel affects the miR168-guided regulation of NbAGO1 mRNA. The two AGO1 homeologs show full functionality in reconstituted, catalytically active RNA-induced silencing complexes following the incorporation of small interfering RNAs. Virus-induced gene silencing experiments suggest a specific involvement of the NbAGO1 homeologs in symptom development. The results provide an example of the diversity of microRNA target regions in NbAGO1 homeolog genes, which has important implications for improving resilience measures of the plant during viral infections.
Collapse
Affiliation(s)
- Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Walter Pirovano
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Giorgio Gambino
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| | - Vitantonio Pantaleo
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany (T.G., S.F., S.-E.B.);BaseClear, 233CC Leiden, The Netherlands (W.P.);Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Grugliasco, 10135 Turin, Italy (G.G.); and Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, 70126 Bari, Italy (V.P.)
| |
Collapse
|
171
|
Brosseau C, Moffett P. Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing. THE PLANT CELL 2015; 27:1742-54. [PMID: 26023161 PMCID: PMC4498209 DOI: 10.1105/tpc.15.00264] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 05/05/2023]
Abstract
RNA silencing functions as an antiviral defense through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. In turn, plant viruses have evolved strategies to counteract this defense mechanism, including the expression of suppressors of RNA silencing. Potato virus X (PVX) does not systemically infect Arabidopsis thaliana Columbia-0, but is able to do so effectively in mutants lacking at least two of the four Arabidopsis DCL proteins. PVX can also infect Arabidopsis ago2 mutants, albeit less effectively than double DCL mutants, suggesting that additional AGO proteins may mediate anti-viral defenses. Here we show, using functional assays, that all Arabidopsis AGO proteins have the potential to target PVX lacking its viral suppressor of RNA silencing (VSR), P25, but that only AGO2 and AGO5 are able to target wild-type PVX. However, P25 directly affects only a small subset of AGO proteins, and we present evidence indicating that its protective effect is mediated by precluding AGO proteins from accessing viral RNA, as well as by directly inhibiting the RNA silencing machinery. In agreement with functional assays, we show that Potexvirus infection induces AGO5 expression and that both AGO2 and AGO5 are required for full restriction of PVX infection in systemic tissues of Arabidopsis.
Collapse
Affiliation(s)
- Chantal Brosseau
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
172
|
Kushwaha N, Singh AK, Basu S, Chakraborty S. Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch Virol 2015; 160:1499-509. [PMID: 25894479 DOI: 10.1007/s00705-015-2399-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus (family Geminiviridae) that infects a wide range of plants. ToLCNDV has emerged as an important pathogen and a serious threat to tomato production in India. A comparative and molecular analysis of ToLCNDV pathogenesis was performed on diverse solanaceous hosts (Capsicum annuum, Nicotiana benthamiana, N. tabacum, and Solanum lycopersicum). N. benthamiana was found to be the most susceptible host, whereas C. annuum showed resistance against an isolate of ToLCNDV collected in New Delhi from tomato (GenBank accession no. U15015 and U15017). S. lycopersicum and N. tabacum developed conspicuous symptoms and allowed virus to accumulate to significantly high titers. The viral DNA level was concurrent with symptom severity. ToLCNDV-specific siRNA levels were directly proportional to the amount of viral DNA. To investigate the basis for the differences in response of these hosts to ToLCNDV, a comparative expression analysis of selected defense-related genes was carried out. The results indicated differences in expression levels of genes involved in the posttranscriptional gene silencing machinery (RDR6, AGO1 and SGS3) as well as basal host defense responses (nucleotide-binding site and leucine-rich repeat [NBS-LRR] proteins and lipid transfer protein [LTP]). Among these, expression of NBS-LRR genes was found to be significantly higher in C. annuum following ToLCNDV infection. Our analyses suggest that the expression of host defense responses determines the level of ToLCNDV accumulation and degree of symptom development.
Collapse
Affiliation(s)
- Nirbhay Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | | | | | | |
Collapse
|
173
|
Zhirnov IV, Trifonova EA, Kochetov AV, Shumny VK. Virus-induced silencing as a method for studying gene functions in higher plants. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
174
|
Comparative analysis of the Dicer-like gene family reveals loss of miR162 target site in SmDCL1 from Salvia miltiorrhiza. Sci Rep 2015; 5:9891. [PMID: 25970825 PMCID: PMC4429486 DOI: 10.1038/srep09891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/23/2015] [Indexed: 11/08/2022] Open
Abstract
DCL1, the core component for miRNA biogenesis, is itself regulated by miR162 in Arabidopsis. MiRNA-mediated feedback regulation of AtDCL1 is important to maintain the proper level of DCL1 transcripts. However, it is unknown whether the miRNA-mediated regulation of DCL1 is conserved among plants. We analyzed the SmDCL gene family in Salvia miltiorrhiza, an emerging model plant for Traditional Chinese Medicine (TCM) studies, using a comprehensive approach integrating genome-wide prediction, molecular cloning, gene expression profiling, and posttranscriptional regulation analysis. A total of five SmDCLs were identified. Comparative analysis of SmDCLs and AtDCLs showed an apparent enlargement of SmDCL introns in S. miltiorrhiza. The absence of miR162 in S. miltiorrhiza and the loss of miR162 target site in SmDCL1 were unexpectedly found. Further analysis showed that the miR162 target site was not present in DCL1 from ancient plants and was gained during plant evolution. The gained miR162 target site might be lost in a few modern plants through nucleotide mutations. Our results provide evidence for the gain and loss of miR162 and its target sites in Dicer-like genes during evolution. The data is useful for understanding the evolution of miRNA-mediated feedback regulation of DCLs in plants.
