151
|
Liu H, Cai Z, Wang F, Hong L, Deng L, Zhong J, Wang Z, Cui W. Colon-Targeted Adhesive Hydrogel Microsphere for Regulation of Gut Immunity and Flora. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101619. [PMID: 34292669 PMCID: PMC8456273 DOI: 10.1002/advs.202101619] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Indexed: 05/03/2023]
Abstract
Intestinal immune homeostasis and microbiome structure play a critical role in the pathogenesis and progress of inflammatory bowel disease (IBD), whereas IBD treatment remains a challenge as the first-line drugs show limited therapeutic efficiency and great side effect. In this study, a colon-targeted adhesive core-shell hydrogel microsphere is designed and fabricated by the ingenious combination of advanced gas-shearing technology and ionic diffusion method, which can congregate on colon tissue regulating the gut immune-microbiota microenvironment in IBD treatment. The degradation experiment indicates the anti-acid and colon-targeted property of the alginate hydrogel shell, and the in vivo imaging shows the mucoadhesive ability of the thiolated-hyaluronic acid hydrogel core of the microsphere, which reduces the systematic exposure and prolongs the local drug dwell time. In addition, both in vitro and in vivo study demonstrate that the microsphere significantly reduces the secretion of pro-inflammatory cytokines, induces specific type 2 macrophage differentiation, and remarkably alleviates colitis in the mice model. Moreover, 16S ribosomal RNA sequencing reveals an optimized gut flora composition, probiotics including Bifidobacterium and Lactobacillus significantly augment, while the detrimental communities are inhibited, which benefits the intestinal homeostasis. This finding provides an ideal clinical candidate for IBD treatment.
Collapse
Affiliation(s)
- Hua Liu
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Fei Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liwen Hong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jie Zhong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengting Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
152
|
Pinheiro-Rosa N, Torres L, Oliveira MDA, Andrade-Oliveira MF, Guimarães MADF, Coelho MM, Alves JDL, Maioli TU, Faria AMC. Oral tolerance as antigen-specific immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab017. [PMID: 35919733 PMCID: PMC9327124 DOI: 10.1093/immadv/ltab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Summary
Oral tolerance is a physiological phenomenon described more than a century ago as a suppressive immune response to antigens that gain access to the body by the oral route. It is a robust and long-lasting event with local and systemic effects in which the generation of mucosally induced regulatory T cells (iTreg) plays an essential role. The idea of using oral tolerance to inhibit autoimmune and allergic diseases by oral administration of target antigens was an important development that was successfully tested in 1980s. Since then, several studies have shown that feeding specific antigens can be used to prevent and control chronic inflammatory diseases in both animal models and clinically. Therefore, oral tolerance can be classified as an antigen-specific form of oral immunotherapy (OIT). In the light of novel findings on mechanisms, sites of induction and factors affecting oral tolerance, this review will focus on specific characteristics of oral tolerance induction and how they impact in its therapeutic application.
Collapse
Affiliation(s)
- Natália Pinheiro-Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana de Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Felipe Andrade-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Macedo Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana de Lima Alves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana M Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
153
|
Mannino G, Russo C, Maugeri G, Musumeci G, Vicario N, Tibullo D, Giuffrida R, Parenti R, Lo Furno D. Adult stem cell niches for tissue homeostasis. J Cell Physiol 2021; 237:239-257. [PMID: 34435361 PMCID: PMC9291197 DOI: 10.1002/jcp.30562] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell‐intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell‐based strategies for clinical therapeutic applications, especially when other approaches fail.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
154
|
Bene K, Halasz L, Nagy L. Transcriptional repression shapes the identity and function of tissue macrophages. FEBS Open Bio 2021; 11:3218-3229. [PMID: 34358410 PMCID: PMC8634859 DOI: 10.1002/2211-5463.13269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
The changing extra‐ and intracellular microenvironment calls for rapid cell fate decisions that are precisely and primarily regulated at the transcriptional level. The cellular components of the immune system are excellent examples of how cells respond and adapt to different environmental stimuli. Innate immune cells such as macrophages are able to modulate their transcriptional programs and epigenetic regulatory networks through activation and repression of particular genes, allowing them to quickly respond to a rapidly changing environment. Tissue macrophages are essential components of different immune‐ and nonimmune cell‐mediated physiological mechanisms in mammals and are widely used models for investigating transcriptional regulatory mechanisms. Therefore, it is critical to unravel the distinct sets of transcription activators, repressors, and coregulators that play roles in determining tissue macrophage identity and functions during homeostasis, as well as in diseases affecting large human populations, such as metabolic syndromes, immune‐deficiencies, and tumor development. In this review, we will focus on transcriptional repressors that play roles in tissue macrophage development and function under physiological conditions.
Collapse
Affiliation(s)
- Krisztian Bene
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
155
|
Wang H, Tian T, Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int J Mol Sci 2021; 22:ijms22168470. [PMID: 34445193 PMCID: PMC8395168 DOI: 10.3390/ijms22168470] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor in the digestive system whose incidence and mortality is high-ranking among tumors worldwide. The initiation and progression of CRC is a complex process involving genetic alterations in cancer cells and multiple factors from the surrounding tumor cell microenvironment. As accumulating evidence has shown, tumor-associated macrophages (TAMs)—as abundant and active infiltrated inflammatory cells in the tumor microenvironment (TME)—play a crucial role in CRC. This review focuses on the different mechanisms of TAM in CRC, including switching of phenotypical subtypes; promoting tumor proliferation, invasion, and migration; facilitating angiogenesis; mediating immunosuppression; regulating metabolism; and interacting with the microbiota. Although controversy remains in clinical evidence regarding the role of TAMs in CRC, clarifying their significance in therapy and the prognosis of CRC may shed new light on the optimization of TAM-centered approaches in clinical care.
Collapse
Affiliation(s)
- Hui Wang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
| | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (T.T.); (J.Z.)
| | - Jinhua Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
- Correspondence: (T.T.); (J.Z.)
| |
Collapse
|
156
|
Cao Q, Lin Y, Yue C, Wang Y, Quan F, Cui X, Bi R, Tang X, Yang Y, Wang C, Li X, Gao X. IL-6 deficiency promotes colitis by recruiting Ly6C hi monocytes into inflamed colon tissues in a CCL2-CCR2-dependent manner. Eur J Pharmacol 2021; 904:174165. [PMID: 33979652 DOI: 10.1016/j.ejphar.2021.174165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine that is elevated in inflammatory bowel disease. However, the role of IL-6 deficiency in colitis is not well-defined. Some IL-6 and IL-6 receptor antagonists are associated with severe gastrointestinal immune adverse effects, but the mechanisms of the effects are not clear. This study aimed to investigate the effect of IL-6 in ulcerative colitis in Il6-/- mice. Results indicated that physiological deficiency of IL-6 promoted the development of colitis. Moreover, IL-6 deficiency significantly increased the mRNA levels of monocytes chemokine Ccl2 and its receptor Ccr2 in colon tissues. Similarly, the percentage of Ly6Chigh monocytes and neutrophils were increased in the colon of Il6-/- mice. Intestinal crypts more strongly increased the migration of Il6-/- macrophages than wild-type ones. Moreover, Il6-/- macrophages promoted the migration of neutrophils. Most importantly, RS102895, an antagonist of CCR2, diminished chemotaxis of macrophages and inhibited colitis in Il6-/- mice. Collectively, these results indicate that Il6-/- macrophages migrate to inflamed colon tissues and recruit neutrophils, thereby promoting the effect of Il6-/- on colitis. This study expands our understanding on the effect of IL-6 deficiency in colitis and the development of gastrointestinal immune adverse effects.
Collapse
Affiliation(s)
- Qiuhua Cao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yanting Lin
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Chongxiu Yue
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yue Wang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Fei Quan
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Xinmeng Cui
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Ran Bi
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China; School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Xianjing Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Xinghua Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
157
|
Sivaraman K, Shanthi C. Role of fish collagen hydrolysate in attenuating inflammation-An in vitro study. J Food Biochem 2021; 45:e13876. [PMID: 34309035 DOI: 10.1111/jfbc.13876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Collagen hydrolysate, an extensively used protein obtained from different sources, has various beneficial effects on human health and diseases. The benefits of collagen hydrolysate are well known and presently varied sources for the preparation of hydrolysate are being investigated. Food as a therapy to combat inflammation is presently a much-focused field of research. The present study aims at screening the anti-inflammatory property of collagen hydrolysate from the skin of Cypselurus melanurus, Catla catla, Indian mackerel, Clarias batrachus (Cb), and Pangasius pangasius (Pp) in activated RAW 264.7 macrophage cells. The fractions, Cb (C2) and Pp (P2) with anti-inflammatory property obtained after two-step chromatographic purification contained peptides in the range of 1-3 kDa molecular weight. The active fractions C2 and P2 showed a reduction in gene expression of TNF-α to 1.6- and 1-fold difference, whereas IL6 expression to 30- and 40-fold difference, respectively, in comparison to LPS treatment. The suppression of inflammatory proteins (TNF-α, IL6, NFκB, and p-IκB) by fractions C2 and P2 confirmed the anti-inflammatory activity. PRACTICAL APPLICATIONS: Collagen hydrolysate and its derived low molecular weight peptides are of great interest in the field of nutraceuticals and biomedical applications. The purified peptide fraction of fish skin hydrolysate displayed a promising anti-inflammatory property. The collagen hydrolysate of Cb and Pp can be a functional food or its purified fraction used as a nutraceutical supplementation due to their anti-inflammatory property in the cellular microenvironment.
