151
|
Banerjee A, Munir A, Abdullahu L, Damha MJ, Goldgur Y, Shuman S. Structure of tRNA splicing enzyme Tpt1 illuminates the mechanism of RNA 2'-PO 4 recognition and ADP-ribosylation. Nat Commun 2019; 10:218. [PMID: 30644400 PMCID: PMC6333775 DOI: 10.1038/s41467-018-08211-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022] Open
Abstract
Tpt1 is an essential agent of fungal tRNA splicing that removes the 2′-PO4 at the splice junction generated by fungal tRNA ligase. Tpt1 catalyzes a unique two-step reaction whereby the 2′-PO4 attacks NAD+ to form an RNA-2′-phospho-ADP-ribosyl intermediate that undergoes transesterification to yield 2′-OH RNA and ADP-ribose-1″,2″-cyclic phosphate products. Because Tpt1 is inessential in exemplary bacterial and mammalian taxa, Tpt1 is seen as an attractive antifungal target. Here we report a 1.4 Å crystal structure of Tpt1 in a product-mimetic complex with ADP-ribose-1″-phosphate in the NAD+ site and pAp in the RNA site. The structure reveals how Tpt1 recognizes a 2′-PO4 RNA splice junction and the mechanism of RNA phospho-ADP-ribosylation. This study also provides evidence that a bacterium has an endogenous phosphorylated substrate with which Tpt1 reacts. Tpt1 catalyzes the final essential step in yeast tRNA splicing and is a potential antifungal target. Here the authors provide structural insights into how Tpt1 recognizes a 2’-PO4 RNA splice junction and the mechanism of RNA phospho-ADP-ribosylation.
Collapse
Affiliation(s)
- Ankan Banerjee
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Annum Munir
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Leonora Abdullahu
- Chemistry Department, McGill University, Montreal, Quebec, H3A0B8, Canada
| | - Masad J Damha
- Chemistry Department, McGill University, Montreal, Quebec, H3A0B8, Canada
| | - Yehuda Goldgur
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA
| | - Stewart Shuman
- Molecular Biology and Structural Biology Programs, Sloan-Kettering Institute, New York, NY, 10065, USA.
| |
Collapse
|
152
|
Tanina A, Wohlkönig A, Soror SH, Flipo M, Villemagne B, Prevet H, Déprez B, Moune M, Perée H, Meyer F, Baulard AR, Willand N, Wintjens R. A comprehensive analysis of the protein-ligand interactions in crystal structures of Mycobacterium tuberculosis EthR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:248-258. [PMID: 30553830 DOI: 10.1016/j.bbapap.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
The Mycobacterium tuberculosis EthR is a member of the TetR family of repressors, controlling the expression of EthA, a mono-oxygenase responsible for the bioactivation of the prodrug ethionamide. This protein was established as a promising therapeutic target against tuberculosis, allowing, when inhibited by a drug-like molecule, to boost the action of ethionamide. Dozens of EthR crystal structures have been solved in complex with ligands. Herein, we disclose EthR structures in complex with 18 different small molecules and then performed in-depth analysis on the complete set of EthR structures that provides insights on EthR-ligand interactions. The 81 molecules solved in complex with EthR show a large diversity of chemical structures that were split up into several chemical clusters. Two of the most striking common points of EthR-ligand interactions are the quasi-omnipresence of a hydrogen bond bridging compounds with Asn179 and the high occurrence of π-π interactions involving Phe110. A systematic analysis of the protein-ligand contacts identified eight hot spot residues that defined the basic structural features governing the binding mode of small molecules to EthR. Implications for the design of new potent inhibitors are discussed.
Collapse
Affiliation(s)
- Abdalkarim Tanina
- Unité Microbiologie, Bioorganique et Macromoléculaire (CP206/04), département R3D, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Alexandre Wohlkönig
- Center for Structural Biology, Vlaams Instituut voor Biotechnology (VIB), B-1050 Brussels, Belgium
| | - Sameh H Soror
- Center of scientific excellence, Helwan Structural Biology Research, Faculty of Pharmacy, Helwan University, Ain helwan, 11792 Helwan, Cairo, Egypt
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Hugues Prevet
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Benoit Déprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Martin Moune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Hélène Perée
- Unité Microbiologie, Bioorganique et Macromoléculaire (CP206/04), département R3D, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Franck Meyer
- Unité Microbiologie, Bioorganique et Macromoléculaire (CP206/04), département R3D, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL- Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France.
| | - René Wintjens
- Unité Microbiologie, Bioorganique et Macromoléculaire (CP206/04), département R3D, Faculté de Pharmacie, Université Libre de Bruxelles, B-1050 Brussels, Belgium.
| |
Collapse
|
153
|
Hamark C, Pendrill R, Landström J, Dotson Fagerström A, Sandgren M, Ståhlberg J, Widmalm G. Enantioselective Binding of Propranolol and Analogues Thereof to Cellobiohydrolase Cel7A. Chemistry 2018; 24:17975-17985. [PMID: 30255965 DOI: 10.1002/chem.201803104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/28/2022]
Abstract
At the catalytic site for the hydrolysis of cellulose the enzyme cellobiohydrolase Cel7A binds the enantiomers of the adrenergic beta-blocker propranolol with different selectivity. Methyl-to-hydroxymethyl group modifications of propranolol, which result in higher affinity and improved selectivity, were herein studied by 1 H,1 H and 1 H,13 C scalar spin-spin coupling constants as well as utilizing the nuclear Overhauser effect (NOE) in conjunction with molecular dynamics simulations of the ligands per se, which showed the presence of all-antiperiplanar conformations, except for the one containing a vicinal oxygen-oxygen arrangement governed by the gauche effect. For the ligand-protein complexes investigated by NMR spectroscopy using, inter alia, transferred NOESY and saturation-transfer difference (STD) NMR experiments the S-isomers were shown to bind with a higher affinity and a conformation similar to that preferred in solution, in contrast to the R-isomer. The fact that the S-form of the propranolol enantiomer is pre-arranged for binding to the protein is also observed for a crystal structure of dihydroxy-(S)-propranolol and Cel7A presented herein. Whereas the binding of propranolol is entropy driven, the complexation with the dihydroxy analogue is anticipated to be favored also by an enthalpic term, such as for its enantiomer, that is, dihydroxy-(R)-propranolol, because hydrogen-bond donation replaces the corresponding bonding from hydroxyl groups in glucosyl residues of the natural substrate. In addition to a favorable entropy component, albeit lesser in magnitude, this represents an effect of enthalpy-to-entropy compensation in ligand-protein interactions.
Collapse
Affiliation(s)
- Christoffer Hamark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Robert Pendrill
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jens Landström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | | | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, 75007, Uppsala, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
154
|
The 2.1 Å structure of protein F9 and its comparison to L1, two components of the conserved poxvirus entry-fusion complex. Sci Rep 2018; 8:16807. [PMID: 30429486 PMCID: PMC6235832 DOI: 10.1038/s41598-018-34244-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/12/2018] [Indexed: 11/18/2022] Open
Abstract
The poxvirus F9 protein is a component of the vaccinia virus entry fusion complex (EFC) which consists of 11 proteins. The EFC forms a unique apparatus among viral fusion proteins and complexes. We solved the atomic structure of the F9 ectodomain at 2.10 Å. A structural comparison to the ectodomain of the EFC protein L1 indicated a similar fold and organization, in which a bundle of five α-helices is packed against two pairs of β-strands. However, instead of the L1 myristoylation site and hydrophobic cavity, F9 possesses a protruding loop between α-helices α3 and α4 starting at Gly90. Gly90 is conserved in all poxviruses except Salmon gill poxvirus (SGPV) and Diachasmimorpha longicaudata entomopoxvirus. Phylogenetic sequence analysis of all Poxviridae F9 and L1 orthologs revealed the SGPV genome to contain the most distantly related F9 and L1 sequences compared to the vaccinia proteins studied here. The structural differences between F9 and L1 suggest functional adaptations during evolution from a common precursor that underlie the present requirement for each protein.
