151
|
Chen J, Zhang H, Zhang X, Tang M. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K +/Na + Homeostasis. FRONTIERS IN PLANT SCIENCE 2017; 8:1739. [PMID: 29067036 DOI: 10.3389/fpls.2017.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 05/19/2023]
Abstract
Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on the photosynthetic capacity, water status, and K+/Na+ homeostasis lead to the improved growth performance and salt tolerance of black locust exposed to salt stress.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Forestry, Northwest A&F University, Yangling, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xinlu Zhang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
152
|
Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R. Improvement of Salt Tolerance Using Wild Rice Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:2269. [PMID: 29387076 PMCID: PMC5776132 DOI: 10.3389/fpls.2017.02269] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Salt stress causes significant reductions in rice production worldwide; thus, improving salt tolerance is a promising approach to meet the increasing food demand. Wild rice germplasm is considered a valuable genetic resource for improving rice cultivars. However, information regarding the improvement of salt tolerance in cultivated rice using wild rice genes is limited. In this study, we identified a salt-tolerant line Dongxiang/Ningjing 15 (DJ15) under salt-stress field conditions from the population of a salt tolerant Dongxiang wild rice × a cultivated rice variety Ningjing16 (NJ16). Genomic resequencing analysis of NJ16, DJ15 and Dongxiang wild rice revealed that the introgressed genomic fragments were unevenly distributed over the 12 chromosomes (Chr.) and mainly identified on Chr. 6, 7, 10, and 11. Using quantitative trait locus (QTL) mapping, we found 9 QTL for salt tolerance (qST) at the seedling stage located on Chr. 1, 3, 4, 5, 6, 8, and 10. In addition, sequence variant analysis within the QTL regions demonstrated that SKC1/HKT8/HKT1;5 and HAK6 transporters along with numerous transcriptional factors were the candidate genes for the salt tolerant QTL. The DJ15/Koshihikari recombinant inbred lines that contained both qST1.2 and qST6, two QTL with the highest effect for salt tolerance, were more tolerant than the parental lines under salt-stress field conditions. Furthermore, the qST6 near-isogenic lines with IR29 background were more tolerant than IR29, indicating that qST1.2 and qST6 could improve salt tolerance in rice. Overall, our study indicates that wild rice genes could markedly improve the salt tolerance of cultivated rice.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Ruidang Quan
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Jian Hui
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haibo Bai
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuelian Lyu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yongxing Zhu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Shuhua Li
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Shuhua Li
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- Rongfeng Huang
| |
Collapse
|
153
|
Wang CM, Xia ZR, Wu GQ, Yuan HJ, Wang XR, Li JH, Tian FP, Zhang Q, Zhu XQ, He JJ, Kumar T, Wang XL, Zhang JL. The coordinated regulation of Na + and K + in Hordeum brevisubulatum responding to time of salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:358-366. [PMID: 27717472 DOI: 10.1016/j.plantsci.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 05/20/2023]
Abstract
Hordeum brevisubulatum, called as wild barley, is a useful monocotyledonous halophyte for soil improvement in northern China. Although previously studied, its main salt tolerance mechanism remained controversial. The current work showed that shoot Na+ concentration was increased rapidly with stress time and significantly higher than in wheat during 0-168h of 100mM NaCl treatment. Similar results were also found under 25 and 50mM NaCl treatments. Even K+ was increased from 0.01 to 50mM in the cultural solution, no significant effect was found on tissue Na+ concentrations. Interestingly, shoot growth was improved, and stronger root activity was maintained in H. brevisubulatum compared with wheat after 7days treatment of 100mM NaCl. To investigate the long-term stress impact on tissue Na+, 100mM NaCl was prolonged to 60 days. The maximum values of Na+ concentrations were observed at 7th in shoot and 14th day in roots, respectively, and then decreased gradually. Micro-electrode ion flux estimation was used and it was found that increasing Na+ efflux while maintaining K+ influx were the major strategies to reduce the Na+ concentration during long-term salt stress. Moreover, leaf Na+ secretions showed little contribution to the tissue Na+ decrease. Thereby, the physiological mechanism for H. brevisubulatum to survive from long-term salt stress was proposed that rapid Na+ accumulation occurred in the shoot to respond the initial salt shock, then Na+ efflux was triggered and K+ influx was activated to maintain a stable K+/Na+ ratio in tissues.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Zeng-Run Xia
- State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Guo-Qiang Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China
| | - Hui-Jun Yuan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China
| | - Xin-Rui Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jin-Hua Li
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Fu-Ping Tian
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Qian Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Xin-Qiang Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Jiong-Jie He
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China
| | - Tanweer Kumar
- State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Xiao-Li Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, People's Republic of China.
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China.
| |
Collapse
|
154
|
Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution. MYCORRHIZA 2016; 26:673-84. [PMID: 27113587 DOI: 10.1007/s00572-016-0704-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.
Collapse
Affiliation(s)
- Rosa Porcel
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain
| | - Rosario Azcon
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda n° 1, 18008, Granada, Spain.
| |
Collapse
|
155
|
Nieves-Cordones M, Al Shiblawi FR, Sentenac H. Roles and Transport of Sodium and Potassium in Plants. Met Ions Life Sci 2016; 16:291-324. [PMID: 26860305 DOI: 10.1007/978-3-319-21756-7_9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The two alkali cations Na(+) and K(+) have similar relative abundances in the earth crust but display very different distributions in the biosphere. In all living organisms, K(+) is the major inorganic cation in the cytoplasm, where its concentration (ca. 0.1 M) is usually several times higher than that of Na(+). Accumulation of Na(+) at high concentrations in the cytoplasm results in deleterious effects on cell metabolism, e.g., on photosynthetic activity in plants. Thus, Na(+) is compartmentalized outside the cytoplasm. In plants, it can be accumulated at high concentrations in vacuoles, where it is used as osmoticum. Na(+) is not an essential element in most plants, except in some halophytes. On the other hand, it can be a beneficial element, by replacing K(+) as vacuolar osmoticum for instance. In contrast, K(+) is an essential element. It is involved in electrical neutralization of inorganic and organic anions and macromolecules, pH homeostasis, control of membrane electrical potential, and the regulation of cell osmotic pressure. Through the latter function in plants, it plays a role in turgor-driven cell and organ movements. It is also involved in the activation of enzymes, protein synthesis, cell metabolism, and photosynthesis. Thus, plant growth requires large quantities of K(+) ions that are taken up by roots from the soil solution, and then distributed throughout the plant. The availability of K(+) ions in the soil solution, slowly released by soil particles and clays, is often limiting for optimal growth in most natural ecosystems. In contrast, due to natural salinity or irrigation with poor quality water, detrimental Na(+) concentrations, toxic for all crop species, are present in many soils, representing 6 % to 10 % of the earth's land area. Three families of ion channels (Shaker, TPK/KCO, and TPC) and 3 families of transporters (HAK, HKT, and CPA) have been identified so far as contributing to K(+) and Na(+) transport across the plasmalemma and internal membranes, with high or low ionic selectivity. In the model plant Arabidopsis thaliana, these families gather at least 70 members. Coordination of the activities of these systems, at the cell and whole plant levels, ensures plant K(+) nutrition, use of Na(+) as a beneficial element, and adaptation to saline conditions.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France
| | - Fouad Razzaq Al Shiblawi
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France
| | - Hervé Sentenac
- Laboratory of Plant Biochemistry and Molecular Physiology, UMR BPMP CNRS/INRA/MontpellierSupAgro, University of Montpellier, INRA, Place Viala, F-34060, Montpellier cedex 1, France.
| |
Collapse
|
156
|
Campos JF, Cara B, Pérez-Martín F, Pineda B, Egea I, Flores FB, Fernandez-Garcia N, Capel J, Moreno V, Angosto T, Lozano R, Bolarin MC. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1345-56. [PMID: 26578112 PMCID: PMC11388943 DOI: 10.1111/pbi.12498] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 05/09/2023]
Abstract
A screening under salt stress conditions of a T-DNA mutant collection of tomato (Solanum lycopersicum L.) led to the identification of the altered response to salt stress 1 (ars1) mutant, which showed a salt-sensitive phenotype. Genetic analysis of the ars1 mutation revealed that a single T-DNA insertion in the ARS1 gene was responsible of the mutant phenotype. ARS1 coded for an R1-MYB type transcription factor and its expression was induced by salinity in leaves. The mutant reduced fruit yield under salt acclimation while in the absence of stress the disruption of ARS1 did not affect this agronomic trait. The stomatal behaviour of ars1 mutant leaves induced higher Na(+) accumulation via the transpiration stream, as the decreases of stomatal conductance and transpiration rate induced by salt stress were markedly lower in the mutant plants. Moreover, the mutation affected stomatal closure in a response mediated by abscisic acid (ABA). The characterization of tomato transgenic lines silencing and overexpressing ARS1 corroborates the role of the gene in regulating the water loss via transpiration under salinity. Together, our results show that ARS1 tomato gene contributes to reduce transpirational water loss under salt stress. Finally, this gene could be interesting for tomato molecular breeding, because its manipulation could lead to improved stress tolerance without yield penalty under optimal culture conditions.