Collapse
Affiliation(s)
- K Sivaraman
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - C Shanthi
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
158
|
Cai X, Zhang ZY, Yuan JT, Ocansey DKW, Tu Q, Zhang X, Qian H, Xu WR, Qiu W, Mao F. hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis. Stem Cell Res Ther 2021; 12:416. [PMID: 34294138 PMCID: PMC8296541 DOI: 10.1186/s13287-021-02492-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes are recognized as novel cell-free therapeutic agents for inflammatory bowel disease (IBD), a condition caused by dysregulated intestinal mucosal immunity. In this event, macrophage pyroptosis, a process of cell death following the activation of NLRP3 (NOD-like receptor family, pyrin domain-containing 3) inflammasomes, is believed to partially account for inflammatory reactions. However, the role of macrophage pyroptosis in the process of hucMSC-derived exosomes alleviating colitis remains unknown. This study aimed at exploring the therapeutic effect and mechanism of hucMSC-derived exosomes on colitis repair. Methods In vivo, we used BALB/c mice to establish a dextran sulfate sodium (DSS)-induced colitis model and administrated hucMSC-derived exosomes intravenously to estimate its curative effect. Human myeloid leukemia mononuclear (THP-1) cells and mouse peritoneal macrophages (MPMs) were stimulated with lipopolysaccharides (LPS) and Nigericin to activate NLRP3 inflammasomes, which simulated an inflammation environment in vitro. A microRNA mimic was used to verify the role of miR-378a-5p/NLRP3 axis in the colitis repair. Results hucMSC-derived exosomes inhibited the activation of NLRP3 inflammasomes in the mouse colon. The secretion of interleukin (IL)-18, IL-1β, and Caspase-1 cleavage was suppressed, resulting in reduced cell pyroptosis. The same outcome was observed in the in vitro cell experiments, where the co-culture of THP-1 cells and MPMs with hucMSC-derived exosomes caused decreased expression of NLRP3 inflammasomes and increased cell survival. Furthermore, miR-378a-5p was highly expressed in hucMSC-derived exosomes and played a vital function in colitis repair. Conclusion hucMSC-derived exosomes carrying miR-378a-5p inhibited NLRP3 inflammasomes and abrogated cell pyroptosis to protect against DSS-induced colitis.
Collapse
Affiliation(s)
- Xiu Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Zhi-Yu Zhang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, 212300, People's Republic of China
| | - Jin-Tao Yuan
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, 212300, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Qiang Tu
- Nanjing Jiangning Hospital, Nanjing, Jiangsu, 211100, People's Republic of China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wen-Rong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wei Qiu
- Nanjing Jiangning Hospital, Nanjing, Jiangsu, 211100, People's Republic of China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
159
|
Wang J, Lu S, Yang F, Guo Y, Chen Z, Yu N, Yao L, Huang J, Fan W, Xu Z, Gong Y. The role of macrophage polarization and associated mechanisms in regulating the anti-inflammatory action of acupuncture: a literature review and perspectives. Chin Med 2021; 16:56. [PMID: 34281592 PMCID: PMC8287695 DOI: 10.1186/s13020-021-00466-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Acupuncture is used in the treatment of a variety of inflammatory conditions and diseases. However, the mechanisms of its anti-inflammatory action are complex and have not been systematically investigated. Macrophages are key components of the innate immune system, thus, balancing the M1/M2 macrophage ratio and modulating cytokine levels in the inflammatory environment may be desirable therapeutic goals. Evidence has shown that acupuncture has anti-inflammatory actions that affect multiple body systems, including the immune, locomotory, endocrine, nervous, digestive, and respiratory systems, by downregulating pro-inflammatory M1 and upregulating anti-inflammatory M2 macrophages, as well as by modulating associated cytokine secretion. Macrophage polarization is controlled by the interlocking pathways of extrinsic factors, the local tissue microenvironment, and the neural-endocrine-immune systems. It has been suggested that polarization of T lymphocytes and cytokine secretions resulting in modulation of the autonomic nervous system and the hypothalamic–pituitary–adrenal axis, may be upstream mechanisms of acupuncture-induced macrophage polarization. We further propose that macrophage polarization could be the principal pathway involved in acupuncture immune regulation and provide the scientific basis for the clinical application of acupuncture in inflammatory conditions.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Shanshan Lu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fuming Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Nannan Yu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Lin Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Jin Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Wen Fan
- Suzuka University of Medical Science, Suzuka, 5100293, Japan
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China. .,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China. .,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China. .,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
160
|
Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection - from 'nose to gut' and back. FEMS Microbiol Rev 2021; 46:6321165. [PMID: 34259843 PMCID: PMC8767451 DOI: 10.1093/femsre/fuab041] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections worldwide. The challenge in treating S. aureus infection is linked to the development of multidrug-resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body and the subsequent immune responses.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
161
|
Calleja-Conde J, Echeverry-Alzate V, Bühler KM, Durán-González P, Morales-García JÁ, Segovia-Rodríguez L, Rodríguez de Fonseca F, Giné E, López-Moreno JA. The Immune System through the Lens of Alcohol Intake and Gut Microbiota. Int J Mol Sci 2021; 22:ijms22147485. [PMID: 34299105 PMCID: PMC8303153 DOI: 10.3390/ijms22147485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.
Collapse
Affiliation(s)
- Javier Calleja-Conde
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Victor Echeverry-Alzate
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
- Universidad Nebrija, Campus Madrid-Princesa, 28015 Madrid, Spain
| | - Kora-Mareen Bühler
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Pedro Durán-González
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Jose Ángel Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lucía Segovia-Rodríguez
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, 29010 Málaga, Spain;
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Jose Antonio López-Moreno
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain; (J.C.-C.); (V.E.-A.); (K.-M.B.); (P.D.-G.); (L.S.-R.)
- Correspondence:
| |
Collapse
|
162
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 881] [Impact Index Per Article: 293.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
163
|
Castleman MJ, Dillon SM, Thompson TA, Santiago ML, McCarter MD, Barker E, Wilson CC. Gut Bacteria Induce Granzyme B Expression in Human Colonic ILC3s In Vitro in an IL-15-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 206:3043-3052. [PMID: 34117105 DOI: 10.4049/jimmunol.2000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/β/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.
Collapse
Affiliation(s)
- Moriah J Castleman
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephanie M Dillon
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tezha A Thompson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mario L Santiago
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Cara C Wilson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| |
Collapse
|
164
|
Zwicker C, Bujko A, Scott CL. Hepatic Macrophage Responses in Inflammation, a Function of Plasticity, Heterogeneity or Both? Front Immunol 2021; 12:690813. [PMID: 34177948 PMCID: PMC8220199 DOI: 10.3389/fimmu.2021.690813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing availability and accessibility of single cell technologies, much attention has been given to delineating the specific populations of cells present in any given tissue. In recent years, hepatic macrophage heterogeneity has also begun to be examined using these strategies. While previously any macrophage in the liver was considered to be a Kupffer cell (KC), several studies have recently revealed the presence of distinct subsets of hepatic macrophages, including those distinct from KCs both under homeostatic and non-homeostatic conditions. This heterogeneity has brought the concept of macrophage plasticity into question. Are KCs really as plastic as once thought, being capable of responding efficiently and specifically to any given stimuli? Or are the differential responses observed from hepatic macrophages in distinct settings due to the presence of multiple subsets of these cells? With these questions in mind, here we examine what is currently understood regarding hepatic macrophage heterogeneity in mouse and human and examine the role of heterogeneity vs plasticity in regards to hepatic macrophage responses in settings of both pathogen-induced and sterile inflammation.
Collapse
Affiliation(s)
- Christian Zwicker
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anna Bujko
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
165
|
Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2021; 11:5040-5064. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavanol intake positively influences several cardiometabolic risk factors in humans. However, the specific molecular mechanisms of action of flavanols, in terms of gene regulation, in the cell types relevant to cardiometabolic disease have never been systematically addressed. On this basis, we conducted a systematic literature review and a comprehensive bioinformatic analysis of genes whose expression is affected by flavanols in cells defining cardiometabolic health: hepatocytes, adipocytes, endothelial cells, smooth muscle cells and immune cells. A systematic literature search was performed using the following pre-defined criteria: treatment with pure compounds and metabolites (no extracts) at low concentrations that are close to their plasma concentrations. Differentially expressed genes were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular pathways and interactions, as well as transcriptional and post-transcriptional regulators. The systematic literature search identified 54 differentially expressed genes at the mRNA level in in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. Global bioinformatic analysis revealed that these genes are predominantly involved in inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We observed that, although the investigated cells responded differentially to flavanol exposure, the involvement of anti-inflammatory responses is a common mechanism of flavanol action. We also identified potential transcriptional regulators of gene expression: transcriptional factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this systematic analysis of the nutrigenomic effects of flavanols provide a more comprehensive picture of their molecular mechanisms of action and will support the future setup of genetic studies to pave the way for individualized dietary recommendations.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Ireland
| | - Andreia Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia and Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Christine Morand
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Claudia Nunes Dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal and CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France. and Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
166
|
The CD200 Regulates Inflammation in Mice Independently of TNF-α Production. Int J Mol Sci 2021; 22:ijms22105358. [PMID: 34069671 PMCID: PMC8161250 DOI: 10.3390/ijms22105358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200-/- mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200-/- mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression.
Collapse
|
167
|
Gut Microbiota, in the Halfway between Nutrition and Lung Function. Nutrients 2021; 13:nu13051716. [PMID: 34069415 PMCID: PMC8159117 DOI: 10.3390/nu13051716] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota is often mentioned as a “forgotten organ” or “metabolic organ”, given its profound impact on host physiology, metabolism, immune function and nutrition. A healthy diet is undoubtedly a major contributor for promoting a “good” microbial community that turns out to be crucial for a fine-tuned symbiotic relationship with the host. Both microbial-derived components and produced metabolites elicit the activation of downstream cascades capable to modulate both local and systemic immune responses. A balance between host and gut microbiota is crucial to keep a healthy intestinal barrier and an optimal immune homeostasis, thus contributing to prevent disease occurrence. How dietary habits can impact gut microbiota and, ultimately, host immunity in health and disease has been the subject of intense study, especially with regard to metabolic diseases. Only recently, these links have started to be explored in relation to lung diseases. The objective of this review is to address the current knowledge on how diet affects gut microbiota and how it acts on lung function. As the immune system seems to be the key player in the cross-talk between diet, gut microbiota and the lungs, involved immune interactions are discussed. There are key nutrients that, when present in our diet, help in gut homeostasis and lead to a healthier lifestyle, even ameliorating chronic diseases. Thus, with this review we hope to incite the scientific community interest to use diet as a valuable non-pharmacological addition to lung diseases management. First, we talk about the intestinal microbiota and interactions through the intestinal barrier for a better understanding of the following sections, which are the main focus of this article: the way diet impacts the intestinal microbiota and the immune interactions of the gut–lung axis that can explain the impact of diet, a key modifiable factor influencing the gut microbiota in several lung diseases.