Collapse
|
175
|
Netsu O, Hiraguri A, Uehara-Ichiki T, Komatsu K, Sasaya T. Functional comparison of RNA silencing suppressor between the p5 protein of rice grassy stunt virus and the p3 protein of rice stripe virus. Virus Res 2015; 203:10-9. [PMID: 25836276 DOI: 10.1016/j.virusres.2015.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 01/28/2023]
Abstract
Rice grassy stunt virus (RGSV) is a member of the genus Tenuivirus, which includes rice stripe virus (RSV), as the type species. A viral suppressor of RNA silencing (VSR) of RGSV has not been identified, whereas the p3 protein of RSV (RSVp3) encoded by the viral-sense (v) strand of RNA3 has been reported to act as a VSR. In this study, we examined the VSR function of the p5 protein of RGSV (RGSVp5), encoded by vRNA5. Expecting it to correspond to the vRNA3 of RSV, we compared the VSR function of RGSVp5 with that of RSVp3. In an Agrobacterium-mediated transient expression assay using a transgenic line of Nicotiana benthamiana that expressed green fluorescent protein and the wild type, RGSVp5 suppressed sense transgene-mediated post-transcriptional gene silencing (S-PTGS), inverted-repeat (IR) transgene-induced PTGS (IR-PTGS), and the systemic spread of GFP silencing, as in the case with RSVp3. By contrast, a gel mobility shift assay revealed that RGSVp5 did not have any distinct binding activity with 21-, 22-, or 24-nucleotide small interfering RNA (siRNA) duplexes, whereas RSVp3 binds to all three sizes of siRNA duplexes. Furthermore, the transiently expressed p5 protein fused with GFP was dispersed mainly in the cytoplasm, whereas the GFP-fused p3 protein of RSV was localized both in the nucleus and in the cytoplasm. Our results suggest that RGSVp5 functions as a VSR but that the suppression mechanism of RNA silencing and the subcellular localization of RGSVp5 differ from those of the analogous VSR, RSVp3, even in the same genus.
Collapse
Affiliation(s)
- Osamu Netsu
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Hiraguri
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tamaki Uehara-Ichiki
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Takahide Sasaya
- National Agricultural Research Center, Kannondai, Tsukuba, Ibaraki 305-8666, Japan; Agro-Environment Research Division, NARO Kyushu Okinawa Agricultural Research Center, Koshi, Kumamoto 861-1192, Japan.
| |
Collapse
|
176
|
Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 2015; 479-480:167-79. [DOI: 10.1016/j.virol.2015.01.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
|
177
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
178
|
Kung YJ, You BJ, Raja JAJ, Chen KC, Huang CH, Bau HJ, Yang CF, Huang CH, Chang CP, Yeh SD. Nucleotide sequence-homology-independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Sci Rep 2015; 5:9804. [PMID: 25913508 PMCID: PMC5386206 DOI: 10.1038/srep09804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/05/2015] [Indexed: 11/09/2022] Open
Abstract
Controlling plant viruses by genetic engineering, including the globally important Papaya ringspot virus (PRSV), mainly involves coat protein (CP) gene mediated resistance via post-transcriptional gene silencing (PTGS). However, the breakdown of single- or double-virus resistance in CP-gene-transgenic papaya by more virulent PRSV strains has been noted in repeated field trials. Recombination analysis revealed that the gene silencing suppressor HC-Pro or CP of the virulent PRSV strain 5-19 is responsible for overcoming CP-transgenic resistance in a sequence-homology-independent manner. Transient expression assays using agro-infiltration in Nicotiana benthamiana plants indicated that 5-19 HC-Pro exhibits stronger PTGS suppression than the transgene donor strain. To disarm the suppressor from the virulent strain, transgenic papaya lines were generated carrying untranslatable 5-19 HC-Pro, which conferred complete resistance to 5-19 and other geographic PRSV strains. Our study suggested the potential risk of the emergence of more virulent virus strains, spurred by the deployment of CP-gene-transgenic crops, and provides a strategy to combat such strains.