Collapse
Affiliation(s)
- Juan F Campos
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Beatriz Cara
- Agro-Food Biotechnology Research Centre (BITAL), University of Almeria, Almería, Spain
| | - Fernando Pérez-Martín
- Agro-Food Biotechnology Research Centre (BITAL), University of Almeria, Almería, Spain
| | - Benito Pineda
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Valencia, Spain
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | - Francisco B Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| | | | - Juan Capel
- Agro-Food Biotechnology Research Centre (BITAL), University of Almeria, Almería, Spain
| | - Vicente Moreno
- Department of Plant Biotechnology and In Vitro Culture, IBMCP-UPV/CSIC, Valencia, Spain
| | - Trinidad Angosto
- Agro-Food Biotechnology Research Centre (BITAL), University of Almeria, Almería, Spain
| | - Rafael Lozano
- Agro-Food Biotechnology Research Centre (BITAL), University of Almeria, Almería, Spain
| | - Maria C Bolarin
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia, Spain
| |
Collapse
|
157
|
Rahman MA, Thomson MJ, Shah-E-Alam M, de Ocampo M, Egdane J, Ismail AM. Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. ANNALS OF BOTANY 2016; 117:1083-97. [PMID: 27063367 PMCID: PMC4866315 DOI: 10.1093/aob/mcw030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/27/2015] [Accepted: 01/12/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Agricultural productivity is increasingly being affected by the build-up of salinity in soils and water worldwide. The genetic base of salt-tolerant rice donors being used in breeding is relatively narrow and needs broadening to breed varieties with wider adaptation to salt-affected areas. This study evaluated a large set of rice accessions of diverse origins to identify and characterize novel sources of salt tolerance. METHODS Diversity analysis was performed on 107 germplasm accessions using a genome-wide set of 376 single-nucleotide polymorphism (SNP) markers, along with characterization of allelic diversity at the major quantitative trait locus Saltol Sixty-nine accessions were further evaluated for physiological traits likely associated with responses to salt stress during the seedling stage. KEY RESULTS Three major clusters corresponding to the indica, aus and aromatic subgroups were identified. The largest group was indica, with the salt-tolerant Pokkali accessions in one sub-cluster, while a set of Bangladeshi landraces, including Akundi, Ashfal, Capsule, Chikirampatnai and Kutipatnai, were in a different sub-cluster. A distinct aus group close to indica contained the salt-tolerant landrace Kalarata, while a separate aromatic group closer to japonica rice contained a number of traditional, but salt-sensitive Bangladeshi landraces. These accessions have different alleles at the Saltol locus. Seven landraces - Akundi, Ashfal, Capsule, Chikirampatnai, Jatai Balam, Kalarata and Kutipatnai - accumulated less Na and relatively more K, maintaining a lower Na/K ratio in leaves. They effectively limit sodium transport to the shoot. CONCLUSIONS New salt-tolerant landraces were identified that are genetically and physiologically distinct from known donors. These landraces can be used to develop better salt-tolerant varieties and could provide new sources of quantitative trait loci/alleles for salt tolerance for use in molecular breeding. The diversity observed within this set and in other donors suggests multiple mechanisms that can be combined for higher salt tolerance.
Collapse
Affiliation(s)
- M Akhlasur Rahman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Michael J Thomson
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M Shah-E-Alam
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Marjorie de Ocampo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - James Egdane
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines,
| |
Collapse
|
158
|
Nguyen CT, Agorio A, Jossier M, Depré S, Thomine S, Filleur S. Characterization of the Chloride Channel-Like, AtCLCg, Involved in Chloride Tolerance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:764-75. [PMID: 26556649 DOI: 10.1093/pcp/pcv169] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/28/2015] [Indexed: 05/22/2023]
Abstract
In plant cells, anion channels and transporters are essential for key functions such as nutrition, ion homeostasis and resistance to biotic or abiotic stresses. We characterized AtCLCg, a member of the chloride channel (CLC) family in Arabidopsis localized in the vacuolar membrane. When grown on NaCl or KCl, atclcg knock-out mutants showed a decrease in biomass. In the presence of NaCl, these mutants overaccumulate chloride in shoots. No difference in growth was detected in response to osmotic stress by mannitol. These results suggest a physiological function of AtCLCg in the chloride homeostasis during NaCl stress. AtCLCg shares a high degree of identity (62%) with AtCLCc, another vacuolar CLC essential for NaCl tolerance. However, the atclcc atclccg double mutant is not more sensitive to NaCl than single mutants. As the effects of both mutations are not additive, gene expression analyses were performed and revealed that: (i)AtCLCg is expressed in mesophyll cells, hydathodes and phloem while AtCLCc is expressed in stomata; and (ii)AtCLCg is repressed in the atclcc mutant background, and vice versa. Altogether these results demonstrate that both AtCLCc and AtCLCg are important for tolerance to excess chloride but not redundant, and form part of a regulatory network controlling chloride sensitivity.
Collapse
Affiliation(s)
- Chi Tam Nguyen
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, F-91198 Gif-sur-Yvette, France
| | - Astrid Agorio
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, F-91198 Gif-sur-Yvette, France
| | - Mathieu Jossier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, F-91198 Gif-sur-Yvette, France
| | - Sylvain Depré
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, F-91198 Gif-sur-Yvette, France
| | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, F-91198 Gif-sur-Yvette, France
| | - Sophie Filleur
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, F-91198 Gif-sur-Yvette, France Université Paris 7 Denis Diderot, UFR Sciences du Vivant, 35 rue Hélène Brion, F-75205 Paris Cedex 13, France
| |
Collapse
|
159
|
Kleist TJ, Luan S. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment. PLANT, CELL & ENVIRONMENT 2016; 39:467-481. [PMID: 26139029 DOI: 10.1111/pce.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Despite substantial variation and irregularities in their environment, plants must conform to spatiotemporal demands on the molecular composition of their cytosol. Cell membranes are the major interface between organisms and their environment and the basis for controlling the contents and intracellular organization of the cell. Membrane transport proteins (MTPs) govern the flow of molecules across membranes, and their activities are closely monitored and regulated by cell signalling networks. By continuously adjusting MTP activities, plants can mitigate the effects of environmental perturbations, but effective implementation of this strategy is reliant on precise coordination among transport systems that reside in distinct cell types and membranes. Here, we examine the role of calcium signalling in the coordination of membrane transport, with an emphasis on potassium transport. Potassium is an exceptionally abundant and mobile ion in plants, and plant potassium transport has been intensively studied for decades. Classic and recent studies have underscored the importance of calcium in plant environmental responses and membrane transport regulation. In reviewing recent advances in our understanding of the coding and decoding of calcium signals, we highlight established and emerging roles of calcium signalling in coordinating membrane transport among multiple subcellular locations and distinct transport systems in plants, drawing examples from the CBL-CIPK signalling network. By synthesizing classical studies and recent findings, we aim to provide timely insights on the role of calcium signalling networks in the modulation of membrane transport and its importance in plant environmental responses.
Collapse
Affiliation(s)
- Thomas J Kleist
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| | - Sheng Luan
- University of California, Berkeley, Department of Plant & Microbial Biology, Berkeley, CA, 94720, USA
| |
Collapse
|
160
|
Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:835-44. [PMID: 26585227 PMCID: PMC4737075 DOI: 10.1093/jxb/erv493] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na(+) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na(+) from the xylem, thus limiting the rates of Na(+) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na(+)/H(+) exchanger in both root cortical and stelar tissues. Net Na(+) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na(+)/H(+) exchanger) and was mirrored by net H(+) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na(+) content. One enhances the retrieval of Na(+) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na(+) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na(+) delivery to the shoot.