Collapse
|
168
|
Fernández-Tomé S, Indiano-Romacho P, Mora-Gutiérrez I, Pérez-Rodríguez L, Ortega Moreno L, Marin AC, Baldán-Martín M, Moreno-Monteagudo JA, Santander C, Chaparro M, Hernández-Ledesma B, Gisbert JP, Bernardo D. Lunasin Peptide is a Modulator of the Immune Response in the Human Gastrointestinal Tract. Mol Nutr Food Res 2021; 65:e2001034. [PMID: 33890400 DOI: 10.1002/mnfr.202001034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Lunasin is a soybean bioactive peptide with a variety of beneficial properties against chronic disorders. However, its effect in human primary intestinal cells remains unknown. Hence, this study aims to characterize its ex vivo biological activity in the human intestinal mucosa. METHODS AND RESULTS Human intestinal biopsies, obtained from healthy controls, are ex vivo conditioned with lunasin both in the presence/absence of lipopolysaccharide (LPS). Peptide maintains its stability during biopsy culture by HPLC-MS/MS analysis. Lunasin is bioactive in the human mucosa, as it induces IL-1β, TNF-α, IL-17A, CCL2, and PGE2/COX-2 gene expression together with an increased expression of tolerogenic IL-10 and TGFβ, while it also downregulates the expression of iNOS and subunit p65 from NF-κB. Indeed, lunasin also abrogates the LPS-induced pro-inflammatory response, downregulating IL-17A, IFNγ, and IL-8 expression, and inducing IL-10 and TGFβ expression. These results are also mirrored in the cell-free culture supernatants at the protein level by Multiplex. Moreover, lunasin further induces a regulatory phenotype and function on human intestinal conventional dendritic cell and macrophage subsets as assessed by flow cytometry. CONCLUSIONS We hereby have characterized lunasin as an immunomodulatory peptide with potential capacity to prevent immune and inflammatory-mediated disorders in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Pedro Indiano-Romacho
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Irene Mora-Gutiérrez
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Leticia Pérez-Rodríguez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Lorena Ortega Moreno
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia C Marin
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Montserrat Baldán-Martín
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - José Andrés Moreno-Monteagudo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Cecilio Santander
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Chaparro
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Bernardo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
169
|
Long SR, Liu RD, Kumar DV, Wang ZQ, Su CW. Immune Protection of a Helminth Protein in the DSS-Induced Colitis Model in Mice. Front Immunol 2021; 12:664998. [PMID: 33995396 PMCID: PMC8117093 DOI: 10.3389/fimmu.2021.664998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) increases the risk of colorectal cancer, and it has the potential to diminish the quality of life. Recent clinical and experimental evidence demonstrate protective aspects of parasitic helminth infection against IBD. Reports have highlighted the potential use of helminths and their byproducts as potential treatment for IBD. In the current study, we studied the effect of a newborn larvae-specific serine protease from Trichinella spiralis (TsSp) on the host immune and inflammatory responses. A 49-kDa recombinant TsSp (rTsSp) was expressed in Escherichia coli BL21 (DE3) and purified. The cytotoxicity of rTsSp was analyzed. The immune protective effect of rTsSp was studied by using dextran sodium sulfate (DSS)-induced mouse colitis model. The result illustrated that rTsSp has no toxic effects on cells. We further demonstrated that administration of the rTsSp without the additional adjuvant before the induction of DSS-induced colitis reduced the severity of intestinal inflammation and the disease index; it suppressed macrophage infiltration, reduced TNF-α secretion, and induced IL-10 expression. Our findings suggest therapeutic potential of rTsSp on colitis by altering the effect of macrophages. Data also suggest immunotherapy with rTsSp holds promise for use as an additional strategy to positively modulate inflammatory processes involved in IBD.
Collapse
Affiliation(s)
- Shao Rong Long
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China.,Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ruo Dan Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Deepak Vijaya Kumar
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
170
|
Xu X, Ye T, Wang Y, Pan L, Ye Y, Ding Z, Bao D. MicroRNA-139-5p inhibits inflammatory and oxidative stress responses of Salmonella-infected macrophages through modulating TRAF6. Pathog Dis 2021; 79:6209124. [PMID: 33822016 DOI: 10.1093/femspd/ftab018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
Evidence indicates that macrophages play an important role in the immune system. Therefore, research involving inflammatory and oxidative stress responses in macrophages is of great significance. Many factors contribute to inflammation and oxidative stress, including Salmonella. We investigated the effect of the miR-139-5p/TRAF6 axis on the inflammatory and oxidative stress responses of Salmonella -infected macrophages. Our findings revealed that miR-139-5p decreased IL-1β and TNF-α levels to inhibit Salmonella-induced inflammatory responses in the RAW264.7 macrophage cell line. Furthermore, miR-139-5p inhibited Salmonella-induced oxidative stress by strengthening SOD, CAT and GSH-PX activity, as well as lowering the malondialdehyde level in the RAW264.7 macrophages cell line. Subsequently, it was verified that TRAF6 was a downstream target of miR-139-5p in RAW264.7 cells. Rescue assays indicated that the over-expression of miR-139-5p inhibits the effects of TRAF6 on inflammatory and oxidative stress responses including Salmonella infection in RAW264.7 cells. To our knowledge, this study is the first to verify that miR-139-5p inhibits inflammatory and oxidative stress responses of Salmonella-infected macrophages through regulating TRAF6. This discovery may offer new insights on inflammatory and oxidative stress responses in macrophages.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Laboratory Medicine, Sanmen People's Hospital, 15 Taihe road, Binhai new town, Sanmen county, Taizhou, Zhejiang 317100, China
| | - Tingyun Ye
- Department of Laboratory Medicine, Sanmen People's Hospital, 15 Taihe road, Binhai new town, Sanmen county, Taizhou, Zhejiang 317100, China
| | - Yizhang Wang
- Department of Laboratory Medicine, Sanmen People's Hospital, 15 Taihe road, Binhai new town, Sanmen county, Taizhou, Zhejiang 317100, China
| | - Lianlian Pan
- Department of Laboratory Medicine, Sanmen Hospital of Traditional Chinese Medicine, 287 Xinxing Street, Haiyou Town, Sanmen County, Taizhou, Zhejiang 317100, China
| | - Yali Ye
- Department of Laboratory Medicine, Sanmen People's Hospital, 15 Taihe road, Binhai new town, Sanmen county, Taizhou, Zhejiang 317100, China
| | - Zhengxiang Ding
- Department of Laboratory Medicine, Sanmen People's Hospital, 15 Taihe road, Binhai new town, Sanmen county, Taizhou, Zhejiang 317100, China
| | - Danni Bao
- Department of Laboratory Medicine, Sanmen People's Hospital, 15 Taihe road, Binhai new town, Sanmen county, Taizhou, Zhejiang 317100, China
| |
Collapse
|
171
|
Dezfuli BS, Maestri C, Lorenzoni M, Carosi A, Maynard BJ, Bosi G. The impact of Anguillicoloides crassus (Nematoda) on European eel swimbladder: histopathology and relationship between neuroendocrine and immune cells. Parasitology 2021; 148:612-622. [PMID: 33557973 PMCID: PMC10950382 DOI: 10.1017/s0031182021000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The swimbladder functions as a hydrostatic organ in most bony fishes, including the European eel, Anguilla anguilla. Infection by the nematode Anguillicoloides crassus impairs swimbladder function, significantly compromising the success of the eel spawning migration. Swimbladders from 32 yellow eels taken from Lake Trasimeno (Central Italy) were analysed by histopathology- and electron microscopy-based techniques. Sixteen eels (50%) harboured A. crassus in their swimbladders and intensity of infection ranged from 2 to 17 adult nematodes per organ (6.9 ± 1.6, mean ± s.e.). Gross observations of heavily infected swimbladders showed opacity and histological analysis found a papillose aspect to the mucosa and hyperplasia of the lamina propria, muscularis mucosae and submucosa. Inflammation, haemorrhages, dilation of blood vessels and epithelial erosion were common in infected swimbladders. In the epithelium of parasitized swimbladders, many empty spaces and lack of apical junctional complexes were frequent among the gas gland cells. In heavily infected swimbladders, we observed hyperplasia, cellular swelling and abundant vacuolization in the apical portion of the gas gland cells. Numerous mast cells and several macrophage aggregates were noticed in the mucosal layer of infected swimbladders. We found more nervous and endocrine elements immunoreactive to a panel of six rabbit polyclonal antibodies in infected swimbladders compared to uninfected.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Chiara Maestri
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Antonella Carosi
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123Perugia, Italy
| | - Barbara J Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO80523, USA
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134Milan, Italy
| |
Collapse
|
172
|
Devlin JC, Axelrad J, Hine AM, Chang S, Sarkar S, Lin JD, Ruggles KV, Hudesman D, Cadwell K, Loke P. Single-Cell Transcriptional Survey of Ileal-Anal Pouch Immune Cells From Ulcerative Colitis Patients. Gastroenterology 2021; 160:1679-1693. [PMID: 33359089 PMCID: PMC8327835 DOI: 10.1053/j.gastro.2020.12.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Restorative proctocolectomy with ileal pouch-anal anastomosis is a surgical procedure in patients with ulcerative colitis refractory to medical therapies. Pouchitis, the most common complication, is inflammation of the pouch of unknown etiology. To define how the intestinal immune system is distinctly organized during pouchitis, we analyzed tissues from patients with and without pouchitis and from patients with ulcerative colitis using single-cell RNA sequencing (scRNA-seq). METHODS We examined pouch lamina propria CD45+ hematopoietic cells from intestinal tissues of ulcerative colitis patients with (n = 15) and without an ileal pouch-anal anastomosis (n = 11). Further in silico meta-analysis was performed to generate transcriptional interaction networks and identify biomarkers for patients with inflamed pouches. RESULTS In addition to tissue-specific signatures, we identified a population of IL1B/LYZ+ myeloid cells and FOXP3/BATF+ T cells that distinguish inflamed tissues, which we further validated in other scRNA-seq datasets from patients with inflammatory bowel disease (IBD). Cell-type-specific transcriptional markers obtained from scRNA-seq was used to infer representation from bulk RNA sequencing datasets, which further implicated myeloid cells expressing IL1B and S100A8/A9 calprotectin as interacting with stromal cells, and Bacteroidales and Clostridiales bacterial taxa. We found that nonresponsiveness to anti-integrin biologic therapies in patients with ulcerative colitis was associated with the signature of IL1B+/LYZ+ myeloid cells in a subset of patients. CONCLUSIONS Features of intestinal inflammation during pouchitis and ulcerative colitis are similar, which may have clinical implications for the management of pouchitis. scRNA-seq enables meta-analysis of multiple studies, which may facilitate the identification of biomarkers to personalize therapy for patients with IBD. The processed single cell count tables are provided in Gene Expression Omnibus; GSE162335. Raw sequence data are not public and are protected by controlled-access for patient privacy.