Collapse
Affiliation(s)
- Yi-Jung Kung
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan, R.O.C
| | - Bang-Jau You
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan, R.O.C
| | - Joseph A. J. Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan, R.O.C
| | - Kuan-Chun Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chiung-Huei Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Huey-Jiunn Bau
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Ching-Fu Yang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chung-Hao Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chung-Ping Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taiwan, R.O.C
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
179
|
Garcia-Ruiz H, Carbonell A, Hoyer JS, Fahlgren N, Gilbert KB, Takeda A, Giampetruzzi A, Garcia Ruiz MT, McGinn MG, Lowery N, Martinez Baladejo MT, Carrington JC. Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection. PLoS Pathog 2015; 11:e1004755. [PMID: 25806948 PMCID: PMC4373807 DOI: 10.1371/journal.ppat.1004755] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/19/2015] [Indexed: 11/24/2022] Open
Abstract
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro. RNA silencing is a primary, adaptive defense system against viruses in plants. Viruses have evolved counter-defensive mechanisms that inhibit RNA silencing through the activity of silencing suppressor proteins. Understanding how antiviral silencing is controlled, and how suppressor proteins function, is essential for understanding how plants normally resist viruses, why some viruses are highly virulent in different hosts, and how sustainable antiviral resistance strategies can be deployed in agricultural settings. We used a mutant version of Turnip mosaic virus lacking a functional silencing suppressor (HC-Pro) to understand the genetic requirements for resistance in the model plant Arabidopsis thaliana. We focused on ARGONAUTE proteins, which have long been hypothesized to bind short interfering RNAs (siRNAs) derived from virus genomes for use as sequence-specific guides to recognize and target viral RNA for degradation or repression. We demonstrated specialized antiviral roles for specific ARGONAUTES and showed that several can bind viral siRNAs from across the entire viral genome. However, ARGONAUTE proteins are only loaded with virus-derived siRNAs in the absence of HC-Pro, which we showed binds siRNAs from the viral genome. This indicates that several AGO proteins, which collectively are necessary for full anti-TuMV defense, need to properly load virus-derived siRNAs to execute their antiviral roles.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Alberto Carbonell
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - J. Steen Hoyer
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Computational and Systems Biology Program, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Atsushi Takeda
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Annalisa Giampetruzzi
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mayra T. Garcia Ruiz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Michaela G. McGinn
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Nicholas Lowery
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | | | - James C. Carrington
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
180
|
Andika IB, Maruyama K, Sun L, Kondo H, Tamada T, Suzuki N. Differential contributions of plant Dicer-like proteins to antiviral defences against potato virus X in leaves and roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:781-93. [PMID: 25619543 DOI: 10.1111/tpj.12770] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Members of the plant Dicer-like (DCL) protein family are the critical components of the RNA-silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non-host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX-GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.
Collapse
Affiliation(s)
- Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
181
|
Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Qi Y, Li Y. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 2015; 4. [PMID: 25688565 PMCID: PMC4358150 DOI: 10.7554/elife.05733] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Viral pathogens are a major threat to rice production worldwide. Although RNA interference (RNAi) is known to mediate antiviral immunity in plant and animal models, the mechanism of antiviral RNAi in rice and other economically important crops is poorly understood. Here, we report that rice resistance to evolutionarily diverse viruses requires Argonaute18 (AGO18). Genetic studies reveal that the antiviral function of AGO18 depends on its activity to sequester microRNA168 (miR168) to alleviate repression of rice AGO1 essential for antiviral RNAi. Expression of miR168-resistant AGO1a in ago18 background rescues or increases rice antiviral activity. Notably, stable transgenic expression of AGO18 confers broad-spectrum virus resistance in rice. Our findings uncover a novel cooperative antiviral activity of two distinct AGO proteins and suggest a new strategy for the control of viral diseases in rice. DOI:http://dx.doi.org/10.7554/eLife.05733.001 Rice is a major food crop, providing over a fifth of all calories consumed by people around the world. As such, it is important to find ways to prevent the diseases that affect rice plants. Many of the viruses that infect rice are transferred between plants by insects and many insects carry more than one virus at a time; this means it can be difficult to predict where a disease will next emerge. As a result, there is a pressing need to develop new and effective strategies that boost the ability of rice plants to fight off harmful viruses. One way that plants defend themselves from viruses involves using a system called RNA interference to identify and destroy the RNA molecules that viruses produce. This process depends on the Argonaute (AGO) family of proteins, although the roles of many of its members are not well understood. One of the better-studied AGO proteins is called AGO1 and is known to be important for defending plants against viruses. Unfortunately, a small RNA molecule called miR168 acts to limit the amount of AGO1 in a cell, and the levels of miR168 increase in virus-infected rice plants. Wu, Yang et al. exposed rice plants to two species of insect that each carried a different plant virus. Rice plants infected with these viruses increased their levels of both AGO1 and another AGO protein called AGO18. Modifying the ability of rice plants to produce AGO18 revealed that the anti-viral activity of AGO1 is abolished in plants lacking AGO18. However, plants that over-produce AGO18 are better able to fight off viral infections. Wu, Yang et al. further showed that AGO18 binds to miR168 and so prevents this small RNA from reducing AGO1 levels. Therefore, AGO1 and AGO18 work together to defend rice plants from viruses. Wu, Yang et al. suggest that engineering rice plants to make more AGO18 could make them more resistant to viruses. Further work will be needed to confirm whether AGO1 and AGO18 also work together to defend rice against viruses other than the two tested so far and to investigate whether these proteins also perform similar roles in other crops. DOI:http://dx.doi.org/10.7554/eLife.05733.002
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Zhirui Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Lijia Zheng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ruiqiang Ye
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shanshan Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shaoyi Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Ruofei Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Le Xu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Hong Zheng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Beijing, China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijun Qi
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
182
|
Yan T, Zhu JR, Di D, Gao Q, Zhang Y, Zhang A, Yan C, Miao H, Wang XB. Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein. Virology 2015; 478:112-22. [PMID: 25666524 DOI: 10.1016/j.virol.2014.12.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Barley yellow striate mosaic virus (BYSMV), a member of the genus Cytorhabdovirus, causes serious crop losses in agriculture. Here, we have cloned the BYSMV-derived small interfering RNAs (siRNAs), assembled the siRNAs and used RT-PCR to reconstruct the BYSMV genome. The genome consists of 12,706 nucleotides and encodes ten predicted genes from the antigenomic strand. The major BYSMV structural proteins share identities ranging from 35% to 62% with northern cereal mosaic virus (NCMV) counterparts. A notable difference is that BYSMV contains three transcriptional units residing between the P and M genes compared with four units in the corresponding region of NCMV. Unexpectedly, the middle mRNA in this region encodes gene5 nested in an alternative frame within gene4 via a leaky scanning mechanism. The gene5 encodes a small hydrophobic protein targeting to the endoplasmic reticulum (ER). To our knowledge, this is the first report of nested gene in plant rhabdoviruses.