Collapse
Affiliation(s)
- Min Zhu
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Tracey A Cuin
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs Platz 2, D-97082 Würzburg, Germany
| | - Xin Huang
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Rana Munns
- School of Plant Biology and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley WA 6009, Australia CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
161
|
Ariyarathna HACK, Oldach KH, Francki MG. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat. BMC PLANT BIOLOGY 2016; 16:21. [PMID: 26786911 PMCID: PMC4719669 DOI: 10.1186/s12870-016-0714-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/14/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the HKT transporter genes ascertain some of the key determinants of crop salt tolerance mechanisms, the diversity and functional role of group II HKT genes are not clearly understood in bread wheat. The advanced knowledge on rice HKT and whole genome sequence was, therefore, used in comparative gene analysis to identify orthologous wheat group II HKT genes and their role in trait variation under different saline environments. RESULTS The four group II HKTs in rice identified two orthologous gene families from bread wheat, including the known TaHKT2;1 gene family and a new distinctly different gene family designated as TaHKT2;2. A single copy of TaHKT2;2 was found on each homeologous chromosome arm 7AL, 7BL and 7DL and each gene was expressed in leaf blade, sheath and root tissues under non-stressed and at 200 mM salt stressed conditions. The proteins encoded by genes of the TaHKT2;2 family revealed more than 93% amino acid sequence identity but ≤52% amino acid identity compared to the proteins encoded by TaHKT2;1 family. Specifically, variations in known critical domains predicted functional differences between the two protein families. Similar to orthologous rice genes on chromosome 6L, TaHKT2;1 and TaHKT2;2 genes were located approximately 3 kb apart on wheat chromosomes 7AL, 7BL and 7DL, forming a static syntenic block in the two species. The chromosomal region on 7AL containing TaHKT2;1 7AL-1 co-located with QTL for shoot Na(+) concentration and yield in some saline environments. CONCLUSION The differences in copy number, genes sequences and encoded proteins between TaHKT2;2 homeologous genes and other group II HKT gene families within and across species likely reflect functional diversity for ion selectivity and transport in plants. Evidence indicated that neither TaHKT2;2 nor TaHKT2;1 were associated with primary root Na(+) uptake but TaHKT2;1 may be associated with trait variation for Na(+) exclusion and yield in some but not all saline environments.
Collapse
Affiliation(s)
- H A Chandima K Ariyarathna
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, 6009, Western Australia.
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
| | - Klaus H Oldach
- South Australia Research Development Institute, Plant Genomics Centre, Waite Research Precinct, Urrbrae, 5064, South Australia.
| | - Michael G Francki
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, 6150, Western Australia.
- Department of Agriculture and Food Western Australia, South Perth, 6151, Western Australia.
| |
Collapse
|
162
|
Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi NI, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y, Schroeder JI, Ma JF, Horie T. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC PLANT BIOLOGY 2016; 16:22. [PMID: 26786707 PMCID: PMC4719677 DOI: 10.1186/s12870-016-0709-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/11/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Na(+) exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K(+) transporter (HKT) family have been demonstrated to mediate leaf blade-Na(+) exclusion upon salinity stress via Na(+)-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na(+) exclusion mechanism in rice remain to be elucidated. RESULTS Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na(+) transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na(+) selectivity among cations tested, including Li(+), Na(+), K(+), Rb(+), Cs(+), and NH4 (+), in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na(+) overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, (22)Na(+) tracer experiments using peduncles of RNAi and WT plants suggested xylem Na(+) unloading by OsHKT1;4. CONCLUSIONS Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na(+) exclusion in stems together with leaf sheaths, thus excluding Na(+) from leaf blades of a japonica rice cultivar in the reproductive growth stage, but the contribution is low when the plants are in the vegetative growth stage.
Collapse
Grants
- P42 ES010337 NIEHS NIH HHS
- P42ES010337 NIEHS NIH HHS
- Ministry of Education, Culture, Sports, Science, and Technology (JP)
- Ministry of Education, Culture, Sports, Science, and Technology as part of the Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University (JP)
- Public Foundation of Chubu Science and Technology Center (JP)
- Ministero dell’Istruzione, dell’Università e della Ricerca Fondo per gli Investimenti della Ricerca di Base (FIRB) 2010
- National Institutes of Health (US)
Collapse
Affiliation(s)
- Kei Suzuki
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan.
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy.
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133, Milan, Italy.
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama, 700-8530, Japan.
| | - Natsuko I Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Tatsuhiko Kashiwagi
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan.
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
| | - Cun Wang
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, SanDiego, La Jolla, CA, 92093-0116, USA.
| | - Keitaro Tanoi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama, 700-8530, Japan.
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, SanDiego, La Jolla, CA, 92093-0116, USA.
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
163
|
Gharsallah C, Fakhfakh H, Grubb D, Gorsane F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AOB PLANTS 2016; 8:plw055. [PMID: 27543452 PMCID: PMC5091694 DOI: 10.1093/aobpla/plw055] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/29/2016] [Indexed: 05/20/2023]
Abstract
Salinity is a constraint limiting plant growth and productivity of crops throughout the world. Understanding the mechanism underlying plant response to salinity provides new insights into the improvement of salt tolerance-crops of importance. In the present study, we report on the responses of twenty cultivars of tomato. We have clustered genotypes into scale classes according to their response to increased NaCl levels. Three local tomato genotypes, representative of different saline scale classes, were selected for further investigation. During early (0 h, 6 h and 12 h) and later (7 days) stages of the response to salt treatment, ion concentrations (Na+, K+ and Ca2+), proline content, enzyme activities (catalase, ascorbate peroxidase and guiacol peroxidase) were recorded. qPCR analysis of candidate genes WRKY (8, 31and 39), ERF (9, 16 and 80), LeNHX (1, 3 and 4) and HKT (class I) were performed. A high K+, Ca2 +and proline accumulation as well as a decrease of Na+ concentration-mediated salt tolerance. Concomitant with a pattern of high-antioxidant enzyme activities, tolerant genotypes also displayed differential patterns of gene expression during the response to salt stress.
Collapse
Affiliation(s)
- Charfeddine Gharsallah
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, Tunis 2092, Tunisia
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, Tunis 2092, Tunisia Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Douglas Grubb
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle, 06120 Saale, Germany
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, Tunis 2092, Tunisia Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| |
Collapse
|
164
|
Álvarez-Aragón R, Haro R, Benito B, Rodríguez-Navarro A. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation. PLANTA 2016; 243:97-114. [PMID: 26345991 DOI: 10.1007/s00425-015-2400-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/28/2015] [Indexed: 05/21/2023]
Abstract
Arabidopsis plants in NaCl suffering half growth inhibition do not suffer osmotic stress and seldom shoot Na (+) toxicity; overaccumulation of Na (+) plus K (+) might trigger the inhibition. It is widely assumed that salinity inhibits plant growth by osmotic stress and shoot Na(+) toxicity. This study aims to examine the growth inhibition of Arabidopsis thaliana by NaCl concentrations that allow the completion of the life cycle. Unaffected Col-0 wild-type plants were used to define nontoxic Na(+) contents; Na(+) toxicities in shoots and roots were analyzed in hkt1 and sos1 mutants, respectively. The growth inhibition of Col-0 plants at 40 mM Na(+) was mild and equivalent to that produced by 8 and 4 mM Na(+) in hkt1 and sos1 plants, respectively. Therefore, these mutants allowed to study the toxicity of Na(+) in the absence of an osmotic challenge. Col-0 and Ts-1 accessions showed very different Na(+) contents but similar growth inhibitions; Ts-1 plants showed very high leaf Na(+) contents but no symptoms of Na(+) toxicity. Ak-1, C24, and Fei-0 plants were highly affected by NaCl showing evident symptoms of shoot Na(+) toxicity. Increasing K(+) in isotonic NaCl/KCl combinations dramatically decreased the Na(+) content in all Arabidopsis accessions and eliminated the signs of Na(+) toxicity in most of them but did not relieve growth inhibition. This suggested that the dominant inhibition in these conditions was either osmotic or of an ionic nature unspecific for Na(+) or K(+). Col-0 and Ts-1 plants growing in sorbitol showed a clear osmotic stress characterized by a notable decrease of their water content, but this response did not occur in NaCl. Overaccumulation of Na(+) plus K(+) might trigger growth reduction in NaCl-treated plants.