Collapse
Affiliation(s)
- Joseph C. Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA,Sackler Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA,Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley M. Hine
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA,Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shannon Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Suparna Sarkar
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jian-Da Lin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA,Skirball Institute of Biomedical Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V. Ruggles
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA,Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Hudesman
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Department of Microbiology; Division of Gastroenterology and Hepatology, Department of Medicine; Skirball Institute of Biomedical Medicine.
| | - P’ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
173
|
Du Y, Rong L, Cong Y, Shen L, Zhang N, Wang B. Macrophage polarization: an effective approach to targeted therapy of inflammatory bowel disease. Expert Opin Ther Targets 2021; 25:191-209. [PMID: 33682588 DOI: 10.1080/14728222.2021.1901079] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Inflammatory bowel disease (IBD) is a systemic disease with immune abnormalities that can affect the entire digestive tract. A high percentage of patients with IBD are unresponsive to current pharmacological agents, hence the need exists for novel therapeutic approaches. There is compelling evidence that macrophage polarization plays a key role in the remission of IBD patients and that it could open up future treatment options for patients.Areas covered: This paper highlights the crucial role of macrophage polarization in IBD. The authors shed light on the phenotype and function of macrophages and potential drug targets for polarization regulation. Existing approaches for regulating macrophage polarization are discussed and potential solutions for safety concerns are considered. We performed a literature search on the IBD and macrophage polarization mainly published in PubMed January 2010-July 2020.Expert opinion: Evidence indicates that there are fewer M2 macrophages and a high proportion of M1 macrophages in the intestinal tissues of individuals who are non- responsive to treatment. Regulating macrophage polarization is a potential novel targeted option for IBD treatment. Improved mechanistic insights are required to uncover more precise and effective targets for skewing macrophages into a proper phenotype.
Collapse
Affiliation(s)
- Yaoyao Du
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Rong
- Department of Digestive Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
174
|
Camba-Gómez M, Gualillo O, Conde-Aranda J. New Perspectives in the Study of Intestinal Inflammation: Focus on the Resolution of Inflammation. Int J Mol Sci 2021; 22:ijms22052605. [PMID: 33807591 PMCID: PMC7962019 DOI: 10.3390/ijms22052605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an essential physiological process that is directed to the protection of the organism against invading pathogens or tissue trauma. Most of the existing knowledge related to inflammation is focused on the factors and mechanisms that drive the induction phase of this process. However, since the recognition that the resolution of the inflammation is an active and tightly regulated process, increasing evidence has shown the relevance of this process for the development of chronic inflammatory diseases, such as inflammatory bowel disease. For that reason, with this review, we aimed to summarize the most recent and interesting information related to the resolution process in the context of intestinal inflammation. We discussed the advances in the understanding of the pro-resolution at intestine level, as well as the new mediators with pro-resolutive actions that could be interesting from a therapeutic point of view.
Collapse
Affiliation(s)
- Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saúde) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-981-955-091
| |
Collapse
|
175
|
Han X, Ding S, Jiang H, Liu G. Roles of Macrophages in the Development and Treatment of Gut Inflammation. Front Cell Dev Biol 2021; 9:625423. [PMID: 33738283 PMCID: PMC7960654 DOI: 10.3389/fcell.2021.625423] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages, which are functional plasticity cells, have the ability to phagocytize and digest foreign substances and acquire pro-(M1-like) or anti-inflammatory (M2-like) phenotypes according to their microenvironment. The large number of macrophages in the intestinal tract, play a significant role in maintaining the homeostasis of microorganisms on the surface of the intestinal mucosa and in the continuous renewal of intestinal epithelial cells. They are not only responsible for innate immunity, but also participate in the development of intestinal inflammation. A clear understanding of the function of macrophages, as well as their role in pathogens and inflammatory response, will delineate the next steps in the treatment of intestinal inflammatory diseases. In this review, we discuss the origin and development of macrophages and their role in the intestinal inflammatory response or infection. In addition, the effects of macrophages in the occurrence and development of inflammatory bowel disease (IBD), and their role in inducing fibrosis, activating T cells, reducing colitis, and treating intestinal inflammation were also reviewed in this paper.
Collapse
Affiliation(s)
- Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| |
Collapse
|
176
|
Zhang W, Gao L, Ren W, Li S, Zheng J, Li S, Jiang C, Yang S, Zhi K. The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Front Immunol 2021; 12:606043. [PMID: 33717086 PMCID: PMC7947359 DOI: 10.3389/fimmu.2021.606043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare but serious adverse drug effect. There are multiple hypotheses to explain the development of MRONJ. Reduced bone remodeling and infection or inflammation are considered central to the pathogenesis of MRONJ. In recent years, increasing evidence has shown that bisphosphonates (BPs)-mediated immunity dysfunction is associated with the pathophysiology of MRONJ. In a healthy state, mucosal immunity provides the first line of protection against pathogens and oral mucosal immune cells defense against potentially invading pathogens by mediating the generation of protective immunoinflammatory responses. In addition, the immune system takes part in the process of bone remodeling and tissue repair. However, the treatment of BPs disturbs the mucosal and osteo immune homeostasis and thus impairs the body's ability to resist infection and repair from injury, thereby adding to the development of MRONJ. Here, we present the current knowledge about immunity dysfunction to shed light on the role of local immune disorder in the development of MRONJ.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zheng
- Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Li
- Department of Stomatology, Binzhou People'Hospital, Binzhou, China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuying Yang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keqian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Key Laboratory of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
177
|
Yang P, Liu L, Sun L, Fang P, Snyder N, Saredy J, Ji Y, Shen W, Qin X, Wu Q, Yang X, Wang H. Immunological Feature and Transcriptional Signaling of Ly6C Monocyte Subsets From Transcriptome Analysis in Control and Hyperhomocysteinemic Mice. Front Immunol 2021; 12:632333. [PMID: 33717169 PMCID: PMC7947624 DOI: 10.3389/fimmu.2021.632333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Murine monocytes (MC) are classified into Ly6Chigh and Ly6Clow MC. Ly6Chigh MC is the pro-inflammatory subset and the counterpart of human CD14++CD16+ intermediate MC which contributes to systemic and tissue inflammation in various metabolic disorders, including hyperhomocysteinemia (HHcy). This study aims to explore molecule signaling mediating MC subset differentiation in HHcy and control mice. Methods RNA-seq was performed in blood Ly6Chigh and Ly6Clow MC sorted by flow cytometry from control and HHcy cystathionine β-synthase gene-deficient (Cbs-/-) mice. Transcriptome data were analyzed by comparing Ly6Chigh vs. Ly6Clow in control mice, Ly6Chigh vs. Ly6Clow in Cbs-/- mice, Cbs-/- Ly6Chigh vs. control Ly6Chigh MC and Cbs-/- Ly6Clow vs. control Ly6Clow MC by using intensive bioinformatic strategies. Significantly differentially expressed (SDE) immunological genes and transcription factor (TF) were selected for functional pathways and transcriptional signaling identification. Results A total of 7,928 SDE genes and 46 canonical pathways derived from it were identified. Ly6Chigh MC exhibited activated neutrophil degranulation, lysosome, cytokine production/receptor interaction and myeloid cell activation pathways, and Ly6Clow MC presented features of lymphocyte immunity pathways in both mice. Twenty-four potential transcriptional regulatory pathways were identified based on SDE TFs matched with their corresponding SDE immunological genes. Ly6Chigh MC presented downregulated co-stimulatory receptors (CD2, GITR, and TIM1) which direct immune cell proliferation, and upregulated co-stimulatory ligands (LIGHT and SEMA4A) which trigger antigen priming and differentiation. Ly6Chigh MC expressed higher levels of macrophage (MΦ) markers, whereas, Ly6Clow MC highly expressed lymphocyte markers in both mice. HHcy in Cbs-/- mice reinforced inflammatory features in Ly6Chigh MC by upregulating inflammatory TFs (Ets1 and Tbx21) and strengthened lymphocytes functional adaptation in Ly6Clow MC by increased expression of CD3, DR3, ICOS, and Fos. Finally, we established 3 groups of transcriptional models to describe Ly6Chigh to Ly6Clow MC subset differentiation, immune checkpoint regulation, Ly6Chigh MC to MΦ subset differentiation and Ly6Clow MC to lymphocyte functional adaptation. Conclusions Ly6Chigh MC displayed enriched inflammatory pathways and favored to be differentiated into MΦ. Ly6Clow MC manifested activated T-cell signaling pathways and potentially can adapt the function of lymphocytes. HHcy reinforced inflammatory feature in Ly6Chigh MC and strengthened lymphocytes functional adaptation in Ly6Clow MC.