Collapse
|
155
|
Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Thiouracil Derivatives as Potential Antithyroid Agents. Molecules 2018; 23:molecules23112913. [PMID: 30413058 PMCID: PMC6278332 DOI: 10.3390/molecules23112913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Hyperthyroidism is the result of uncontrolled overproduction of the thyroid hormones. One of the mostly used antithyroid agents is 6-n-propyl-2-thiouracil (PTU). The previously solved X-ray crystal structure of the PTU bound to mammalian lactoperoxidase (LPO) reveals that the LPO-PTU binding site is basically a hydrophobic channel. There are two hydrophobic side chains directed towards the oxygen atom in the C-4 position of the thiouracil ring. In the current study, the structural activity relationship (SAR) was performed on the thiouracil nucleus of PTU to target these hydrophobic side chains and gain more favorable interactions and, in return, more antithyroid activity. Most of the designed compounds show superiority over PTU in reducing the mean serum T4 levels of hyperthyroid rats by 3% to 60%. In addition, the effect of these compounds on the levels of serum T3 was found to be comparable to the effect of PTU treatment. The designed compounds in this study showed a promising activity profile in reducing levels of thyroid hormones and follow up experiments will be needed to confirm the use of the designed compounds as new potential antithyroid agents.
Collapse
|
156
|
Pandey SN, Iqbal N, Singh PK, Rastogi N, Kaur P, Sharma S, Singh TP. Binding and structural studies of the complexes of type 1 ribosome inactivating protein from Momordica balsamina
with uracil and uridine. Proteins 2018; 87:99-109. [DOI: 10.1002/prot.25584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/07/2018] [Accepted: 07/04/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Sada Nand Pandey
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Naseer Iqbal
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Prashant K. Singh
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Nilisha Rastogi
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Punit Kaur
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Sujata Sharma
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Tej P. Singh
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
157
|
Wang C, Li W, Kessenich CR, Petrick JS, Rydel TJ, Sturman EJ, Lee TC, Glenn KC, Edrington TC. Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regul Toxicol Pharmacol 2018; 99:50-60. [DOI: 10.1016/j.yrtph.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
|
158
|
Álvarez-Cao ME, González R, Pernas MA, Rúa ML. Contribution of the Oligomeric State to the Thermostability of Isoenzyme 3 from Candida rugosa. Microorganisms 2018; 6:E108. [PMID: 30347699 PMCID: PMC6313406 DOI: 10.3390/microorganisms6040108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
Thermophilic proteins have evolved different strategies to maintain structure and function at high temperatures; they have large, hydrophobic cores, and feature increased electrostatic interactions, with disulfide bonds, salt-bridging, and surface charges. Oligomerization is also recognized as a mechanism for protein stabilization to confer a thermophilic adaptation. Mesophilic proteins are less thermostable than their thermophilic homologs, but oligomerization plays an important role in biological processes on a wide variety of mesophilic enzymes, including thermostabilization. The mesophilic yeast Candida rugosa contains a complex family of highly related lipase isoenzymes. Lip3 has been purified and characterized in two oligomeric states, monomer (mLip3) and dimer (dLip3), and crystallized in a dimeric conformation, providing a perfect model for studying the effects of homodimerization on mesophilic enzymes. We studied kinetics and stability at different pHs and temperatures, using the response surface methodology to compare both forms. At the kinetic level, homodimerization expanded Lip3 specificity (serving as a better catalyst on soluble substrates). Indeed, dimerization increased its thermostability by more than 15 °C (maximum temperature for dLip3 was out of the experimental range; >50 °C), and increased the pH stability by nearly one pH unit, demonstrating that oligomerization is a viable strategy for the stabilization of mesophilic enzymes.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - Roberto González
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María A Pernas
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María Luisa Rúa
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
159
|
Biochemical and functional characterization of OsCSD3, a novel CuZn superoxide dismutase from rice. Biochem J 2018; 475:3105-3121. [DOI: 10.1042/bcj20180516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) belong to an important group of antioxidant metalloenzymes. Multiple SODs exist for scavenging of reactive oxygen species (ROS) in different cellular compartments to maintain an intricate ROS balance. The present study deals with molecular and biochemical characterization of CuZn SOD encoded by LOC_Os03g11960 (referred to as OsCSD3), which is the least studied among the four rice isozymes. The OsCSD3 showed higher similarity to peroxisomal SODs in plants. The OsCSD3 transcript was up-regulated in response to salinity, drought, and oxidative stress. Full-length cDNA encoding OsCSD3 was cloned and expressed in Escherichia coli and analyzed for spectral characteristics. UV (ultraviolet)–visible spectroscopic analysis showed evidences of d–d transitions, while circular dichroism analysis indicated high β-sheet content in the protein. The OsCSD3 existed as homodimer (∼36 kDa) with both Cu2+ and Zn2+ metal cofactors and was substantially active over a wide pH range (7.0–10.8), with optimum pH of 9.0. The enzyme was sensitive to diethyldithiocarbamate but insensitive to sodium azide, which are the characteristics features of CuZn SODs. The enzyme also exhibited bicarbonate-dependent peroxidase activity. Unlike several other known CuZn SODs, OsCSD3 showed higher tolerance to hydrogen peroxide and thermal inactivation. Heterologous overexpression of OsCSD3 enhanced tolerance of E. coli sod double-knockout (ΔsodA ΔsodB) mutant and wild-type strain against methyl viologen-induced oxidative stress, indicating the in vivo function of this enzyme. The results show that the locus LOC_Os03g11960 of rice encodes a functional CuZn SOD with biochemical characteristics similar to the peroxisomal isozymes.
Collapse
|
160
|
Young JY, Westbrook JD, Feng Z, Peisach E, Persikova I, Sala R, Sen S, Berrisford JM, Swaminathan GJ, Oldfield TJ, Gutmanas A, Igarashi R, Armstrong DR, Baskaran K, Chen L, Chen M, Clark AR, Di Costanzo L, Dimitropoulos D, Gao G, Ghosh S, Gore S, Guranovic V, Hendrickx PMS, Hudson BP, Ikegawa Y, Kengaku Y, Lawson CL, Liang Y, Mak L, Mukhopadhyay A, Narayanan B, Nishiyama K, Patwardhan A, Sahni G, Sanz-García E, Sato J, Sekharan MR, Shao C, Smart OS, Tan L, van Ginkel G, Yang H, Zhuravleva MA, Markley JL, Nakamura H, Kurisu G, Kleywegt GJ, Velankar S, Berman HM, Burley SK. Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4844086. [PMID: 29688351 PMCID: PMC5804564 DOI: 10.1093/database/bay002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The Protein Data Bank (PDB) is the single global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands. The worldwide PDB (wwPDB) is the international collaboration that manages the PDB archive according to the FAIR principles: Findability, Accessibility, Interoperability and Reusability. The wwPDB recently developed OneDep, a unified tool for deposition, validation and biocuration of structures of biological macromolecules. All data deposited to the PDB undergo critical review by wwPDB Biocurators. This article outlines the importance of biocuration for structural biology data deposited to the PDB and describes wwPDB biocuration processes and the role of expert Biocurators in sustaining a high-quality archive. Structural data submitted to the PDB are examined for self-consistency, standardized using controlled vocabularies, cross-referenced with other biological data resources and validated for scientific/technical accuracy. We illustrate how biocuration is integral to PDB data archiving, as it facilitates accurate, consistent and comprehensive representation of biological structure data, allowing efficient and effective usage by research scientists, educators, students and the curious public worldwide. Database URL: https://www.wwpdb.org/
Collapse
Affiliation(s)
- Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Irina Persikova
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Raul Sala
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sanchayita Sen
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - G Jawahar Swaminathan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Thomas J Oldfield
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Reiko Igarashi
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - David R Armstrong
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Kumaran Baskaran
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Li Chen
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Minyu Chen
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Alice R Clark
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Dimitris Dimitropoulos
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guanghua Gao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Sutapa Ghosh
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Swanand Gore
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Vladimir Guranovic
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Pieter M S Hendrickx
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Brian P Hudson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yasuyo Ikegawa
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yumiko Kengaku
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Catherine L Lawson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Yuhe Liang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lora Mak
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Buvaneswari Narayanan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kayoko Nishiyama
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Ardan Patwardhan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Eduardo Sanz-García
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Junko Sato
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Monica R Sekharan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Oliver S Smart
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Lihua Tan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Glen van Ginkel
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Marina A Zhuravleva
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - John L Markley
- BMRB, BioMagResBank, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Haruki Nakamura
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Genji Kurisu
- PDBj, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Gerard J Kleywegt
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
161
|
Shinozuka T, Tsukada T, Fujii K, Tokumaru E, Shimada K, Onishi Y, Matsui Y, Wakimoto S, Kuroha M, Ogata T, Araki K, Ohsumi J, Sawamura R, Watanabe N, Yamamoto H, Fujimoto K, Tani Y, Mori M, Tanaka J. Discovery of DS-6930, a potent selective PPARγ modulator. Part II: Lead optimization. Bioorg Med Chem 2018; 26:5099-5117. [DOI: 10.1016/j.bmc.2018.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
|
162
|
Guo MS, Haakonsen DL, Zeng W, Schumacher MA, Laub MT. A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication. Cell 2018; 175:583-597.e23. [PMID: 30220456 DOI: 10.1016/j.cell.2018.08.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/13/2018] [Accepted: 08/15/2018] [Indexed: 11/16/2022]
Abstract
When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation. Topoisomerases, including gyrase and topoisomerase IV in bacteria, are required to relax positive supercoils ahead of DNA polymerase but may not be sufficient for replication. Here, we find that GapR, a chromosome structuring protein in Caulobacter crescentus, is required to complete DNA replication. GapR associates in vivo with positively supercoiled chromosomal DNA, and our biochemical and structural studies demonstrate that GapR forms a dimer-of-dimers that fully encircles overtwisted DNA. Further, we show that GapR stimulates gyrase and topo IV to relax positive supercoils, thereby enabling DNA replication. Analogous chromosome structuring proteins that locate to the overtwisted DNA in front of replication forks may be present in other organisms, similarly helping to recruit and stimulate topoisomerases during DNA replication.