Collapse
Affiliation(s)
- Rocío Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Alonso Rodríguez-Navarro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
165
|
Suzuki K, Costa A, Nakayama H, Katsuhara M, Shinmyo A, Horie T. OsHKT2;2/1-mediated Na(+) influx over K(+) uptake in roots potentially increases toxic Na(+) accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress. JOURNAL OF PLANT RESEARCH 2016; 129:67-77. [PMID: 26578190 DOI: 10.1007/s10265-015-0764-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/18/2015] [Indexed: 05/10/2023]
Abstract
HKT transporters are Na(+)-permeable membrane proteins, which mediate Na(+) and K(+) homeostasis in K(+)-depleted and saline environments in plants. Class II HKT transporters, a distinct subgroup found predominantly in monocots, are known to mediate Na(+)-K(+) co-transport in principle. Here we report features of ion transport functions of No-OsHKT2;2/1, a class II transporter identified in a salt tolerant landrace of indica rice, Nona Bokra. We profiled No-OsHKT2;2/1 expression in organs of Nona Bokra plants with or without salinity stress. Dominant accumulation of the No-OsHKT2;2/1 transcript in K(+)-starved roots of Nona Bokra plants largely disappeared in response to 50 mM NaCl. We found that No-OsHKT2;2/1 expressed in the high-affinity K(+) uptake deficient mutant of Saccharomyces cerevisiae and Xenopus laevis oocytes shows robust K(+) selectivity even in the presence of a large amount of NaCl as reported previously. However, No-OsHKT2;2/1-expressing yeast cells exhibited Na(+) hypersensitive growth under various concentrations of K(+) and Na(+) as the cells expressing Po-OsHKT2;2, a similar class II transporter from another salt tolerant indica rice Pokkali, when compared with the growth of cells harboring empty vector or cells expressing OsHKT2;4. The OsHKT2;4 protein expressed in Xenopus oocytes showed strong K(+) selectivity in the presence of 50 mM NaCl in comparison with No-OsHKT2;2/1 and Po-OsHKT2;2. Together with apparent plasma membrane-localization of No-OsHKT2;2/1, these results point to possibilities that No-OsHKT2;2/1 could mediate destructive Na(+) influx over K(+) uptake in Nona Bokra plants upon salinity stress, and that a predominant physiological function of No-OsHKT2;2/1 might be the acquisition of Na(+) and K(+) in K(+)-limited environments.
Collapse
Affiliation(s)
- Kei Suzuki
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133, Milan, Italy
| | - Hideki Nakayama
- Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Atsuhiko Shinmyo
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
166
|
Lv S, Jiang P, Nie L, Chen X, Tai F, Wang D, Fan P, Feng J, Bao H, Wang J, Li Y. H(+) -pyrophosphatase from Salicornia europaea confers tolerance to simultaneously occurring salt stress and nitrogen deficiency in Arabidopsis and wheat. PLANT, CELL & ENVIRONMENT 2015; 38:2433-49. [PMID: 25920512 DOI: 10.1111/pce.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/20/2015] [Indexed: 05/14/2023]
Abstract
High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H(+) -PPase is involved in salt-stimulated NO3 (-) uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H(+) -PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K(+) /Na(+) ratio in leaves and exhibited increased NO3 (-) uptake, inorganic pyrophosphate-dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up-regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up-regulation of H(+) -PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland.
Collapse
Affiliation(s)
- Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lingling Nie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xianyang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengxiang Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
167
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
168
|
Yu Y, Assmann SM. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. PLANT, CELL & ENVIRONMENT 2015; 38:2143-56. [PMID: 25808946 DOI: 10.1111/pce.12542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/20/2015] [Accepted: 03/05/2015] [Indexed: 05/07/2023]
Abstract
Salinity stress includes both osmotic and ionic toxicity. Sodium homeostasis is influenced by Na(+) uptake and extrusion, vacuolar Na(+) compartmentation and root to shoot Na(+) translocation via transpiration. The knockout mutant of the Arabidopsis heterotrimeric G-protein Gβ subunit, agb1, is hypersensitive to salt, exhibiting a leaf bleaching phenotype. We show that AGB1 is mainly involved in the ionic toxicity component of salinity stress and plays roles in multiple processes of Na(+) homeostasis. agb1 mutants accumulate more Na(+) and less K(+) in both shoots and roots of hydroponically grown plants, as measured by inductively coupled plasma atomic emission spectrometry. agb1 plants have higher root to shoot translocation rates of radiolabelled (24) Na(+) under transpiring conditions, as a result of larger stomatal apertures and increased stomatal conductance. (24) Na(+) tracer experiments also show that (24) Na(+) uptake rates by excised roots of agb1 and wild type are initially equal, but that agb1 has higher net Na(+) uptake at 90 min, implicating possible involvement of AGB1 in the regulation of Na(+) efflux. Calcium alleviates the salt hypersensitivity of agb1 by reducing Na(+) accumulation to below the toxicity threshold. Our results provide new insights into the regulatory pathways underlying plant responses to salinity stress, an important agricultural problem.
Collapse
Affiliation(s)
- Yunqing Yu
- Biology Department, Pennsylvania State University, University Park, PA, 16802-5301, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, PA, 16802-5301, USA
| |
Collapse
|
169
|
Polle A, Chen S. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. PLANT, CELL & ENVIRONMENT 2015; 38:1794-816. [PMID: 25159181 DOI: 10.1111/pce.12440] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/11/2014] [Accepted: 08/17/2014] [Indexed: 05/04/2023]
Abstract
Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed.
Collapse
Affiliation(s)
- Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Göttingen, 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
170
|
Chunthaburee S, Dongsansuk A, Sanitchon J, Pattanagul W, Theerakulpisut P. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi J Biol Sci 2015; 23:467-77. [PMID: 27298579 PMCID: PMC4890196 DOI: 10.1016/j.sjbs.2015.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 11/02/2022] Open
Abstract
Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K(+)/Na(+) ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K(+)/Na(+) ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K(+)/Na(+) ratio and chlorophyll accumulation.
Collapse
Affiliation(s)
| | - Anoma Dongsansuk
- Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jirawat Sanitchon
- Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wattana Pattanagul
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyada Theerakulpisut
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
171
|
Katschnig D, Bliek T, Rozema J, Schat H. Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:144-54. [PMID: 25804817 DOI: 10.1016/j.plantsci.2015.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 05/08/2023]
Abstract
We investigated the effects of salinity on ion accumulation and expression of candidate salt tolerance genes in the highly tolerant salt accumulating halophyte Salicornia dolichostachya and the taxonomically related glycophytic Spinacia oleracea. S. dolichostachya, in comparison with S. oleracea, constitutively expressed SOS1 at a high level, but did not detectably express HKT1;1. These findings suggest that the constitutive high level of shoot salt accumulation in S. dolichostachya is accomplished through enhancement of SOS1-mediated Na(+) xylem loading, in combination with complete suppression of HKT1;1-mediated Na(+) retrieval from the xylem. Our findings demonstrate the importance of gene expression comparisons between highly tolerant halophytes and taxonomically related glycophytes to improve the understanding of mechanisms of Na(+) movement and salt tolerance in plants.
Collapse
Affiliation(s)
- D Katschnig
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - T Bliek
- Department of Genetics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - J Rozema
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - H Schat
- Department of Genetics, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
172
|
Vaid N, Pandey P, Srivastava VK, Tuteja N. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. PLANT MOLECULAR BIOLOGY 2015; 88:193-206. [PMID: 25863480 DOI: 10.1007/s11103-015-0319-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/04/2015] [Indexed: 05/29/2023]
Abstract
Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway.
Collapse
Affiliation(s)
- Neha Vaid
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | |
Collapse
|
173
|
Pinto E, Ferreira IMPLVO. Cation transporters/channels in plants: Tools for nutrient biofortification. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:64-82. [PMID: 25841207 DOI: 10.1016/j.jplph.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 05/07/2023]
Abstract
Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.