Collapse
Affiliation(s)
- Pingping Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lizhe Sun
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pu Fang
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nathaniel Snyder
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuebin Qin
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaofeng Yang
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
178
|
Ackermann M, Mucci A, McCabe A, Frei S, Wright K, Snapper SB, Lachmann N, Williams DA, Brendel C. Restored Macrophage Function Ameliorates Disease Pathophysiology in a Mouse Model for IL10 Receptor-deficient Very Early Onset Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:1588-1595. [PMID: 33596307 PMCID: PMC8464221 DOI: 10.1093/ecco-jcc/jjab031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Mutations in IL10 or the IL10 receptor lead to very early onset [VEO] inflammatory bowel disease [IBD], a life-threatening disease which is often unresponsive to conventional medication. Recent studies have demonstrated that defective IL-10 receptor signalling in innate immune cells is a key driver of severe intestinal inflammation in VEO-IBD. Specifically, IL10 unresponsiveness of macrophages, which govern the tight balance between pro- and anti-inflammatory responses in the intestinal system, plays a central role in the events leading to excessive inflammatory responses and the development of IBD. METHODS AND RESULTS We here evaluated haematopoietic stem cell gene therapy in a VEO-IBD mouse model and demonstrated that the therapeutic response closely correlates with gene correction of the IL10 signalling pathway in intestinal macrophages. This finding prompted us to evaluate the therapeutic efficacy of macrophage transplantation in the Il10rb-/- VEO-IBD mouse model. A 6-week regimen employing a combination of depletion of endogenous hyperinflammatory macrophages followed by intraperitoneal administration of wild-type [WT] macrophages significantly reduced colitis symptoms. CONCLUSIONS In summary, we show that the correction of the IL10 receptor defect in macrophages, either by genetic therapy or transfer of WT macrophages to the peritoneum, can ameliorate disease-related symptoms and potentially represent novel treatment approaches for VEO-IBD patients.
Collapse
Affiliation(s)
- Mania Ackermann
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Adele Mucci
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Division of Hematology/Oncology, Boston Children’s Hospital, MA, USA
| | - Amanda McCabe
- Division of Hematology/Oncology, Boston Children’s Hospital, MA, USA
| | - Sandy Frei
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, USA
| | - Kayla Wright
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, USA,Harvard Medical School, Boston, MA, USA
| | - Nico Lachmann
- Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - David A Williams
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Division of Hematology/Oncology, Boston Children’s Hospital, MA, USA,Harvard Stem Cell Institute, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Division of Hematology/Oncology, Boston Children’s Hospital, MA, USA,Harvard Stem Cell Institute, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author: Christian Brendel, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, 300 Longwood Ave, Boston, MA 02115, USA. Tel.: +1 617 632 2089;
| |
Collapse
|
179
|
Galen JE, Wahid R, Buskirk AD. Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity. Vaccines (Basel) 2021; 9:162. [PMID: 33671124 PMCID: PMC7923097 DOI: 10.3390/vaccines9020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
The use of live-attenuated bacterial vaccines as carriers for the mucosal delivery of foreign antigens to stimulate the mucosal immune system was first proposed over three decades ago. This novel strategy aimed to induce immunity against at least two distinct pathogens using a single bivalent carrier vaccine. It was first tested using a live-attenuated Salmonella enterica serovar Typhi strain in clinical trials in 1984, with excellent humoral immune responses against the carrier strain but only modest responses elicited against the foreign antigen. Since then, clinical trials with additional Salmonella-based carrier vaccines have been conducted. As with the original trial, only modest foreign antigen-specific immunity was achieved in most cases, despite the incorporation of incremental improvements in antigen expression technologies and carrier design over the years. In this review, we will attempt to deconstruct carrier vaccine immunogenicity in humans by examining the basis of bacterial immunity in the human gastrointestinal tract and how the gut detects and responds to pathogens versus benign commensal organisms. Carrier vaccine design will then be explored to determine the feasibility of retaining as many characteristics of a pathogen as possible to elicit robust carrier and foreign antigen-specific immunity, while avoiding over-stimulation of unacceptably reactogenic inflammatory responses.
Collapse
Affiliation(s)
- James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Amanda D. Buskirk
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment II, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA;
| |
Collapse
|
180
|
Song L, Chang R, Sun X, Lu L, Gao H, Lu H, Lin R, Xu X, Liu Z, Zhan L. Macrophage-derived EDA-A2 inhibits intestinal stem cells by targeting miR-494/EDA2R/β-catenin signaling in mice. Commun Biol 2021; 4:213. [PMID: 33594251 PMCID: PMC7887198 DOI: 10.1038/s42003-021-01730-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The mucosa microenvironment is critical for intestinal stem cell self-renewal and reconstruction of the epithelial barrier in inflammatory bowel disease (IBD), where the mechanisms underlying cross-talk between intestinal crypts and the microenvironment remain unclear. Here, we firstly identified miR-494-3p as an important protector in colitis. miR-494-3p levels were decreased and negatively correlated with the severity in human IBD samples, as well as in colitis mice. In colitis crypts, a notable cytokine-cytokine receptor, miR-494-3p-targeted EDA2R and the ligand EDA-A2, suppressed colonic stemness and epithelial repair by inhibiting β-catenin/c-Myc. In differentiated IECs, miR-494-3p inhibits macrophage recruitment, M1 activation and EDA-A2 secretion by targeting IKKβ/NF-κB in colitis. A miR-494-3p agomir system notably ameliorated the severity of colonic colitis in vivo. Collectively, our findings uncover a miR-494-3p-mediated cross-talk mechanism by which macrophage-induced intestinal stem cell impairment aggravates intestinal inflammation.
Collapse
Affiliation(s)
- Lele Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Renxu Chang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liying Lu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Gao
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Huiying Lu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ritian Lin
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaorong Xu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
181
|
Unfolded Protein Response and Crohn’s Diseases: A Molecular Mechanism of Wound Healing in the Gut. GASTROINTESTINAL DISORDERS 2021. [DOI: 10.3390/gidisord3010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress triggers a series of signaling and transcriptional events termed the unfolded protein response (UPR). Severe ER stress is associated with the development of fibrosis in different organs, including lung, liver, kidney, heart, and intestine. ER stress is an essential response of epithelial and immune cells in the pathogenesis of Inflammatory Bowel Disease (IBD), including Crohn’s disease (CD). Intestinal epithelial cells are susceptible to ER stress-mediated damage due to secretion of a large amount of proteins that are involved in mucosal defense. In other cells, ER stress is linked to myofibroblast activation, extracellular matrix production, macrophage polarization, and immune cell differentiation. This review focuses on the role of the UPR in the pathogenesis in IBD from an immunologic perspective. The roles of macrophage and mesenchymal cells in the UPR from in vitro and in vivo animal models are discussed. The links between ER stress and other signaling pathways, such as senescence and autophagy, are introduced. Recent advances in the understanding of the epigenetic regulation of the UPR signaling are also updated here. The future directions of development of the UPR research and therapeutic strategies to manipulate ER stress levels are also reviewed.
Collapse
|
182
|
Faluyi OO, Hull MA, Markham AF, Bonifer C, Coletta PL. Reduction in the resident intestinal myelomonocytic cell population occurs during ApcMin/+ mouse intestinal tumorigenesis. Oncol Lett 2021; 21:263. [PMID: 33664826 PMCID: PMC7884874 DOI: 10.3892/ol.2021.12524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
With its significant contribution to cancer mortality globally, advanced colorectal cancer (CRC) requires new treatment strategies. However, despite recent good results for mismatch repair (MMR)-deficient CRC and other malignancies, such as melanoma, the vast majority of MMR-proficient CRCs are resistant to checkpoint inhibitor (CKI) therapy. MMR-proficient CRCs commonly develop from precursor adenomas with enhanced Wnt-signalling due to adenomatous polyposis coli (APC) mutations. In melanomas with enhanced Wnt signalling due to stabilized β-catenin, immune anergy and resistance to CKI therapy has been observed, which is dependent on micro-environmental myelomonocytic (MM) cell depletion in melanoma models. However, MM populations of colorectal adenomas or CRC have not been studied. To characterize resident intestinal MM cell populations during the early stages of tumorigenesis, the present study utilized the ApcMin/+ mouse as a model of MMR-proficient CRC, using enhanced green fluorescent protein (EGFP) expression in the mouse lysozyme (M-lys) lys-EGFP/+ mouse as a pan-myelomonocytic cell marker and a panel of murine macrophage surface markers. Total intestinal lamina propria mononuclear cell (LPMNC) numbers significantly decreased with age (2.32±1.39×107 [n=4] at 33 days of age vs. 1.06±0.24×107 [n=8] at 109 days of age) during intestinal adenoma development in ApcMin/+ mice (P=0.05; unpaired Student's t-test), but not in wild-type littermates (P=0.35). Decreased total LPMNC numbers were associated with atrophy of intestinal lymphoid follicles and the absence of MM/lymphoid cell aggregates in ApcMin/+ mouse intestine, but not spleen, compared with wild-type mice. Furthermore, during the early stage of intestinal adenoma development, there was a two-fold reduction of M-lys expressing cells (P=0.05) and four-fold reduction of ER-HR3 (macrophage sub-set) expressing cells (P=0.05; two tailed Mann-Whitney U test) in mice with reduced total intestinal LPMNCs (n=3). Further studies are necessary to determine the relevance of these findings to immune-surveillance of colorectal adenomas or MMR-proficient CRC CKI therapy resistance.
Collapse
Affiliation(s)
- Olusola O Faluyi
- Section of Molecular Gastroenterology, Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, Yorkshire LS9 7TF, UK.,Experimental Cancer Medicine Centre, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside CH63 4JY, UK.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Merseyside L69 3BX, UK
| | - Mark A Hull
- Section of Molecular Gastroenterology, Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, Yorkshire LS9 7TF, UK
| | - Alexander F Markham
- Section of Molecular Gastroenterology, Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, Yorkshire LS9 7TF, UK
| | - Constanze Bonifer
- Section of Experimental Haematology, Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, Yorkshire LS9 7TF, UK
| | - P Louise Coletta
- Section of Molecular Gastroenterology, Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, Yorkshire LS9 7TF, UK
| |
Collapse
|
183
|
Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 2021; 214:113264. [PMID: 33582386 DOI: 10.1016/j.ejmech.2021.113264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
With the change of lifestyle and the acceleration of aging process, inflammatory diseases have increasingly become one of the most vital threats to global human health. SHP2 protein is a non-receptor tyrosine phosphatase encoded by PTPN11 gene, and it is widely expressed in various tissues and cells. Numerous studies have shown that SHP2 plays important roles in the regulation of inflammatory diseases, including cancer-related inflammation, neurodegenerative diseases and metabolic diseases. In this paper, the roles of SHP2 in inflammatory diseases of various physiological systems were reviewed. At the same time, the latest SHP2 inhibitors were summarized, which will hold a promise for the therapeutic potential in future.