Collapse
Affiliation(s)
- Teng Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Jing-Rong Zhu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Dianping Di
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Chong Yan
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Hongqin Miao
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, Hebei Province, PR China.
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
183
|
Ma X, Nicole MC, Meteignier LV, Hong N, Wang G, Moffett P. Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:919-32. [PMID: 25385769 DOI: 10.1093/jxb/eru447] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A major antiviral mechanism in plants is mediated by RNA silencing, which relies on the cleavage of viral dsRNA into virus-derived small interfering RNAs (vsiRNAs) by DICER-like enzymes. Members of the Argonaute (AGO) family of endonucleases then use these vsiRNA as guides to target viral RNA. This can result in a phenomenon known as recovery, whereby the plant silences viral gene expression and recovers from viral symptoms. Endogenous mRNAs can also be targeted by vsiRNAs in a phenomenon known as virus-induced gene silencing (VIGS). Although related to other RNA silencing mechanisms, it has not been established if recovery and VIGS are mediated by the same molecular mechanisms. We used tobacco rattle virus (TRV) carrying a fragment of the phytoene desaturase (PDS) gene (TRV-PDS) or expressing green fluorescent protein (TRV-GFP) as readouts for VIGS and recovery, respectively, in Arabidopsis ago mutants. Our results demonstrated roles for AGO2 and AGO4 in susceptibility to TRV, whereas VIGS of endogenous genes appeared to be largely mediated by AGO1. However, recovery appeared to be mediated by different components, as all the aforementioned mutants were able to recover from TRV-GFP inoculation. TRV RNAs from recovered plants associated less with ribosomes, suggesting that recovery involves translational repression of viral transcripts. Translationally repressed RNAs often accumulate in RNA processing bodies (PBs), where they are eventually processed by decapping enzymes. Consistent with this, we found that viral recovery induced increased PB formation and that a decapping mutant (DCP2) showed increased VIGS and virus RNA accumulation, indicating an important role for PBs in eliminating viral RNA.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, PR China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Marie-Claude Nicole
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Louis-Valentin Meteignier
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, PR China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, PR China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Peter Moffett
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| |
Collapse
|
184
|
Parent JS, Bouteiller N, Elmayan T, Vaucheret H. Respective contributions of Arabidopsis DCL2 and DCL4 to RNA silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:223-32. [PMID: 25376953 DOI: 10.1111/tpj.12720] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 05/20/2023]
Abstract
Dicer proteins are central to the different mechanisms involving RNA interference. Plants have evolved multiple DICER-LIKE (DCL) copies, thus enabling functional diversification. In Arabidopsis, DCL2 and DCL4 process double-stranded RNA into 22 and 21 nucleotide small interfering (si)RNAs, respectively, and have overlapping functions with regards to virus and transgene silencing. Nonetheless, some studies have reported that dcl2 or dcl4 single mutations are sometimes sufficient to hinder silencing. To better dissect the role of DCL2 and DCL4, we analyzed silencing kinetics and efficiencies using different transgenic systems in single and double mutant backgrounds. The results indicate that DCL2 stimulates transitivity and secondary siRNA production through DCL4 while being sufficient for silencing on its own. Notably, silencing of 35S-driven transgenes functions more efficiently in dcl4 mutants, indicating that DCL4 mostly obscures DCL2 in wild-type plants. Nonetheless, in a dcl4 mutant compromised in phloem-originating silencing, ectopically expressed DCL2 allows restoration of silencing, suggesting that DCL2 is not, or poorly, expressed in phloem. Remarkably, this ectopic DCL2 contribution to phloem-originating silencing is dependent on the activity of RNA-DEPENDENT RNA POLYMERASE6. These results indicate that, despite differences in the silencing activity of their small RNA products, DCL2 and DCL4 mostly act redundantly yet hierarchically when present simultaneously.