Collapse
Affiliation(s)
- Edgar Pinto
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal; CISA - Research Centre on Environment and Health, School of Allied Health Sciences, Polytechnic Institute of Porto, Portugal.
| | - Isabel M P L V O Ferreira
- REQUIMTE/Department of Chemical Sciences, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy - University of Porto, Portugal
| |
Collapse
|
174
|
Fujimaki S, Maruyama T, Suzui N, Kawachi N, Miwa E, Higuchi K. Base to Tip and Long-Distance Transport of Sodium in the Root of Common Reed [Phragmites australis (Cav.) Trin. ex Steud.] at Steady State Under Constant High-Salt Conditions. PLANT & CELL PHYSIOLOGY 2015; 56:943-50. [PMID: 25667113 DOI: 10.1093/pcp/pcv021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 02/03/2015] [Indexed: 05/18/2023]
Abstract
We analyzed the directions and rates of translocation of sodium ions (Na(+)) within tissues of a salt-tolerant plant, common reed [Phragmites australis (Cav.) Trin. ex Steud.], and a salt-sensitive plant, rice (Oryza sativa L.), under constant high-salt conditions using radioactive (22)Na tracer and a positron-emitting tracer imaging system (PETIS). First, the test plants were incubated in a nutrient solution containing 50 mM NaCl and a trace level of (22)Na for 24 h (feeding step). Then the original solution was replaced with a fresh solution containing 50 mM NaCl but no (22)Na, in which the test plants remained for >48 h (chase step). Non-invasive dynamic visualization of (22)Na distribution in the test plants was conducted during feeding and chase steps with PETIS. Our results revealed that (22)Na was absorbed in the roots of common reed, but not transported to the upper shoot beyond the shoot base. During the chase step, a basal to distal movement of (22)Na was detected within the root tissue over >5 cm with a velocity of approximately 0.5 cm h(-1). On the other hand, (22)Na that was absorbed in the roots of rice was continuously translocated to and accumulated in the whole shoot. We concluded that the basal roots and the shoot base of common reed have constitutive functions of Na(+) exclusion only in the direction of root tips, even under constant high-salt conditions. This function apparently may contribute to the low Na(+) concentration in the upper shoot and high salt tolerance of common reed.
Collapse
Affiliation(s)
- Shu Fujimaki
- Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma, 370-1292 Japan
| | - Teppei Maruyama
- Laboratory of Plant Production Chemistry, Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502 Japan
| | - Nobuo Suzui
- Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma, 370-1292 Japan
| | - Naoki Kawachi
- Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma, 370-1292 Japan
| | - Eitaro Miwa
- Laboratory of Plant Production Chemistry, Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502 Japan
| | - Kyoko Higuchi
- Laboratory of Plant Production Chemistry, Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502 Japan
| |
Collapse
|
175
|
Yuan HJ, Ma Q, Wu GQ, Wang P, Hu J, Wang SM. ZxNHX controls Na⁺ and K⁺ homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. ANNALS OF BOTANY 2015; 115:495-507. [PMID: 25252687 PMCID: PMC4332602 DOI: 10.1093/aob/mcu177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/09/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS In order to cope with arid environments, the xerohalophyte Zygophyllum xanthoxylum efficiently compartmentalizes Na(+) into vacuoles, mediated by ZxNHX, and maintains stability of K(+) in its leaves. However, the function of ZxNHX in controlling Na(+) and K(+) homeostasis at the whole-plant level remains unclear. In this study, the role of ZxNHX in regulating the expression of genes involved in Na(+) and K(+) transport and spatial distribution was investigated. METHODS The role of ZxNHX in maintaining Na(+) and K(+) homeostasis in Z. xanthoxylum was studied using post-transcriptional gene silencing via Agrobacterium-mediated transformation. Transformed plants were grown with or without 50 mm NaCl, and expression levels and physiological parameters were measured. KEY RESULTS It was found that 50 mm NaCl induced a 620 % increase in transcripts of ZxSOS1 but only an 80 % increase in transcripts of ZxHKT1;1 in roots of wild-type (WT) plants. Consequently, the ability of ZxSOS1 to transport Na(+) exceeded that of ZxHKT1;1, and Na(+) was loaded into the xylem by ZxSOS1 and delivered to the shoots. However, in a ZxNHX-silenced line (L7), the capacity to sequester Na(+) into vacuoles of leaves was weakened, which in turn regulated long-distance Na(+) transport from roots to shoots. In roots of L7, NaCl (50 mm) increased transcripts of ZxSOS1 by only 10 %, whereas transcripts of ZxHKT1;1 increased by 53 %. Thus, in L7, the transport ability of ZxHKT1;1 for Na(+) outweighed that of ZxSOS1. Na(+) was unloaded from the xylem stream, consequently reducing Na(+) accumulation and relative distribution in leaves, but increasing the relative distribution of Na(+) in roots and the net selective transport capacity for K(+) over Na(+) from roots to shoots compared with the WT. Silencing of ZxNHX also triggered a downregulation of ZxAKT1 and ZxSKOR in roots, resulting in a significant decrease in K(+) accumulation in all the tissues in plants grown in 50 mm NaCl. These changes led to a significant reduction in osmotic adjustment, and thus an inhibition of growth in ZxNHX-silenced lines. CONCLUSIONS The results suggest that ZxNHX is essential for controlling Na(+), K(+) uptake, long-distance transport and their homeostasis at whole-plant level via feedback regulation of the expression of genes involved in Na(+), K(+) transport. The net result is the maintenance of the characteristic salt accumulation observed in Z. xanthoxylum and the regulation of its normal growth. A model is proposed for the role of ZxNHX in regulating the Na(+) transport system in Z. xanthoxylum under saline conditions.
Collapse
Affiliation(s)
- Hui-Jun Yuan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Guo-Qiang Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Pei Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Jing Hu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
176
|
Model of Cation Transportation Mediated by High-Affinity Potassium Transporters (HKTs) in Higher Plants. Biol Proced Online 2015; 17:1. [PMID: 25698907 PMCID: PMC4334588 DOI: 10.1186/s12575-014-0013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trk/Ktr/HKT transporters probably were evolved from simple K+ channels KcsA. HKT transporters, which mediate Na+-uniport or Na+/K+-symport, maintain K+/Na+ homeostasis and increase salinity tolerance, can be classified into three subfamilies in higher plants. In this review, we systematically analyzed the characteristics of amino acids sequences and physiological functions of HKT transporters in higher plant. Furthermore, we depicted the hypothetical models of cations selection and transportation mediated by HKT transporters according to the highly conserved structure for the goal of better understanding the cations transportation processes.
Collapse
|
177
|
Nath M, Garg B, Sahoo RK, Tuteja N. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation. PLANT SIGNALING & BEHAVIOR 2015; 10:e992289. [PMID: 25830863 PMCID: PMC4623307 DOI: 10.4161/15592324.2014.992289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 05/20/2023]
Abstract
Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.
Collapse
Affiliation(s)
- Manoj Nath
- Plant Biology; Plant Molecular Biology Group; International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | - Bharti Garg
- Plant Biology; Plant Molecular Biology Group; International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | - Ranjan Kumar Sahoo
- Plant Biology; Plant Molecular Biology Group; International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | - Narendra Tuteja
- Plant Biology; Plant Molecular Biology Group; International Center for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
178
|
Pinedo I, Ledger T, Greve M, Poupin MJ. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:466. [PMID: 26157451 PMCID: PMC4477060 DOI: 10.3389/fpls.2015.00466] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/11/2015] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.
Collapse
Affiliation(s)
- Ignacio Pinedo
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Thomas Ledger
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
| | - Macarena Greve
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - María J. Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- *Correspondence: María J. Poupin, Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avenida Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile,
| |
Collapse
|
179
|
García-Abellan JO, Egea I, Pineda B, Sanchez-Bel P, Belver A, Garcia-Sogo B, Flores FB, Atares A, Moreno V, Bolarin MC. Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term. PHYSIOLOGIA PLANTARUM 2014; 152:700-13. [PMID: 24773242 DOI: 10.1111/ppl.12217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 05/11/2023]
Abstract
For salt tolerance to be achieved in the long-term plants must regulate Na(+)/K(+) homeostasis over time. In this study, we show that the salt tolerance induced by overexpression of the yeast HAL5 gene in tomato (Solanum lycopersicum) was related to a lower leaf Na(+) accumulation in the long term, by reducing Na(+) transport from root to shoot over time regardless of the severity of salt stress. Furthermore, maintaining Na(+)/K(+) homeostasis over time was associated with changes in the transcript levels of the Na(+) and K(+) transporters such as SlHKT1;2 and SlHAK5. The expression of SlHKT1;2 was upregulated in response to salinity in roots of transgenic plants but downregulated in the roots of wild-type (WT) plants, which seems to be related to the lower Na(+) transport rate from root to shoot in transgenic plants. The expression of the SlHAK5 increased in roots and leaves of both WT and transgenic plants under salinity. However, this increase was much higher in the leaves of transgenic plants than in those of WT plants, which may be associated with the ability of transgenic leaves to maintain Na(+)/K(+) homeostasis over time. Taken together, the results show that the salt tolerance mechanism induced by HAL5 overexpression in tomato is related to the appropriate regulation of ion transport from root to shoot and maintenance of the leaf Na(+)/K(+) homeostasis through modulation of SlHKT1 and SlHAK5 over time.