Collapse
|
184
|
Cortes‐Selva D, Fairfax K. Schistosome and intestinal helminth modulation of macrophage immunometabolism. Immunology 2021; 162:123-134. [PMID: 32614982 PMCID: PMC7808165 DOI: 10.1111/imm.13231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are fundamental to sustain physiological equilibrium and to regulate the pathogenesis of parasitic and metabolic processes. The functional heterogeneity and immune responses of macrophages are shaped by cellular metabolism in response to the host's intrinsic factors, environmental cues and other stimuli during disease. Parasite infections induce a complex cascade of cytokines and metabolites that profoundly remodel the metabolic status of macrophages. In particular, helminths polarize macrophages to an M2 state and induce a metabolic shift towards reliance on oxidative phosphorylation, lipid oxidation and amino acid metabolism. Accumulating data indicate that helminth-induced activation and metabolic reprogramming of macrophages underlie improvement in overall whole-body metabolism, denoted by improved insulin sensitivity, body mass in response to high-fat diet and atherogenic index in mammals. This review aims to highlight the metabolic changes that occur in human and murine-derived macrophages in response to helminth infections and helminth products, with particular interest in schistosomiasis and soil-transmitted helminths.
Collapse
Affiliation(s)
- Diana Cortes‐Selva
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
- Janssen BiotherapeuticsJanssen R&DSpring HousePAUSA
| | - Keke Fairfax
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
185
|
Buchele V, Konein P, Vogler T, Kunert T, Enderle K, Khan H, Büttner-Herold M, Lehmann CHK, Amon L, Wirtz S, Dudziak D, Neurath MF, Neufert C, Hildner K. Th17 Cell-Mediated Colitis Is Positively Regulated by Interferon Regulatory Factor 4 in a T Cell- Extrinsic Manner. Front Immunol 2021; 11:590893. [PMID: 33584655 PMCID: PMC7879684 DOI: 10.3389/fimmu.2020.590893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic, inflammatory gastrointestinal lesions and often require life-long treatment with immunosuppressants and repetitive surgical interventions. Despite progress in respect to the characterization of molecular mechanisms e.g. exerted by TNF-alpha, currently clinically approved therapeutics fail to provide long-term disease control for most patients. The transcription factor interferon regulatory factor 4 (IRF4) has been shown to play important developmental as well as functional roles within multiple immune cells. In the context of colitis, a T cell-intrinsic role of IRF4 in driving immune-mediated gut pathology is established. Here, we conversely addressed the impact of IRF4 inactivation in non-T cells on T cell driven colitis in vivo. Employing the CD4+CD25- naïve T cell transfer model, we found that T cells fail to elicit colitis in IRF4-deficient compared to IRF4-proficient Rag1-/- mice. Reduced colitis activity in the absence of IRF4 was accompanied by hampered T cell expansion both within the mesenteric lymph node (MLN) and colonic lamina propria (cLP). Furthermore, the influx of various myeloids, presumably inflammation-promoting cells was abrogated overall leading to a less disrupted intestinal barrier. Mechanistically, gene profiling experiments revealed a Th17 response dominated molecular expression signature in colon tissues of IRF4-proficient, colitic Rag1-/- but not in colitis-protected Rag1-/-Irf4-/- mice. Colitis mitigation in Rag1-/-Irf4-/- T cell recipients resulted in reduced frequencies and absolute numbers of IL-17a-producing T cell subsets in MLN and cLP possibly due to a regulation of conventional dendritic cell subset 2 (cDC2) known to impact Th17 differentiation. Together, extending the T cell-intrinsic role for IRF4 in the context of Th17 cell driven colitis, the provided data demonstrate a Th17-inducing and thereby colitis-promoting role of IRF4 through a T cell-extrinsic mechanism highlighting IRF4 as a putative molecular master switch among transcriptional regulators driving immune-mediated intestinal inflammation through both T cell-intrinsic and T cell-extrinsic mechanisms. Future studies need to further dissect IRF4 controlled pathways within distinct IRF4-expressing myeloid cell types, especially cDC2s, to elucidate the precise mechanisms accounting for hampered Th17 formation and, according to our data, the predominant mechanism of colitis protection in Rag1-/-Irf4-/- T cell receiving mice.
Collapse
Affiliation(s)
- Vera Buchele
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Patrick Konein
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Vogler
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Karin Enderle
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hanif Khan
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Institute of Pathology, Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Christian H. K. Lehmann
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lukas Amon
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Diana Dudziak
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
186
|
Brown RL, Larkinson MLY, Clarke TB. Immunological design of commensal communities to treat intestinal infection and inflammation. PLoS Pathog 2021; 17:e1009191. [PMID: 33465156 PMCID: PMC7846104 DOI: 10.1371/journal.ppat.1009191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 01/29/2021] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immunological impact of individual commensal species within the microbiota is poorly understood limiting the use of commensals to treat disease. Here, we systematically profile the immunological fingerprint of commensals from the major phyla in the human intestine (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) to reveal taxonomic patterns in immune activation and use this information to rationally design commensal communities to enhance antibacterial defenses and combat intestinal inflammation. We reveal that Bacteroidetes and Firmicutes have distinct effects on intestinal immunity by differentially inducing primary and secondary response genes. Within these phyla, the immunostimulatory capacity of commensals from the Bacteroidia class (Bacteroidetes phyla) reflects their robustness of TLR4 activation and Bacteroidia communities rely solely on this receptor for their effects on intestinal immunity. By contrast, within the Clostridia class (Firmicutes phyla) it reflects the degree of TLR2 and TLR4 activation, and communities of Clostridia signal via both of these receptors to exert their effects on intestinal immunity. By analyzing the receptors, intracellular signaling components and transcription factors that are engaged by different commensal species, we identify canonical NF-κB signaling as a critical rheostat which grades the degree of immune stimulation commensals elicit. Guided by this immunological analysis, we constructed a cross-phylum consortium of commensals (Bacteroides uniformis, Bacteroides ovatus, Peptostreptococcus anaerobius and Clostridium histolyticum) which enhances innate TLR, IL6 and macrophages-dependent defenses against intestinal colonization by vancomycin resistant Enterococci, and fortifies mucosal barrier function during pathological intestinal inflammation through the same pathway. Critically, the setpoint of intestinal immunity established by this consortium is calibrated by canonical NF-κB signaling. Thus, by profiling the immunological impact of major human commensal species our work paves the way for rational microbiota reengineering to protect against antibiotic resistant infections and to treat intestinal inflammation.
Collapse
Affiliation(s)
- Rebecca L. Brown
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Max L. Y. Larkinson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
187
|
The Role of Glycosylation in Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:265-283. [PMID: 34495540 DOI: 10.1007/978-3-030-70115-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diversity of glycan presentation in a cell, tissue and organism is enormous, which reflects the huge amount of important biological information encoded by the glycome which has not been fully understood. A compelling body of evidence has been highlighting the fundamental role of glycans in immunity, such as in development, and in major inflammatory processes such as inflammatory bowel disease, systemic lupus erythematosus and other autoimmune disorders. Glycans play an instrumental role in the immune response, integrating the canonical circuits that regulate innate and adaptive immune responses. The relevance of glycosylation in immunity is demonstrated by the role of glycans as important danger-associated molecular patterns and pathogen-associated molecular patterns associated with the discrimination between self and non-self; also as important regulators of the threshold of T cell activation, modulating receptors signalling and the activity of both T and other immune cells. In addition, glycans are important determinants that regulate the dynamic crosstalk between the microbiome and immune response. In this chapter, the essential role of glycans in the immunopathogenesis of inflammatory disorders will be presented and its potential clinical applications (diagnosis, prognosis and therapeutics) will be highlighted.
Collapse
|
188
|
Ge L, Xu M, Brant SR, Liu S, Zhu C, Shang J, Zhao Q, Zhou F. Sestrin3 enhances macrophage-mediated generation of T helper 1 and T helper 17 cells in a mouse colitis model. Int Immunol 2021; 32:421-432. [PMID: 32154559 DOI: 10.1093/intimm/dxaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Intestinal macrophages participate in the pathogenesis of inflammatory bowel diseases (IBDs) through secreting pro-inflammatory and tissue-damaging factors as well as inducing the differentiation of T helper 1 (Th1) and T helper 17 (Th17) cells. Elucidating the regulatory mechanisms of intestinal macrophage activity in IBDs is important for developing new therapeutic approaches. In the current study, the expression of Sestrins in myeloid cells and lymphocytes in colonic lamina propria (LP) was evaluated in a murine acute colitis model. We found that Sestrin3 was significantly up-regulated in LP macrophages by the colonic LP microenvironment. In the in vitro experiments, lentivirus-mediated Sestrin3 knockdown significantly reduced the production of IL-12 and IL-23 in activated macrophages, in addition to decreasing the expression of classical pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. Additionally, Sestrin3 knockdown impaired macrophage-mediated generation of Th1 and Th17 cells from CD4+ T cells, probably through up-regulating the phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) in macrophages. In the in vivo experiments, adoptive transfer of Sestrin3-deficient macrophages alleviated the generation of Th1 and Th17 cells in the colonic LP and mesenteric lymph nodes. Furthermore, the adoptive transfer mitigated the severity of colitis, as demonstrated by lower production of pro-inflammatory cytokines and fewer tissue lesions in the colon. Our study suggests that Sestrin3 might be crucial for macrophage-mediated generation of pathogenic Th1 and Th17 cells in IBDs.