Collapse
Affiliation(s)
- Monica S Guo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Diane L Haakonsen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
163
|
Ramrath DJF, Niemann M, Leibundgut M, Bieri P, Prange C, Horn EK, Leitner A, Boehringer D, Schneider A, Ban N. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 2018; 362:science.aau7735. [PMID: 30213880 DOI: 10.1126/science.aau7735] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/03/2018] [Indexed: 01/19/2023]
Abstract
Ribosomal RNA (rRNA) plays key functional and architectural roles in ribosomes. Using electron microscopy, we determined the atomic structure of a highly divergent ribosome found in mitochondria of Trypanosoma brucei, a unicellular parasite that causes sleeping sickness in humans. The trypanosomal mitoribosome features the smallest rRNAs and contains more proteins than all known ribosomes. The structure shows how the proteins have taken over the role of architectural scaffold from the rRNA: They form an autonomous outer shell that surrounds the entire particle and stabilizes and positions the functionally important regions of the rRNA. Our results also reveal the "minimal" set of conserved rRNA and protein components shared by all ribosomes that help us define the most essential functional elements.
Collapse
Affiliation(s)
- David J F Ramrath
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Céline Prange
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Elke K Horn
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
164
|
Shinozuka T, Tsukada T, Fujii K, Tokumaru E, Shimada K, Onishi Y, Matsui Y, Wakimoto S, Kuroha M, Ogata T, Araki K, Ohsumi J, Sawamura R, Watanabe N, Yamamoto H, Fujimoto K, Tani Y, Mori M, Tanaka J. Discovery of DS-6930, a potent selective PPARγ modulator. Part I: Lead identification. Bioorg Med Chem 2018; 26:5079-5098. [PMID: 30241907 DOI: 10.1016/j.bmc.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/05/2023]
Abstract
The lead identification of a novel potent selective PPARγ agonist, DS-6930 is reported. To avoid PPARγ-related adverse effects, a partial agonist was designed to prevent the direct interaction with helix 12 of PPARγ-LBD. Because the TZD group is known to interact with helix 12, the TZD in efatutazone (CS-7017) was replaced to discover novel PPARγ intermediate partial agonist 8i. The optimization of 8i yielded 13ac with high potency in vitro. Compound 13ac exhibited robust plasma glucose lowering effects comparable to those of rosiglitazone (3 mg/kg) in Zucker diabetic fatty rats. Upon toxicological evaluation, compound 13ac (300 mg/kg) induced hemodilution to a lower extent than rosiglitazone; however, 13ac elevated liver enzyme activities. X-ray crystallography revealed no direct interaction of 13ac with helix 12, and the additional lipophilic interactions are also suggested to be related to the maximum transcriptional activity of 13ac.
Collapse
Affiliation(s)
- Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Tomoharu Tsukada
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kunihiko Fujii
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eri Tokumaru
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kousei Shimada
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshiyuki Onishi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yumi Matsui
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Satoko Wakimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masanori Kuroha
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tsuneaki Ogata
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazushi Araki
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Jun Ohsumi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ryoko Sawamura
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Nobuaki Watanabe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hideki Yamamoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazunori Fujimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshiro Tani
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Makoto Mori
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Jun Tanaka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
165
|
Crystal structure of the ferric homotetrameric β 4 human hemoglobin. Biophys Chem 2018; 240:9-14. [DOI: 10.1016/j.bpc.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/21/2022]
|
166
|
Afonine PV, Klaholz BP, Moriarty NW, Poon BK, Sobolev OV, Terwilliger TC, Adams PD, Urzhumtsev A. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr D Struct Biol 2018; 74:814-840. [PMID: 30198894 PMCID: PMC6130467 DOI: 10.1107/s2059798318009324] [Citation(s) in RCA: 533] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/27/2018] [Indexed: 11/25/2022] Open
Abstract
Recent advances in the field of electron cryomicroscopy (cryo-EM) have resulted in a rapidly increasing number of atomic models of biomacromolecules that have been solved using this technique and deposited in the Protein Data Bank and the Electron Microscopy Data Bank. Similar to macromolecular crystallography, validation tools for these models and maps are required. While some of these validation tools may be borrowed from crystallography, new methods specifically designed for cryo-EM validation are required. Here, new computational methods and tools implemented in PHENIX are discussed, including d99 to estimate resolution, phenix.auto_sharpen to improve maps and phenix.mtriage to analyze cryo-EM maps. It is suggested that cryo-EM half-maps and masks should be deposited to facilitate the evaluation and validation of cryo-EM-derived atomic models and maps. The application of these tools to deposited cryo-EM atomic models and maps is also presented.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Bruno P. Klaholz
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alexandre Urzhumtsev
- Centre for Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
167
|
Lundholm IV, Sellberg JA, Ekeberg T, Hantke MF, Okamoto K, van der Schot G, Andreasson J, Barty A, Bielecki J, Bruza P, Bucher M, Carron S, Daurer BJ, Ferguson K, Hasse D, Krzywinski J, Larsson DSD, Morgan A, Mühlig K, Müller M, Nettelblad C, Pietrini A, Reddy HKN, Rupp D, Sauppe M, Seibert M, Svenda M, Swiggers M, Timneanu N, Ulmer A, Westphal D, Williams G, Zani A, Faigel G, Chapman HN, Möller T, Bostedt C, Hajdu J, Gorkhover T, Maia FRNC. Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging. IUCRJ 2018; 5:531-541. [PMID: 30224956 PMCID: PMC6126651 DOI: 10.1107/s2052252518010047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 05/19/2023]
Abstract
Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.