Collapse
Affiliation(s)
- Jose O García-Abellan
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, ES-30100, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Mansour MMF. The plasma membrane transport systems and adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1787-800. [PMID: 25262536 DOI: 10.1016/j.jplph.2014.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 05/09/2023]
Abstract
Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.
Collapse
|
181
|
Maathuis FJM, Ahmad I, Patishtan J. Regulation of Na(+) fluxes in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:467. [PMID: 25278946 PMCID: PMC4165222 DOI: 10.3389/fpls.2014.00467] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/27/2014] [Indexed: 05/18/2023]
Abstract
When exposed to salt, every plant takes up Na(+) from the environment. Once in the symplast, Na(+) is distributed within cells and between different tissues and organs. There it can help to lower the cellular water potential but also exert potentially toxic effects. Control of Na(+) fluxes is therefore crucial and indeed, research shows that the divergence between salt tolerant and salt sensitive plants is not due to a variation in transporter types but rather originates in the control of uptake and internal Na(+) fluxes. A number of regulatory mechanisms has been identified based on signaling of Ca(2+), cyclic nucleotides, reactive oxygen species, hormones, or on transcriptional and post translational changes of gene and protein expression. This review will give an overview of intra- and intercellular movement of Na(+) in plants and will summarize our current ideas of how these fluxes are controlled and regulated in the early stages of salt stress.
Collapse
|
182
|
Shao Q, Han N, Ding T, Zhou F, Wang B. SsHKT1;1 is a potassium transporter of the C 3 halophyte Suaeda salsa that is involved in salt tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:790-802. [PMID: 32481033 DOI: 10.1071/fp13265] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/28/2014] [Indexed: 05/18/2023]
Abstract
SsHKT1;1, a HKT1 homologue, was isolated from the C3 halophyte Suaeda salsa L. and its ion transport properties were investigated in heterologous systems. The expression of SsHKT1;1 suppressed a K+ transport-defective phenotype of the yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+ uptake with SsHKT1;1. However, it did not suppress the salt-sensitive phenotype of the yeast strain G19 (Δena1-4), which lacks a major component of Na+ efflux. Transgenic Arabidopsis thaliana (L.) Heynh. plants overexpressing SsHKT1;1 showed enhanced salt tolerance and increased shoot K+ concentration, whereas no significant changes in shoot Na+ concentration were observed. S. salsa was also used to investigate K+ uptake properties under salinity. The K+ transporters in the roots selectively mediated K+ uptake irrespective of external Na+ and their inhibitor did not affect Na+ uptake at low K+. Thus, both molecular and physiological studies provide strong in vivo evidence that SsHKT1;1 mainly acts as a potassium transporter in heterologous expression systems and S. salsa, and that it is involved in salt tolerance by taking part in the maintenance of cytosolic cation homeostasis, particularly, in the maintenance of K+ nutrition under salinity.
Collapse
Affiliation(s)
- Qun Shao
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Ning Han
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Tonglou Ding
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Feng Zhou
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| | - Baoshan Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan 250?014, China
| |
Collapse
|
183
|
Abstract
Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.
Collapse
Affiliation(s)
- Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045,
Japan
| |
Collapse
|
184
|
Almeida P, Feron R, de Boer GJ, de Boer AH. Role of Na+, K+, Cl-, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato. AOB PLANTS 2014; 6:plu039. [PMID: 24996430 PMCID: PMC4122256 DOI: 10.1093/aobpla/plu039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/20/2014] [Indexed: 05/25/2023]
Abstract
One of the major abiotic stresses affecting agriculture is soil salinity, which reduces crop yield and, consequently, revenue for farmers. Although tomato is an important agricultural species, elite varieties are poor at withstanding salinity stress. Thus, a feasible way of improving yield under conditions of salinity stress is to breed for improved salt tolerance. In this study, we analysed the physiological and genetic parameters of 23 tomato accessions in order to identify possible traits to be used by plant breeders to develop more tolerant tomato varieties. Although we observed a wide range of Na(+) concentrations within the leaves, stems and roots, the maintenance of growth in the presence of 100 mM NaCl did not correlate with the exclusion or accumulation of Na(+). Nor could we correlate the growth with accumulation of sugars and proline or with the expression of any gene involved in the homoeostasis of Na(+) in the plant. However, several significant correlations between gene expression and Na(+) accumulation were observed. For instance, Na(+) concentrations both in the leaves and stems were positively correlated with HKT1;2 expression in the roots, and Na(+) concentration measured in the roots was positively correlated with HKT1;1 expression also in the roots. Higher and lower Na(+) accumulation in the roots and leaves were significantly correlated with higher NHX3 and NHX1 expression in the roots, respectively. These results suggest that, in tomato, for a particular level of tolerance to salinity, a complex relationship between Na(+) concentration in the cells and tissue tolerance defines the salinity tolerance of individual tomato accessions. In tomato it is likely that tissue and salinity tolerance work independently, making tolerance to salinity depend on their relative effects rather than on one of these mechanisms alone.
Collapse
Affiliation(s)
- Pedro Almeida
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
| | - Richard Feron
- Enza Zaden, Research and Development, Haling 1/E, 1602 DB Enkhuizen, The Netherlands
| | - Gert-Jan de Boer
- Enza Zaden, Research and Development, Haling 1/E, 1602 DB Enkhuizen, The Netherlands
| | - Albertus H de Boer
- Faculty of Earth and Life Sciences, Department of Structural Biology, Vrije Universiteit Amsterdam, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
185
|
Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. Plant salt-tolerance mechanisms. TRENDS IN PLANT SCIENCE 2014; 19:371-9. [PMID: 24630845 PMCID: PMC4041829 DOI: 10.1016/j.tplants.2014.02.001] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 05/18/2023]
Abstract
Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.
Collapse
Affiliation(s)
- Ulrich Deinlein
- Division of Biological Sciences, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Aaron B Stephan
- Division of Biological Sciences, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Wei Luo
- Division of Biological Sciences, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA 92093-0116, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Julian I Schroeder
- Division of Biological Sciences, Food and Fuel for the 21st Century Center, University of California San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
186
|
Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC PLANT BIOLOGY 2014; 14:113. [PMID: 24774965 PMCID: PMC4021550 DOI: 10.1186/1471-2229-14-113] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity tolerance is a physiologically multi-faceted trait attributed to multiple mechanisms. Three barley (Hordeum vulgare) varieties contrasting in their salinity tolerance were used to assess the relative contribution of ionic, osmotic and oxidative stress components towards overall salinity stress tolerance in this species, both at the whole-plant and cellular levels. In addition, transcriptional changes in the gene expression profile were studied for key genes mediating plant ionic and oxidative homeostasis (NHX; RBOH; SOD; AHA and GORK), to compare a contribution of transcriptional and post-translational factors towards the specific components of salinity tolerance. RESULTS Our major findings are two-fold. First, plant tissue tolerance was a dominating component that has determined the overall plant responses to salinity, with root K(+) retention ability and reduced sensitivity to stress-induced hydroxyl radical production being the main contributing tolerance mechanisms. Second, it was not possible to infer which cultivars were salinity tolerant based solely on expression profiling of candidate genes at one specific time point. For the genes studied and the time point selected that transcriptional changes in the expression of these specific genes had a small role for barley's adaptive responses to salinity. CONCLUSIONS For better tissue tolerance, sodium sequestration, K(+) retention and resistance to oxidative stress all appeared to be crucial. Because these traits are highly interrelated, it is suggested that a major progress in crop breeding for salinity tolerance can be achieved only if these complementary traits are targeted at the same time. This study also highlights the essentiality of post translational modifications in plant adaptive responses to salinity.
Collapse
Affiliation(s)
- Getnet Dino Adem
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart Tas 7001, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond SA 5064, Australia
- University of Adelaide, Private Mail Bag 1, Glen Osmond SA 5064, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart Tas 7001, Australia
| | - John P Bowman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart Tas 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart Tas 7001, Australia
| |
Collapse
|
187
|
Tang X, Mu X, Shao H, Wang H, Brestic M. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 2014; 35:425-37. [PMID: 24738851 DOI: 10.3109/07388551.2014.889080] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.