Collapse
Affiliation(s)
- Liuqing Ge
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Min Xu
- Department of Hematology and Oncology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Steven R Brant
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Shaoping Liu
- Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
189
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
190
|
Lyons T, Jahns H, Brady J, O'Hara E, Waters SM, Kenny D, Doyle E, Meade KG. Integrated analyses of the microbiological, immunological and ontological transitions in the calf ileum during early life. Sci Rep 2020; 10:21264. [PMID: 33277514 PMCID: PMC7718239 DOI: 10.1038/s41598-020-77907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aberdeen Angus calves were sacrificed from immediately post-birth up to 96 days of age (DOA) and ileal samples were collected for microbial, histological and immunological analyses. Firmicutes bacteria were established immediately in the ileum of calves after birth and remained the dominant phyla at all time points from birth until 96 DOA. Temporal shifts in phyla reflected significantly increased Bacteroidetes at birth followed by temporal increases in Actinobacteria abundance over time. At a cellular level, a significant increase in cell density was detected in the ileal villi over time. The innate cell compartment at birth was composed primarily of eosinophils and macrophages with a low proportion of adaptive T lymphocytes; whereas an increase in the relative abundance of T cells (including those in the intra-epithelial layer) was observed over time. The ileal intestinal cells were immunologically competent as assessed by expression levels of genes encoding the inflammasome sensor NLRP3, and inflammatory cytokines IL1A, IL1B and IL33-all of which significantly increased from birth. In contrast, a temporal reduction in genes encoding anti-inflammatory cytokine IL10 was detected from birth. This study provides an integrated baseline of microbiological, histological and immunological data on the immune adaptation of the neonatal ileum to microbial colonisation in calves.
Collapse
Affiliation(s)
- Tamsin Lyons
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Joseph Brady
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Eóin O'Hara
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland.,Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sinéad M Waters
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland
| | - David Kenny
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland
| | - Evelyn Doyle
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Ireland
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, County Meath, Ireland. .,School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
191
|
Rui-Zhi T, Hui D, Jian-Chun L, Xia Z, Xiao-Jia W, Dan W, Jun-Ming F, Li W. Astragalus mongholicus Bunge and Panax Notoginseng Formula (A&P) Combined With Bifidobacterium Contribute a Renoprotective Effect in Chronic Kidney Disease Through Inhibiting Macrophage Inflammatory Response in Kidney and Intestine. Front Physiol 2020; 11:583668. [PMID: 33329031 PMCID: PMC7729014 DOI: 10.3389/fphys.2020.583668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that Chronic Kidney Disease (CKD) can cause intestinal dysfunction, which in turn aggravates the progression of kidney disease. Studies have shown that the immune response of macrophage plays an important role in promoting inflammation in kidney and intestine of CKD. Astragalus mongholicus Bunge and Panax notoginseng formula (A&P) is a widely used traditional medicine for the treatment of CKD in China, however, the underlying mechanism is largely unclear. In this study, we aimed to explore the role of A&P and Bifidobacterium combination treatment in regulation of inflammatory response of macrophage in kidney and intestine of CKD mouse, as well as the potential molecular mechanism. We established a CKD mouse model with 5/6 nephrectomy and a macrophage inflammatory cellular model with LPS and urotoxin in vivo and in vitro. The results showed that A&P combined with Bifidobacterium significantly reduced the expression and secretion of IL-1β, IL-6, TNFα, and MCP-1 in kidney and blood, as well as in inflammatory macrophage. Interestingly, A&P combined with Bifidobacterium strongly improved the intestinal flora and protected the intestinal barrier. Notably, the maintainer of macrophage polarization, Mincle, was activated in kidney and intestine of CKD mouse as well as in urotoxin stimulated macrophage, that was effectively inhibited by the treatment of A&P and Bifidobacterium combination. Overexpression of Mincle by genetic modification can abolish the inhibitory effects of A&P combined with Bifidobacterium on inflammation in urotoxin stimulated RAW264.7 cells. In summary, these findings demonstrated that A&P combined with Bifidobacterium can protect kidney against CKD by down-regulating macrophage inflammatory response in kidney and intestine via suppressing Mincle signaling, which provides a new insight in the treatment of CKD with traditional medicine.
Collapse
Affiliation(s)
- Tan Rui-Zhi
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Diao Hui
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China.,Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Jian-Chun
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhong Xia
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wang Xiao-Jia
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wen Dan
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China.,Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Jun-Ming
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China.,Department of Nephrology, Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wang Li
- Research Center for Integrated Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
192
|
Kaur H, Moreau R. Curcumin steers THP-1 cells under LPS and mTORC1 challenges toward phenotypically resting, low cytokine-producing macrophages. J Nutr Biochem 2020; 88:108553. [PMID: 33220404 DOI: 10.1016/j.jnutbio.2020.108553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The persistent activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) triggered by mucosal stress has been linked to deregulation of the gut immune response resulting in intestinal inflammation and cell death. The present study investigated the regulatory properties of food-derived mTORC1 modulators, curcumin, and piperine, toward the polarization of stimulated macrophages and the differentiation of monocytes at two mTORC1 activity levels (baseline and elevated). To that end, we created stable human THP-1 monocytes exhibiting normal or constitutively active mTORC1. Curcumin or its combination with piperine, but not piperine alone, suppressed mTORC1 kinase activity, curtailed lipopolysaccharide-mediated inflammatory response of THP-1 macrophages, and repressed macrophage activation by inhibiting signaling pathways involved in M1 (mTORC1) and M2 (mTORC2 and cAMP response element binding protein) polarization. The effects of piperine in the curcumin/piperine combination were modest overall, indicating it was curcumin that modulated differentiating monocytes into acquiring a M0 macrophage phenotype characterized by low inflammatory cytokine output.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
193
|
Castleman MJ, Dillon SM, Purba C, Cogswell AC, McCarter M, Barker E, Wilson C. Enteric bacteria induce IFNγ and Granzyme B from human colonic Group 1 Innate Lymphoid Cells. Gut Microbes 2020; 12:1667723. [PMID: 31583949 PMCID: PMC7524156 DOI: 10.1080/19490976.2019.1667723] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Group 1 Innate Lymphoid Cells (which include Natural Killer cells and ILC1s) aid in gut anti-bacterial defense through the production of IFNγ, which is critical for mobilizing protective responses against enteric pathogens. When intestinal epithelial barrier integrity is compromised, commensal bacteria are likely to translocate from the gut lumen into the lamina propria. Few studies have addressed the mechanisms by which commensal bacteria impact the function of gut Group 1 ILCs, especially ILC1s. Utilizing an in vitro human colonic lamina propria mononuclear cell (LPMC) model, we evaluated Group 1 ILC cytokine and cytolytic protein production in response to a panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria. IFNγ-production by NK cells and ILC1s was significantly increased after LPMC exposure to Gram-negative commensal or pathogenic bacteria, but not after exposure to the Gram-positive bacteria commensals tested. Stimulation of IFNγ production from Group 1 ILCs was not through direct recognition of bacteria by NK cells or ILC1s, but rather required accessory cells within the LPMC population. Myeloid dendritic cells generated IL-12p70, IL-18, and IL-1β upon exposure to enteric bacteria and these cytokines contributed to Group 1 ILC production of IFNγ. Furthermore, Gram-negative commensal or pathogenic bacteria induced significant expression of Granzyme B in NK cells and ILC1s. Overall, these data demonstrate that some enteric commensal bacteria indirectly induce inflammatory cytokine production and cytolytic protein expression from human colonic Group 1 ILCs, a process which could contribute to inflammation in the setting of microbial translocation.
Collapse
Affiliation(s)
- Moriah J. Castleman
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie M. Dillon
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christine Purba
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew C. Cogswell
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Martin McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Cara Wilson
- Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,CONTACT Cara Wilson Department of Medicine, Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
194
|
Cao X, Tang L, Zeng Z, Wang B, Zhou Y, Wang Q, Zou P, Li W. Effects of Probiotics BaSC06 on Intestinal Digestion and Absorption, Antioxidant Capacity, Microbiota Composition, and Macrophage Polarization in Pigs for Fattening. Front Vet Sci 2020; 7:570593. [PMID: 33240950 PMCID: PMC7677304 DOI: 10.3389/fvets.2020.570593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/29/2020] [Indexed: 01/24/2023] Open
Abstract
This study aimed to compare the effects of BaSC06 and antibiotics on growth, digestive functions, antioxidant capacity, macrophage polarization, and intestinal microbiota of pigs for fattening. A total of 117 pigs for fattening with similar weight and genetic basis were divided into 3 groups: Anti group (containing 40 g/t Kitasamycin in the diet), Anti+Ba group (containing 20 g/t Kitasamycin and 0.5 × 108 CFU/kg BaSC06 in the diet) and Ba group (containing 1 × 108 cfu/Kg BaSC06 in the diet without any antibiotics). Each treatment was performed in three replicates with 13 pigs per replicate. Results showed that BaSC06 replacement significantly improved the ADG (P < 0.05), intestinal digestion and absorption function by increasing the activity of intestinal digestive enzymes and the expression of glucose transporters SGLT1 (P < 0.05) and small peptide transporters PEPT1 (P < 0.05). Besides, BaSC06 supplementation enhanced intestinal and body antioxidant capacity by activating the Nrf2/Keap1 antioxidant signaling pathway due to the increased expression of p-Nrf2 (P < 0.05). Notably, BaSC06 alleviated intestinal inflammation by inhibiting the production of pro-inflammatory cytokines, IL-8, IL-6, and MCP1 (P < 0.05), and simultaneously increasing the expression of M1 macrophage marker protein iNOS (P < 0.05) and M2 macrophage marker protein Arg (P < 0.05) in the intestinal mucosa. Moreover, BaSC06 promoted the polarization of macrophages to M2 phenotype by stimulating the STAT3 signaling pathway. It was also noted that BaSC06 improved microbiota composition by enhancing the proportion of Firmicutes, and reducing that of Bacteroidetes and Proteobacteria. Taken together, our results indicate that dietary supplementation of BaSC06 in pigs for fattening improves the growth, mucosal structure, antioxidative capacity, immune functions (including increasing M1 and M2 polarization of macrophage) and composition of intestinal microbiota, which is much better than antibiotics, suggesting that it is an effective alternative to antibiotics in the preparation of pig feed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, and Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
195
|
Zhang X, Liu J, Wu L, Hu X. MicroRNAs of the miR-17~9 family maintain adipose tissue macrophage homeostasis by sustaining IL-10 expression. eLife 2020; 9:55676. [PMID: 33150865 PMCID: PMC7676864 DOI: 10.7554/elife.55676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages are critically involved in not only immune and inflammatory responses but also maintenance of metabolic fitness of organisms. Combined genetic deficiency of three clusters in the miR-17~92 family drastically shifted macrophage phenotypes toward the inflammatory spectrum characterized by heightened production of pro-inflammatory mediator TNF and diminished expression of anti-inflammatory cytokine IL-10. Consequently, macrophages residing in the adipose tissues from myeloid-specific miRNA triple knockout mice spontaneously developed inflammatory phenotypes and displayed alterations of overall physiological conditions as evidenced by obesity and compromised glucose tolerance. Mechanistically, miR-17~92 family miRNAs sustained IL-10 production by promoting transcription of the Fos gene, which is secondary to downregulation of Fos by transcription factor YY1, a direct target of miR-17~92 family miRNAs. Together, these results identified miR-17~92 family miRNAs as crucial regulators of the balance between pro- and anti-inflammatory cytokines and exemplified how macrophage-intrinsic regulatory circuit exerted impactful influence on general physiology.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Centre for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, United States
| | - Li Wu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Centre for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Centre for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
196
|
Yang Y, Li L, Xu C, Wang Y, Wang Z, Chen M, Jiang Z, Pan J, Yang C, Li X, Song K, Yan J, Xie W, Wu X, Chen Z, Yuan Y, Zheng S, Yan J, Huang J, Qiu F. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut 2020; 70:gutjnl-2020-320777. [PMID: 33122176 PMCID: PMC8292576 DOI: 10.1136/gutjnl-2020-320777] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/13/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Macrophages are among the most abundant cells in the colon tumour microenvironment, and there is a close relationship among monocytes, macrophages and the gut microbiota. Alterations in the gut microbiota are involved in tumour development, but the underlying mechanisms remain unclear. We aim to elucidate the temporal changes in macrophage subsets and functions, and how these dynamics are regulated by microbial cues in the initiation of colitis-associated cancer. DESIGN A mouse model of colitis-associated tumourigenesis was established to determine macrophage dynamics. The role of monocyte-like macrophage (MLM) was confirmed by targeting its chemotaxis. The effects of the gut microbiota were assessed by antibiotic treatment and faecal microbiota transplantation. RESULTS A selective increase in MLMs was observed in the initial stages of colitis-associated cancer, with an enhanced secretion of inflammatory cytokines. MLM accumulation was regulated by CCL2 expression of colonic epithelial cells, which was influenced by bacteria-derived lipopolysaccharide (LPS). LPS further stimulated interleukin 1β production from MLMs, inducing interleukin-17-producing T-helper cell activation to promote inflammation. These observations were also supported by altered microbial composition associated with human colitis and colorectal cancer, evolving transcriptional signature and immune response during human colitis-associated tumourigenesis. CONCLUSIONS The gut microbiota uses LPS as a trigger to regulate MLM accumulation in a chemokine-dependent manner and generate a precancerous inflammatory milieu to facilitate tumourigenesis.