Collapse
Affiliation(s)
- Ida V. Lundholm
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jonas A. Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | | | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, CZ-182 21 Prague, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Petr Bruza
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Max Bucher
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sebastian Carron
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - Benedikt J. Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Ken Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jacek Krzywinski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Andrew Morgan
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kerstin Mühlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Maria Müller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lagerhyddsvägen 2 (Box 337), SE-751 05 Uppsala, Sweden
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Hemanth K. N. Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniela Rupp
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Mario Sauppe
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Michelle Swiggers
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Garth Williams
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- NSLS-II, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973, USA
| | - Alessandro Zani
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gyula Faigel
- Research Institute for Solid State Physics and Optics, 1525 Budapest, Hungary
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Christoph Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, CZ-182 21 Prague, Czech Republic
| | - Tais Gorkhover
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
- PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| |
Collapse
|
168
|
Schumacher MA, Bush MJ, Bibb MJ, Ramos-León F, Chandra G, Zeng W, Buttner MJ. The crystal structure of the RsbN-σBldN complex from Streptomyces venezuelae defines a new structural class of anti-σ factor. Nucleic Acids Res 2018; 46:7405-7417. [PMID: 29905823 PMCID: PMC6101532 DOI: 10.1093/nar/gky493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/13/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
Streptomyces are filamentous bacteria with a complex developmental life cycle characterized by the formation of spore-forming aerial hyphae. Transcription of the chaplin and rodlin genes, which are essential for aerial hyphae production, is directed by the extracytoplasmic function (ECF) σ factor BldN, which is in turn controlled by an anti-σ factor, RsbN. RsbN shows no sequence similarity to known anti-σ factors and binds and inhibits BldN in an unknown manner. Here we describe the 2.23 Å structure of the RsbN-BldN complex. The structure shows that BldN harbors σ2 and σ4 domains that are individually similar to other ECF σ domains, which bind -10 and -35 promoter regions, respectively. The anti-σ RsbN consists of three helices, with α3 forming a long helix embraced between BldN σ2 and σ4 while RsbN α1-α2 dock against σ4 in a manner that would block -35 DNA binding. RsbN binding also freezes BldN in a conformation inactive for simultaneous -10 and -35 promoter interaction and RNAP binding. Strikingly, RsbN is structurally distinct from previously solved anti-σ proteins. Thus, these data characterize the molecular determinants controlling a central Streptomyces developmental switch and reveal RsbN to be the founding member of a new structural class of anti-σ factor.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Félix Ramos-León
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Wenjie Zeng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
169
|
Jenni S, Harrison SC. Structure of the DASH/Dam1 complex shows its role at the yeast kinetochore-microtubule interface. Science 2018; 360:552-558. [PMID: 29724956 DOI: 10.1126/science.aar6436] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Kinetochores connect mitotic-spindle microtubules with chromosomes, allowing microtubule depolymerization to pull chromosomes apart during anaphase while resisting detachment as the microtubule shortens. The heterodecameric DASH/Dam1 complex (DASH/Dam1c), an essential component of yeast kinetochores, assembles into a microtubule-encircling ring. The ring associates with rodlike Ndc80 complexes to organize the kinetochore-microtubule interface. We report the cryo-electron microscopy structure (at ~4.5-angstrom resolution) of a DASH/Dam1c ring and a molecular model of its ordered components, validated by evolutionary direct-coupling analysis. Integrating this structure with that of the Ndc80 complex and with published interaction data yields a molecular picture of kinetochore-microtubule attachment, including how flexible, C-terminal extensions of DASH/Dam1c subunits project and contact widely separated sites on the Ndc80 complex rod and how phosphorylation at previously identified sites might regulate kinetochore assembly.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA. .,Howard Hughes Medical Institute, Harvard University, 250 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
170
|
Substitutions of a buried glutamate residue hinder the conformational change in horse liver alcohol dehydrogenase and yield a surprising complex with endogenous 3'-Dephosphocoenzyme A. Arch Biochem Biophys 2018; 653:97-106. [PMID: 30018019 DOI: 10.1016/j.abb.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 11/22/2022]
Abstract
Glu-267 is highly conserved in alcohol dehydrogenases and buried as a negatively-charged residue in a loop of the NAD coenzyme binding domain. Glu-267 might have a structural role and contribute to a rate-promoting vibration that facilitates catalysis. Substitutions of Glu-267 with histidine or asparagine residues increase the dissociation constants for the coenzymes (NAD+ by ∼40-fold, NADH by ∼200-fold) and significantly decrease catalytic efficiencies by 16-1200-fold various substrates and substituted enzymes. The turnover numbers modestly change with the substitutions, but hydride transfer is at least partially rate-limiting for turnover for alcohol oxidation. X-ray structures of the E267H and E267 N enzymes are similar to the apoenzyme (open) conformation of the wild-type enzyme, and the substitutions are accommodated by local changes in the structure. Surprisingly, the E267H and E267 N enzymes have endogenous (from the expression in E. coli) 3'-dephosphocoenzyme A bound in the active site with the ADP moiety in the NAD binding site and the pantethiene sulfhydryl bound to the catalytic zinc. The kinetics and crystallography show that the substitutions of Glu-267 hinder the conformational change, which occurs when wild-type enzyme binds coenzymes, and affect productive binding of substrates.
Collapse
|
171
|
Arreola R, Villalpando JL, Puente-Rivera J, Morales-Montor J, Rudiño-Piñera E, Alvarez-Sánchez ME. Trichomonas vaginalis metalloproteinase TvMP50 is a monomeric Aminopeptidase P-like enzyme. Mol Biotechnol 2018; 60:563-575. [PMID: 29936696 DOI: 10.1007/s12033-018-0097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a "pseudo-homodimer" array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a "pita bread" fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented.
Collapse
Affiliation(s)
- Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Mexico City, DF, Mexico
| | - José Luis Villalpando
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Colonia Del Valle, CP 0310, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Colonia Del Valle, CP 0310, Mexico City, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap 70228, CP 04510, Mexico City, Mexico
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210, Cuernavaca, MOR, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Colonia Del Valle, CP 0310, Mexico City, Mexico.
| |
Collapse
|
172
|
Valegård K, Andralojc PJ, Haslam RP, Pearce FG, Eriksen GK, Madgwick PJ, Kristoffersen AK, van Lun M, Klein U, Eilertsen HC, Parry MAJ, Andersson I. Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications. J Biol Chem 2018; 293:13033-13043. [PMID: 29925588 DOI: 10.1074/jbc.ra118.003518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
The catalytic performance of the major CO2-assimilating enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), restricts photosynthetic productivity. Natural diversity in the catalytic properties of Rubisco indicates possibilities for improvement. Oceanic phytoplankton contain some of the most efficient Rubisco enzymes, and diatoms in particular are responsible for a significant proportion of total marine primary production as well as being a major source of CO2 sequestration in polar cold waters. Until now, the biochemical properties and three-dimensional structures of Rubisco from diatoms were unknown. Here, diatoms from arctic waters were collected, cultivated, and analyzed for their CO2-fixing capability. We characterized the kinetic properties of five and determined the crystal structures of four Rubiscos selected for their high CO2-fixing efficiency. The DNA sequences of the rbcL and rbcS genes of the selected diatoms were similar, reflecting their close phylogenetic relationship. The Vmax and Km for the oxygenase and carboxylase activities at 25 °C and the specificity factors (Sc/o) at 15, 25, and 35 °C were determined. The Sc/o values were high, approaching those of mono- and dicot plants, thus exhibiting good selectivity for CO2 relative to O2 Structurally, diatom Rubiscos belong to form I C/D, containing small subunits characterized by a short βA-βB loop and a C-terminal extension that forms a β-hairpin structure (βE-βF loop). Of note, the diatom Rubiscos featured a number of posttranslational modifications of the large subunit, including 4-hydroxyproline, β-hydroxyleucine, hydroxylated and nitrosylated cysteine, mono- and dihydroxylated lysine, and trimethylated lysine. Our studies suggest adaptation toward achieving efficient CO2 fixation in arctic diatom Rubiscos.
Collapse
Affiliation(s)
- Karin Valegård
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | - P John Andralojc
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Richard P Haslam
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - F Grant Pearce
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | - Gunilla K Eriksen
- the Norwegian College of Fisheries Science, Arctic University of Norway, N-9037 Tromsø, Norway, and
| | - Pippa J Madgwick
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Anne K Kristoffersen
- the Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Michiel van Lun
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | - Uwe Klein
- the Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Hans C Eilertsen
- the Norwegian College of Fisheries Science, Arctic University of Norway, N-9037 Tromsø, Norway, and
| | - Martin A J Parry
- Department of Plant Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | - Inger Andersson
- From the Department of Cell and Molecular Biology, Uppsala University, Box 596, S-751 24 Uppsala, Sweden,
| |
Collapse
|
173
|
Stern AL, Van der Verren SE, Kanchugal P S, Näsvall J, Gutiérrez-de-Terán H, Selmer M. Structural mechanism of AadA, a dual-specificity aminoglycoside adenylyltransferase from Salmonella enterica. J Biol Chem 2018; 293:11481-11490. [PMID: 29871922 PMCID: PMC6065190 DOI: 10.1074/jbc.ra118.003989] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/01/2018] [Indexed: 11/07/2022] Open
Abstract
Streptomycin and spectinomycin are antibiotics that bind to the bacterial ribosome and perturb protein synthesis. The clinically most prevalent bacterial resistance mechanism is their chemical modification by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). AadA from Salmonella enterica is an aminoglycoside (3″)(9) adenylyltransferase that O-adenylates position 3″ of streptomycin and position 9 of spectinomycin. We previously reported the apo-AadA structure with a closed active site. To clarify how AadA binds ATP and its two chemically distinct drug substrates, we here report crystal structures of WT AadA complexed with ATP, magnesium, and streptomycin and of an active-site mutant, E87Q, complexed with ATP and streptomycin or the closely related dihydrostreptomycin. These structures revealed that ATP binding induces a conformational change that positions the two domains for drug binding at the interdomain cleft and disclosed the interactions between both domains and the three rings of streptomycin. Spectinomycin docking followed by molecular dynamics simulations suggested that, despite the limited structural similarities with streptomycin, spectinomycin makes similar interactions around the modification site and, in agreement with mutational data, forms critical interactions with fewer residues. Using structure-guided sequence analyses of ANT(3″)(9) enzymes acting on both substrates and ANT(9) enzymes active only on spectinomycin, we identified sequence determinants for activity on each substrate. We experimentally confirmed that Trp-173 and Asp-178 are essential only for streptomycin resistance. Activity assays indicated that Glu-87 is the catalytic base in AadA and that the nonadenylating E87Q mutant can hydrolyze ATP in the presence of streptomycin.