Collapse
Affiliation(s)
- Xiaoli Tang
- a Key Laboratory of Coastal Biology & Bioresources Utilization , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , China .,b University of Chinese Academy of Sciences , Beijing , China
| | - Xingmin Mu
- c Institute of Soil and Water Conservation, Northwest A&F University , Yangling , China .,d Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources , Yangling , China
| | - Hongbo Shao
- a Key Laboratory of Coastal Biology & Bioresources Utilization , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , China .,c Institute of Soil and Water Conservation, Northwest A&F University , Yangling , China .,d Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources , Yangling , China .,e Institute for Life Sciences, Qingdao University of Science & Technology (QUST) , Qingdao , China , and
| | - Hongyan Wang
- a Key Laboratory of Coastal Biology & Bioresources Utilization , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , China .,b University of Chinese Academy of Sciences , Beijing , China
| | - Marian Brestic
- a Key Laboratory of Coastal Biology & Bioresources Utilization , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , China .,f Department of Plant Physiology , Slovak Agricultural University , Nitra , Slovak Republic
| |
Collapse
|
188
|
Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol 2014; 26:115-24. [DOI: 10.1016/j.copbio.2013.12.004] [Citation(s) in RCA: 674] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/27/2022]
|
189
|
Almeida P, de Boer GJ, de Boer AH. Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:438-47. [PMID: 24594396 DOI: 10.1016/j.jplph.2013.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 05/21/2023]
Abstract
HKT1 has been shown to be essential in Na(+) homeostasis in plants. In this paper, we report the analysis of Na(+) accumulation in different plant organs of two tomato species with contrasting salt tolerances: Solanum lycopersicum and Solanum pennellii. Furthermore, we relate these differences in Na(+) accumulation between the two species to the differences in HKT1;2 transport kinetics and HKT1;2 expression. S. lycopersicum showed "Na(+) excluder" behaviour, whereas S. pennellii showed "Na(+) includer" behaviour. SlHKT1;2 expression, in contrast to SpHKT1;2 expression showed a significant effect of NaCl treatment, especially stems had a high increase in SlHKT1;2 expression. SlHKT1;2 promoter-GUS reporter gene analysis showed that SlHKT1;2 is expressed in the vasculature surrounding the roots and shoots of transformed Arabidopsis plants. In this paper, we present HKT1;2 protein sequences of both tomato species and provide evidence that both SlHKT1;2 and SpHKT1;2 are Na(+) transporters. Our kinetic studies showed that SpHKT1;2, in comparison with SlHKT1;2, had a lower affinity for Na(+). This low affinity of SpHKT1;2 correlated with higher xylem Na(+) and higher accumulation of Na(+) in stems and leaves of S. pennellii. Our findings demonstrate the importance of the understanding of transport characteristics of HKT1;2 transporters to improve the understanding of Na(+) homeostasis in plants.
Collapse
Affiliation(s)
- Pedro Almeida
- Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Structural Biology, Room H057, De Boelelaan 1081-1087, 1081 HV Amsterdam, The Netherlands.
| | - Gert-Jan de Boer
- Enza Zaden, Oosterdijk Gebouw, P.O. Box 7, 1600 AA Enkhuizen, The Netherlands
| | - Albertus H de Boer
- Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Structural Biology, Room H057, De Boelelaan 1081-1087, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
190
|
Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendía AM, Massart A, Poschenrieder C, Hariadi Y, Shabala S. Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K(+) -permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. PLANT, CELL & ENVIRONMENT 2014; 37:589-600. [PMID: 23937055 DOI: 10.1111/pce.12180] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 07/11/2013] [Accepted: 08/03/2013] [Indexed: 05/02/2023]
Abstract
Salt sensitive (pea) and salt tolerant (barley) species were used to understand the physiological basis of differential salinity tolerance in crops. Pea plants were much more efficient in restoring otherwise depolarized membrane potential thereby effectively decreasing K(+) efflux through depolarization-activated outward rectifying potassium channels. At the same time, pea root apex was 10-fold more sensitive to physiologically relevant H2 O2 concentration and accumulated larger amounts of H2 O2 under saline conditions. This resulted in a rapid loss of cell viability in the pea root apex. Barley plants rapidly loaded Na(+) into the xylem; this increase was only transient, and xylem and leaf Na(+) concentration remained at a steady level for weeks. On the contrary, pea plants restricted xylem Na(+) loading during the first few days of treatment but failed to prevent shoot Na(+) elevation in the long term. It is concluded that superior salinity tolerance of barley plants compared with pea is conferred by at least three different mechanisms: (1) efficient control of xylem Na(+) loading; (2) efficient control of H2 O2 accumulation and reduced sensitivity of non-selective cation channels to H2 O2 in the root apex; and (3) higher energy saving efficiency, with less ATP spent to maintain membrane potential under saline conditions.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Agricultural Science, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:231-49. [PMID: 24393374 DOI: 10.1111/jipb.12159] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | |
Collapse
|
192
|
Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC. SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:315-32. [PMID: 24325391 DOI: 10.1111/jipb.12144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/26/2013] [Indexed: 05/04/2023]
Abstract
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K⁺ in the presence of toxic concentrations of Na⁺. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKT1;4, a member of the HKT gene family from Sorghum bicolor. Upon Na⁺ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na⁺ /K⁺ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na⁺ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K⁺, implicating that SbHKT1;4 may mediate K⁺ uptake in the presence of excessive Na⁺. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na⁺ and K⁺ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKT1;4 functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress to the breeding of salt-tolerant glycophytic crops is discussed.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Ben Amar S, Brini F, Sentenac H, Masmoudi K, Véry AA. Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:213-22. [PMID: 24192995 PMCID: PMC3883290 DOI: 10.1093/jxb/ert361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant tolerance to salinity constraint involves complex and integrated functions including control of Na(+) uptake, translocation, and compartmentalization. Several members of the high-affinity K(+) transporter (HKT) family, which comprises plasma-membrane transporters permeable to K(+) and Na(+) or to Na(+) only, have been shown to play major roles in plant Na(+) and K(+) homeostasis. Among them, HKT1;4 has been identified as corresponding to a quantitative trait locus (QTL) of salt tolerance in wheat but was not functionally characterized. Here, we isolated two HKT1;4-type cDNAs from a salt-tolerant durum wheat (Triticum turgidum L. subsp. durum) cultivar, Om Rabia3, and investigated the functional properties of the encoded transporters using a two-electrode voltage-clamp technique, after expression in Xenopus oocytes. Both transporters displayed high selectivity for Na(+), their permeability to other monovalent cations (K(+), Li(+), Cs(+), and Rb(+)) being ten times lower than that to Na(+). Both TdHKT1;4-1 and TdHKT1;4-2 transported Na(+) with low affinity, although the half-saturation of the conductance was observed at a Na(+) concentration four times lower in TdHKT1;4-1 than in TdHKT1;4-2. External K(+) did not inhibit Na(+) transport through these transporters. Quinine slightly inhibited TdHKT1;4-2 but not TdHKT1;4-1. Overall, these data identified TdHKT1;4 transporters as new Na(+)-selective transporters within the HKT family, displaying their own functional features. Furthermore, they showed that important differences in affinity exist among durum wheat HKT1;4 transporters. This suggests that the salt tolerance QTL involving HKT1;4 may be at least in part explained by functional variability among wheat HKT1;4-type transporters.