Collapse
Affiliation(s)
- Yunben Yang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Li
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunjing Xu
- Department of Breast Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yunke Wang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyao Chen
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhou Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoqian Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Song
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junfeng Yan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Wanglan Xie
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianguo Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhigang Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Yan
- Department of Medicine and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuming Qiu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
197
|
Li Q, Cheng H, Liu Y, Wang X, He F, Tang L. Activation of mTORC1 by LSECtin in macrophages directs intestinal repair in inflammatory bowel disease. Cell Death Dis 2020; 11:918. [PMID: 33106485 PMCID: PMC7589503 DOI: 10.1038/s41419-020-03114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Damage to intestinal epithelial cells and the induction of cellular apoptosis are characteristics of inflammatory bowel disease. The C-type lectin receptor family member LSECtin promotes apoptotic cell clearance by macrophages and induces the production of anti-inflammatory/tissue growth factors, which direct intestinal repair in experimental colitis. However, the mechanisms by which the phagocytosis of apoptotic cells triggers the pro-repair function of macrophages remain largely undefined. Here, using immunoprecipitation in combination with mass spectrometry to identify LSECtin-interacting proteins, we found that LSECtin interacted with mTOR, exhibiting a role in activating mTORC1. Mechanistically, apoptotic cells enhance the interaction between LSECtin and mTOR, and increase the activation of mTORC1 induced by LSECtin in macrophages. Elevated mTORC1 signaling triggers macrophages to produce anti-inflammatory/tissue growth factors that contribute to the proliferation of epithelial cells and promote the reestablishment of tissue homeostasis. Collectively, our findings suggest that LSECtin-dependent apoptotic cell clearance by macrophages activates mTORC1, and thus contributes to intestinal regeneration and the remission of colitis.
Collapse
Affiliation(s)
- Qian Li
- Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Hanxing Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Yuanping Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Xiaowen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Fuchu He
- Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
- Department of Biochemistry and Molecular Biology, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
198
|
Horiguchi H, Kadomatsu T, Miyata K, Terada K, Sato M, Torigoe D, Morinaga J, Moroishi T, Oike Y. Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis. Oncogene 2020; 40:55-67. [PMID: 33051596 DOI: 10.1038/s41388-020-01505-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Previous studies show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. However, we recently reported that host ANGPTL2 also shows tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses in mouse kidney cancer and murine syngeneic models. However, mechanisms underlying ANGPTL2-mediated tumor suppression are complex and not well known. Here, we investigated ANGPTL2 tumor suppressive function in chemically-induced intestinal tumorigenesis. ANGPTL2 deficiency enhanced intestinal tumor growth in an experimental mouse colitis-associated colon cancer (CAC) model. Angptl2-deficient mice also showed a decrease not only in CD8+ T cell responses but in CD4+ T cell responses during intestinal tumorigenesis. Furthermore, we show that stroma-derived ANGPTL2 can activate the myeloid immune response. Notably, ANGPTL2 drove generation of immunostimulatory macrophages via the NF-κB pathway, accelerating CD4+ T helper 1 (Th1) cell activation. These findings overall provide novel insight into the complex mechanisms underlying ANGPTL2 anti-tumor function in cancer pathology.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Daisuke Torigoe
- Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
199
|
Li Y, Yang S, Lun J, Gao J, Gao X, Gong Z, Wan Y, He X, Cao H. Inhibitory Effects of the Lactobacillus rhamnosus GG Effector Protein HM0539 on Inflammatory Response Through the TLR4/MyD88/NF-кB Axis. Front Immunol 2020; 11:551449. [PMID: 33123130 PMCID: PMC7573360 DOI: 10.3389/fimmu.2020.551449] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammatory condition with no effective treatment. Probiotics have gained wide attention because of their outstanding advantages in intestinal health issues. In previous studies, a novel soluble protein, HM0539, which is derived from Lactobacillus rhamnosus GG (LGG), showed significant protective effects against murine colitis, but no clear precise mechanism for this effect was provided. In this study, we hypothesized that the protective function of HM0539 might be derived from its modulation of the TLR4/Myd88/NF-κB axis signaling pathway, which is a critical pathway widely involved in the modulation of inflammatory responses. To test this hypothesis, the underlying anti-inflammatory effects and associated mechanisms of HM0539 were determined both in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and in dextran sulfate sodium (DSS)-induced murine colitis. Our results showed that HM0539 inhibited the expression of cyclooxygenase-2 (COX-2) and the expression inducible nitric oxide synthase (iNOS) by down-regulating the activation of their respective promoter, and as a result this inhibited the production of prostaglandin E2 (PGE2) and nitric oxide (NO). Meanwhile, we demonstrated that HM0539 could ultimately modulate the activation of distal NF-κB by reducing the activation of TLR4 and suppressing the transduction of MyD88. However, even though the overexpression of TLR4 or MyD88 obviously reversed the effect of HM0539 on LPS-induced inflammation, HM0539 still retained some anti-inflammatory activity. Consistent with the in vitro findings, we found that HM0539 inhibited to a great extent the production of inflammatory mediators associated with the suppression of the TLR4/Myd88/NF-κB axis activation in colon tissue. In conclusion, HM0539 was shown to be a promising anti-inflammatory agent, at least in part through its down-regulation of the TLR4-MyD88 axis as well as of the downstream MyD88-dependent activated NF-κB signaling, and hence might be considered as a potential therapeutic option for IBD.
Collapse
Affiliation(s)
- Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingxian Lun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
200
|
Tu L, Gharibani P, Yin J, Chen JDZ. Sacral nerve stimulation ameliorates colonic barrier functions in a rodent model of colitis. Neurogastroenterol Motil 2020; 32:e13916. [PMID: 32537873 DOI: 10.1111/nmo.13916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/30/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mucosal barrier damage is recognized as one of the key factors in the pathogenesis of colitis. While sacral nerve stimulation (SNS) was reported to have therapeutic potential for colitis, its mechanisms of actions on colonic permeability remained largely unknown. METHODS In this study, colitis was induced by intrarectal administration of TNBS in rats. Five days later, they were treated with SNS or sham-SNS for 10 days. The effects of SNS on colonic permeability were assessed by measuring the expression of tight-junction proteins involved in regulating permeability and the FITC-dextran test. The mechanism of actions of SNS was investigated by studying the function of the enteric nervous system (ENS) cells and analyzing the autonomic nervous system. KEY RESULTS SNS decreased the disease activity index, microscopic and macroscopic scores, myeloperoxidase activity, and pro-inflammatory cytokines (TNF-α, IL-6). SNS increased the expression of Zonula Occludens-1, Occludin, Claudin-1, and Junctional adhesion molecule-A in the colon tissue. The FITC-dextran test showed that the colonic permeability was lower with SCS than sham-SNS. SNS increased ChAT, pancreatic polypeptide, and GDNF and reduced norepinephrine NGF, sub-P, and mast cell overactivation in the colon tissue. Concurrently, SNS increased acetylcholine in colon tissues and elevated vagal efferent activity. CONCLUSIONS & INFERENCES SNS ameliorates colonic inflammation and enhances colonic barrier function with the proposed mechanisms involving the increase in parasympathetic activity and modulation of the activity of the ENS and immune system, including mast cells.
Collapse
Affiliation(s)
- Lei Tu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Payam Gharibani
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|