Collapse
|
185
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
186
|
Andika IB, Maruyama K, Sun L, Kondo H, Tamada T, Suzuki N. Different Dicer-like protein components required for intracellular and systemic antiviral silencing in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2015; 10:e1039214. [PMID: 26273728 PMCID: PMC4623235 DOI: 10.1080/15592324.2015.1039214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 05/23/2023]
Abstract
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages constitute viral infection in plants. First, the virus multiplies in initially infected cells or organs after viral transmission and then the virus subsequently spreads systemically through the vasculature to distal plant tissues or organs. Thus, antiviral silencing in plants must cope with both local and systemic invasion of viruses. In a recent study using 2 sets of different experiments, we clearly demonstrated the differential requirement for Dicer-like 4 (DCL4) and DCL2 proteins in the inhibition of intracellular and systemic infection by potato virus X in Arabidopsis thaliana. Taken together with the results of other studies, here we further discuss the functional specificity of DCL proteins in the antiviral silencing pathway.
Collapse
Affiliation(s)
- Ida Bagus Andika
- Institute of Plant Science and Resources (IPSR); Okayama University; Kurashiki, Japan
| | - Kazuyuki Maruyama
- Institute of Plant Science and Resources (IPSR); Okayama University; Kurashiki, Japan
| | - Liying Sun
- Institute of Plant Science and Resources (IPSR); Okayama University; Kurashiki, Japan
- State Key Laboratory of Crop Stress Biology for Arid Areas; College of Plant Protection; Northwest A&F University; Yangling, Shaanxi, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR); Okayama University; Kurashiki, Japan
| | - Tetsuo Tamada
- Institute of Plant Science and Resources (IPSR); Okayama University; Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR); Okayama University; Kurashiki, Japan
| |
Collapse
|
187
|
Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem 2014; 290:3106-20. [PMID: 25505185 DOI: 10.1074/jbc.m114.593707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
188
|
Bustos-Sanmamed P, Hudik E, Laffont C, Reynes C, Sallet E, Wen J, Mysore KS, Camproux AC, Hartmann C, Gouzy J, Frugier F, Crespi M, Lelandais-Brière C. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1308-1318. [PMID: 25060922 DOI: 10.1111/pbi.12230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species.
Collapse
Affiliation(s)
- Pilar Bustos-Sanmamed
- CNRS, Institut des Sciences du Végétal (ISV), UPR2355, Labex SPS Saclay Plant Sciences, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Rajeswaran R, Golyaev V, Seguin J, Zvereva AS, Farinelli L, Pooggin MM. Interactions of Rice tungro bacilliform pararetrovirus and its protein P4 with plant RNA-silencing machinery. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1370-8. [PMID: 25122481 DOI: 10.1094/mpmi-07-14-0201-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Small interfering RNA (siRNA)-directed gene silencing plays a major role in antiviral defense. Virus-derived siRNAs inhibit viral replication in infected cells and potentially move to neighboring cells, immunizing them from incoming virus. Viruses have evolved various ways to evade and suppress siRNA production or action. Here, we show that 21-, 22-, and 24-nucleotide (nt) viral siRNAs together constitute up to 19% of total small RNA population of Oryza sativa plants infected with Rice tungro bacilliform virus (RTBV) and cover both strands of the RTBV DNA genome. However, viral siRNA hotspots are restricted to a short noncoding region between transcription and reverse-transcription start sites. This region generates double-stranded RNA (dsRNA) precursors of siRNAs and, in pregenomic RNA, forms a stable secondary structure likely inaccessible to siRNA-directed cleavage. In transient assays, RTBV protein P4 suppressed cell-to-cell spread of silencing but enhanced cell-autonomous silencing, which correlated with reduced 21-nt siRNA levels and increased 22-nt siRNA levels. Our findings imply that RTBV generates decoy dsRNA that restricts siRNA production to the structured noncoding region and thereby protects other regions of the viral genome from repressive action of siRNAs, while the viral protein P4 interferes with cell-to-cell spread of antiviral silencing.
Collapse
|
190
|
Nicaise V. Crop immunity against viruses: outcomes and future challenges. FRONTIERS IN PLANT SCIENCE 2014; 5:660. [PMID: 25484888 PMCID: PMC4240047 DOI: 10.3389/fpls.2014.00660] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/04/2014] [Indexed: 05/02/2023]
Abstract
Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently employed in agriculture relies on the use of crop genetic resistances, approach that depends on mechanisms governing plant-virus interactions. Hence, knowledge related to the molecular bases of viral infections and crop resistances is key to face viral attacks in fields. Over the past 80 years, great advances have been made on our understanding of plant immunity against viruses. Although most of the known natural resistance genes have long been dominant R genes (encoding NBS-LRR proteins), a vast number of crop recessive resistance genes were cloned in the last decade, emphasizing another evolutive strategy to block viruses. In addition, the discovery of RNA interference pathways highlighted a very efficient antiviral system targeting the infectious agent at the nucleic acid level. Insidiously, plant viruses evolve and often acquire the ability to overcome the resistances employed by breeders. The development of efficient and durable resistances able to withstand the extreme genetic plasticity of viruses therefore represents a major challenge for the coming years. This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant-virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants. In addition, I will discuss the current outcomes of the actions employed to control viral diseases in fields and the future investigations that need to be undertaken to develop sustainable broad-spectrum crop resistances against viruses.