Collapse
Affiliation(s)
- Siwar Ben Amar
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Faiçal Brini
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Khaled Masmoudi
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
194
|
Hussein Z, Dryanova A, Maret D, Gulick PJ. Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum. PLANT CELL REPORTS 2014; 33:189-201. [PMID: 24141639 DOI: 10.1007/s00299-013-1522-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Using microarray analysis, we identified regulatory and signaling-related genes with differential expression in three genotypes with varying degrees of salt tolerance, Triticum aestivum , the amphiploid, and the wheat substitution line DS3E(3A). Lophopyrum elongatum is among one of the most salt-tolerant members of the Triticeae; important genetic stocks developed from crosses between wheat and L. elongatum provide a unique opportunity to compare gene expression in response to salt stress between these highly related species. The octaploid amphiploid contains the entire genome of T. aestivum and L. elongatum, and the disomic substitution line DS3E(3A) has chromosome 3A of wheat replaced by chromosome 3E of L. elongatum. In this study, microarray analysis was used to characterize gene expression profiles in the roots of three genotypes, Triticum aestivum, the octaploid amphiploid, and the wheat DS3E(3A) substitution line, in response to salt stress. We first examined changes in gene expression in wheat over a time course of 3 days of salt stress, and then compared changes in gene expression in wheat, the T. aestivum × L. elongatum amphiploid, and in the DS3E(3A) substitution line after 3 days of salt stress. In the time course experiment, 237 genes had 1.5 fold or greater change at least one out of three time points assayed in the experiment. The comparison between the three genotypes revealed 304 genes with significant differences in changes of expression between the genotypes. Forty-two of these genes had at least a twofold change in expression in response to salt treatment; 18 of these genes have signaling or regulatory function. Genes with significant differences in induction or repression between genotypes included transcription factors, protein kinases, ubiquitin ligases and genes related to phospholipid signaling.
Collapse
Affiliation(s)
- Zina Hussein
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, QC, H4B 1R6, Canada
| | | | | | | |
Collapse
|
195
|
Genomic insights into salt adaptation in a desert poplar. Nat Commun 2013; 4:2797. [DOI: 10.1038/ncomms3797] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/21/2013] [Indexed: 01/27/2023] Open
|
196
|
Morgan SH, Lindberg S, Mühling KH. Calcium supply effects on wheat cultivars differing in salt resistance with special reference to leaf cytosol ion homeostasis. PHYSIOLOGIA PLANTARUM 2013; 149:321-328. [PMID: 23413983 DOI: 10.1111/ppl.12036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
Salinity causes changes in cytosolic Ca(2+), [Ca(2+)]cyt, Na(+), [Na(+)]cyt and pH, pH cyt , which induce specific reactions and signals. Reactions causing a rebalancing of the physiological homeostasis of the cytosol could result in plant resistance and growth. Two wheat cultivars, Triticum aestivum, Seds1 and Vinjett, were grown in nutrient solution for 7 days under moderate salinity (0 and 50 mM NaCl) with and without extra addition of 5 mM CaSO4 to investigate the seedling-ion homeostasis under salinity. In the leaf protoplasts [Ca(2+) ]cyt, [Na(+)]cyt and pH cyt were detected using acetoxymethyl esters of the ion-specific dyes, Fura 2, SBFI and BCECF, respectively, and fluorescence microscopy. In addition, both cultivars were grown for 3 weeks at 0, 50 and 125 mM NaCl with, or without, extra addition of 5 mM CaSO4 to detect overall Na(+) and Ca(2+) concentrations in leaves and salinity effects on dry weights. In both cultivars, salinity decreased [Ca(2+)]cyt, while at extra Ca(2+) supplied, [Ca(2+)]cyt increased. The [Ca(2+) ]cyt increase was accompanied by increase in the overall Ca(2+) concentrations in leaves and decrease in the overall Na(+) concentration. Moreover, irrespective of Ca(2+) treatment under salinity, the cultivars reacted in different ways; [Na(+) ]cyt significantly increased only in cv. Vinjett, while pH cyt increased only in cv. Seds1. Even at rather high total Na(+) concentrations, the cytosolic concentrations were kept low in both cultivars. It is discussed whether the increase of [Ca(2+)]cyt and pH cyt can contribute to salt tolerance and if the cytosolic changes are due to changes in overall Ca(2+) and Na(+) concentrations.
Collapse
Affiliation(s)
- Sherif H Morgan
- Institute for Plant Nutrition and Soil Science, Christian Albrechts University, Hermann Rodewald Strasse 2, D-24118, Kiel, Germany; Plant Physiology Section, Plant Botany Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | | | | |
Collapse
|
197
|
HKT transporters--state of the art. Int J Mol Sci 2013; 14:20359-85. [PMID: 24129173 PMCID: PMC3821619 DOI: 10.3390/ijms141020359] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/15/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022] Open
Abstract
The increase in soil salinity poses a serious threat to agricultural yields. Under salinity stress, several Na⁺ transporters play an essential role in Na⁺ tolerance in plants. Amongst all Na+ transporters, HKT has been shown to have a crucial role in both mono and dicotyledonous plants in the tolerance to salinity stress. Here we present an overview of the physiological role of HKT transporters in plant Na⁺ homeostasis. HKT regulation and amino acids important to the correct function of HKT transporters are reviewed. The functions of the most recently characterized HKT members from both HKT1 and HKT2 subfamilies are also discussed. Topics that still need to be studied in future research (e.g., HKT regulation) as well as research suggestions (e.g., generation of HKT mutants) are addressed.
Collapse
|
198
|
Ali A, Cheol Park H, Aman R, Ali Z, Yun DJ. Role of HKT1 in Thellungiella salsuginea, a model extremophile plant. PLANT SIGNALING & BEHAVIOR 2013; 8:25196. [PMID: 23759555 PMCID: PMC3999061 DOI: 10.4161/psb.25196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 05/21/2023]
Abstract
Maintenance of the cytosolic Na(+)/K(+) ratio under saline conditions is crucial for plants. HKT-type Na(+) transporters play a key role in keeping low cytosolic Na(+) concentrations thus retaining a low Na(+)/K(+) ratio, that reduces Na(+) toxicity and causing high salinity stress tolerance. Two HKT-type transporters, AtHKT1 from Arabidopsis and TsHKT1;2 from Thellungiella salsuginea, that share high DNA and protein sequence identities, are distinguished by fundamentally different ion selection and salinity stress behavior. On the level of transcription, TsHKT1;2 is dramatically induced upon salt stress, whereas AtHKT1 is downregulated. TsHKT1;2-RNAi lines show severe potassium deficiency and are also sensitive to high [Na(+)]. We have validated the ability of the TsHKT1;2 protein to act as an efficient K(+) transporter in the presence of high [Na(+)] by expression in yeast cells. K(+) specificity is based on amino acid differences in the pore of the transporter protein relative to AtHKT1.
Collapse
|
199
|
Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. FRONTIERS IN PLANT SCIENCE 2013; 4:272. [PMID: 23898339 PMCID: PMC3721551 DOI: 10.3389/fpls.2013.00272] [Citation(s) in RCA: 559] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.
Collapse
Affiliation(s)
- Remi Lemoine
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Sylvain La Camera
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Rossitza Atanassova
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Fabienne Dédaldéchamp
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Thierry Allario
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Nathalie Pourtau
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jean-Louis Bonnemain
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Maryse Laloi
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Pierre Coutos-Thévenot
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Laurence Maurousset
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mireille Faucher
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Christine Girousse
- Diversité et Ecophysiologie des Céréales, Unités Mixtes de RechercheClermont Ferrand, France
| | - Pauline Lemonnier
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jonathan Parrilla
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mickael Durand
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| |
Collapse
|
200
|
Sani E, Herzyk P, Perrella G, Colot V, Amtmann A. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 2013; 14:R59. [PMID: 23767915 PMCID: PMC3707022 DOI: 10.1186/gb-2013-14-6-r59] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/14/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In arid and semi-arid environments, drought and soil salinity usually occur at the beginning and end of a plant's life cycle, offering a natural opportunity for the priming of young plants to enhance stress tolerance in mature plants. Chromatin marks, such as histone modifications, provide a potential molecular mechanism for priming plants to environmental stresses, but whether transient exposure of seedlings to hyperosmotic stress leads to chromatin changes that are maintained throughout vegetative growth remains unclear. RESULTS We have established an effective protocol for hyperosmotic priming in the model plant Arabidopsis, which includes a transient mild salt treatment of seedlings followed by an extensive period of growth in control conditions. Primed plants are identical to non-primed plants in growth and development, yet they display reduced salt uptake and enhanced drought tolerance after a second stress exposure. ChIP-seq analysis of four histone modifications revealed that the priming treatment altered the epigenomic landscape; the changes were small but they were specific for the treated tissue, varied in number and direction depending on the modification, and preferentially targeted transcription factors. Notably, priming leads to shortening and fractionation of H3K27me3 islands. This effect fades over time, but is still apparent after a ten day growth period in control conditions. Several genes with priming-induced differences in H3K27me3 showed altered transcriptional responsiveness to the second stress treatment. CONCLUSION Experience of transient hyperosmotic stress by young plants is stored in a long-term somatic memory comprising differences of chromatin status, transcriptional responsiveness and whole plant physiology.
Collapse
|