Collapse
Affiliation(s)
- Ana Laura Stern
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | | | - Sandesh Kanchugal P
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
174
|
Abstract
Homology modeling is a very powerful tool in the absence of atomic structures for understanding the general fold of the enzyme, conserved residues, catalytic tunnel/pocket as well as substrate and product binding sites. This information is useful for structure-assisted enzyme design approach for the development of robust enzymes especially for industrial applications.
Collapse
|
175
|
Structural Insights into the CRTC2–CREB Complex Assembly on CRE. J Mol Biol 2018; 430:1926-1939. [DOI: 10.1016/j.jmb.2018.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 11/18/2022]
|
176
|
Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 2018; 74:531-544. [PMID: 29872004 PMCID: PMC6096492 DOI: 10.1107/s2059798318006551] [Citation(s) in RCA: 2067] [Impact Index Per Article: 295.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/27/2018] [Indexed: 02/23/2023] Open
Abstract
This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement of 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Randy J. Read
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Alexandre Urzhumtsev
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy, France
- Centre for Integrative Biology, IGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
177
|
Oganesyan V, Peng L, Bee JS, Li J, Perry SR, Comer F, Xu L, Cook K, Senthil K, Clarke L, Rosenthal K, Gao C, Damschroder M, Wu H, Dall'Acqua W. Structural insights into the mechanism of action of a biparatopic anti-HER2 antibody. J Biol Chem 2018; 293:8439-8448. [PMID: 29669810 PMCID: PMC5986207 DOI: 10.1074/jbc.m117.818013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/10/2018] [Indexed: 12/23/2022] Open
Abstract
Pathways of human epidermal growth factor (EGF) receptors are activated upon ligand-dependent or -independent homo- or heterodimerization and their subsequent transphosphorylation. Overexpression of these receptors positively correlates with transphosphorylation rates and increased tumor growth rates. MEDI4276, an anti-human epidermal growth factor receptor 2 (HER2) biparatopic antibody-drug conjugate, has two paratopes within each antibody arm. One, 39S, is aiming at the HER2 site involved in receptor dimerization and the second, single chain fragment (scFv), mimicking trastuzumab. Here we present the cocrystal structure of the 39S Fab-HER2 complex and, along with biophysical and functional assays, determine the corresponding epitope of MEDI4276 and its underlying mechanism of action. Our results reveal that MEDI4276's uniqueness is based first on the ability of its 39S paratope to block HER2 homo- or heterodimerization and second on its ability to cluster the receptors on the surface of receptor-overexpressing cells.
Collapse
Affiliation(s)
- Vaheh Oganesyan
- From the Departments of Antibody Discovery and Protein Engineering,
| | - Li Peng
- From the Departments of Antibody Discovery and Protein Engineering
| | | | - John Li
- Biosuperiors, MedImmune, Gaithersburg, Maryland 20878
| | | | - Frank Comer
- Biosuperiors, MedImmune, Gaithersburg, Maryland 20878
| | - Linda Xu
- From the Departments of Antibody Discovery and Protein Engineering
| | - Kimberly Cook
- From the Departments of Antibody Discovery and Protein Engineering
| | - Kannaki Senthil
- From the Departments of Antibody Discovery and Protein Engineering
| | - Lori Clarke
- From the Departments of Antibody Discovery and Protein Engineering
| | - Kim Rosenthal
- From the Departments of Antibody Discovery and Protein Engineering
| | - Changshou Gao
- From the Departments of Antibody Discovery and Protein Engineering
| | | | - Herren Wu
- From the Departments of Antibody Discovery and Protein Engineering
| | | |
Collapse
|
178
|
Buonanno M, Di Fiore A, Langella E, D'Ambrosio K, Supuran CT, Monti SM, De Simone G. The Crystal Structure of a hCA VII Variant Provides Insights into the Molecular Determinants Responsible for Its Catalytic Behavior. Int J Mol Sci 2018; 19:ijms19061571. [PMID: 29795045 PMCID: PMC6032174 DOI: 10.3390/ijms19061571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 01/07/2023] Open
Abstract
Although important progress has been achieved in understanding the catalytic mechanism of Carbonic Anhydrases, a detailed picture of all factors influencing the catalytic efficiency of the various human isoforms is still missing. In this paper we report a detailed structural study and theoretical pKa calculations on a hCA VII variant. The obtained data were compared with those already known for another thoroughly investigated cytosolic isoform, hCA II. Our structural studies show that in hCA VII the network of ordered water molecules, which connects the zinc bound solvent molecule to the proton shuttle His64, is altered compared to hCA II, causing a reduction of the catalytic efficiency. Theoretical calculations suggest that changes in solvent network are related to the difference in pKa of the proton shuttle in the two enzymes. The residue that plays a major role in determining the diverse pKa values of the proton shuttle is the one in position four, namely His for hCA II and Gly for hCA VII. This residue is located on the protein surface, outside of the active site cavity. These findings are in agreement with our previous studies that highlighted the importance of histidines on the protein surface of hCA II (among which His4) as crucial residues for the high catalytic efficiency of this isoform.
Collapse
Affiliation(s)
- Martina Buonanno
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Emma Langella
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Katia D'Ambrosio
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Florence, Italy.
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
179
|
Open Conformation of the Escherichia coli Periplasmic Murein Tripeptide Binding Protein, MppA, at High Resolution. BIOLOGY 2018; 7:biology7020030. [PMID: 29783769 PMCID: PMC6022919 DOI: 10.3390/biology7020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
Periplasmic ligand-binding proteins (PBPs) bind ligands with a high affinity and specificity. They undergo a large conformational change upon ligand binding, and they have a robust protein fold. These physical features have made them ideal candidates for use in protein engineering projects to develop novel biosensors and signaling molecules. The Escherichia coli MppA (murein peptide permease A) PBP binds the murein tripeptide, l-alanyl-γ-d-glutamyl-meso-diaminopimelate, (l-Ala-γ-d-Glu-meso-Dap), which contains both a D-amino acid and a gamma linkage between two of the amino acids. We have solved a high-resolution X-ray crystal structure of E. coli MppA at 1.5 Å resolution in the unliganded, open conformation. Now, structures are available for this member of the PBP protein family in both the liganded/closed form and the unliganded/open form.
Collapse
|
180
|
Uson ML, Carl A, Goldgur Y, Shuman S. Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and 5' exonuclease activities. Nucleic Acids Res 2018; 46:4164-4175. [PMID: 29635474 PMCID: PMC5934675 DOI: 10.1093/nar/gky238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium smegmatis FenA is a nucleic acid phosphodiesterase with flap endonuclease and 5' exonuclease activities. The 1.8 Å crystal structure of FenA reported here highlights as its closest homologs bacterial FEN-family enzymes ExoIX, the Pol1 exonuclease domain and phage T5 Fen. Mycobacterial FenA assimilates three active site manganese ions (M1, M2, M3) that are coordinated, directly and via waters, to a constellation of eight carboxylate side chains. We find via mutagenesis that the carboxylate contacts to all three manganese ions are essential for FenA's activities. Structures of nuclease-dead FenA mutants D125N, D148N and D208N reveal how they fail to bind one of the three active site Mn2+ ions, in a distinctive fashion for each Asn change. The structure of FenA D208N with a phosphate anion engaged by M1 and M2 in a state mimetic of a product complex suggests a mechanism for metal-catalyzed phosphodiester hydrolysis similar to that proposed for human Exo1. A distinctive feature of FenA is that it does not have the helical arch module found in many other FEN/FEN-like enzymes. Instead, this segment of FenA adopts a unique structure comprising a short 310 helix and surface β-loop that coordinates a fourth manganese ion (M4).