Collapse
Affiliation(s)
- Valérie Nicaise
- Fruit Biology and Pathology, Virology Laboratory, Institut National de la Recherche Agronomique, University of BordeauxUMR 1332, Villenave d’Ornon, France
| |
Collapse
|
191
|
Li S, Vandivier LE, Tu B, Gao L, Won SY, Li S, Zheng B, Gregory BD, Chen X. Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. Genome Res 2014; 25:235-45. [PMID: 25414514 PMCID: PMC4315297 DOI: 10.1101/gr.182238.114] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Twenty-four-nucleotide small interfering (si)RNAs are central players in RNA-directed DNA methylation (RdDM), a process that establishes and maintains DNA methylation at transposable elements to ensure genome stability in plants. The plant-specific RNA polymerase IV (Pol IV) is required for siRNA biogenesis and is believed to transcribe RdDM loci to produce primary transcripts that are converted to double-stranded RNAs (dsRNAs) by RDR2 to serve as siRNA precursors. Yet, no such siRNA precursor transcripts have ever been reported. Here, through genome-wide profiling of RNAs in genotypes that compromise the processing of siRNA precursors, we were able to identify Pol IV/RDR2-dependent transcripts from tens of thousands of loci. We show that Pol IV/RDR2-dependent transcripts correspond to both DNA strands, whereas the RNA polymerase II (Pol II)-dependent transcripts produced upon derepression of the loci are derived primarily from one strand. We also show that Pol IV/RDR2-dependent transcripts have a 5′ monophosphate, lack a poly(A) tail at the 3′ end, and contain no introns; these features distinguish them from Pol II-dependent transcripts. Like Pol II-transcribed genic regions, Pol IV-transcribed regions are flanked by A/T-rich sequences depleted in nucleosomes, which highlights similarities in Pol II- and Pol IV-mediated transcription. Computational analysis of siRNA abundance from various mutants reveals differences in the regulation of siRNA biogenesis at two types of loci that undergo CHH methylation via two different DNA methyltransferases. These findings begin to reveal features of Pol IV/RDR2-mediated transcription at the heart of genome stability in plants.
Collapse
Affiliation(s)
- Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Lee E Vandivier
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bin Tu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Lei Gao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - So Youn Won
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA; Howard Hughes Medical Institute, University of California, Riverside, California 92521, USA
| |
Collapse
|
192
|
Nemes K, Gellért Á, Balázs E, Salánki K. Alanine scanning of cucumber mosaic virus (CMV) 2b protein identifies different positions for cell-to-cell movement and gene silencing suppressor activity. PLoS One 2014; 9:e112095. [PMID: 25380036 PMCID: PMC4224413 DOI: 10.1371/journal.pone.0112095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022] Open
Abstract
The multifunctional 2b protein of CMV has a role in the long distance and local movement of the virus, in symptom formation, in evasion of defense mediated by salicylic acid as well as in suppression of RNA silencing. The role of conserved amino acid sequence domains were analyzed previously in the protein function, but comprehensive analysis of this protein was not carried out until recently. We have analyzed all over the 2b protein by alanine scanning mutagenesis changing three consecutive amino acids (aa) to alanine. We have identified eight aa triplets as key determinants of the 2b protein function in virus infection. Four of them (KKQ/22-24/AAA, QNR/31-33/AAA, RER/34-36/AAA, SPS/40-42/AAA) overlap with previously determined regions indispensable in gene silencing suppressor function. We have identified two additional triplets necessary for the suppressor function of the 2b protein (LPF/55-57/AAA, NVE/10-12/AAA), and two other positions were required for cell-to-cell movement of the virus (MEL/1-3/AAA, RHV/70-72/AAA), which are not essential for suppressor activity.
Collapse
Affiliation(s)
- Katalin Nemes
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Pathology, Corvinus University of Budapest, Budapest, Hungary
| | - Ákos Gellért
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences Department of Applied Genomics, Martonvásár, Hungary
| | - Ervin Balázs
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences Department of Applied Genomics, Martonvásár, Hungary
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- Agricultural Biotechnology Center, Gödöllő, Hungary
| |
Collapse
|
193
|
Rajamäki ML, Streng J, Valkonen JPT. Silencing suppressor protein VPg of a potyvirus interacts with the plant silencing-related protein SGS3. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1199-210. [PMID: 25099340 DOI: 10.1094/mpmi-04-14-0109-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Viral genome-linked protein (VPg) of potyviruses is involved in multiple steps of the potyvirus infection cycle, including viral multiplication and movement in plants. Recently, we showed that VPg of Potato virus A (PVA; genus Potyvirus) suppresses sense-mediated RNA silencing, which is linked to one or both nuclear or nucleolar localization. Here, we studied interactions between VPg and components of the plant RNA silencing pathway. Results showed that VPg interacts with the SGS3 protein of Solanum tuberosum and Arabidopsis thaliana, as shown by yeast two-hybrid analysis and bimolecular fluorescence complementation assays. VPg-SGS3 interactions co-localized with small cytoplasmic bodies that contained plant RNA-dependent RNA polymerase 6 (RDR6) (likely SGS3/RDR6 bodies). The N-terminal zinc finger (ZF) domain of SGS3 was the main determinant of the VPg interaction. Our data also suggest that the ZF domain controls SGS3 localization. SGS3 homodimerization was controlled by multiple protein regions. The VPg-SGS3 interaction appeared beneficial for PVA, as viral RNA levels correlated positively with sgs3 mRNA levels in the SGS3-silenced and SGS3-overexpressing leaves of Nicotiana benthamiana. The data support the idea that VPg acts as a suppressor of RNA silencing and suggest that an interaction with SGS3 may be important, especially in suppression of sense-mediated RNA silencing.