Collapse
Affiliation(s)
- Maria Loressa Uson
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Ayala Carl
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
181
|
Cross M, Biberacher S, Park S, Rajan S, Korhonen P, Gasser RB, Kim J, Coster MJ, Hofmann A. Trehalose 6‐phosphate phosphatases of
Pseudomonas aeruginosa. FASEB J 2018; 32:5470-5482. [DOI: 10.1096/fj.201800500r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Megan Cross
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
| | - Sonja Biberacher
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
- Department of BiologyFriedrich‐Alexander University, Erlangen‐NurembergErlangenGermany
| | - Suk‐Youl Park
- Pohang Accelerator Laboratory, Pohang University of Science and TechnologyPohang GyeongbukSouth Korea
| | - Siji Rajan
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
| | - Pasi Korhonen
- Department of Veterinary BiosciencesMelbourne Veterinary School, The University of MelbourneParkville VictoriaAustralia
| | - Robin B. Gasser
- Department of Veterinary BiosciencesMelbourne Veterinary School, The University of MelbourneParkville VictoriaAustralia
| | - Jeong‐Sun Kim
- Department of ChemistryChonnam National UniversityGwangjuSouth Korea
| | - Mark J. Coster
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith UniversityNathan QueenslandAustralia
- Department of Veterinary BiosciencesMelbourne Veterinary School, The University of MelbourneParkville VictoriaAustralia
- Queensland Tropical Health AllianceSmithfield QueenslandAustralia
| |
Collapse
|
182
|
Chaudhary A, Kumar V, Singh PK, Sharma P, Bairagya HR, Kaur P, Sharma S, Chauhan SS, Singh TP. A glycoprotein from mammary gland secreted during involution promotes apoptosis: Structural and biological studies. Arch Biochem Biophys 2018. [PMID: 29524427 DOI: 10.1016/j.abb.2018.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Secretory signalling glycoprotein (SPX-40) from mammary gland is highly expressed during involution. This protein is involved in a programmed cell death during tissue remodelling which occurs at the end of lactation. SPX-40 was isolated and purified from buffalo (SPB-40) from the samples obtained during involution. One solution of SPB-40 was made by dissolving it in buffer containing 25 mM Tris-HCl and 50 mM NaCl at pH 8.0. Another solution was made by adding 25% ethanol to the above solution. The biological effects of SPB-40 dissolved in above two solutions were evaluated on MCF-7 breast cancer cell lines. Free SPB-40 indicated significant pro-apoptotic effects while ethanol exposed SPB-40 showed considerably reduced effects on the apoptosis. SPB-40 was crystallized in the native state. The crystals of SPB-40 were soaked in four separate solutions containing 25% acetone, 25% ethanol, 25% butanol and 25% MPD. Four separate data sets were collected and their structures were determined at high resolutions. In all the four structures, the molecules of acetone, ethanol, butanol and MPD respectively were observed in the hydrophobic binding pocket of SPB-40. As a result of which, the conformation of Trp78 was altered thus blocking the binding site in SPB-40 leading to the loss of activity.
Collapse
Affiliation(s)
- Anshul Chaudhary
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vinod Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant K Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Hridoy R Bairagya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
183
|
Debnath S, Kosek D, Tagad HD, Durell SR, Appella DH, Acevedo R, Grishaev A, Dyda F, Appella E, Mazur SJ. A trapped human PPM1A-phosphopeptide complex reveals structural features critical for regulation of PPM protein phosphatase activity. J Biol Chem 2018; 293:7993-8008. [PMID: 29602904 DOI: 10.1074/jbc.ra117.001213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/29/2018] [Indexed: 01/09/2023] Open
Abstract
Metal-dependent protein phosphatases (PPM) are evolutionarily unrelated to other serine/threonine protein phosphatases and are characterized by their requirement for supplementation with millimolar concentrations of Mg2+ or Mn2+ ions for activity in vitro The crystal structure of human PPM1A (also known as PP2Cα), the first PPM structure determined, displays two tightly bound Mn2+ ions in the active site and a small subdomain, termed the Flap, located adjacent to the active site. Some recent crystal structures of bacterial or plant PPM phosphatases have disclosed two tightly bound metal ions and an additional third metal ion in the active site. Here, the crystal structure of the catalytic domain of human PPM1A, PPM1Acat, complexed with a cyclic phosphopeptide, c(MpSIpYVA), a cyclized variant of the activation loop of p38 MAPK (a physiological substrate of PPM1A), revealed three metal ions in the active site. The PPM1Acat D146E-c(MpSIpYVA) complex confirmed the presence of the anticipated third metal ion in the active site of metazoan PPM phosphatases. Biophysical and computational methods suggested that complex formation results in a slightly more compact solution conformation through reduced conformational flexibility of the Flap subdomain. We also observed that the position of the substrate in the active site allows solvent access to the labile third metal-binding site. Enzyme kinetics of PPM1Acat toward a phosphopeptide substrate supported a random-order, bi-substrate mechanism, with substantial interaction between the bound substrate and the labile metal ion. This work illuminates the structural and thermodynamic basis of an innate mechanism regulating the activity of PPM phosphatases.
Collapse
Affiliation(s)
- Subrata Debnath
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Dalibor Kosek
- Laboratories of Molecular Biology, Bethesda, Maryland 20892
| | - Harichandra D Tagad
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Daniel H Appella
- Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Roderico Acevedo
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850; National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Fred Dyda
- Laboratories of Molecular Biology, Bethesda, Maryland 20892
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, Center for Cancer Research, NCI, Bethesda, Maryland 20892.
| |
Collapse
|
184
|
The MerR-like protein BldC binds DNA direct repeats as cooperative multimers to regulate Streptomyces development. Nat Commun 2018; 9:1139. [PMID: 29556010 PMCID: PMC5859096 DOI: 10.1038/s41467-018-03576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/22/2018] [Indexed: 01/18/2023] Open
Abstract
Streptomycetes are notable for their complex life cycle and production of most clinically important antibiotics. A key factor that controls entry into development and the onset of antibiotic production is the 68-residue protein, BldC. BldC is a putative DNA-binding protein related to MerR regulators, but lacks coiled-coil dimerization and effector-binding domains characteristic of classical MerR proteins. Hence, the molecular function of the protein has been unclear. Here we show that BldC is indeed a DNA-binding protein and controls a regulon that includes other key developmental regulators. Intriguingly, BldC DNA-binding sites vary significantly in length. Our BldC-DNA structures explain this DNA-binding capability by revealing that BldC utilizes a DNA-binding mode distinct from MerR and other known regulators, involving asymmetric head-to-tail oligomerization on DNA direct repeats that results in dramatic DNA distortion. Notably, BldC-like proteins radiate throughout eubacteria, establishing BldC as the founding member of a new structural family of regulators. BldC regulates the onset of differentiation in Streptomycetes by a yet unknown molecular mechanism. Using a combination of structural, biochemical and in vivo approaches, the authors show that BldC controls the transcription of several developmental regulators and unravel its DNA binding mode.
Collapse
|
185
|
Chen L, He J, Sazzed S, Walker R. An Investigation of Atomic Structures Derived from X-ray Crystallography and Cryo-Electron Microscopy Using Distal Blocks of Side-Chains. Molecules 2018. [PMID: 29518032 PMCID: PMC5967250 DOI: 10.3390/molecules23030610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a structure determination method for large molecular complexes. As more and more atomic structures are determined using this technique, it is becoming possible to perform statistical characterization of side-chain conformations. Two data sets were involved to characterize block lengths for each of the 18 types of amino acids. One set contains 9131 structures resolved using X-ray crystallography from density maps with better than or equal to 1.5 Å resolutions, and the other contains 237 protein structures derived from cryo-EM density maps with 2–4 Å resolutions. The results show that the normalized probability density function of block lengths is similar between the X-ray data set and the cryo-EM data set for most of the residue types, but differences were observed for ARG, GLU, ILE, LYS, PHE, TRP, and TYR for which conformations with certain shorter block lengths are more likely to be observed in the cryo-EM set with 2–4 Å resolutions.
Collapse
Affiliation(s)
- Lin Chen
- Department of Mathematics and Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA.
| | - Jing He
- Department of Computer Science, Old Dominion University; Norfolk, VA 23529, USA.
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University; Norfolk, VA 23529, USA.
| | - Rayshawn Walker
- Department of Mathematics and Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA.
| |
Collapse
|
186
|
Park SY, Jeong MS, Park SA, Ha SC, Na BK, Jang SB. Structural basis of the cystein protease inhibitor Clonorchis sinensis Stefin-1. Biochem Biophys Res Commun 2018; 498:9-17. [DOI: 10.1016/j.bbrc.2018.02.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 02/03/2023]
|
187
|
Smart OS, Horský V, Gore S, Svobodová Vařeková R, Bendová V, Kleywegt GJ, Velankar S. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr D Struct Biol 2018; 74:228-236. [PMID: 29533230 PMCID: PMC5947763 DOI: 10.1107/s2059798318002541] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) play a crucial role in structure-guided drug discovery and design, and also provide atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. The quality with which small-molecule ligands have been modelled in Protein Data Bank (PDB) entries has been, and continues to be, a matter of concern for many investigators. Correctly interpreting whether electron density found in a binding site is compatible with the soaked or co-crystallized ligand or represents water or buffer molecules is often far from trivial. The Worldwide PDB validation report (VR) provides a mechanism to highlight any major issues concerning the quality of the data and the model at the time of deposition and annotation, so the depositors can fix issues, resulting in improved data quality. The ligand-validation methods used in the generation of the current VRs are described in detail, including an examination of the metrics to assess both geometry and electron-density fit. It is found that the LLDF score currently used to identify ligand electron-density fit outliers can give misleading results and that better ligand-validation metrics are required.
Collapse
Affiliation(s)
- Oliver S. Smart
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Vladimír Horský
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Swanand Gore
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Radka Svobodová Vařeková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Veronika Bendová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Institute of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Gerard J. Kleywegt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| |
Collapse
|
188
|
Search of multiple hot spots on the surface of peptidyl-tRNA hydrolase: structural, binding and antibacterial studies. Biochem J 2018; 475:547-560. [DOI: 10.1042/bcj20170666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/25/2017] [Accepted: 01/03/2018] [Indexed: 11/17/2022]
Abstract
Peptidyl-tRNA hydrolase (Pth) catalyzes the breakdown of peptidyl-tRNA into peptide and tRNA components. Pth from Acinetobacter baumannii (AbPth) was cloned, expressed, purified and crystallized in a native unbound (AbPth-N) state and in a bound state with the phosphate ion and cytosine arabinoside (cytarabine) (AbPth-C). Structures of AbPth-N and AbPth-C were determined at 1.36 and 1.10 Å resolutions, respectively. The structure of AbPth-N showed that the active site is filled with water molecules. In the structure of AbPth-C, a phosphate ion is present in the active site, while cytarabine is bound in a cleft which is located away from the catalytic site. The cytarabine-binding site is formed with residues: Gln19, Trp27, Glu30, Gln31, Lys152, Gln158 and Asp162. In the structure of AbPth-N, the side chains of two active-site residues, Asn70 and Asn116, were observed in two conformations. Upon binding of the phosphate ion in the active site, the side chains of both residues were ordered to single conformations. Since Trp27 is present at the cytarabine-binding site, the fluorescence studies were carried out which gave a dissociation constant (KD) of 3.3 ± 0.8 × 10−7 M for cytarabine. The binding studies using surface plasmon resonance gave a KD value of 3.7 ± 0.7 × 10−7 M. The bacterial inhibition studies using the agar diffusion method and the biofilm inhibition assay established the strong antimicrobial potential of cytarabine. It also indicated that cytarabine inhibited Gram-negative bacteria more profoundly when compared with Gram-positive bacteria in a dose-dependent manner. Cytarabine was also effective against the drug-resistant bacteria both alone as well as in combination with other antibiotics.
Collapse
|
189
|
Hellerschmied D, Roessler M, Lehner A, Gazda L, Stejskal K, Imre R, Mechtler K, Dammermann A, Clausen T. UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins. Nat Commun 2018; 9:484. [PMID: 29396393 PMCID: PMC5797217 DOI: 10.1038/s41467-018-02924-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Muscle development requires the coordinated activities of specific protein folding and degradation factors. UFD-2, a U-box ubiquitin ligase, has been reported to play a central role in this orchestra regulating the myosin chaperone UNC-45. Here, we apply an integrative in vitro and in vivo approach to delineate the substrate-targeting mechanism of UFD-2 and elucidate its distinct mechanistic features as an E3/E4 enzyme. Using Caenorhabditis elegans as model system, we demonstrate that UFD-2 is not regulating the protein levels of UNC-45 in muscle cells, but rather shows the characteristic properties of a bona fide E3 ligase involved in protein quality control. Our data demonstrate that UFD-2 preferentially targets unfolded protein segments. Moreover, the UNC-45 chaperone can serve as an adaptor protein of UFD-2 to poly-ubiquitinate unfolded myosin, pointing to a possible role of the UFD-2/UNC-45 pair in maintaining proteostasis in muscle cells.
Collapse
Affiliation(s)
- Doris Hellerschmied
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Max Roessler
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Anita Lehner
- Vienna Biocenter Core Facilities, Doktor-Bohr-Gasse 3, 1030, Vienna, Austria
| | - Linn Gazda
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Richard Imre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Alexander Dammermann
- Max F. Perutz Laboratories (MFPL), University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
190
|
Richardson JS, Williams CJ, Hintze BJ, Chen VB, Prisant MG, Videau LL, Richardson DC. Model validation: local diagnosis, correction and when to quit. Acta Crystallogr D Struct Biol 2018; 74:132-142. [PMID: 29533239 PMCID: PMC5947777 DOI: 10.1107/s2059798317009834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Traditionally, validation was considered to be a final gatekeeping function, but refinement is smoother and results are better if model validation actively guides corrections throughout structure solution. This shifts emphasis from global to local measures: primarily geometry, conformations and sterics. A fit into the wrong local minimum conformation usually produces outliers in multiple measures. Moving to the right local minimum should be prioritized, rather than small shifts across arbitrary borderlines. Steric criteria work best with all explicit H atoms. `Backrub' motions should be used for side chains and `P-perp' diagnostics to correct ribose puckers. A `water' may actually be an ion, a relic of misfitting or an unmodeled alternate. Beware of wishful thinking in modeling ligands. At high resolution, internally consistent alternate conformations should be modeled and geometry in poor density should not be downweighted. At low resolution, CaBLAM should be used to diagnose protein secondary structure and ERRASER to correct RNA backbone. All atoms should not be forced inside density, beware of sequence misalignment, and very rare conformations such as cis-non-Pro peptides should be avoided. Automation continues to improve, but the crystallographer still must look at each outlier, in the context of density, and correct most of them. For the valid few with unambiguous density and something that is holding them in place, a functional reason should be sought. The expectation is a few outliers, not zero.
Collapse
Affiliation(s)
| | | | | | - Vincent B. Chen
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
191
|
Shanmuganatham KK, Wallace RS, Ting-I Lee A, Plapp BV. Contribution of buried distal amino acid residues in horse liver alcohol dehydrogenase to structure and catalysis. Protein Sci 2018; 27:750-768. [PMID: 29271062 DOI: 10.1002/pro.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
The dynamics of enzyme catalysis range from the slow time scale (∼ms) for substrate binding and conformational changes to the fast time (∼ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X-ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild-type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.
Collapse
Affiliation(s)
- Karthik K Shanmuganatham
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Diagnostic Virology Laboratory, USDA, Ames, IA, 50010
| | - Rachel S Wallace
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Ann Ting-I Lee
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,No 92, Jing Mao 1st Rd., Taichung, Taiwan, 406, Republic of China
| | - Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109
| |
Collapse
|
192
|
Structure and function of urea amidolyase. Biosci Rep 2018; 38:BSR20171617. [PMID: 29263142 PMCID: PMC5770610 DOI: 10.1042/bsr20171617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022] Open
Abstract
Urea is the degradation product of a wide range of nitrogen containing bio-molecules. Urea amidolyase (UA) catalyzes the conversion of urea to ammonium, the essential first step in utilizing urea as a nitrogen source. It is widely distributed in fungi, bacteria and other microorganisms, and plays an important role in nitrogen recycling in the biosphere. UA is composed of urea carboxylase (UC) and allophanate hydrolase (AH) domains, which catalyze sequential reactions. In some organisms UC and AH are encoded by separated genes. We present here structure of the Kluyveromyces lactis UA (KlUA). The structure revealed that KlUA forms a compact homo-dimer with a molecular weight of 400 kDa. Structure inspired biochemical experiments revealed the mechanism of its reaction intermediate translocation, and that the KlUA holo-enzyme formation is essential for its optimal activity. Interestingly, previous studies and ours suggest that UC and AH encoded by separated genes probably do not form a KlUA-like complex, consequently they might not catalyze the urea to ammonium conversion as efficiently.
Collapse
|
193
|
Remus BS, Goldgur Y, Shuman S. Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase. Nucleic Acids Res 2018; 45:12945-12953. [PMID: 29165709 PMCID: PMC5728400 DOI: 10.1093/nar/gkx1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/04/2017] [Indexed: 01/10/2023] Open
Abstract
Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase domains that heal the broken ends to generate the 3′-OH,2′-PO4 and 5′-PO4 termini required for sealing by an N-terminal ligase domain. Trl1 enzymes are found in all human fungal pathogens and are promising targets for antifungal drug discovery because their domain compositions and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. A distinctive feature of Trl1 is its preferential use of GTP as phosphate donor for the RNA kinase reaction. Here we report the 2.2 Å crystal structure of the kinase domain of Trl1 from the fungal pathogen Candida albicans with GDP and Mg2+ in the active site. The P-loop phosphotransferase fold of the kinase is embellished by a unique ‘G-loop’ element that accounts for guanine nucleotide specificity. Mutations of amino acids that contact the guanine nucleobase efface kinase activity in vitro and Trl1 function in vivo. Our findings fortify the case for the Trl1 kinase as an antifungal target.