Collapse
|
194
|
Koh KW, Lu HC, Chan MT. Virus resistance in orchids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:26-38. [PMID: 25438783 DOI: 10.1016/j.plantsci.2014.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 06/04/2023]
Abstract
Orchid plants, Phalaenopsis and Dendrobium in particular, are commercially valuable ornamental plants sold worldwide. Unfortunately, orchid plants are highly susceptible to viral infection by Cymbidium mosaic virus (CymMV) and Odotoglossum ringspot virus (ORSV), posing a major threat and serious economic loss to the orchid industry worldwide. A major challenge is to generate an effective method to overcome plant viral infection. With the development of optimized orchid transformation biotechnological techniques and the establishment of concepts of pathogen-derived resistance (PDR), the generation of plants resistant to viral infection has been achieved. The PDR concept involves introducing genes that is(are) derived from the virus into the host plant to induce RNA- or protein-mediated resistance. We here review the fundamental mechanism of the PDR concept, and illustrate its application in protecting against viral infection of orchid plants.
Collapse
Affiliation(s)
- Kah Wee Koh
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Hsiang-Chia Lu
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
195
|
Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:14613-8. [PMID: 25201959 DOI: 10.1073/pnas.1407131111] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antiviral immunity controlled by RNA interference (RNAi) in plants and animals is thought to specifically target only viral RNAs by the virus-derived small interfering RNAs (siRNAs). Here we show that activation of antiviral RNAi in Arabidopsis plants is accompanied by the production of an abundant class of endogenous siRNAs mapped to the exon regions of more than 1,000 host genes and rRNA. These virus-activated siRNAs (vasiRNAs) are predominantly 21 nucleotides long with an approximately equal ratio of sense and antisense strands. Genetically, vasiRNAs are distinct from the known plant endogenous siRNAs characterized to date and instead resemble viral siRNAs by requiring Dicer-like 4 and RNA-dependent RNA polymerase 1 (RDR1) for biogenesis. However, loss of exoribonuclease4/thylene-insensitive5 enhances vasiRNA biogenesis and virus resistance without altering the biogenesis of viral siRNAs. We show that vasiRNAs are active in directing widespread silencing of the target host genes and that Argonaute-2 binds to and is essential for the silencing activity of vasiRNAs. Production of vasiRNAs is readily detectable in Arabidopsis after infection by viruses from two distinct supergroups of plant RNA virus families and is targeted for inhibition by the silencing suppressor protein 2b of Cucumber mosaic virus. These findings reveal RDR1 production of Arabidopsis endogenous siRNAs and identify production of vasiRNAs to direct widespread silencing of host genes as a conserved response of plants to infection by diverse viruses. A possible function for vasiRNAs to confer broad-spectrum antiviral activity distinct to the virus-specific antiviral RNAi by viral siRNAs is discussed.
Collapse
|
196
|
Kung YJ, Lin PC, Yeh SD, Hong SF, Chua NH, Liu LY, Lin CP, Huang YH, Wu HW, Chen CC, Lin SS. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:944-55. [PMID: 24804808 DOI: 10.1094/mpmi-04-14-0116-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cross-protection triggered by a mild strain of virus acts as a prophylaxis to prevent subsequent infections by related viruses in plants; however, the underling mechanisms are not fully understood. Through mutagenesis, we isolated a mutant strain of Turnip mosaic virus (TuMV), named Tu-GK, that contains an Arg182Lys substitution in helper component-proteinase (HC-Pro(K)) that confers complete cross-protection against infection by a severe strain of TuMV in Nicotiana benthamiana, Arabidopsis thaliana Col-0, and the Arabidopsis dcl2-4/dcl4-1 double mutant defective in DICER-like ribonuclease (DCL)2/DCL4-mediated silencing. Our analyses showed that HC-Pro(K) loses the ability to interfere with microRNA pathways, although it retains a partial capability for RNA silencing suppression triggered by DCL. We further showed that Tu-GK infection triggers strong salicylic acid (SA)-dependent and SA-independent innate immunity responses. Our data suggest that DCL2/4-dependent and -independent RNA silencing pathways are involved, and may crosstalk with basal innate immunity pathways, in host defense and in cross-protection.