Collapse
Affiliation(s)
- Barbara S Remus
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
194
|
Valegård K, Hasse D, Andersson I, Gunn LH. Structure of Rubisco from Arabidopsis thaliana in complex with 2-carboxyarabinitol-1,5-bisphosphate. Acta Crystallogr D Struct Biol 2018; 74:1-9. [PMID: 29372894 PMCID: PMC5786004 DOI: 10.1107/s2059798317017132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Arabidopsis thaliana is reported at 1.5 Å resolution. In light of the importance of A. thaliana as a model organism for understanding higher plant biology, and the pivotal role of Rubisco in photosynthetic carbon assimilation, there has been a notable absence of an A. thaliana Rubisco crystal structure. A. thaliana Rubisco is an L8S8 hexadecamer comprising eight plastome-encoded catalytic large (L) subunits and eight nuclear-encoded small (S) subunits. A. thaliana produces four distinct small-subunit isoforms (RbcS1A, RbcS1B, RbcS2B and RbcS3B), and this crystal structure provides a snapshot of A. thaliana Rubisco containing the low-abundance RbcS3B small-subunit isoform. Crystals were obtained in the presence of the transition-state analogue 2-carboxy-D-arabinitol-1,5-bisphosphate. A. thaliana Rubisco shares the overall fold characteristic of higher plant Rubiscos, but exhibits an interesting disparity between sequence and structural relatedness to other Rubisco isoforms. These results provide the structural framework to understand A. thaliana Rubisco and the potential catalytic differences that could be conferred by alternative A. thaliana Rubisco small-subunit isoforms.
Collapse
Affiliation(s)
- Karin Valegård
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Laura H. Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
195
|
Salinas G, Gao W, Wang Y, Bonilla M, Yu L, Novikov A, Virginio VG, Ferreira HB, Vieites M, Gladyshev VN, Gambino D, Dai S. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I). Antioxid Redox Signal 2017; 27:1491-1504. [PMID: 28463568 PMCID: PMC5678357 DOI: 10.1089/ars.2016.6816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/04/2023]
Abstract
AIMS New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. RESULTS AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. INNOVATION The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. CONCLUSIONS The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.
Collapse
Affiliation(s)
- Gustavo Salinas
- Worm Biology Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Wei Gao
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
- School of Science, Beijing Forestry University, Beijing, China
| | - Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Mariana Bonilla
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
- Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay
| | - Long Yu
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Andrey Novikov
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Veridiana G. Virginio
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique B. Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marisol Vieites
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Vadim N. Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
196
|
Yang H, Jiang X, Li B, Yang HJ, Miller M, Yang A, Dhar A, Pavletich NP. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 2017; 552:368-373. [PMID: 29236692 PMCID: PMC5750076 DOI: 10.1038/nature25023] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB-mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR-TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12-rapamycin-binding (FRB) domain-substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR-PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.
Collapse
Affiliation(s)
- Haijuan Yang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Xiaolu Jiang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Buren Li
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hyo J Yang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Meredith Miller
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Angela Yang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ankita Dhar
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nikola P Pavletich
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
197
|
Batson S, de Chiara C, Majce V, Lloyd AJ, Gobec S, Rea D, Fülöp V, Thoroughgood CW, Simmons KJ, Dowson CG, Fishwick CWG, de Carvalho LPS, Roper DI. Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun 2017; 8:1939. [PMID: 29208891 PMCID: PMC5717164 DOI: 10.1038/s41467-017-02118-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/08/2017] [Indexed: 11/11/2022] Open
Abstract
D-cycloserine is an antibiotic which targets sequential bacterial cell wall peptidoglycan biosynthesis enzymes: alanine racemase and D-alanine:D-alanine ligase. By a combination of structural, chemical and mechanistic studies here we show that the inhibition of D-alanine:D-alanine ligase by the antibiotic D-cycloserine proceeds via a distinct phosphorylated form of the drug. This mechanistic insight reveals a bimodal mechanism of action for a single antibiotic on different enzyme targets and has significance for the design of future inhibitor molecules based on this chemical structure. The antibiotic D-cycloserine (DCS) targets the peptidoglycan biosynthesis enzyme D-Ala-D-Ala ligase (Ddl). Here the authors reveal the DCS inhibitory mechanism by determining the structure of E. coli DdlB with a phosphorylated DCS molecule in the active site that formed in crystallo and mimics the D-alanyl phosphate intermediate.
Collapse
Affiliation(s)
- Sarah Batson
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Cesira de Chiara
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Vita Majce
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Adrian J Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Dean Rea
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
198
|
De Simone G, Langella E, Esposito D, Supuran CT, Monti SM, Winum JY, Alterio V. Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations. J Enzyme Inhib Med Chem 2017; 32:1002-1011. [PMID: 28738704 PMCID: PMC6445192 DOI: 10.1080/14756366.2017.1349764] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.
Collapse
Affiliation(s)
- Giuseppina De Simone
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Emma Langella
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Davide Esposito
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Vincenzo Alterio
- Istituto di Biostrutture e Bioimagini, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
199
|
Gore S, Sanz García E, Hendrickx PMS, Gutmanas A, Westbrook JD, Yang H, Feng Z, Baskaran K, Berrisford JM, Hudson BP, Ikegawa Y, Kobayashi N, Lawson CL, Mading S, Mak L, Mukhopadhyay A, Oldfield TJ, Patwardhan A, Peisach E, Sahni G, Sekharan MR, Sen S, Shao C, Smart OS, Ulrich EL, Yamashita R, Quesada M, Young JY, Nakamura H, Markley JL, Berman HM, Burley SK, Velankar S, Kleywegt GJ. Validation of Structures in the Protein Data Bank. Structure 2017; 25:1916-1927. [PMID: 29174494 PMCID: PMC5718880 DOI: 10.1016/j.str.2017.10.009] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 11/01/2022]
Abstract
The Worldwide PDB recently launched a deposition, biocuration, and validation tool: OneDep. At various stages of OneDep data processing, validation reports for three-dimensional structures of biological macromolecules are produced. These reports are based on recommendations of expert task forces representing crystallography, nuclear magnetic resonance, and cryoelectron microscopy communities. The reports provide useful metrics with which depositors can evaluate the quality of the experimental data, the structural model, and the fit between them. The validation module is also available as a stand-alone web server and as a programmatically accessible web service. A growing number of journals require the official wwPDB validation reports (produced at biocuration) to accompany manuscripts describing macromolecular structures. Upon public release of the structure, the validation report becomes part of the public PDB archive. Geometric quality scores for proteins in the PDB archive have improved over the past decade.
Collapse
Affiliation(s)
- Swanand Gore
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eduardo Sanz García
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pieter M S Hendrickx
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Aleksandras Gutmanas
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - John D Westbrook
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Huanwang Yang
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zukang Feng
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kumaran Baskaran
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John M Berrisford
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Brian P Hudson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yasuyo Ikegawa
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Naohiro Kobayashi
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Catherine L Lawson
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Steve Mading
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lora Mak
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Abhik Mukhopadhyay
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Thomas J Oldfield
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ardan Patwardhan
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ezra Peisach
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gaurav Sahni
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Monica R Sekharan
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sanchayita Sen
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Chenghua Shao
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Oliver S Smart
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Eldon L Ulrich
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Reiko Yamashita
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Martha Quesada
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Y Young
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Haruki Nakamura
- PDBj, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - John L Markley
- BMRB, BioMagResBank, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Helen M Berman
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Gerard J Kleywegt
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
200
|
Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat Commun 2017; 8:1336. [PMID: 29109439 PMCID: PMC5673888 DOI: 10.1038/s41467-017-01399-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/13/2017] [Indexed: 01/17/2023] Open
Abstract
The MacA-MacB-TolC tripartite complex is a transmembrane machine that spans both plasma membrane and outer membrane and actively extrudes substrates, including macrolide antibiotics, virulence factors, peptides and cell envelope precursors. These transport activities are driven by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. Here, we present the crystal structure of MacB at 3.4-Å resolution. MacB forms a dimer in which each protomer contains a nucleotide-binding domain and four transmembrane helices that protrude in the periplasm into a binding domain for interaction with the membrane fusion protein MacA. MacB represents an ABC transporter in pathogenic microorganisms with unique structural features.
Collapse
|