Collapse
|
197
|
Karran RA, Sanfaçon H. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:933-43. [PMID: 24804809 DOI: 10.1094/mpmi-04-14-0099-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA silencing regulates plant gene expression and antiviral defenses and functions by cleaving target RNAs or repressing translation. As a counter defense, many plant viruses encode suppressor proteins that sequester small RNAs or inactivate Argonaute (AGO) proteins. All known plant virus silencing suppressor activities eventually inhibit the degradation of target mRNAs. Using a transiently expressed green fluorescent protein (GFP) reporter gene, we show that Tomato ringspot virus (ToRSV) coat protein (CP) is a suppressor of RNA silencing that enhances GFP expression but does not prevent the degradation of the GFP mRNA or the accumulation of GFP small interfering RNAs (siRNAs). Coexpression of the CP with GFP resulted in increased association of residual GFP mRNAs with polysome fractions and reduced association of GFP siRNAs with monosome fractions. AGO1 was co-immunoprecipitated with the CP and CP expression destabilized AGO1. A WG motif within the CP was critical for the enhanced GFP expression, AGO1 interaction, and AGO1 destabilization, suggesting that the ToRSV CP acts as an AGO-hook protein and competes for AGO binding with a plant cellular GW/WG protein involved in translation repression.
Collapse
|
198
|
Uddin MN, Dunoyer P, Schott G, Akhter S, Shi C, Lucas WJ, Voinnet O, Kim JY. The protein kinase TOUSLED facilitates RNAi in Arabidopsis. Nucleic Acids Res 2014; 42:7971-80. [PMID: 24920830 PMCID: PMC4081062 DOI: 10.1093/nar/gku422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA silencing is an evolutionarily conserved mechanism triggered by double-stranded RNA that is processed into 21- to 24-nt small interfering (si)RNA or micro (mi)RNA by RNaseIII-like enzymes called Dicers. Gene regulations by RNA silencing have fundamental implications in a large number of biological processes that include antiviral defense, maintenance of genome integrity and the orchestration of cell fates. Although most generic or core components of the various plant small RNA pathways have been likely identified over the past 15 years, factors involved in RNAi regulation through post-translational modifications are just starting to emerge, mostly through forward genetic studies. A genetic screen designed to identify factors required for RNAi in Arabidopsis identified the serine/threonine protein kinase, TOUSLED (TSL). Mutations in TSL affect exogenous and virus-derived siRNA activity in a manner dependent upon its kinase activity. By contrast, despite their pleiotropic developmental phenotype, tsl mutants show no defect in biogenesis or activity of miRNA or endogenous trans-acting siRNA. These data suggest a possible role for TSL phosphorylation in the specific regulation of exogenous and antiviral RNA silencing in Arabidopsis and identify TSL as an intrinsic regulator of RNA interference.
Collapse
Affiliation(s)
- Mohammad Nazim Uddin
- Division of Applied Life Science (BK21+/WCU program), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Gregory Schott
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Salina Akhter
- Division of Applied Life Science (BK21+/WCU program), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Chunlin Shi
- Division of Applied Life Science (BK21+/WCU program), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - William J Lucas
- Division of Applied Life Science (BK21+/WCU program), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Korea Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg Cedex, France Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21+/WCU program), PMBBRC, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
199
|
Zhou T, Murphy AM, Lewsey MG, Westwood JH, Zhang HM, González I, Canto T, Carr JP. Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection. J Gen Virol 2014; 95:1408-1413. [PMID: 24633701 PMCID: PMC4027040 DOI: 10.1099/vir.0.063461-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/13/2014] [Indexed: 11/18/2022] Open
Abstract
The cucumber mosaic virus (CMV) 2b silencing suppressor protein allows the virus to overcome resistance to replication and local movement in inoculated leaves of plants treated with salicylic acid (SA), a resistance-inducing plant hormone. In Arabidopsis thaliana plants systemically infected with CMV, the 2b protein also primes the induction of SA biosynthesis during this compatible interaction. We found that CMV infection of susceptible tobacco (Nicotiana tabacum) also induced SA accumulation. Utilization of mutant 2b proteins expressed during infection of tobacco showed that the N- and C-terminal domains, which had previously been implicated in regulation of symptom induction, were both required for subversion of SA-induced resistance, while all mutants tested except those affecting the putative phosphorylation domain had lost the ability to prime SA accumulation and expression of the SA-induced marker gene PR-1.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Department of Plant Pathology, China Agricultural University, 2 Yuanmingyuan West Rd, Beijing 100193, PR China
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Mathew G. Lewsey
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jack H. Westwood
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Heng-Mu Zhang
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Rd, Hangzhou 310021, Zhejiang, PR China
| | - Inmaculada González
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Centro de Investigaciones Biológicas, CIB, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Tomás Canto
- Centro de Investigaciones Biológicas, CIB, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
200
|
Bilichak A, Yao Y, Kovalchuk I. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:590-600. [PMID: 24472037 DOI: 10.1111/pbi.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/15/2013] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue.
Collapse
MESH Headings
- Agrobacterium/physiology
- Arabidopsis/genetics
- Arabidopsis/microbiology
- Arabidopsis Proteins/metabolism
- Blotting, Southern
- DNA Breaks, Double-Stranded
- DNA Methylation/genetics
- DNA, Bacterial/genetics
- DNA-Directed RNA Polymerases/metabolism
- Down-Regulation
- Epigenesis, Genetic
- Genes, Plant
- Genetic Loci
- Models, Genetic
- Mutation/genetics
- Plants, Genetically Modified
- Protein Binding
- Protein Subunits/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Andriy Bilichak
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|